Proof that $d = d^* = d_t$ and $\Delta^*(S)$ is an ideal

1 The proof that $d = d^* = d_t$

We are grateful to Daniel Glasscock for pointing out that our proof that $d = d^*$ could be easily modified to prove that $d = d^* = d_t$.

Definition 1.1. Let (S, \cdot) be a semigroup which satisfies SFC and let $A \subseteq S$. The $F \emptyset Iner \ density \ of \ A$ is defined by $d(A) = \sup\{\alpha \in [0,1] : (\forall H \in \mathcal{P}_f(S))(\forall \epsilon > 0) (\exists K \in \mathcal{P}_f(S)) (\forall \epsilon \in H)(|K \setminus sK| < \epsilon \cdot |K|) \text{ and } |A \cap K| \geq \alpha \cdot |K|)\}.$

Definition 1.2. Let (S, \cdot) be a left amenable semigroup and let $A \subseteq S$. The Banach density of A is defined by $d^*(A) = \sup\{\lambda(\chi_A) : \lambda \text{ is a left invariant mean on } S\}$.

Definition 1.3. Let (S, \cdot) be a semigroup and let $A \subseteq S$. Then $d_t(A) = \sup\{\alpha \in [0, 1] : (\forall F \in \mathcal{P}_f(S))(\exists s \in S)(|F \cap As^{-1}| \geq \alpha \cdot |F|)\}.$

Theorem 1.4. Let (S, \cdot) be a semigroup satisfying SFC, let $A \subseteq S$, and let $\delta = d(A)$. There is a Følner net $\langle F_{\alpha} \rangle_{\alpha \in D}$ such that the net $\left\langle \frac{|F_{\alpha} \cap A|}{|F_{\alpha}|} \right\rangle_{\alpha \in D}$ converges to δ .

If ν is any cluster point of the net $\langle \mu_{F_{\alpha}} \rangle_{\alpha \in D}$ in $\times_{f \in l_{\infty}(S)} [-||f||_{\infty}, ||f||_{\infty}]$ Then $\nu \in LIM_0(S)$ and $\nu(X_A) = \delta$. In particular $d(A) \leq d^*(A)$.

Proof. Since $d(A) = \delta$, it is a routine exercise to show that $(\forall H \in \mathcal{P}_f(S))(\forall \epsilon > 0)(\exists K \in \mathcal{P}_f(S))((\forall s \in H)(|K \setminus sK| < \epsilon \cdot |K|))$ and $(\delta - \epsilon) \cdot |K| < |A \cap K| < (\delta + \epsilon) \cdot |K|)$.

Let $D = \mathcal{P}_f(S) \times \mathbb{N}$ and direct D by $(H, n) \leq (K, m)$ if and only if $H \subseteq K$ and $n \leq m$. For $\alpha = (H, n) \in D$, pick $F_{\alpha} \in \mathcal{P}_f(S)$ such that $(\forall s \in H)(|F_{\alpha} \setminus sF_{\alpha}| < \frac{1}{n} \cdot |F_{\alpha}| \text{ and } (\delta - \frac{1}{n}) \cdot |F_{\alpha}| < |F_{\alpha} \cap A| < (\delta + \frac{1}{n}) \cdot |F_{\alpha}|$.

Let ν be a cluster point of the net $\langle \mu_{F_{\alpha}} \rangle_{\alpha \in D}$. Since $\langle \mu_{F_{\alpha}}(\chi_A) \rangle_{\alpha \in D}$ converges to δ , we have that $\nu(\chi_A) = \delta$.

The proof of the next lemma is based on the proof of [1, Theorem 3.2].

Lemma 1.5. Let (S, \cdot) be a left amenable semigroup, let $A \subseteq S$, let μ be a left invariant mean on S such that $\mu(X_A) > 0$. Assume that $F \in \mathcal{P}_f(S)$ and $0 < \eta < \delta \leq \mu(X_A)$ and let $R = \{s \in S : |F \cap As^{-1}| \geq \eta \cdot |F|\}$. Then $\mu(X_R) \geq \frac{\delta - \eta}{1 - \eta}$. In particular, $R \neq \emptyset$.

 $\begin{array}{l} \textit{Proof. Note that for } x \in S, \ \chi_{x^{-1}A} = \chi_A \circ \lambda_x \ \text{so} \ \mu(\chi_{x^{-1}A}) = \mu(\chi_A \circ \lambda_x) = \\ \mu(\chi_A). \ \ \text{Define } g : S \to [0,1] \ \text{by } g(t) = \frac{|F \cap At^{-1}|}{|F|}. \ \ \text{Then for } t \in S, \ g(t) = \\ \frac{1}{|F|} \sum_{x \in F} \chi_{At^{-1}}(x) = \frac{1}{|F|} \sum_{x \in F} \chi_{x^{-1}A}(t) \ \text{so} \ g = \frac{1}{|F|} \sum_{x \in F} \chi_{x^{-1}A}. \ \ \text{Thus} \ \mu(g) = \\ \frac{1}{|F|} \sum_{x \in F} \mu(\chi_{x^{-1}A}) = \frac{1}{|F|} \sum_{x \in F} \mu(\chi_A) = \mu(\chi_A). \end{array}$

Since μ is additive, $\mu(\chi_A) = \mu(g) \leq \mu(g\chi_R) + \mu(g\chi_{S\backslash R})$. Since $g\chi_R \leq \chi_R$, $\mu(g\chi_R) \leq \mu(\chi_R)$. For $t \in S \setminus R$, $|F \cap At^{-1}| < \eta \cdot |F|$ so $g(t) < \eta$. Also, $\mu(\chi_{S\backslash R}) = 1 - \mu(\chi_R)$ so $\mu(\chi_A) \leq \mu(g\chi_R) + \mu(g\chi_{S\backslash R}) \leq \mu(\chi_R) + \eta\mu(\chi_{S\backslash R}) = \mu(\chi_R) + \eta(1 - \mu(\chi_R))$. Therefore $\mu(\chi_A) - \eta \leq \mu(\chi_R) \cdot (1 - \eta)$ so $\mu(\chi_R) \geq \frac{\mu(\chi_R) - \eta}{1 - \eta} \geq \frac{\delta - \eta}{1 - \eta}$.

Lemma 1.6. Let (S, \cdot) be a left amenable semigroup and let $A \subseteq S$. Then $d^*(A) \leq d_t(A)$.

Proof. Suppose $d_t(A) < d^*(A)$, pick η such that $d_t(A) < \eta < d^*(A)$, and pick $\mu \in LIM(S)$ such that $\delta = \mu(\chi_A) > \eta$. Since $d_t(A) < \eta$ pick $F \in \mathcal{P}_f(S)$ such that for all $s \in S$, $|F \cap As^{-1}| < \eta \cdot |F|$. But then the set R in Lemma 1.5 is empty, a contradiction.

Lemma 1.7. Let (S, \cdot) be a semigroup satisfying SFC and define a relation \sim on S by, for $a, b \in S$, $a \sim b$ if and only if there exists $x \in S$ such that ax = bx. Then \sim is an equivalence relation on S and the quotient $T = S/\sim$ is a cancellative semigroup which satisfies SFC.

Proof. This is [4, Lemma 3.2]. Its proof was based on the proofs of [2, Lemma 2 and Remark 3] and [5, Theorem 2.2]. \Box

It is well known and easy to prove that if S is a left amenable semigroup, then the intersection of finitely many right ideals of S is nonempty.

Lemma 1.8. Let S be a left amenable semigroup, let $h: S \to S/\sim$ be the projection in Lemma 1.7, let $n \in \mathbb{N}$, and let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be elements of S with the property that $h(a_i) = h(b_i)$ for every $i \in \{1, 2, \ldots, n\}$. There is a right ideal R of S such that $a_i u = b_i u$ for every $u \in R$ and every $i \in \{1, 2, \ldots, n\}$.

Proof. For each $i \in \{1, 2, ..., n\}$, pick $x_i \in S$ such that $a_i x_i = b_i x_i$ and let $R_i = \{u \in S : a_i u = b_i u\}$. Then each R_i is a right ideal of S. Let $R = \bigcap_{i=1}^n R_i$. \square

Theorem 1.9. Let (S, \cdot) be a semigroup which satisfies SFC. Then, for every subset A of S, $d(A) = d^*(A) = d_t(A)$.

Proof. By Theorem 1.4 and Lemma 1.6 we have that $d(A) \leq d^*(A) \leq d_t(A)$ so it suffices to show that $d_t(A) \leq d(A)$. To see this we will show that if $\eta < d_t(A)$, then $d(A) \geq \eta$. So let $\eta < d_t(A)$ be given.

To see that $d(A) \geq \eta$, let $H \in \mathcal{P}_f(S)$ and $\epsilon > 0$ be given and let $\mathcal{F} = \{K \in \mathcal{P}_f(S) : (\forall s \in H)(|K \setminus sK| < \epsilon \cdot |K|)\}$. We shall show that there exists $K \in \mathcal{F}$ such that $|K \cap A| \geq \eta \cdot |K|$.

Let $g: T \to S$ be a choice function for \sim and note that h(g(t)) = t for every $t \in T$. Observe that g is injective and h is injective on g[T]. We claim that for each $s \in S$, ρ_s is injective on g[T]. To see this, let $a, b \in T$ and assume that g(a)s = g(b)s. Then $g(a) \sim g(b)$ so a = h(g(a)) = h(g(b)) = b.

Now $h[H] \in \mathcal{P}_f(T)$ and by Lemma 1.7, T satisfies SFC, so pick $F \in \mathcal{P}_f(T)$ such that for all $s \in H$, $|F \setminus h(s)F| < \epsilon \cdot |F|$. Now $y \in F \cap h(s)F$ if and only if $y \in F$ and y = h(s)y' for some $y' \in F$. The equation y = h(s)y' implies that h(sg(y')) = h(s)h(g(y')) = h(s)y' = y = h(g(y)) so, by Lemma 1.8, there is a right ideal R of S such that g(y)u = sg(y')u for every $y, y' \in F$ and every $s \in H$ for which y = h(s)y'.

For each $u \in R$, let $G_u = g[F]u$ and note that $|G_u| = |g[F]u| = |g[F]| = |F|$, because ρ_u is injective on g[F] and g is injective. We claim that for each $u \in R$, $G_u \in \mathcal{F}$. To see this, let $u \in R$ and let $s \in H$. It suffices to show that $G_u \setminus sG_u \subseteq \{g(y)u: y \in F \setminus h(s)F\}$, for then $|G_u \setminus sG_u| \le |F \setminus h(s)F| < \epsilon \cdot |F| = \epsilon \cdot |G_u|$. So let $x \in G_u \setminus sG_u$ and pick $y \in F$ such that x = g(y)u. If we had $y \in h(s)F$, there would be some $y' \in F$ such that y = h(s)y' so x = g(y)u = sg(y')u and thus $x \in sG_u$.

Choose $u \in R$. Since $d_t(A) > \eta$, we may pick $x \in S$ such that $|G_u \cap Ax^{-1}| \ge \eta \cdot |G_u|$. If $z \in G_u \cap Ax^{-1}$, then $zx \in G_u x \cap A$. So $(G_u \cap Ax^{-1})x \subseteq G_u x \cap A$. Now ρ_x is injective on G_u , because ρ_{ux} is injective on g[F]. So $|G_u x \cap A| \ge |G_u \cap Ax^{-1}|$ and therefore $|G_u x \cap A| \ge \eta \cdot |G_u| = \eta \cdot |G_u x|$. Since $G_u x = G_{ux} \in \mathcal{F}$ we are done.

2 The proof that $\Delta^*(S)$ is an ideal

Lemma 2.1. Let S be a left amenable semigroup. A mean μ on S is left invariant if and only if $\mu(s^{-1}A) = \mu(A)$ for every $s \in S$ and every $A \subseteq S$.

Proof. Observe that $\chi_{s^{-1}A} = \chi_A \circ \lambda_s$ for every $s \in S$ and every $A \subseteq S$. So, if $\mu \in LIM(S)$, $\mu(s^{-1}A) = \mu(A)$ for every $s \in S$ and every $A \subseteq S$.

To prove the converse, assume that μ is a mean on S with the property that $\mu(s^{-1}A) = \mu(A)$ for every $s \in S$ and every $A \subseteq S$.

For $s \in S$, define $\tau_s : l_{\infty}(S)^* \to l_{\infty}(S)^*$ by, for $\eta \in l_{\infty}(S)^*$ and $f \in l_{\infty}(S)$, $\tau_s(\eta)(f) = \eta(f \circ \lambda_s)$. Note that τ_s is a linear map. We claim that τ_s is continuous for the norm topology on $l_{\infty}(S)^*$. By [3, Theorem B.10] it suffices to show that τ_s is bounded. So let $\eta \in l_{\infty}(S)^*$. We claim that $||\tau_s(\eta)|| \le ||\eta||$, for which it suffices to let $f \in l_{\infty}(S)$ and note that $||f \circ \lambda_s|| \le ||f||$ so that $||\tau_s(\eta)(f)|| = ||\eta(f \circ \lambda_s)|| \le ||\eta(f)||$.

Let E denote the linear subspace of $l_{\infty}(S)$ generated by the functions χ_A , where A denotes a subset of S. We claim that E is uniformly dense in $l_{\infty}(S)$. This is easy to prove directly by an elementary argument. It also follows from the Stone-Weierstrass Theorem, because $\{\widetilde{f}: f \in E\}$ is a subalgebra of $C(\beta S)$ which separates points and contains the constant function $\chi_{\beta S}$.

Given $s \in S$ and $A \subseteq S$, we have noted that $\chi_{s^{-1}A} = \chi_A \circ \lambda_s$ so that $\tau_s(\mu)(\chi_A) = \mu(\chi_A \circ \lambda_s) = \mu(\chi_{s^{-1}A}) = \mu(\chi_A)$. This implies that $\tau_s(\mu)(f) = \mu(f)$ for every $f \in E$. Since E is dense in $l_{\infty}(S)$ and τ_s is continuous, this implies that $\mu(f \circ \lambda_s) = \mu(f)$ for every $f \in l_{\infty}(S)$ so that μ is left invariant. \square

Definition 2.2. Let (S, \cdot) be a semigroup satisfying SFC. Then $\Delta(S) = \{ p \in \beta S : (\forall A \in p) (d(A) > 0) \}.$

Definition 2.3. Let (S, \cdot) be a left amenable semigroup. Then $\Delta^*(S) = \{ p \in \beta S : (\forall A \in p) (d^*(A) > 0) \}.$

Lemma 2.4. Let (S, \cdot) be a left amenable semigroup. Then $\Delta^*(S)$ is a left ideal of βS .

Proof. Let $p \in \Delta^*(S)$, let $q \in \beta S$, and let $A \in qp$. Then $\{s \in S : s^{-1}A \in p\} \in q$ so pick $s \in S$ such that $s^{-1}A \in p$. Then $d^*(s^{-1}A) > 0$ so pick $\eta \in LIM(S)$ such that $\eta(\chi_{s^{-1}A}) > 0$. Since $\chi_A \circ \lambda_s = \chi_{s^{-1}A}$, $\eta(\chi_A) = \eta(\chi_{s^{-1}A})$ so $d^*(A) > 0$. \square

Theorem 2.5. Let $(S, \cdot)S$ be a left amenable semigroup. Then $\Delta^*(S)$ is a two sided ideal of βS .

Proof. Let $p \in \Delta^*(S)$, let $q \in \beta S$, and let $A \in pq$. We shall show that $d^*(A) > 0$. This will establish that $pq \in \Delta^*(S)$ and hence that $\Delta^*(S)$ is a right ideal of $\beta(S)$.

Let $P = \{s \in S : s^{-1}A \in q\} = \{s \in S : sq \in \overline{A}\}$. Then $P \in p$ so $d^*(P) > 0$ and we can choose $\mu \in LIM(S)$ for which $\mu(P) > 0$. Note that, as usual, if $s \in S$ and $B \subseteq S$, by $s^{-1}B$ we mean $\{t \in S : st \in B\}$. On the other hand, $s^{-1}\overline{B} = \{r \in \beta S : sr \in \overline{B}\}$.

We define ν on $\mathcal{P}(S)$ by $\nu(B) = \mu(S \cap \rho_q^{-1}[\overline{B}])$ for every $B \subseteq S$. Clearly, ν extends to a positive, bounded, linear functional on $l_{\infty}(S)$. The fact that $\nu(S) = 1$ implies that $\|\nu\| = 1$, because χ_S is the maximum element of the unit ball of $l_{\infty}(S)$. So ν is a mean on S. We shall show that ν is left invariant, for which it suffices by Lemma 2.1 to show that $\nu(s^{-1}B) = \nu(B)$ for every $s \in S$ and every $B \subseteq S$.

To see this, let $s \in S$ and $B \subseteq S$ be given. We claim that $\overline{s^{-1}B} = s^{-1}\overline{B}$. Indeed, let $r \in \beta S$.

$$\begin{array}{ccc} r \in \overline{s^{-1}B} & \Leftrightarrow & s^{-1}B \in r \\ & \Leftrightarrow & B \in sr \\ & \Leftrightarrow & sr \in \overline{B} \\ & \Leftrightarrow & r \in s^{-1}\overline{B} \end{array}$$

so if $t \in S$, then

$$\begin{split} t \in S \cap \rho_q^{-1}[\overline{s^{-1}B}\,] & \Leftrightarrow & t \in \rho_q^{-1}[\overline{s^{-1}B}\,] \\ & \Leftrightarrow & t \in \rho_q^{-1}[s^{-1}\overline{B}\,] \\ & \Leftrightarrow & tq \in s^{-1}\overline{B} \\ & \Leftrightarrow & stq \in \overline{B} \\ & \Leftrightarrow & st \in \rho_q^{-1}[\overline{B}\,] \\ & \Leftrightarrow & t \in s^{-1}(S \cap \rho_q^{-1}[\overline{B}\,]) \,. \end{split}$$

Therefore
$$\nu(s^{-1}B) = \mu(S \cap \rho_q^{-1}[\overline{s^{-1}B}]) = \mu(s^{-1}(S \cap \rho_q^{-1}[\overline{B}])) = \mu(S \cap \rho_q^{-1}[\overline{B}]) = \nu(B)$$
 as required.
Now $P = S \cap \rho_q^{-1}[\overline{A}]$ so $\nu(A) = \mu(S \cap \rho_q^{-1}[\overline{A}]) = \mu(P) > 0$.

Corollary 2.6. Let $(S,\cdot)S$ be a semigroup that satisfies SFC. Then $\Delta(S)$ is a two sided ideal of βS .

Proof. Theorems 1.9 and 2.5. \Box

References

- [1] Vitaly Bergelson and Daniel Glasscock, On the interplay between additive and multiplicative largeness and its combinatorial applications J. Combin. Theory Ser. A 172 (2020), 105203.
- [2] E. Granirer, A theorem on amenable semigroups, Trans. Amer. Math. Soc. 111 (1964), 367-379.
- [3] E. Hewitt and K. Ross, *Abstract Harmonic Analysis*, *I*, Springer-Verlag, Berlin, 1963.
- [4] N. Hindman and D. Strauss, *Thick sets are exactly the sets with Følner density* 1, Semigroup Forum, to appear.
- [5] M. Klawe, Semidirect product of semigroups in relation to amenability, cancellation properties, and strong Følner conditions, Pacific J. Math. 73 (1977), 91-106.