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Combinatorially rich sets in arbitrary semigroups

Neil Hindman * Hedie Hosseini f Dona Strauss *

M. A. Tootkaboni §

Abstract

Combinatorially Rich sets were introduced by Bergelson and Glasscock
[1] for commutative semigroups and shown to have several properties jus-
tifying their name. We extend the definition to arbitrary semigroups and
establish the relationships of combinatorially rich sets to other notions of
largeness in semigroups.

1 Introduction

There are many notions of largeness in a semigroup (S, ) that are related to the
algebraic structure of the Stone-Cech compactification, 85, of the discrete set
S. See the survey [3] for information about many of these notions.

In [1] Bergelsoon and Glasscock introduced a new such notion for a commu-
tative semigroup (S, +). They used matrix notation. Given an r x k matrix M
we denote by m; ; the element in row ¢ and column j of M.

Definition 1.1. Let (S, +) be a commutative semigroup and let A C S. Then A
is a combinatorially rich set (denoted CR-set) if and only if for each k € N, there
exists r € N such that whenever M is an r X k matrix with entries from S, there
exist a € S and nonempty H C {1,2,...,r} such that for each j € {1,2,...,k},
a+ epme; €A
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As they noted, the notion of CR-set is intimately related to the notion of
J-set. (J-sets are key to characterizing C-sets, which are sets satisfying the
conclusion of the Central Sets Theorem, a very strong combinatorial result.)

We write 4B for the set of functions from A to B. In particular, Ng is
the set of sequences in S. And we write P(X) for the set of finite nonempty
subsets of X. Given a set X and a cardinal &, [X]* = {F C X : |F| = s} and
[X]SF = {F C X : |F| < x}

Given n € N, we will occasionally write [n] for {1,2,...,n}. When we write
H?:k x;, we mean the product in increasing order of indices.

Definition 1.2. Let (S,+) be a commutative semigroup and let A C S. A is

a J-set if and only if whenever F € ’Pf(NS), there exist a € S and H € Pf(N)
such that for each f € I, a+ ), f(t) € A.

The relationship between J-sets and CR-sets becomes clearer when we re-
phrase the definition of CR-sets. It can easily be seen that CR-sets are J-sets.

Lemma 1.3. Let (S,+) be a commutative semigroup and let A C S. The
following statements are equivalent.

(a) A is a CR-set.

(b) For each k € N there exists r € N such that whenever 0 # F C {f : f:
{1,2,...,7} = S} and |F| < k, there exista € S and H € Ps({1,2,...,1})
such that for all f € F, a4+, .y [(t) € A.

(c) For each k € N there exists r € N such that whenever F € ’Pf(NS) with
|F| < k, there exist a € S and H € Pr({1,2,...,7}) such that for all

feF, a+ cpyflt)eA

Proof. That (a) and (b) are equivalent is immediate. (One might have |F| < k
since two columns of M might be equal.)

To see that (b) implies (c), assume that k& € N and r has been chosen
satisfying (b). Let F € ’Pf(NS) with |F| < k. For f € F,let g¢: {1,2,...,7} —
S be the restriction of f to {1,2,...,r}. Pick a € S and H € P({1,2,...,1})
such that for all f € F, a + >, 97(t) € A. Then for each f € F, a +
>oien [(t) € A.

To see that (c) implies (b), let k& € N and pick € N as guaranteed by (c).
Let 0 £ F C{f: f:{1,2,...,r} — S} such that |F| < k. Pick z € S. Given
f € F, define g5 € NSbygf(t) = f(t)ift <randgs(t) =zift >r. Pickae S
and H € Pr({1,2,...,r}) such that for each f € F, a+ >, . 97(t) € A. Then
foreach f € F,a+ ),y f(t) € A O

We introduce now a finer gradation.

Definition 1.4. Let (S,+4) be a commutative semigroup, let £ € N, and let
A C S. Then A is a k-CR-set if and only if there exists » € N such that
whenever F' € Pf(NS) with |F| < k, there exist a € S and H € P;({1,2,...,r})
such that for all f € F, a+>,cp f(t) € A



Note that a set is a CR-set if and only if for each k£ € N, it is a k-CR-set.

Given a discrete semigroup (S,-), the Stone-Cech compactification, 35 of
S is the set of ultrafilters on S. We identify a point x € S with the principal
ulrafilter {A C S : 2 € A}. The topology on 8S has a basis consisting of
the open and closed subsets {A : A C S}. The operation on S extends to 39
making (85, -) a right topological semigroup with S contained in the topological
center of 3S. That is, for each p € 55, the function p, : 58S — (S defined by
pp(q) = ¢p is continuous and for each z € S, the function A, : S — (5 defined
by Az(¢) = xq is continuous. For basic information about the algebraic structure
of S see [6, Part I].

In Section 2 we extend the definition of CR-sets to arbitrary semigroups and
obtain results about the algebraic properties. Section 3 deals with the relation
with other notions of largeness. In Section 4 we address the question of whether
the Cartesian products of two CR-sets must be a CR-set.

2 The notion of combinatorially rich sets
in arbitrary semigroups

The definition of CR-sets in an arbitrary semigroup is based on the correspond-
ing definition for J-sets.

Definition 2.1. Let (S, ) be a semigroup and let A C S. Then A is a J-set if
and only if for each F' € P;(NS), there exist m € N, @ € $™+1, and £(1) < £(2) <
... < t(m) in N such that for each f € F, a(1)f(¢(1))a(2) - - - a(m) f (t(m))a(m+
1) € A

Definition 2.2. Let (5,-) be a semigroup and let A C S.

(1) Then A is a combinatorially rich set (a CR-set) if and only if for each

k € N there exists r € N such that for each F € Pf(NS) with |F| < k,
there exist m € N, @ € S™*1, and #(1) < #(2) < ... < t(m) <r in N such
that for each f € F, a(1)f(¢(1))a(2)---a(m)f(t(m))a(m + 1) € A.

(2) Given k € N, A is a k-CR-set if and only if there exists r € N such

that for each F € Pf(NS) with |F| < k, there exist m € N, @ € S™*!,
and t(1) < #(2) < ... < t(m) < r in N such that for each f € F,

a(1)f(t(1))a(2)---a(m)f(t(m))a(m + 1) € A.
We note that the definitions of CR-sets agree in commutative semigroups.

Lemma 2.3. Let (S,) be a commutative semgroup and let A C S. Then A is
a CR-set according to Definition 1.1 if and only if A is a CR-set according to
Definition 2.2.

Proof. For the sufficiency, let £ € N and assume that we have r € N such
that for each F € ’Pf(NS) with |F| < k, there exist m € N, @ € S™"!, and



t(1) < t(2) <...<t(m)<rin N such that for each f € F,
a(1)f(t(1))a(2)---a(m)f(t(m))a(m+1) € A.

Given F € Pf(NS) with |F| < k, pick m € N, @ € S™! and t(1) <
t(2) < ... < t(m) < r as guaranteed, let a = a(1)a(2)---a(m + 1) and
H = {t(1),t(2),...,t(m)}. Then a and H are as required by Lemma 1.3(c).
For the necessity, let k£ € N and assume we have r € N such that whenever
0£GC{f: f:{1,2,....,7} — S} and |G| < k, there exist a € S and
H e Pr({1,2,...,r})such that for all f € G, a-[[,c f(t) € A, as is guaranteed
by Lemma 1.3(b). Let F € Pf(NS) with |F| < k be given. Then whenever
0£GC{f: f:{1,2,....,7} — S} and |G| < k, there exist a € S and
H € Py({1,2,...,7}) such that for all f € G, a-[[,cp f(t) € A. Pick c € S and
for f € F define g5 : {1,2,...,7} = S by for j € {1,2,...,r}, gs(j) = f(j)ec
Let G = {gy : f € F}. Then |G| < k so pick b € S and H € P¢({1,2,...,r})
such that for all f € F, b-[[,cp 97(t) € A. Let m = |H|, let (£(1),%(2),...,t(m))
enumerate H in increasing order, let a(1) = b, and for j € {2,3,...,m + 1} let
a(j) = c¢. Then for each f € F, a(1)f(¢(1))a(2)---a(m)f(t(m))a(m + 1) €
A. O

We now show that the notion of combinatorially rich is partition regular.
The proof is based on the proof of [6, Lemma 14.14.5], and includes a section
from that proof verbatim.

Theorem 2.4. Let (S,-) be a semigroup and let Ay and Ay be subsets of S. If
AiU A5 is a CR-set in S, then either Ay or As is a CR-set in S.

Proof. Assume that A; U As is a CR-set in S and neither A; nor As is a CR-set
in S.

Fori € {1,2} pick k(7) € N such that for every r € N there exists F' € Py (NS)
such that |F'| < k(i) and

(Vm € N)(Va@ € S™H)(Vt(1) < t(2) < ... < t(m) <r)
(3f € F)(a()f(t(1))a(2) - a(m)f(t(m))a(m + 1)) & A;).

Let k = k(1) + k(2) and pick by [6, Lemma 14.8.1] some n € N such that

whenever the length n words over {1,2,...,k} are 2-colored, there is a vari-
able word w(v) beginning and ending with a constant and having no adjacent
occurrences of v such that {w(l):1 € {1,2,...,k}} is monochromatic.

Let W be the set of length n words over {1,2,...,k} and let a = k™ = |W|.
Pick 8 € N such that for every G € Py (NS) with |G| < «

(Im e N)(Fag € S™H(Ft(1) <t(2) <...<t(m) < pB)
(Vf € G)(a(l)f(t(1))a(2)---a(m)f(t(m))a(m+1)) € A U Az).

For i € {1,2}, nf 4+ n is not big enough to serve as r for k(i) so pick
F; e [NS]Sk(i) such that



(1) (Vm e N)(Va e S™H)(Vt(1) < t(2) <...<t(m) <nB+n)
(3f € Fi)(a(1)f(t(1))a(2) - -a(m)f(t(m))a(m + 1)) & A;).

Write Fi = {f1, fo,..., fry} and Fo = {fo)+1, fo()12s - - 5 fo)+k2) >
with repetition if need be.

For w = b1by- - b, € W (where each b; € {1,2,...,k}), define g, : N - S
by, for y € N, gu(y) = [1—; fo:(ny +4). Let G = {gw : w € W}. Then
G e [NS]SQ so pick m € N, @ € S and t(1) < #(2) < ... < t(m) in
{1,2,...,B} such that for all w € W,

(a(1)gw(t(1))a(2) - - a(m)gw (t(m))a(m + 1)) € Ay U A, .

Define ¥ : W — {1, 2} by

P(w) = 1iff (a(1)gw (t(1))a(2) - a(m)gw (t(m))a(m +1)) € Ay .

Pick a variable word w(v), beginning and ending with a constant and without
successive occurrences of v such that ¢ is constant on {w(l) : 1 € {1,2,...,k}}.
Assume without loss of generality that ¥ (w(l)) = 1 for all I € {1,2,...,k}.
That is, for all I € {1,2,...,k},

(a(D)guw) (t(1))a(2) - - - a(m)gw) (t(m))a(m + 1)) € A;.

Let w(v) = biby---b, where each b, € {1,2,...,k} U {v}, some b, = v,
b1 # v, b, # v, and if b; = v, then b; 11 # v. Let r be the number of occurrences
of v in w(v) and pick L(1),L(2),...,L(r + 1) and s(1),s(2),...,s(r) such that
for each p € {1,2,...,r}, max L(p) < s(p) < min L(p + 1),

ULl L) ={ie{1,2,...,n}:b; € {1,2,...,k}} and,

p=1

{s(1),s(2),...,s(r)}={ie{1,2,...,n}: b; = v}.

For example, assume that w(v) = 120131v2v1121v32. Then r = 4, L =
({1,2}, {4,5,6}, {8}, {10,11,12, 13}, {15,16}), and s = (3,7,9, 14).

We shall show now that, given y € N, there exist ¢; € S™! and 2,(1) <
zy(2) < ... < zy(r) such that for all I € {1,2,...,k},

gw(l)(y) = Cy(l)fl (Zy(l))cy@) Tt Cy(r)fl (zy(r))cy(r +1)

and further, for each y, z,(r) < zy4+1(1). So let y € N be given. For p €
{1,2,...,7r + 1}, let ¢y(p) = HZGL fo,(ny +¢) and for p € {1,2,...,7}, let
zy(p) = ny + s(p). To see that thebe are as required, first note that z,(r) <
ny +n < zy41(1). Now let [ € {1,2,...,k} be given. Then w(l) = d1dz---d,,
where for ¢ € {1,2,...,n},

[ b ifie Ut Lp)
di { l 1fz€{s() 5(2),...,8(r)}.



Therefore

(r41) Joi (ny +19)
= (I =i cy(0) - fi (zy p))) - cy(r+1)

as required.
Let u =mr. For j € {1,2,...,m} and p € {1,2,...,7r}, let

q((G = Dr +p) = 2 (p) -

Note that q(1) < ¢(2) < ... < q(u) = zym)(r) = nt(m) + s(r) < nt(m) n
np+r. Forj € {1,2,...,m} and p € {2,3,...,r} let d((j — 1)r + p)
cyjy(p). Let d(1) = a(1)cyy(1), let d(u + 1) = cyom)(r + 1)a(m + 1), and for
Je{l,2,...,m—1}, let d(jr + 1) = ¢4y (r + 1)a(j + 1)egj+1)(1).

Note that d € S“T! and for I € {1,2,...,k}

A

)

a(1)gwy ((¢(1))a(2) - - - a(m)gwa (t(m )a (m+1)
a(l)eny(1) l(zt(l)(l))ct(l)( )+ ey (1) fi (2o () ) cy(r+1)
(Q)Ct(Q)(l) l(Zt(z)(l))Ct@)(Q) Ct(2) r)fi (Zt(z) )Ct(Q) r+1)

a(m)ey(m) (1) fi (zemy (1)) oy (2 )
cf(m) r fl( m) (7 )ct(m)(r —|— 1)a(m +1)
( )d (q(u)) (u+1).

We have u € N, d € S+, and ¢(1) < ¢(2) < ... < q(u) <nB+n so by (1),
we may pick [ € {1,2,...,k(1)} such that

d(1) fi(a(1))d(2) - d(u) fi(q(w))d(u+ 1) ¢ As .

This is a contradiction. O
Definition 2.5. Let (S, ) be a semigroup.

(1) CR(S)={pe pS: (VA e p)(Ais a CR-set)}.

(2) For ke N, k-CR(S) ={p e S : (VA € p)(Ais a k-CR-set)}.

Theorem 2.6. Let (S,-) be an infinite semigroup. Then CR(S) is a compact
two sided ideal of BS and for each k € N, k-CR(S) is a compact two sided ideal
of BS.

Proof. By Theorem 2.4 and [6, Theorem 3.11], CR(S) # 0. Since CR(S) =
Nie; k-CR(S), we have that each k-CR(S) # 0 and it suffices to show that
each k-CR(S) is a two sided ideal of 55, so let k € N.

Let p € k-CR(S) and let ¢ € 8S. To see that gp € k-CR(S), let A € qgp,
and let B={x € S:27'A € p}. Then B € g so B # (). Pick z € B. Then



x7'A € p so pick r € N such that for each F € Pf(NS) with |F| < k, there
exist m € N, @ € S™*, and ¢(1) < ¢(2) < ... < t(m) < r in N such that for
each f € F, a(1 )f(t(l))a(2)-~-a(m f(t(m )a m—|—1) cx 1A Let F e Pf(NS)
with |F| < k and pick m, @, and t(1) < t(2) < < t(m) < r as guaranteed
for 27 'A. Define b € S™+! by b(1) = za(1) and for jeA{2,3,....,m+1, let
b(j) = a(j). Then for each f € F, b(1)f(t(1))b(2) - - (m)f(t(m))b(m+1) € A.

To see that pg € k-CR(S), let A € pqg and let B = {z € S: 2714 € ¢}.
Then B € p so pick r € N such that for each F' € Pf(NS) with |F| < k, there
exist m € N, @ € S™H, and t(1) < t(2) . < t(m) < r in N such that for
each f € F, a(l )f(t(l))a(2)---a )f (t(m )a m+ 1) € B. Let F € Pf(NS)
with |F| < k and pick m, @, and ¢(1 ) ( ) < < t(m) < r as guaranteed
for B. Then (,cp (a(1)f(t(1))a(2)---a(m)f t(m)) ( 1))_1A € ¢ so pick
Y € Nyer (a(1)f(t(1))a(2)---a(m)f(t ( )) (m+1)) "A. Define b € S™+1 by
b(j) = a(y) for j € {1,2,...,m} and b(m +1) = a(m + 1)y. Then for each
feF, b(l)f(t(l))b@)"'b(m)f(t(m)) (m+1) € -

We shall see in Theorem 3.9 that the notion of k-CR need not be parti-
tion regular, so one could not appeal to [6, Theorem 3.11] to conclude that
k-CR(S) # 0. Also, by (1) and (4) of Theorem 3.9, a characterization of k-CR-
sets similar to that of CR-sets in the corollary below is not valid.

Corollary 2.7. Let (S,-) be an infinite semigroup. A subset A of S is a CR-set
if and only if AN CR(S) # 0.

Proof. The sufficiency is trivial and the necessity follows from Theorem 2.4 and
[6, Theorem 3.11]. O

3 Relations with other notions of largeness

Recall that in an arbitrary infinite semigroup (5,-), J(S) = {p € 8S : (VA €
p)(A is a J-set}.

The other notions of largeness with which we will be concerned in this section
are k-J-sets, piecewise syndetic sets, C-sets, and B-sets.

Definition 3.1. Let (S,-) be an infinite semigroup and let k € N.
(1) A subset A of S is a k-J-set if and only if whenever F € ’Pf(NS) with

|F| < k, there exist m € N, @ € S™! and ¢(1) < #(2) < ... <t(m) in N
such that for each f € F,

a(1)f(t(1))a(2)---a(m)f(t(m))a(m+1) € A.

(2) k-J(S) = {p e B(S): (VA ep)(Ais a k-J-set)}.

C-sets were originally defined as sets satisfying the conclusion of the Central
Sets Theorem. Since they do satisfy the conclusion of the Central Sets Theorem,



they satisfy very strong Ramsey theoretic conclusions. For example, any C-set in
(N, +) contains solutions to any finite partition regular system of homogeneous
linear equations with rational coefficients. We use a simpler characterization,
established in [6, Theorem 14.27], as the definition of C-sets.

Definition 3.2. Let (S,-) be an infinite semigroup and let A C S.

(1) A is piecewise syndetic if and only if there exists G € P;(.S) such that for
every F € Ps(S) there exists x € S such that Fz C (J,ct ' A.

(2) Aisa C-set if and only if there is a downward directed family (Cr)per of
subsets of A such that

(i) for each F € I and each x € Cr there exists G € I with Cg C 27 'Cp
and

(ii) for each F € Ps(I), per CF is a J-set.

By [6, Theorem 14.15.1], a subset A of the semigroup S is a C-set if and
only if A is a member of an idempotent in J(S). Since a subset A of S is a
J-set if and only if AN J(S) # 0 by [6, Theorem 14.14.7], one has that C-sets
are J-sets.

Theorem 3.3. Let (S,-) be an infinite semigroup and let A be a piecewise
syndetic subset of S. Then A is a CR-set.

Proof. By Theorem 2.6, CR(S) is a two sided ideal of 5 so K(BS) C CR(S).
By [6, Theorem 4.40], AN K(BS) # 0 so AN CR(S) # 0 so Corollary 2.7
applies. O

It follows immediately from the definitions that CR-sets are J-sets. We see
now that the converse fails badly in free semigroups. Given z € S we write T

for the element of NS which is constantly equal to .

Theorem 3.4. Let k be an infinite cardinal and let S be the free semigroup on
the distinct letters (by)o<r. There is a C-set A C S which is not a 2-CR set.

Proof. Given w € S we write £(w) for the length of w.

We note that we can choose for each F' € Py (NS ) an infinite subset Br of N
such that for each f and g in F, either f(t) = g(¢) for all t € B or f(t) # g(t)
for all t € Bp.

Enumerate Bp in order as (np(t));2,. For f € F, define gp; € Ng by
gr.s(t) = f(nrp(t)). Let V(F) = {grs: f € F}.

For F € Pf(NS)7 define ¢(F) = 1+ max{n € w : (3f € F)(b, occurs in
gr (1)}

For F' € Pf(NS), let Gp = {g‘{172,_“7¢(p)} S V(F)} Let G = {GF F e
Pf(NS)}. We claim that |G| < k. (One can in fact show that |G| = &, but we will
not need that fact.) To see this let T = Uzozl([n]S) Then |T| =3 k=&



and each Gp € P¢(T)soG C Py(T) and thus |G| < k. Enumerate G as (Hy) g
with repetition if need be.

Note that if F' and K are in Pf(NS) and G = Gk, then ¢(F) = ¢(K) =
max domain(g) for any g € V(F). For o < k, let s, = maxdomain(g) for some
g € H, (hence for any g € H,). Note that if F € Pf(NS) and Gr = H,, then
So = ¢(F)

Define ¢ : K — w by 0 = A+ 9(0) for some limit ordinal A. (We are taking
0 to be a limit ordinal.)

Inductively choose an injective function 7 : K — & such that for each o < &,

¥(n(o)) € 3w and
n(o) > max{r < k:(Ig € Hy)(Fj € {1,2,...,5,})(bs occurs in g(j)} .

For o < K, let Dy = {by(0)9(1)by(5)9(2) - - by()9(56) b0y : g € Hy}. For
T < K, let

Cr ={ll,ex To : K € Pg(k), min K > 7, and (Vo € K)(vs € Do} .

Let A= Co.

We first show that A is not a 2-CR set. Suppose instead that we have
r € N such that for every F € P;(NS) with |[F| < 2, there exist m € N,
a € S™and t(1) < t(2) < ... < t(m) < r such that for all f € F,
(a(1)f(t(1))a(2) - a(m)f(t(m))a(m+1) € A). -

Pick & > r with k = 1 (mod 3) and let F' = {by,bxy1}. Pick m, @, and
t(1) <t(2) <...<t(m) <r as guaranteed for F. Pick K and L in Py (k) such
that w = a(1)bga(2) - - - a(m)bga(m + 1)

= HJEK(bn(a)ca(l)bn(o)co(Q) e bn(a)co('sa)bn(a)) and
v =a(l)bgr1a(2) - - a(m)bgrra(m + 1)
= [Toer(bn(0)do(1)bn(0)do (2) -+ by()do (55) () ),

where for 0 € K, ¢, € H, and for 0 € L, d, € H,.

We may presume that ¢(w) = £(v) is the smallest among all such examples.

Notice that for each o < &, ¥(n(c)) € 3w 50 byy & {br,brs1} so all
occurrences of by () for o € K U L occur in some a(j) and occur in the same
position in w and in v. Let 0 = min K. Based on the first letter of a(1), we
see that also 0 = min L so ¢, and d, are in H,. Assume first that ¢, # d,
in which case for all j € {1,2,...,84,}, ¢;(j) # ds(j). The second occurrence
of b,y in v occurs in a(j) for some j € {1,2,...,m + 1} and occurs in some
position ¢. So the second occurrence of b, in w also occurs in a(j) at position ¢
s0 £(c,(1)) = £(ds(1)). It £(a(1)) > €(cs(1)), then ¢, (1) and dy(1) occur in the
same position in a(1), which is impossible. So £(a(1)) < £(c(1)), so by occurs
in ¢,(1) and thus s, > k + 1.

We have that b,(,) does not occur in ¢, (t) or do(t) for any t € {1,2,...,5.}
so the first s, + 1 occurrences of b, ;) in w are exactly those shown. Since
S¢ > k+1>r+1>m+1, thereexist j € {1,2,...,m+1}andt € {1,2,...,s,}



such that occurrences number ¢ and number ¢ 41 of b, in w are both in a(j).
But then ¢, (t) and d,(t) occur in the same position in a(j), which is impossible.

Thus we must have that ¢, = d,. Since w # v, we can’t have K = L = {c}.
Since £(w) = ¢(v) we must have that both K and L properly contain {o}. If we
had £(a(1)) less than the length of

bn(o’)cd(l)bn(o) to br/(a)ca(sa)bn(o’) = bn(o)da(l)bn(a) e b’r](o’)da'(sa')bn(o) ’

then by and bg1 would occur in the same location in

by(0)Co(1)br()Co (2) + - by(o)Co (S0)by(ar) -

So the length of by(s)co(1)by(5)Co(2) - - - by(o)Co (55 )bp (o) must be less than or
equal to ¢ ( (1 )) Equahty can’t hold since then one would have by = by ()
where 7 = min(K \ {i}). So we have a nonempty word a'(1) such that a(1) =
bn((,)ca(l)bn(g)cg@) e bn(g)cg(sg)bn(g)a/(l). Forje€{2,3,...,m+1}letd(j) =
a(j). Then we get

w' =a'(1)bga’(2) - ( Yoga'(m + 1)

= lrex\(o} bn er(Dbyryer(2) - bycryer(sr)by(r) and
o = (Dbard(2) 0 (m)bpsr(m + 1)

= Hq—eL\{g}( n(T)dT( ) by(r)d- (2)- bn(r)dr(sr)bn(r))a

where for 7 € K\ {0}, ¢; € H; and for 7 € L\ {0}, d, € H,.

This contradicts the minimality of £(w).

To show that A is a C-set, we show that (Cy)s<y is as required by Definition
3.2(2). That is (Cs)y<x is downward directed, for F € Py(k), (,cr Co is a
J-set, and for each ¢ < k and each x € C,, there exists 7 < k such that
C, C 7 'C,. Since k is linearly ordered, the first two assertions amount to the
assertions that (Cy),<x is decreasing and that each C, is a J-set.

It is trivial that (Cy),<, is decreasing. To verify the third assertion, let
o < k be given and let z € C,. Pick K € Py(x) such that min K > ¢ and for
T € K, there is some g, € H, such that

T = HTGK(bTI(T)gT(l)bn(T)g‘r(2) T bn(r)g(sT)bn(T)) :
Let § = max K + 1. Then C5 C 2~ 1C,.

To complete the proof, we need to show that for each o < k, C, is a J-set.
We claim that it suffices to show that for each o < x and each F' € Py (NS)
there exists K € Pf(NS) such that £ C K and Gx = H, for some 1 > o.
Assume that we have done this. Let o < x and F' € Py (NS) be given and pick
K € P;(NS) and o > o such that F € K and G = H,. Then D, C C,. Let
m = s,. For j € {1,2,...,m+ 1}, let a(j) = by, and for j € {1,2,...,m},
let ¢(j) = nk(j). Then for fevr,

a(1)f (#(1))a(2) - ( m))a(m +1)
= bn(u)f<nK(1))b77(/‘) (nK( )) n(n)
= by 9r, 1 (1)byy - - n(u)gK £(m)by ()

= bn(u)gKf(l)bn(u) “biy(u) 9.5 (81) by () € Dy -

10



We now consider two cases. Suppose first that Kk = w. Let n < w and
let F € P;(NS) be given. Pick m(0) > ¢(F) and let K1 = F U {bno)}-
Then b,,(g) occurs in gKhm(l) so ¢(K1) > m(0). Having chosen K, let
m(q) > ¢(K,) and let Kqy1 = F U {bp(q)}- Then ¢(K,q1) > ¢(K,). Since
O(F) < ¢(K1) < ¢(K2) < ... we have that Gp,Gk,,Gk,, ... are all distinct so
there is some j such that Gk, = H; for some [ > n.

Now assume that k > w. Let ¢ < k and F € Pf(NS) be given. Let
X ={r <k: (3 eN)3f € F)(br occurs in f(¢))}. Then X is countable so
pick an injective function 6 : k — £\ X. For 7 < &, let K; = F U {bg(;)}. Then

bg(T)‘{l 5. 6(K,)} OCCUrs in Gk, and not in any other G, so there must exist
T < k and p > o such that Gg_ = H,. O

Question 3.5. Do there exist an infinite commutative semigroup (S,+) and a
set A C S such that A is a J-set but not a CR-set?

Lemma 3.6. Let (S,+) and (T,+) be infinite commutative semigroups and let
¥ :8 =T be a surjective homomorphism. Let k € N and let ACT.

(1) A is a k-J-set in T if and only if Y~ [A] is a k-J-set in S.
(2) Ais a k-CR-set in T if and only if $~1[A] is a k-CR-set in S.

Proof. We do the proof for (2), the other proof being very similar. For the
necessity, pick r € N such that for every F' € Py (NT) with |F| < k, there exist
acTand H € Ps({1,2,...,r}) such that for each f € F,a+ 3, ., f(t) € A.

To see that $7![A] is a k-CR-set in S, let F € Pf(NS) with |F| < k. Let
G={Pof:feF} ThenG € Pf(NT) and |G| < k so pick a € T and
H € Pr({1,2,...,r}) such that for each f € F, a+ > ,.5(¥o f)(t) € A. Pick
b € S such that ¥(b) = a. Then for each f € F, P(b+ 3, f(t)) € A so
b+ Y ,en f(t) € PA]L

For the sufficiency, pick » € N such that for every F' € Pf(NS) with |F| <
k, there exist a € S and H € Ps({1,2,...,7}) such that for each f € F,

a+ ey f(t) € P AL

To see that A is a k-CR-set in T', let F' € Pf(NT) with |F| < k. For f € F,
pick f* € NS such that for ¢ € N, ¢(f*(t)) = f(t) and let G = {f* : f € F}.
Picka € Sand H € Pf({1,2,...,r}) such that for each f € F, a4+, f*(t) €
©~'A]. Then ¥(a) € T and for f € F, p(a) + > ,cx P(f*t)) = ¢(a) +
doien f(t) € A O

Lemma 3.7. Let k € N and A CN.
(1) Ais a k-J-set in (N,-) if and only if A\ {1} is a k-J-set in (N\ {1},-).
(2) A is ak-CR-setin (N,-) if and only if A\{1} is a k-CR-set in (N\ {1},-).
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Proof. Again we do the proof for (2), the other proof being very similar. Given
f €N, define g; € NN\ {1}) by g;(n) = 2f(n).

For the necessity, assume A is a k-CR-set in (N, -) and pick r € N such that
whenever F' € Pf(NN) with |F| < k, there exist a € Nand H € Py({1,2,...,7})
such that for each f € F, a-[[,cp f(t) € A. To see that r works for N\ {1},

let F e Py(N(N\ {1})) with |F| < k. Let G = {g; : f € F}. Then G € P;(N\N)
and |G| < k so pick @ € Nand H € P¢({1,2,...,r}) such that for each f € F,
a-[liem9r(t) € A Let m = |H| and let b = 2™a. Then b € N\ {1} and for
each f € F, b-[[,cpy f(t) € A\ {1}

For the sufficiency, assume A\ {1} is a k-CR-set in (N\ {1},-) and pick r € N
such that whenever F € Pf(N(N\{l})) with |F'| < k, there exist a € N\ {1} and
H € Py({1,2,...,7}) such that for each f € F, a-[[,cy f(t) € A\ {1}. To see

that r works for N, let F' € ’Pf(NN) with |F| < k. Let G = {gy : f € F}. Then
G e Pf(N(N\ {1})) and |G| < k so pick a € N\ {1} and H € Pf({1,2,...,1})
such that for each f € F, a-[[,cpy 97(t) € A\{1}. Let m = |H| and let b = 2™a.
Then for each f € F, b-[[,cpy f(t) € A\ {1} C A. O

Theorem 3.8. If there exist a countable commutative semigroup (S,+) and a
subset A of S which is a J-set and is not a CR-set, then there is a subset B of
N which is a J-set in (N,-) and is not a CR-set in (N, -).

Proof. Enumerate S as (z,)5>; and enumerate the primes as (p, )52 ;. Define f :
{pn : n € N} = Sby f(pn) = 5. Then f extends to a surjective homomorphism
©:N\ {1} = S so by Lemma 3.6, ¥~1[A4] is a J-set in (N\ {1},-) and is not
a CR-set in (N\ {1},-). By Lemma 3.7, ¥"![A] is a J-set in (N,-) and is not a
CR-set in (N, -). O

Theorem 3.9. Let S be (N,+) or (N,-) and let k € N. There is a set A, C S
such that

(1) Ay is a k-CR-set;
(2) Ay is not a (k+ 1)-CR-set, in fact not a (k+ 1)-J-set;

(3) if k > 1, then there exist sets B and C such that Ay, = BUC and neither
B nor C is a k-J-set; and

(4) if k> 1, then A, Nk-J(S) =0, so that A, Nk-CR(S) = 0.

Proof. By Lemmas 3.6 and 3.7 It suffices to prove the theorem under the as-
sumption that S = (N, +).

Let T' = {(by,ba,...,by) € NF : by < by < ... < b} and enumerate I' as
(@5)0%;. For each n, let 7, = (by,1,bn2,...,bnk). Let 71 =1 and for n € N,
let 91 =2(Mp + by ). Forn € N, let E,, = {nn +bnicie{l,2,.. ,k}} and
let A = U;.Lozl E,.

(1) To see that Ay is a k-CR-set, let r = 1. Let F € Pf(NN) with |F| < k.
Let D = {f(1) : f € F'} and note that |D| < k so write D as {c1,ca,...,cr}
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with ¢; < g <... <¢. Pick n such that (¢1,c2,...,¢k) = (bn,1,bn2,- -, bn k).
Let a =0, and let H = {1}. Then given f € H, a+ >,y f(t) =nn + f(1) €
En C Ak-

(2) To see that Ay is not a (k + 1)-J-set, let F = {k,k+1,...,2k}. Sup-
pose we have a € N and H € Py(N) such that for each ¢ € {0,1,...,k},
a+> ey k+i€ Ag. Letm = [H|. Then withi =0, a+> .y k+i=a+mk €
Aj and with with i = k, a + ZteHm = a + 2mk € Ay so there exist n <1
and 7,7 € {1,2,...,k} such that a + mk =n,, + b, ; and a + 2mk =, + b ;.

We claim that n = [. Suppose instead that n < [. Then

mk = — (Nn + b)) +bij > m — (Mo +bni) =m0 — (Nn + b k)
Znn+bn,k Znn“rbn,l =a+mk>mk,

a contradiction.

Thus {a+mk,a+m(k+1),...,a+2mk} C{ny+bn1,Mm+bn2, ..., Pu+bn i}
The left hand side has cardinality k+ 1 while the right hand side has cardinality
at most k.

(3) Assume that £ > 1. Let B=,_{nn + b, :i€{1,2,...,k—1}} and
let C = {ny+bnk:n €N} Let F={k+1,k+2,...,2k}. Arguing as in (2),
F establishes that B is not a k-J-set and letting F' = {k, 2k} establishes that C
is not a 2-J-set.

(4) Assume that k£ > 1. Pick B and C as guaranteed by (2). Suppose we
have p € Ay N k-J(S). Then either B or C is a k-J-set. O

It is an easy exercise to show that for subsets of N, the notions of 1-CR-set,
1-J-set, and infinite are equivalent. So the requirement that k > 1 in Theorem
3.9(3) and (4) is needed.

Definition 3.10. Let (5,-) be a semigroup.
(1) S satisfies the Strong Fplner Condition (SFC) if and only if

(VH € Ps(S)) (Ve > 0)(3F € Ps(S)) (Vs € H)(|F \ sF| <e-|F]).

(2) A left invariant mean p on S is a positive linear functional on the space
11(S) of bounded real valued functions on S with ||u|| = 1 which is left
invariant. That is, for each g € 11(S) and each x € S, u(g) = u(go Az).

(3) S is left amenable if and only if there exists a left invariant mean on S.

Every semigroup that satisfies SFC is left amenable and every left cancella-
tive and left amenable semigroup satisfies SFC. If S is left amenable, right
cancellative, and not left cancellative, then S does not satisfy SFC. See [7,
Paragraph 4.22] for details and references for these facts.

We denote the characteristic function of a set A by X 4.

Definition 3.11. Let (5,-) be a semigroup and let A C S.
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(1) If S satisfies SFC, then

d(A) =sup{a: (VH € Ps(5))(Ve > 0) (3K € Ps(59)) (|AN K| >
a-|K|and (Vs € H)(|K AsK|<e-|K|))}.

(2) If S is left amenable, then d*(A) = sup{u(X4) : ¢ is a left invariant mean
on S}.

(3) Ais a B-set if and only if S is left amenable and d*(A) > 0.

By [4, Theorems 2.12 and 2.14], if S satisfies SFC, then for each A C S,
d(A) < d*(A) and if in addition S is left cancellative, then d(A) = d*(A). In
particular if S satisfies SFC and d(A) > 0, then A is a B-set.

We set out to show in Theorem 3.15 that any B-set is a CR-set.

Theorem 3.12 (Density Hales-Jewett). Let n € N and n € (0,1). There exists
k € N such that whenever C C [n]* and |C| > nn¥, there is a length k variable
word u over the alphabet [n] such that {u(t) : t € [n]} C C.

Proof. This is due to Furstenberg and Katznelson in [2]. For a simplified ele-
mentary proof see [8] which is an anonymous collaborative effort. O

We will need the following strengthening of the Density Hales-Jewett Theo-
rem.

Corollary 3.13. Let n € N and n € (0,1). There exists r € N such that
whenever C' C [n]" and |C| > nn”, there is a length r variable word w over the
alphabet [n] which begins with a constant and has no successive occurrences of
the variable such that {w(t) : t € [n]} C C.

Proof. Pick k € N as guaranteed for n and n by Theorem 3.12 and let r = 2k.
For each y = y1y2 -+~ yx € [n]* define ¥, : [n]* — [n]" by, for z = 2129+ 2, €
[n]k, ¥y(2) = y121y222 - - yrzk. For y € [n]¥ let B, = ¥, [[n]*] Let C C [n]"
such that |C| > nn".

Now C = U, epnr(By NC) and if z and y are distinct members of [n]*, then
By N By =050 |C| =3, ¢ 1By NC| so we may pick some y € [n]* such that
|B, N C| > nn*. Since ¢, is injective, ¥, '[B, N C]| > nn*. Pick a length k
variable word u = ujusg - - - u, over the alphabet [n] such that {u(¢) : ¢ € [n]} C
@gl[By NC). Let w = yruryzus - - - yrug. Then w is a length r variable word
which begins with a constant and has no successive occurrences of the variable.
And, given t € [n], w(t) = ¢, (u(t)) € C. O

The proof of the next lemma is adapted from the proof of [1, Theorem 3.2].

Lemma 3.14. Let (S,-) be a left amenable semigroup, let p be a left invariant
mean on S, let F € Py(S), let F: F = N, let 0 <np < <1, let ACS such
that 1(Xa) > 8, and let

R={t€5: ) crnar F (@) 202 ep F2)}-

5
Then p(Xg) > iz
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ZwEFﬂ(At—l) F(z)

Proof. Define g : S — [0,1] by g(t) = S F(@)
zcF

. Then for t € S,

2ver F (&) - Xap—(2)

= m ZzeF F(z) 'X(w‘lA)(t)7

SO 1
plg) = m : (ZzEF F(x) 'M(melA))

=Y F@ (Yper Fla) - p(Xa))

. o 1(Xa)

since 1 is invariant. Therefore pu(9) = =——F— D _,er F (@) = n(Xa).
Since p is additive, u(Xa) = p(g) < u(gXr) + n(gXs\r). Since gXp < Xg,

1(gXR) < p(Xg). Fort € S\ R, 3 cprar-1) T (@) <n)pep F(x) so g(t) =

Zmze:FnAt];(;(x) < nand p(Xs\r) = 1 — p(Xg) so p(Xa) < p(Xg) +n(1 —
zeF

1(Xg)). Therefore p(Xa) —n < p(Xg) - (1 —n) so p(Xg) > T 0

In the event that S is commutative, the next theorem is [1, Theorem 3.3].
Our proof is a modification of the proof of that result.

Theorem 3.15. Let (S,-) be a semigroup and let A C S be a B-set. Then A is
a CR-set.

Proof. Pick a left invariant mean p on S such that u(X4) > 0 and pick i and §
such that 0 <n < 0 < pu(Xa). Let n € N. We will show that A is an n-CR-set.

Pick r € N as guaranteed by Corollary 3.13 for n and 1. Let G € Py (NS) with
|G| < n. Write G = {f1, fo, ..., fn} with repetition if |G| < n.
Define 7 : [n]” — S by, for w = wywy - - w, € [n]",

7r(w) = fw1 (1)fw2 (2) T fwr(r) :

Let F = n[[n]"] and define F; F — N by F(z) = [{w € [n]" : 7(w) = x}|. Let
R={s€5: ) crnsnF (@) 203 ,cpF(z)}. By Lemma 3.14, u(Xg) >0
so in particular, R # (). Pick s € R.

Then > c pr(as—1) F (@) 213 ,cp F (). Note that }° . p F(z) =n" so

nnr < ZzéFﬁ(As*l) f(l‘)
=|Hw € [n]": m(w) € As71} = |[{w € [n]" : m(w)s € A}].

Pick a variable word w = wjws - - w, over the alphabet [n] which begins

with a constant and has no successive occurrences of the variable such that
{w(u) : v € [n]} C {w € [n]" : 7(w)s € A}. Let v be the variable and let
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m={ie{l,2,....r} : w; = v}. Let (1) < t(2) < ... < t(m) < r enumerate
{ie{l,2,...,r} :w; =v}.
Let a(1) = Hf(zll)fl fuw; (3). For j € {2,3,...,m}, if any, let

a(§) = TIY) 41 Fun )

Ift(m) =r,let alm+1) =s. I t(m) <r,let a(m+1) = (H::t(m)Jrl fui(0))s.
Then for u € [n],

m(w(uw))s = a(1) fu(t(1))a(2) - a(m) fu(t(m))a(m + 1) € A.

4 Cartesian products

In [5, Theorem 2.11] it was shown that if S and T are arbitrary semigroups, A
is a J-set in S and B is a J-set in T, then A x B is a J-set in S x T". We would
like to know whether the corresponding result holds for CR-sets.

Theorem 4.1. Let (S,-) be an infinite semigroup, let k € N, and let A be a
2k-CR-set in S. Then A x A is a k-CR-set in S x S. In particular, if A is a
CR-set in S, then A x A is a CR-set in S x S.

Proof. Let r € N be as guaranteed for the fact that A is a 2k-CR-set in S. We
will show that r is as required to show that A x A is a k-CR-set in S x S Let
FePrNS x8) with |[F| < k. Let G={mof:feF}U{mof:feF}
Pick m € N, @ € S™*! and t(1) < #(2) < ... < t(m) < r such that for all
g€ G, a(l)g(t(1))a(2)---a(m)g(t(m))a(m+1) € A. Define b € (S x S)™*! by
b(i) = (a(i),a(i)). Then for f € F,

b(1) £ (£(1))b(2) - - - b(m) £ (t(m))b(m + 1) € A x A.
O

Question 4.2. Do there exist infinite semigroups S and T, a CR-set A C S,
and a CR-set B C T such that A X B is not a CR-set in S x T'?

For countable commutative semigroups we shall show in Theorem 4.4 that
the answer for CR-sets in different semigroups is the same as the answer for
CR-sets in (N, -).

Lemma 4.3. Let C and D be subsets of N and let k € N. Then C x D is
a k-CR-set in (N x N, ) if and only if (C\ {1}) x (D \ {1}) is a k-CR-set in
(N\{1}) x (N\ {1},)).

Proof. The proof is very similar to the proof of Lemma 3.7(2). Given f €
NN N define g € NN\ {13) x (N\ {1})) by gs(n) = (2,2) - f(n). Tn
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the necessity proof, given F' € Pf(N((N\ {1}) x (N\ {1}))) with |F| < k, let
G ={g;: f € F} and use the fact that G € P;(N(N x N)).

In the sufficiency proof given F € Pf(N(N x N)) with |F| <k, let G = {g; :
f € F} and use the fact that G € Pr(N(N\ {1}) x (N\ {1}))). O

Theorem 4.4. If there exist countable commutative semigroups S and T, a
CR-set AC S, and a CR-set B C T such that A x B is not a CR-set in S x T,
then there are CR-sets C' and D in (N, ) such that C x D is not a CR-set in
(NxN,-).

Proof. Assume such S, T, A, and B exist. Enumerate S as (z,,)5° ;, enumerate
T as (yn)5>,, and enumerate the primes as (p,)o> ;. Define f : {p, : n € N} —
Sand g: {p, :n € N} = T by f(pn) = z, and g(pn) = yn. Then f extends
to a homomorphism ¥ : (N'\ {1}) — S and g extends to a homomorphism
Y (N\{1}) = T. Let C = ¥~ ![A] and D = ¢~ }[B]. By Lemma 3.6, C and D
are CR-sets in (N '\ {1}, ) so by Lemma 3.7(2), C and D are CR-sets in (N, ).

Define 7 : (N\ {1}) x (N\ {1}) = S x T by 7(a,b) = (¥(a),1(b)). Then by
Lemma 3.6, C x D = 77}[A x B] is not a CR-set in (N'\ {1}) x (N'\ {1}). By
Lemma 4.3, C' x D is not a CR-set in N x N. O
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