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Combinatorially rich sets in arbitrary semigroups

Neil Hindman * Hedie Hosseini � Dona Strauss �

M. A. Tootkaboni §

Abstract

Combinatorially Rich sets were introduced by Bergelson and Glasscock
[1] for commutative semigroups and shown to have several properties jus-
tifying their name. We extend the definition to arbitrary semigroups and
establish the relationships of combinatorially rich sets to other notions of
largeness in semigroups.

1 Introduction

There are many notions of largeness in a semigroup (S, ·) that are related to the
algebraic structure of the Stone-Čech compactification, βS, of the discrete set
S. See the survey [3] for information about many of these notions.

In [1] Bergelsoon and Glasscock introduced a new such notion for a commu-
tative semigroup (S,+). They used matrix notation. Given an r× k matrix M
we denote by mi,j the element in row i and column j of M .

Definition 1.1. Let (S,+) be a commutative semigroup and let A ⊆ S. Then A
is a combinatorially rich set (denoted CR-set) if and only if for each k ∈ N, there
exists r ∈ N such that whenever M is an r×k matrix with entries from S, there
exist a ∈ S and nonempty H ⊆ {1, 2, . . . , r} such that for each j ∈ {1, 2, . . . , k},
a+

∑
t∈H mt,j ∈ A.
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As they noted, the notion of CR-set is intimately related to the notion of
J-set. (J-sets are key to characterizing C-sets, which are sets satisfying the
conclusion of the Central Sets Theorem, a very strong combinatorial result.)

We write AB for the set of functions from A to B. In particular, NS is
the set of sequences in S. And we write Pf (X) for the set of finite nonempty
subsets of X. Given a set X and a cardinal κ, [X]κ = {F ⊆ X : |F | = κ} and
[X]≤κ = {F ⊆ X : |F | ≤ κ}

Given n ∈ N, we will occasionally write [n] for {1, 2, . . . , n}. When we write∏n
i=k xi, we mean the product in increasing order of indices.

Definition 1.2. Let (S,+) be a commutative semigroup and let A ⊆ S. A is

a J-set if and only if whenever F ∈ Pf (NS), there exist a ∈ S and H ∈ Pf (N)
such that for each f ∈ F , a+

∑
t∈H f(t) ∈ A.

The relationship between J-sets and CR-sets becomes clearer when we re-
phrase the definition of CR-sets. It can easily be seen that CR-sets are J-sets.

Lemma 1.3. Let (S,+) be a commutative semigroup and let A ⊆ S. The
following statements are equivalent.

(a) A is a CR-set.

(b) For each k ∈ N there exists r ∈ N such that whenever ∅ 6= F ⊆ {f : f :
{1, 2, . . . , r} → S} and |F | ≤ k, there exist a ∈ S and H ∈ Pf ({1, 2, . . . , r})
such that for all f ∈ F , a+

∑
t∈H f(t) ∈ A.

(c) For each k ∈ N there exists r ∈ N such that whenever F ∈ Pf (NS) with
|F | ≤ k, there exist a ∈ S and H ∈ Pf ({1, 2, . . . , r}) such that for all
f ∈ F , a+

∑
t∈H f(t) ∈ A.

Proof. That (a) and (b) are equivalent is immediate. (One might have |F | < k
since two columns of M might be equal.)

To see that (b) implies (c), assume that k ∈ N and r has been chosen

satisfying (b). Let F ∈ Pf (NS) with |F | ≤ k. For f ∈ F , let gf : {1, 2, . . . , r} →
S be the restriction of f to {1, 2, . . . , r}. Pick a ∈ S and H ∈ Pf ({1, 2, . . . , r})
such that for all f ∈ F , a +

∑
t∈H gf (t) ∈ A. Then for each f ∈ F , a +∑

t∈H f(t) ∈ A.
To see that (c) implies (b), let k ∈ N and pick r ∈ N as guaranteed by (c).

Let ∅ 6= F ⊆ {f : f : {1, 2, . . . , r} → S} such that |F | ≤ k. Pick z ∈ S. Given

f ∈ F , define gf ∈ NS by gf (t) = f(t) if t ≤ r and gf (t) = z if t > r. Pick a ∈ S
and H ∈ Pf ({1, 2, . . . , r}) such that for each f ∈ F , a+

∑
t∈H gf (t) ∈ A. Then

for each f ∈ F , a+
∑
t∈H f(t) ∈ A.

We introduce now a finer gradation.

Definition 1.4. Let (S,+) be a commutative semigroup, let k ∈ N, and let
A ⊆ S. Then A is a k-CR-set if and only if there exists r ∈ N such that

whenever F ∈ Pf (NS) with |F | ≤ k, there exist a ∈ S and H ∈ Pf ({1, 2, . . . , r})
such that for all f ∈ F , a+

∑
t∈H f(t) ∈ A.
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Note that a set is a CR-set if and only if for each k ∈ N, it is a k-CR-set.
Given a discrete semigroup (S, ·), the Stone-Čech compactification, βS of

S is the set of ultrafilters on S. We identify a point x ∈ S with the principal
ulrafilter {A ⊆ S : x ∈ A}. The topology on βS has a basis consisting of
the open and closed subsets {A : A ⊆ S}. The operation on S extends to βS
making (βS, ·) a right topological semigroup with S contained in the topological
center of βS. That is, for each p ∈ βS, the function ρp : βS → βS defined by
ρp(q) = qp is continuous and for each x ∈ S, the function λx : βS → βS defined
by λx(q) = xq is continuous. For basic information about the algebraic structure
of βS see [6, Part I].

In Section 2 we extend the definition of CR-sets to arbitrary semigroups and
obtain results about the algebraic properties. Section 3 deals with the relation
with other notions of largeness. In Section 4 we address the question of whether
the Cartesian products of two CR-sets must be a CR-set.

2 The notion of combinatorially rich sets
in arbitrary semigroups

The definition of CR-sets in an arbitrary semigroup is based on the correspond-
ing definition for J-sets.

Definition 2.1. Let (S, ·) be a semigroup and let A ⊆ S. Then A is a J-set if

and only if for each F ∈ Pf (NS), there exist m ∈ N, ~a ∈ Sm+1, and t(1) < t(2) <
. . . < t(m) in N such that for each f ∈ F , a(1)f

(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m+

1) ∈ A.

Definition 2.2. Let (S, ·) be a semigroup and let A ⊆ S.

(1) Then A is a combinatorially rich set (a CR-set) if and only if for each

k ∈ N there exists r ∈ N such that for each F ∈ Pf (NS) with |F | ≤ k,
there exist m ∈ N, ~a ∈ Sm+1, and t(1) < t(2) < . . . < t(m) ≤ r in N such
that for each f ∈ F , a(1)f

(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m+ 1) ∈ A.

(2) Given k ∈ N, A is a k-CR-set if and only if there exists r ∈ N such

that for each F ∈ Pf (NS) with |F | ≤ k, there exist m ∈ N, ~a ∈ Sm+1,
and t(1) < t(2) < . . . < t(m) ≤ r in N such that for each f ∈ F ,
a(1)f

(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m+ 1) ∈ A.

We note that the definitions of CR-sets agree in commutative semigroups.

Lemma 2.3. Let (S, ·) be a commutative semgroup and let A ⊆ S. Then A is
a CR-set according to Definition 1.1 if and only if A is a CR-set according to
Definition 2.2.

Proof. For the sufficiency, let k ∈ N and assume that we have r ∈ N such

that for each F ∈ Pf (NS) with |F | ≤ k, there exist m ∈ N, ~a ∈ Sm+1, and
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t(1) < t(2) < . . . < t(m) ≤ r in N such that for each f ∈ F ,

a(1)f
(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m+ 1) ∈ A .

Given F ∈ Pf (NS) with |F | ≤ k, pick m ∈ N, ~a ∈ Sm+1, and t(1) <
t(2) < . . . < t(m) ≤ r as guaranteed, let a = a(1)a(2) · · · a(m + 1) and
H = {t(1), t(2), . . . , t(m)}. Then a and H are as required by Lemma 1.3(c).

For the necessity, let k ∈ N and assume we have r ∈ N such that whenever
∅ 6= G ⊆ {f : f : {1, 2, . . . , r} → S} and |G| ≤ k, there exist a ∈ S and
H ∈ Pf ({1, 2, . . . , r}) such that for all f ∈ G, a·

∏
t∈H f(t) ∈ A, as is guaranteed

by Lemma 1.3(b). Let F ∈ Pf (NS) with |F | ≤ k be given. Then whenever
∅ 6= G ⊆ {f : f : {1, 2, . . . , r} → S} and |G| ≤ k, there exist a ∈ S and
H ∈ Pf ({1, 2, . . . , r}) such that for all f ∈ G, a ·

∏
t∈H f(t) ∈ A. Pick c ∈ S and

for f ∈ F define gf : {1, 2, . . . , r} → S by for j ∈ {1, 2, . . . , r}, gf (j) = f(j)c.
Let G = {gf : f ∈ F}. Then |G| ≤ k so pick b ∈ S and H ∈ Pf ({1, 2, . . . , r})
such that for all f ∈ F , b·

∏
t∈H gf (t) ∈ A. Let m = |H|, let 〈t(1), t(2), . . . , t(m)〉

enumerate H in increasing order, let a(1) = b, and for j ∈ {2, 3, . . . ,m+ 1} let
a(j) = c. Then for each f ∈ F , a(1)f

(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m + 1) ∈

A.

We now show that the notion of combinatorially rich is partition regular.
The proof is based on the proof of [6, Lemma 14.14.5], and includes a section
from that proof verbatim.

Theorem 2.4. Let (S, ·) be a semigroup and let A1 and A2 be subsets of S. If
A1 ∪A2 is a CR-set in S, then either A1 or A2 is a CR-set in S.

Proof. Assume that A1∪A2 is a CR-set in S and neither A1 nor A2 is a CR-set
in S.

For i ∈ {1, 2} pick k(i) ∈ N such that for every r ∈ N there exists F ∈ Pf (NS)
such that |F | ≤ k(i) and

(∀m ∈ N)(∀~a ∈ Sm+1)(∀t(1) < t(2) < . . . < t(m) ≤ r)
(∃f ∈ F )

(
a(1)f

(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m+ 1)

)
/∈ Ai) .

Let k = k(1) + k(2) and pick by [6, Lemma 14.8.1] some n ∈ N such that
whenever the length n words over {1, 2, . . . , k} are 2-colored, there is a vari-
able word w(v) beginning and ending with a constant and having no adjacent
occurrences of v such that

{
w(l) : l ∈ {1, 2, . . . , k}

}
is monochromatic.

Let W be the set of length n words over {1, 2, . . . , k} and let α = kn = |W |.
Pick β ∈ N such that for every G ∈ Pf (NS) with |G| ≤ α

(∃m ∈ N)(∃~a ∈ Sm+1)(∃t(1) < t(2) < . . . < t(m) ≤ β)
(∀f ∈ G)

(
a(1)f

(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m+ 1)

)
∈ A1 ∪A2) .

For i ∈ {1, 2}, nβ + n is not big enough to serve as r for k(i) so pick

Fi ∈ [NS]≤k(i) such that
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(�) (∀m ∈ N)(∀~a ∈ Sm+1)(∀t(1) < t(2) < . . . < t(m) ≤ nβ + n)
(∃f ∈ Fi)

(
a(1)f

(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m+ 1)

)
/∈ Ai) .

Write F1 = {f1, f2, . . . , fk(1)} and F2 = {fk(1)+1, fk(1)+2, . . . , fk(1)+k(2)},
with repetition if need be.

For w = b1b2 · · · bn ∈ W (where each bi ∈ {1, 2, . . . , k}), define gw : N → S
by, for y ∈ N, gw(y) =

∏n
i=1 fbi(ny + i). Let G = {gw : w ∈ W}. Then

G ∈ [NS]≤α so pick m ∈ N, ~a ∈ Sm+1, and t(1) < t(2) < . . . < t(m) in
{1, 2, . . . , β} such that for all w ∈W ,(

a(1)gw
(
t(1)

)
a(2) · · · a(m)gw

(
t(m)

)
a(m+ 1)

)
∈ A1 ∪A2 .

Define ϕ : W → {1, 2} by

ϕ(w) = 1 iff
(
a(1)gw

(
t(1)

)
a(2) · · · a(m)gw

(
t(m)

)
a(m+ 1)

)
∈ A1 .

Pick a variable word w(v), beginning and ending with a constant and without
successive occurrences of v such that ϕ is constant on

{
w(l) : l ∈ {1, 2, . . . , k}

}
.

Assume without loss of generality that ϕ
(
w(l)

)
= 1 for all l ∈ {1, 2, . . . , k}.

That is, for all l ∈ {1, 2, . . . , k},(
a(1)gw(l)

(
t(1)

)
a(2) · · · a(m)gw(l)

(
t(m)

)
a(m+ 1)

)
∈ A1 .

Let w(v) = b1b2 · · · bn where each bi ∈ {1, 2, . . . , k} ∪ {v}, some bi = v,
b1 6= v, bn 6= v, and if bi = v, then bi+1 6= v. Let r be the number of occurrences
of v in w(v) and pick L(1), L(2), . . . , L(r + 1) and s(1), s(2), . . . , s(r) such that
for each p ∈ {1, 2, . . . , r}, maxL(p) < s(p) < minL(p+ 1),⋃r+1

p=1 L(p) =
{
i ∈ {1, 2, . . . , n} : bi ∈ {1, 2, . . . , k}

}
and,

{s(1), s(2), . . . , s(r)} =
{
i ∈ {1, 2, . . . , n} : bi = v} .

For example, assume that w(v) = 12v131v2v1121v32. Then r = 4, L =
({1, 2}, {4, 5, 6}, {8}, {10, 11, 12, 13}, {15, 16}), and s = (3, 7, 9, 14).

We shall show now that, given y ∈ N, there exist ~cy ∈ Sr+1 and zy(1) <
zy(2) < . . . < zy(r) such that for all l ∈ {1, 2, . . . , k},

gw(l)(y) = cy(1)fl
(
zy(1)

)
cy(2) · · · cy(r)fl

(
zy(r)

)
cy(r + 1)

and further, for each y, zy(r) < zy+1(1). So let y ∈ N be given. For p ∈
{1, 2, . . . , r + 1}, let cy(p) =

∏
i∈L(p) fbi(ny + i) and for p ∈ {1, 2, . . . , r}, let

zy(p) = ny + s(p). To see that these are as required, first note that zy(r) ≤
ny + n < zy+1(1). Now let l ∈ {1, 2, . . . , k} be given. Then w(l) = d1d2 · · · dn
where for i ∈ {1, 2, . . . , n},

di =

{
bi if i ∈

⋃r+1
p=1 L(p)

l if i ∈ {s(1), s(2), . . . , s(r)} .
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Therefore

gw(l)(y) =
∏n
i=1 fdi(ny + i)

=
(∏r

p=1

(∏
i∈L(p) fbi(ny + i)

)
·

fl(ny + s(p)
))
·
∏
i∈L(r+1) fbi(ny + i)

=
(∏r

p=1 cy(p) · fl
(
zy(p)

))
· cy(r + 1)

as required.
Let u = mr. For j ∈ {1, 2, . . . ,m} and p ∈ {1, 2, . . . , r}, let

q
(
(j − 1)r + p

)
= zt(j)(p) .

Note that q(1) < q(2) < . . . < q(u) = zt(m)(r) = nt(m) + s(r) < nt(m) + n ≤
nβ + r. For j ∈ {1, 2, . . . ,m} and p ∈ {2, 3, . . . , r} let d

(
(j − 1)r + p) =

ct(j)(p). Let d(1) = a(1)ct(1)(1), let d(u + 1) = ct(m)(r + 1)a(m + 1), and for
j ∈ {1, 2, . . . ,m− 1}, let d(jr + 1) = ct(j)(r + 1)a(j + 1)ct(j+1)(1).

Note that d ∈ Su+1 and for l ∈ {1, 2, . . . , k}

a(1)gw(l)

(
(t(1)

)
a(2) · · · a(m)gw(l)

(
t(m)

)
a(m+ 1) =

a(1)ct(1)(1)fl
(
zt(1)(1)

)
ct(1)(2) · · · ct(1)(r)fl

(
zt(1)(r)

)
ct(1)(r + 1) ·

a(2)ct(2)(1)fl
(
zt(2)(1)

)
ct(2)(2) · · · ct(2)(r)fl

(
zt(2)(r)

)
ct(2)(r + 1) ·

...
a(m)ct(m)(1)fl

(
zt(m)(1)

)
ct(m)(2) · · ·

ct(m)(r)fl
(
zt(m)(r)

)
ct(m)(r + 1)a(m+ 1)

= d(1)fl
(
q(1)

)
d(2) · · · d(u)fl

(
q(u)

)
d(u+ 1) .

We have u ∈ N, d ∈ Su+1, and q(1) < q(2) < . . . < q(u) ≤ nβ + n so by (†),
we may pick l ∈ {1, 2, . . . , k(1)} such that

d(1)fl
(
q(1)

)
d(2) · · · d(u)fl

(
q(u)

)
d(u+ 1) /∈ A1 .

This is a contradiction.

Definition 2.5. Let (S, ·) be a semigroup.

(1) CR(S) = {p ∈ βS : (∀A ∈ p)(A is a CR-set)}.

(2) For k ∈ N, k-CR(S) = {p ∈ βS : (∀A ∈ p)(A is a k-CR-set)}.

Theorem 2.6. Let (S, ·) be an infinite semigroup. Then CR(S) is a compact
two sided ideal of βS and for each k ∈ N, k-CR(S) is a compact two sided ideal
of βS.

Proof. By Theorem 2.4 and [6, Theorem 3.11], CR(S) 6= ∅. Since CR(S) =⋂∞
k=1 k-CR(S), we have that each k-CR(S) 6= ∅ and it suffices to show that

each k-CR(S) is a two sided ideal of βS, so let k ∈ N.
Let p ∈ k-CR(S) and let q ∈ βS. To see that qp ∈ k-CR(S), let A ∈ qp,

and let B = {x ∈ S : x−1A ∈ p}. Then B ∈ q so B 6= ∅. Pick x ∈ B. Then
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x−1A ∈ p so pick r ∈ N such that for each F ∈ Pf (NS) with |F | ≤ k, there
exist m ∈ N, ~a ∈ Sm+1, and t(1) < t(2) < . . . < t(m) ≤ r in N such that for

each f ∈ F , a(1)f
(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m+ 1) ∈ x−1A. Let F ∈ Pf (NS)

with |F | ≤ k and pick m, ~a, and t(1) < t(2) < . . . < t(m) ≤ r as guaranteed

for x−1A. Define ~b ∈ Sm+1 by b(1) = xa(1) and for j ∈ {2, 3, . . . ,m + 1, let
b(j) = a(j). Then for each f ∈ F , b(1)f

(
t(1)

)
b(2) · · · b(m)f

(
t(m)

)
b(m+1) ∈ A.

To see that pq ∈ k-CR(S), let A ∈ pq and let B = {x ∈ S : x−1A ∈ q}.
Then B ∈ p so pick r ∈ N such that for each F ∈ Pf (NS) with |F | ≤ k, there
exist m ∈ N, ~a ∈ Sm+1, and t(1) < t(2) < . . . < t(m) ≤ r in N such that for

each f ∈ F , a(1)f
(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m + 1) ∈ B. Let F ∈ Pf (NS)

with |F | ≤ k and pick m, ~a, and t(1) < t(2) < . . . < t(m) ≤ r as guaranteed

for B. Then
⋂
f∈F

(
a(1)f

(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m + 1)

)−1
A ∈ q so pick

y ∈
⋂
f∈F

(
a(1)f

(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m+ 1)

)−1
A. Define ~b ∈ Sm+1 by

b(j) = a(j) for j ∈ {1, 2, . . . ,m} and b(m + 1) = a(m + 1)y. Then for each
f ∈ F , b(1)f

(
t(1)

)
b(2) · · · b(m)f

(
t(m)

)
b(m+ 1) ∈ A.

We shall see in Theorem 3.9 that the notion of k-CR need not be parti-
tion regular, so one could not appeal to [6, Theorem 3.11] to conclude that
k-CR(S) 6= ∅. Also, by (1) and (4) of Theorem 3.9, a characterization of k-CR-
sets similar to that of CR-sets in the corollary below is not valid.

Corollary 2.7. Let (S, ·) be an infinite semigroup. A subset A of S is a CR-set
if and only if A ∩ CR(S) 6= ∅.

Proof. The sufficiency is trivial and the necessity follows from Theorem 2.4 and
[6, Theorem 3.11].

3 Relations with other notions of largeness

Recall that in an arbitrary infinite semigroup (S, ·), J(S) = {p ∈ βS : (∀A ∈
p)(A is a J-set}.

The other notions of largeness with which we will be concerned in this section
are k-J-sets, piecewise syndetic sets, C-sets, and B-sets.

Definition 3.1. Let (S, ·) be an infinite semigroup and let k ∈ N.

(1) A subset A of S is a k-J-set if and only if whenever F ∈ Pf (NS) with
|F | ≤ k, there exist m ∈ N, ~a ∈ Sm+1, and t(1) < t(2) < . . . < t(m) in N
such that for each f ∈ F ,

a(1)f
(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m+ 1) ∈ A .

(2) k-J(S) = {p ∈ β(S) : (∀A ∈ p)(A is a k-J-set)}.

C-sets were originally defined as sets satisfying the conclusion of the Central
Sets Theorem. Since they do satisfy the conclusion of the Central Sets Theorem,
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they satisfy very strong Ramsey theoretic conclusions. For example, any C-set in
(N,+) contains solutions to any finite partition regular system of homogeneous
linear equations with rational coefficients. We use a simpler characterization,
established in [6, Theorem 14.27], as the definition of C-sets.

Definition 3.2. Let (S, ·) be an infinite semigroup and let A ⊆ S.

(1) A is piecewise syndetic if and only if there exists G ∈ Pf (S) such that for
every F ∈ Pf (S) there exists x ∈ S such that Fx ⊆

⋃
t∈G t

−1A.

(2) A is a C-set if and only if there is a downward directed family 〈CF 〉F∈I of
subsets of A such that

(i) for each F ∈ I and each x ∈ CF there exists G ∈ I with CG ⊆ x−1CF
and

(ii) for each F ∈ Pf (I),
⋂
F∈F CF is a J-set.

By [6, Theorem 14.15.1], a subset A of the semigroup S is a C-set if and
only if A is a member of an idempotent in J(S). Since a subset A of S is a
J-set if and only if A ∩ J(S) 6= ∅ by [6, Theorem 14.14.7], one has that C-sets
are J-sets.

Theorem 3.3. Let (S, ·) be an infinite semigroup and let A be a piecewise
syndetic subset of S. Then A is a CR-set.

Proof. By Theorem 2.6, CR(S) is a two sided ideal of βS so K(βS) ⊆ CR(S).
By [6, Theorem 4.40], A ∩ K(βS) 6= ∅ so A ∩ CR(S) 6= ∅ so Corollary 2.7
applies.

It follows immediately from the definitions that CR-sets are J-sets. We see
now that the converse fails badly in free semigroups. Given x ∈ S we write x

for the element of NS which is constantly equal to x.

Theorem 3.4. Let κ be an infinite cardinal and let S be the free semigroup on
the distinct letters 〈bσ〉σ<κ. There is a C-set A ⊆ S which is not a 2-CR set.

Proof. Given w ∈ S we write `(w) for the length of w.

We note that we can choose for each F ∈ Pf (NS) an infinite subset BF of N
such that for each f and g in F , either f(t) = g(t) for all t ∈ BF or f(t) 6= g(t)
for all t ∈ BF .

Enumerate BF in order as 〈nF (t)〉∞t=1. For f ∈ F , define gF,f ∈ NS by
gF,f (t) = f

(
nF (t)

)
. Let γ(F ) = {gF,f : f ∈ F}.

For F ∈ Pf (NS), define φ(F ) = 1 + max{n ∈ ω : (∃f ∈ F )(bn occurs in
gF,f (1)}.

For F ∈ Pf (NS), let GF = {g|{1,2,...,φ(F )} : g ∈ γ(F )}. Let G = {GF : F ∈
Pf (NS)}. We claim that |G| ≤ κ. (One can in fact show that |G| = κ, but we will

not need that fact.) To see this let T =
⋃∞
n=1([n]S). Then |T | =

∑∞
n=1 κ = κ
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and each GF ∈ Pf (T ) so G ⊆ Pf (T ) and thus |G| ≤ κ. Enumerate G as 〈Hσ〉σ<κ
with repetition if need be.

Note that if F and K are in Pf (NS) and GF = GK , then φ(F ) = φ(K) =
max domain(g) for any g ∈ γ(F ). For σ < κ, let sσ = max domain(g) for some

g ∈ Hσ (hence for any g ∈ Hσ). Note that if F ∈ Pf (NS) and GF = Hσ, then
sσ = φ(F ).

Define ψ : κ→ ω by σ = λ+ ψ(σ) for some limit ordinal λ. (We are taking
0 to be a limit ordinal.)

Inductively choose an injective function η : κ→ κ such that for each σ < κ,
ψ
(
η(σ)

)
∈ 3ω and

η(σ) > max{τ < κ : (∃g ∈ Hσ)(∃j ∈ {1, 2, . . . , sσ})(bτ occurs in g(j)} .

For σ < κ, let Dσ = {bη(σ)g(1)bη(σ)g(2) · · · bη(σ)g(sσ)bη(σ) : g ∈ Hσ}. For
τ < κ, let

Cτ = {
∏
σ∈K xσ : K ∈ Pf (κ) , minK ≥ τ , and (∀σ ∈ K)(xσ ∈ Dσ} .

Let A = C0.
We first show that A is not a 2-CR set. Suppose instead that we have

r ∈ N such that for every F ∈ Pf (NS) with |F | ≤ 2, there exist m ∈ N,
~a ∈ Sm+1 and t(1) < t(2) < . . . < t(m) ≤ r such that for all f ∈ F ,
(a(1)f

(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m+ 1) ∈ A).

Pick k > r with k ≡ 1 (mod 3) and let F = {bk, bk+1}. Pick m, ~a, and
t(1) < t(2) < . . . < t(m) ≤ r as guaranteed for F . Pick K and L in Pf (κ) such
that

w = a(1)bka(2) · · · a(m)bka(m+ 1)
=
∏
σ∈K(bη(σ)cσ(1)bη(σ)cσ(2) · · · bη(σ)cσ(sσ)bη(σ)) and

v = a(1)bk+1a(2) · · · a(m)bk+1a(m+ 1)
=
∏
σ∈L(bη(σ)dσ(1)bη(σ)dσ(2) · · · bη(σ)dσ(sσ)bη(σ)) ,

where for σ ∈ K, cσ ∈ Hσ and for σ ∈ L, dσ ∈ Hσ.
We may presume that `(w) = `(v) is the smallest among all such examples.
Notice that for each σ < κ, ψ

(
η(σ)

)
∈ 3ω so bη(σ) /∈ {bk, bk+1} so all

occurrences of bη(σ) for σ ∈ K ∪ L occur in some a(j) and occur in the same
position in w and in v. Let σ = minK. Based on the first letter of a(1), we
see that also σ = minL so cσ and dσ are in Hσ. Assume first that cσ 6= dσ,
in which case for all j ∈ {1, 2, . . . , sσ}, cσ(j) 6= dσ(j). The second occurrence
of bη(σ) in v occurs in a(j) for some j ∈ {1, 2, . . . ,m + 1} and occurs in some
position t. So the second occurrence of bni in w also occurs in a(j) at position t
so `

(
cσ(1)

)
= `
(
dσ(1)

)
. If `

(
a(1)

)
> `
(
cσ(1)

)
, then cσ(1) and dσ(1) occur in the

same position in a(1), which is impossible. So `
(
a(1)

)
≤ `
(
cσ(1)

)
, so bk occurs

in cσ(1) and thus sσ ≥ k + 1.
We have that bη(σ) does not occur in cσ(t) or dσ(t) for any t ∈ {1, 2, . . . , sσ}

so the first sσ + 1 occurrences of bη(σ) in w are exactly those shown. Since
sσ ≥ k+1 > r+1 ≥ m+1, there exist j ∈ {1, 2, . . . ,m+1} and t ∈ {1, 2, . . . , sσ}
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such that occurrences number t and number t+ 1 of bη(σ) in w are both in a(j).
But then cσ(t) and dσ(t) occur in the same position in a(j), which is impossible.

Thus we must have that cσ = dσ. Since w 6= v, we can’t have K = L = {σ}.
Since `(w) = `(v) we must have that both K and L properly contain {σ}. If we
had `

(
a(1)

)
less than the length of

bη(σ)cσ(1)bη(σ) · · · bη(σ)cσ(sσ)bη(σ) = bη(σ)dσ(1)bη(σ) · · · bη(σ)dσ(sσ)bη(σ) ,

then bk and bk+1 would occur in the same location in

bη(σ)cσ(1)bη(σ)cσ(2) · · · bη(σ)cσ(sσ)bη(σ) .

So the length of bη(σ)cσ(1)bη(σ)cσ(2) · · · bη(σ)cσ(sσ)bη(σ) must be less than or

equal to `
(
a(1)

)
. Equality can’t hold since then one would have bk = bη(τ)

where τ = min(K \ {i}). So we have a nonempty word a′(1) such that a(1) =
bη(σ)cσ(1)bη(σ)cσ(2) · · · bη(σ)cσ(sσ)bη(σ)a

′(1). For j ∈ {2, 3, . . . ,m+1} let a′(j) =
a(j). Then we get

w′ = a′(1)bka
′(2) · · · a′(m)bka

′(m+ 1)
=
∏
τ∈K\{σ}(bη(τ)cτ (1)bη(τ)cτ (2) · · · bη(τ)cτ (sτ )bη(τ)) and

v′ = a′(1)bk+1a
′(2) · · · a′(m)bk+1a

′(m+ 1)
=
∏
τ∈L\{σ}(bη(τ)dτ (1)bη(τ)dτ (2) · · · bη(τ)dτ (sτ )bη(τ)) ,

where for τ ∈ K \ {σ}, cτ ∈ Hτ and for τ ∈ L \ {σ}, dτ ∈ Hτ .
This contradicts the minimality of `(w).
To show that A is a C-set, we show that 〈Cσ〉σ<κ is as required by Definition

3.2(2). That is 〈Cσ〉σ<κ is downward directed, for F ∈ Pf (κ),
⋂
σ∈F Cσ is a

J-set, and for each σ < κ and each x ∈ Cσ, there exists τ < κ such that
Cτ ⊆ x−1Cσ. Since κ is linearly ordered, the first two assertions amount to the
assertions that 〈Cσ〉σ<κ is decreasing and that each Cσ is a J-set.

It is trivial that 〈Cσ〉σ<κ is decreasing. To verify the third assertion, let
σ < κ be given and let x ∈ Cσ. Pick K ∈ Pf (κ) such that minK ≥ σ and for
τ ∈ K, there is some gτ ∈ Hτ such that

x =
∏
τ∈K(bη(τ)gτ (1)bη(τ)gτ (2) · · · bη(τ)g(sτ )bη(τ)) .

Let δ = maxK + 1. Then Cδ ⊆ x−1Cσ.
To complete the proof, we need to show that for each σ < κ, Cσ is a J-set.

We claim that it suffices to show that for each σ < κ and each F ∈ Pf (NS)

there exists K ∈ Pf (NS) such that F ⊆ K and GK = Hµ for some µ ≥ σ.

Assume that we have done this. Let σ < κ and F ∈ Pf (NS) be given and pick

K ∈ Pf (NS) and µ ≥ σ such that F ⊆ K and GK = Hµ. Then Dµ ⊆ Cσ. Let
m = sµ. For j ∈ {1, 2, . . . ,m + 1}, let a(j) = bη(µ), and for j ∈ {1, 2, . . . ,m},
let t(j) = nK(j). Then for f ∈ F ,

a(1)f
(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m+ 1)

= bη(µ)f
(
nK(1)

)
bη(µ) · · · bη(µ)f

(
nK(m)

)
bη(µ)

= bη(µ)gK,f (1)bη(µ) · · · bη(µ)gK,f (m)bη(µ)
= bη(µ)gK,f (1)bη(µ) · · · bη(µ)gK,f (sµ)bη(µ) ∈ Dµ .
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We now consider two cases. Suppose first that κ = ω. Let n < ω and

let F ∈ Pf (NS) be given. Pick m(0) ≥ φ(F ) and let K1 = F ∪ {bm(0)}.
Then bm(0) occurs in gK1,bm(0)

(1) so φ(K1) > m(0). Having chosen Kq, let

m(q) > φ(Kq) and let Kq+1 = F ∪ {bm(q)}. Then φ(Kq+1) > φ(Kq). Since
φ(F ) < φ(K1) < φ(K2) < . . . we have that GF , GK1

, GK2
, . . . are all distinct so

there is some j such that GKj = Hl for some l ≥ n.

Now assume that κ > ω. Let σ < κ and F ∈ Pf (NS) be given. Let
X = {τ < κ : (∃t ∈ N)(∃f ∈ F )

(
bτ occurs in f(t)

)
}. Then X is countable so

pick an injective function θ : κ→ κ \X. For τ < κ, let Kτ = F ∪ {bθ(τ)}. Then

bθ(τ)|{1,2,...,φ(Kτ )}
occurs in GKτ and not in any other GKδ so there must exist

τ < κ and µ > σ such that GKτ = Hµ.

Question 3.5. Do there exist an infinite commutative semigroup (S,+) and a
set A ⊆ S such that A is a J-set but not a CR-set?

Lemma 3.6. Let (S,+) and (T,+) be infinite commutative semigroups and let
ϕ : S → T be a surjective homomorphism. Let k ∈ N and let A ⊆ T .

(1) A is a k-J-set in T if and only if ϕ−1[A] is a k-J-set in S.

(2) A is a k-CR-set in T if and only if ϕ−1[A] is a k-CR-set in S.

Proof. We do the proof for (2), the other proof being very similar. For the

necessity, pick r ∈ N such that for every F ∈ Pf (NT ) with |F | ≤ k, there exist
a ∈ T and H ∈ Pf ({1, 2, . . . , r}) such that for each f ∈ F , a+

∑
t∈H f(t) ∈ A.

To see that ϕ−1[A] is a k-CR-set in S, let F ∈ Pf (NS) with |F | ≤ k. Let

G = {ϕ ◦ f : f ∈ F}. Then G ∈ Pf (NT ) and |G| ≤ k so pick a ∈ T and
H ∈ Pf ({1, 2, . . . , r}) such that for each f ∈ F , a +

∑
t∈H(ϕ ◦ f)(t) ∈ A. Pick

b ∈ S such that ϕ(b) = a. Then for each f ∈ F , ϕ
(
b +

∑
t∈H f(t)

)
∈ A so

b+
∑
t∈H f(t) ∈ ϕ−1[A].

For the sufficiency, pick r ∈ N such that for every F ∈ Pf (NS) with |F | ≤
k, there exist a ∈ S and H ∈ Pf ({1, 2, . . . , r}) such that for each f ∈ F ,
a+

∑
t∈H f(t) ∈ ϕ−1[A].

To see that A is a k-CR-set in T , let F ∈ Pf (NT ) with |F | ≤ k. For f ∈ F ,

pick f∗ ∈ NS such that for t ∈ N, ϕ
(
f∗(t)

)
= f(t) and let G = {f∗ : f ∈ F}.

Pick a ∈ S and H ∈ Pf ({1, 2, . . . , r}) such that for each f ∈ F , a+
∑
t∈H f

∗(t) ∈
ϕ−1[A]. Then ϕ(a) ∈ T and for f ∈ F , ϕ(a) +

∑
t∈H

ϕ
(
f∗(t)

)
= ϕ(a) +∑

t∈H f(t) ∈ A.

Lemma 3.7. Let k ∈ N and A ⊆ N.

(1) A is a k-J-set in (N, ·) if and only if A \ {1} is a k-J-set in (N \ {1}, ·).

(2) A is a k-CR-set in (N, ·) if and only if A\{1} is a k-CR-set in (N\{1}, ·).
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Proof. Again we do the proof for (2), the other proof being very similar. Given

f ∈ NN, define gf ∈ N(N \ {1}) by gf (n) = 2f(n).
For the necessity, assume A is a k-CR-set in (N, ·) and pick r ∈ N such that

whenever F ∈ Pf (NN) with |F | ≤ k, there exist a ∈ N and H ∈ Pf ({1, 2, . . . , r})
such that for each f ∈ F , a ·

∏
t∈H f(t) ∈ A. To see that r works for N \ {1},

let F ∈ Pf (N(N \ {1})) with |F | ≤ k. Let G = {gf : f ∈ F}. Then G ∈ Pf (NN)
and |G| ≤ k so pick a ∈ N and H ∈ Pf ({1, 2, . . . , r}) such that for each f ∈ F ,
a ·
∏
t∈H gf (t) ∈ A. Let m = |H| and let b = 2ma. Then b ∈ N \ {1} and for

each f ∈ F , b ·
∏
t∈H f(t) ∈ A \ {1}.

For the sufficiency, assume A\{1} is a k-CR-set in (N\{1}, ·) and pick r ∈ N
such that whenever F ∈ Pf (N(N\{1})) with |F | ≤ k, there exist a ∈ N\{1} and
H ∈ Pf ({1, 2, . . . , r}) such that for each f ∈ F , a ·

∏
t∈H f(t) ∈ A \ {1}. To see

that r works for N, let F ∈ Pf (NN) with |F | ≤ k. Let G = {gf : f ∈ F}. Then

G ∈ Pf (N(N \ {1})) and |G| ≤ k so pick a ∈ N \ {1} and H ∈ Pf ({1, 2, . . . , r})
such that for each f ∈ F , a ·

∏
t∈H gf (t) ∈ A\{1}. Let m = |H| and let b = 2ma.

Then for each f ∈ F , b ·
∏
t∈H f(t) ∈ A \ {1} ⊆ A.

Theorem 3.8. If there exist a countable commutative semigroup (S,+) and a
subset A of S which is a J-set and is not a CR-set, then there is a subset B of
N which is a J-set in (N, ·) and is not a CR-set in (N, ·).

Proof. Enumerate S as 〈xn〉∞n=1 and enumerate the primes as 〈pn〉∞n=1. Define f :
{pn : n ∈ N} → S by f(pn) = xn. Then f extends to a surjective homomorphism
ϕ : N \ {1} → S so by Lemma 3.6, ϕ−1[A] is a J-set in (N \ {1}, ·) and is not
a CR-set in (N \ {1}, ·). By Lemma 3.7, ϕ−1[A] is a J-set in (N, ·) and is not a
CR-set in (N, ·).

Theorem 3.9. Let S be (N,+) or (N, ·) and let k ∈ N. There is a set Ak ⊆ S
such that

(1) Ak is a k-CR-set;

(2) Ak is not a (k + 1)-CR-set, in fact not a (k + 1)-J-set;

(3) if k > 1, then there exist sets B and C such that Ak = B ∪C and neither
B nor C is a k-J-set; and

(4) if k > 1, then Ak ∩ k-J(S) = ∅, so that Ak ∩ k-CR(S) = ∅.

Proof. By Lemmas 3.6 and 3.7 It suffices to prove the theorem under the as-
sumption that S = (N,+).

Let Γ = {(b1, b2, . . . , bk) ∈ Nk : b1 ≤ b2 ≤ . . . ≤ bk} and enumerate Γ as
〈 ~xn〉∞n=1. For each n, let ~xn = (bn,1, bn,2, . . . , bn,k). Let η1 = 1 and for n ∈ N,
let ηn+1 = 2(ηn + bn,k). For n ∈ N, let En =

{
ηn + bn,i : i ∈ {1, 2, . . . , k}

}
and

let Ak =
⋃∞
n=1En.

(1) To see that Ak is a k-CR-set, let r = 1. Let F ∈ Pf (NN) with |F | ≤ k.
Let D = {f(1) : f ∈ F} and note that |D| ≤ k so write D as {c1, c2, . . . , ck}
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with c1 ≤ c2 ≤ . . . ≤ ck. Pick n such that (c1, c2, . . . , ck) = (bn,1, bn,2, . . . , bn,k).
Let a = ηn and let H = {1}. Then given f ∈ H, a+

∑
t∈H f(t) = ηn + f(1) ∈

En ⊆ Ak.
(2) To see that Ak is not a (k + 1)-J-set, let F = {k, k + 1, . . . , 2k}. Sup-

pose we have a ∈ N and H ∈ Pf (N) such that for each i ∈ {0, 1, . . . , k},
a+
∑
t∈H k + i ∈ Ak. Let m = |H|. Then with i = 0, a+

∑
t∈H k + i = a+mk ∈

Ak and with with i = k, a +
∑
t∈H k + i = a + 2mk ∈ Ak so there exist n ≤ l

and i, j ∈ {1, 2, . . . , k} such that a+mk = ηn + bn,i and a+ 2mk = ηl + bl,j .
We claim that n = l. Suppose instead that n < l. Then

mk = ηl − (ηn + bn,i) + bl,j > ηl − (ηn + bn,i) ≥ ηl − (ηn + bn,k)
≥ ηn + bn,k ≥ ηn + bn,i = a+mk > mk ,

a contradiction.
Thus {a+mk, a+m(k+1), . . . , a+2mk} ⊆ {ηn+bn,1, ηn+bn,2, . . . , ηn+bn,k}.

The left hand side has cardinality k+1 while the right hand side has cardinality
at most k.

(3) Assume that k > 1. Let B =
⋃∞
n=1{ηn + bn,i : i ∈ {1, 2, . . . , k − 1}} and

let C = {ηn + bn,k : n ∈ N}. Let F = {k + 1, k + 2, . . . , 2k}. Arguing as in (2),
F establishes that B is not a k-J-set and letting F = {k, 2k} establishes that C
is not a 2-J-set.

(4) Assume that k > 1. Pick B and C as guaranteed by (2). Suppose we
have p ∈ Ak ∩ k-J(S). Then either B or C is a k-J-set.

It is an easy exercise to show that for subsets of N, the notions of 1-CR-set,
1-J-set, and infinite are equivalent. So the requirement that k > 1 in Theorem
3.9(3) and (4) is needed.

Definition 3.10. Let (S, ·) be a semigroup.

(1) S satisfies the Strong Følner Condition (SFC) if and only if(
∀H ∈ Pf (S)

)
(∀ε > 0)

(
∃F ∈ Pf (S)

)
(∀s ∈ H)(|F \ sF | < ε · |F |) .

(2) A left invariant mean µ on S is a positive linear functional on the space
l1(S) of bounded real valued functions on S with ||µ|| = 1 which is left
invariant. That is, for each g ∈ l1(S) and each x ∈ S, µ(g) = µ(g ◦ λx).

(3) S is left amenable if and only if there exists a left invariant mean on S.

Every semigroup that satisfies SFC is left amenable and every left cancella-
tive and left amenable semigroup satisfies SFC. If S is left amenable, right
cancellative, and not left cancellative, then S does not satisfy SFC. See [7,
Paragraph 4.22] for details and references for these facts.

We denote the characteristic function of a set A by χA.

Definition 3.11. Let (S, ·) be a semigroup and let A ⊆ S.
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(1) If S satisfies SFC, then

d(A) = sup
{
α :

(
∀H ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
|A ∩K| ≥

α · |K| and
(
∀s ∈ H

)(
|K 4 sK| < ε · |K|

))}
.

(2) If S is left amenable, then d∗(A) = sup{µ(χA) : µ is a left invariant mean
on S}.

(3) A is a B-set if and only if S is left amenable and d∗(A) > 0.

By [4, Theorems 2.12 and 2.14], if S satisfies SFC, then for each A ⊆ S,
d(A) ≤ d∗(A) and if in addition S is left cancellative, then d(A) = d∗(A). In
particular if S satisfies SFC and d(A) > 0, then A is a B-set.

We set out to show in Theorem 3.15 that any B-set is a CR-set.

Theorem 3.12 (Density Hales-Jewett). Let n ∈ N and η ∈ (0, 1). There exists
k ∈ N such that whenever C ⊆ [n]k and |C| ≥ ηnk, there is a length k variable
word u over the alphabet [n] such that {u(t) : t ∈ [n]} ⊆ C.

Proof. This is due to Furstenberg and Katznelson in [2]. For a simplified ele-
mentary proof see [8] which is an anonymous collaborative effort.

We will need the following strengthening of the Density Hales-Jewett Theo-
rem.

Corollary 3.13. Let n ∈ N and η ∈ (0, 1). There exists r ∈ N such that
whenever C ⊆ [n]r and |C| ≥ ηnr, there is a length r variable word w over the
alphabet [n] which begins with a constant and has no successive occurrences of
the variable such that {w(t) : t ∈ [n]} ⊆ C.

Proof. Pick k ∈ N as guaranteed for n and η by Theorem 3.12 and let r = 2k.
For each y = y1y2 · · · yk ∈ [n]k define ϕy : [n]k → [n]r by, for z = z1z2 · · · zk ∈
[n]k, ϕy(z) = y1z1y2z2 · · · ykzk. For y ∈ [n]k let By = ϕ

y

[
[n]k

]
Let C ⊆ [n]r

such that |C| ≥ ηnr.
Now C =

⋃
y∈[n]k(By ∩C) and if x and y are distinct members of [n]k, then

Bx ∩By = ∅ so |C| =
∑
y∈[n]k |By ∩C| so we may pick some y ∈ [n]k such that

|By ∩ C| ≥ ηnk. Since ϕy is injective, |ϕ−1y [By ∩ C]| ≥ ηnk. Pick a length k
variable word u = u1u2 · · ·uk over the alphabet [n] such that {u(t) : t ∈ [n]} ⊆
ϕ−1
y [By ∩ C]. Let w = y1u1y2u2 · · · ykuk. Then w is a length r variable word

which begins with a constant and has no successive occurrences of the variable.
And, given t ∈ [n], w(t) = ϕ

y

(
u(t)

)
∈ C.

The proof of the next lemma is adapted from the proof of [1, Theorem 3.2].

Lemma 3.14. Let (S, ·) be a left amenable semigroup, let µ be a left invariant
mean on S, let F ∈ Pf (S), let F : F → N, let 0 < η < δ < 1, let A ⊆ S such
that µ(χA) ≥ δ, and let

R = {t ∈ S :
∑
x∈F∩(At−1) F(x) ≥ η

∑
x∈F F(x)} .

Then µ(χR) ≥ δ − η
1− η

.
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Proof. Define g : S → [0, 1] by g(t) =

∑
x∈F∩(At−1) F(x)∑

x∈F F(x)
. Then for t ∈ S,

g(t) =
1∑

x∈F F(x)

∑
x∈F F(x) · χAt−1(x)

=
1∑

x∈F F(x)

∑
x∈F F(x) · χ(x−1A)(t) ,

so

µ(g) =
1∑

x∈F F(x)
·
(∑

x∈F F(x) · µ(χx−1A)
)

=
1∑

x∈F F(x)
·
(∑

x∈F F(x) · µ(χA)
)

since µ is invariant. Therefore µ(g) =
µ(χA)∑
x∈F F(x)

·
∑
x∈F F(x) = µ(χA).

Since µ is additive, µ(χA) = µ(g) ≤ µ(gχR) + µ(gχS\R). Since gχR ≤ χ
R,

µ(gχR) ≤ µ(χR). For t ∈ S \ R,
∑
x∈F∩(At−1) F(x) < η

∑
x∈F F(x) so g(t) =∑

x∈F∩At−1 F(x)∑
x∈F F(x)

< η and µ(χS\R) = 1 − µ(χR) so µ(χA) ≤ µ(χR) + η
(
1 −

µ(χR)
)
. Therefore µ(χA)− η ≤ µ(χR) · (1− η) so µ(χR) ≥ δ − η

1− η
.

In the event that S is commutative, the next theorem is [1, Theorem 3.3].
Our proof is a modification of the proof of that result.

Theorem 3.15. Let (S, ·) be a semigroup and let A ⊆ S be a B-set. Then A is
a CR-set.

Proof. Pick a left invariant mean µ on S such that µ(χA) > 0 and pick η and δ
such that 0 < η < δ ≤ µ(χA). Let n ∈ N. We will show that A is an n-CR-set.

Pick r ∈ N as guaranteed by Corollary 3.13 for n and η. Let G ∈ Pf (NS) with
|G| ≤ n. Write G = {f1, f2, . . . , fn} with repetition if |G| < n.

Define π : [n]r → S by, for w = w1w2 · · ·wr ∈ [n]r,

π(w) = fw1(1)fw2(2) · · · fwr (r) .

Let F = π
[
[n]r

]
and define F ;F → N by F(x) = |{w ∈ [n]r : π(w) = x}|. Let

R = {s ∈ S :
∑
x∈F∩(As−1) F(x) ≥ η

∑
x∈F F(x)}. By Lemma 3.14, µ(χR) > 0

so in particular, R 6= ∅. Pick s ∈ R.
Then

∑
x∈F∩(As−1) F(x) ≥ η

∑
x∈F F(x). Note that

∑
x∈F F(x) = nr so

ηnr ≤
∑
x∈F∩(As−1) F(x)

= |{w ∈ [n]r : π(w) ∈ As−1}| = |{w ∈ [n]r : π(w)s ∈ A}| .

Pick a variable word w = w1w2 · · ·wr over the alphabet [n] which begins
with a constant and has no successive occurrences of the variable such that
{w(u) : u ∈ [n]} ⊆ {w ∈ [n]r : π(w)s ∈ A}. Let v be the variable and let
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m = {i ∈ {1, 2, . . . , r} : wi = v}. Let t(1) < t(2) < . . . < t(m) ≤ r enumerate
{i ∈ {1, 2, . . . , r} : wi = v}.

Let a(1) =
∏t(1)−1
i=1 fwi(i). For j ∈ {2, 3, . . . ,m}, if any, let

a(j) =
∏t(j)−1
i=t(j−1)+1 fwi(i) .

If t(m) = r, let a(m+ 1) = s. If t(m) < r, let a(m+ 1) =
(∏r

i=t(m)+1 fwi(i)
)
s.

Then for u ∈ [n],

π
(
w(u)

)
s = a(1)fu

(
t(1)

)
a(2) · · · a(m)fu

(
t(m)

)
a(m+ 1) ∈ A .

4 Cartesian products

In [5, Theorem 2.11] it was shown that if S and T are arbitrary semigroups, A
is a J-set in S and B is a J-set in T , then A×B is a J-set in S × T . We would
like to know whether the corresponding result holds for CR-sets.

Theorem 4.1. Let (S, ·) be an infinite semigroup, let k ∈ N, and let A be a
2k-CR-set in S. Then A × A is a k-CR-set in S × S. In particular, if A is a
CR-set in S, then A×A is a CR-set in S × S.

Proof. Let r ∈ N be as guaranteed for the fact that A is a 2k-CR-set in S. We
will show that r is as required to show that A × A is a k-CR-set in S × S Let

F ∈ Pf (N(S × S)) with |F | ≤ k. Let G = {π1 ◦ f : f ∈ F} ∪ {π2 ◦ f : f ∈ F}.
Pick m ∈ N, ~a ∈ Sm+1 and t(1) < t(2) < . . . < t(m) ≤ r such that for all

g ∈ G, a(1)g
(
t(1)

)
a(2) · · · a(m)g

(
t(m)

)
a(m+ 1) ∈ A. Define ~b ∈ (S×S)m+1 by

b(i) =
(
a(i), a(i)

)
. Then for f ∈ F ,

b(1)f
(
t(1)

)
b(2) · · · b(m)f

(
t(m)

)
b(m+ 1) ∈ A×A .

Question 4.2. Do there exist infinite semigroups S and T , a CR-set A ⊆ S,
and a CR-set B ⊆ T such that A×B is not a CR-set in S × T?

For countable commutative semigroups we shall show in Theorem 4.4 that
the answer for CR-sets in different semigroups is the same as the answer for
CR-sets in (N, ·).

Lemma 4.3. Let C and D be subsets of N and let k ∈ N. Then C × D is
a k-CR-set in (N × N, ·) if and only if (C \ {1}) × (D \ {1}) is a k-CR-set in(
(N \ {1})× (N \ {1}, ·)

)
.

Proof. The proof is very similar to the proof of Lemma 3.7(2). Given f ∈
N(N × N) define gf ∈ N((N \ {1}) × (N \ {1})

)
by gf (n) = (2, 2) · f(n). In
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the necessity proof, given F ∈ Pf (N
(
(N \ {1}) × (N \ {1})

)
) with |F | ≤ k, let

G = {gf : f ∈ F} and use the fact that G ∈ Pf (N(N× N)).

In the sufficiency proof given F ∈ Pf (N(N×N)) with |F | ≤ k, let G = {gf :

f ∈ F} and use the fact that G ∈ Pf (N
(
(N \ {1})× (N \ {1})

)
).

Theorem 4.4. If there exist countable commutative semigroups S and T , a
CR-set A ⊆ S, and a CR-set B ⊆ T such that A×B is not a CR-set in S × T ,
then there are CR-sets C and D in (N, ·) such that C × D is not a CR-set in
(N× N, ·).

Proof. Assume such S, T , A, and B exist. Enumerate S as 〈xn〉∞n=1, enumerate
T as 〈yn〉∞n=1, and enumerate the primes as 〈pn〉∞n=1. Define f : {pn : n ∈ N} →
S and g : {pn : n ∈ N} → T by f(pn) = xn and g(pn) = yn. Then f extends
to a homomorphism ϕ : (N \ {1}) → S and g extends to a homomorphism
ψ : (N \ {1})→ T . Let C = ϕ−1[A] and D = ψ−1[B]. By Lemma 3.6, C and D
are CR-sets in (N \ {1}, ·) so by Lemma 3.7(2), C and D are CR-sets in (N, ·).

Define τ : (N \ {1})× (N \ {1})→ S × T by τ(a, b) =
(
ϕ(a), ψ(b)

)
. Then by

Lemma 3.6, C ×D = τ−1[A× B] is not a CR-set in (N \ {1})× (N \ {1}). By
Lemma 4.3, C ×D is not a CR-set in N× N.
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