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Fglner, Banach, and translation density are equal
and other new results about density in left
amenable semigroups

Daniel Glasscock * Neil Hindman * Dona Strauss *

Abstract

In any semigroup S satisfying the Strong Fginer Condition, there are
three natural notions of density for a subset A of S: Fglner density d(A),
Banach density d*(A), and translation density d:(A). If S is commutative
or left cancellative, it is known that these three notions coincide. We shall
show that these notions coincide for every semigroup S which satisfies the
Strong Fglner Condition. We solve a problem that has been open for
decades, showing that, if S is left amenable, the set of ultrafilters every
member of which has positive Banach density, is a two sided ideal of
BS. We investigate the density properties of subsets of S in the case in
which the minimal left ideals of 8S are singletons. This occurs in all
semilattices and all semigroups which have a right zero. We show that
this is equivalent to the statement that S satisfies SF'C and that, for every
subset A of S, d(A) € {0,1}. We also examine the relation between the
density properties of two semigroups when one is a quotient of the other.
If S satisfies SF'C, we show that an arbitrary Fglner net in S determines
the density of all of the subsets of S. And we prove that, if S and T are
left amenable semigroups, then d*(A x B) = d*(A)d*(B) for every subset
A of S and every subset B of T.
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1 Three notions of density in semigroups

We begin by introducing some of the notions that we are concerned with here.
Given a set X, we let P;(X) be the set of finite nonempty subsets of X. If
(S,-) is a semigroup and x € S, we denote left and right multiplication by x
by Ay : § = S and p, : S — S, respectively. For A C S, we define 27'A =
MNUAl={ye S:aye A} and Azt = p A ={y e S :yz € A}.

In the following subsections, we treat three notions of density in semigroups:
Banach density d*, Fglner density d, and translation density d;.

1.1 Banach density

Let (S, -) be a semigroup. Let I (S) be the set of bounded real valued functions
on S with the supremum norm, denoted by || |lco- Let I5o(S)* be the set of
continuous real valued linear functionals on [, (S) with the dual norm ||u|| =
sup{p(f) : ||flloc < 1}. A mean on S is an element of I, (S)* such that ||u|| =1
and p > 0, that is, whenever g € I (5) and for all s € S, g(s) > 0, one has that
w(g) > 0. A left invariant mean on S is a mean y such that for all s € S and
all g € loo(5), plgoAs) = p(g). The semigroup S is defined to be left amenable
if and only if there exists a left invariant mean on S.

We denote by M N (S) and LIM (S) the set of means and left invariant means
on S, respectively. If p is a mean on S and A C S, it is useful in discussing
density to use p(A) to denote u(X4), where X 4 is the characteristic function of
A, because density is a property of sets.

The weak* topology of 1, (S)* is defined by stating that a net (ta)aecp
converges to a limit p in this space if and only if the net (i (f))acp converges
to u(f) in R for every f € lo(S). The weak* topology is the restriction to
loo(S)* of the product topology on X, (s)R. By the Alaoglu Theorem [6,
Theorem B25], the closed unit ball of I, (5)* is compact in the weak* topology.

The following notion of density is defined in any left amenable semigroup.
Following [2], we call it Banach density.

Definition 1.1. Let (S,) be a left amenable semigroup, and let A C S. The
Banach density of A is defined by d*(A) = sup{A(Xa) : A\ is a left invariant
mean on S}.

In the remainder of this subsection, we collect some preliminary results that
will be key to relating Banach density to other notions of density later on.

Lemma 1.2. Let (S,-) be a left amenable semigroup, let X be a left invariant
mean on S, and let R be a right ideal of S. Then A(Xgr) = 1.

Proof. Pick a € R. Then Xgo A, = Xg 80 A(Xg) = A(XgoX,) = A(Xg)=1. O

Lemma 1.3. Let (S,-) be a semigroup, and let u € loo(S)*. If u > 0, then
w€ MN(S) if and only if p(S) = 1.

Proof. Since Xg is the maximum element of the unit ball of I, (S), for any u > 0
in 1o (S)*, ||p]| = 1(S). Thus ||p]| =1 if and only if u(S) = 1. O



In the following lemmas, we make use of the linear subspace E of [, (S)
generated by the functions of the form X 4, where A denotes a subset of S. Note
that this is precisely the subset of [, (S) consisting of those functions with finite
range.

Lemma 1.4. Let (S,-) be a semigroup, and let E denote the linear subspace of
loo(S) generated by the functions of the form X4, where A denotes a subset of
S. Then E is uniformly dense in lo(S).

Proof. This is easy to prove directly by an elementary argument. It also follows
from the Stone-Weierstrass Theorem, because {f : f € E} is a subalgebra of
C(BS) which separates points and contains the constant function Xgg. (Here

f: 8S — R is the continuous extension of f.) O

Lemma 1.5. Let (S,-) be a semigroup, and let i : P(S) — R be a non-negative,
finitely additive set function such that u(S) = 1. Then p extends uniquely to a
mean on S.

Proof. Denote by E the subset of I, (S) consisting of those functions with finite
range. By Lemma 1.4, the set F is uniformly dense in I (.5).
We define a function v : £ — R as follows: for f € F,

v(f)= Y au(fM )

zeRange(f)

Note that v extends u in the sense that for all A C S, v(X4) = u(A). By the
finite additivity of u, it is easy to see that for all m € N, all ¢1,...,¢, € R, and
all pairwise disjoint Ay,..., 4, C S, v (> ciXa,) = Yy cip(A;). Now we
note that

() it f € E, a> 0, and Range(f) C [—a,a], then |v(f)| < a.

To see this, let such f and a be given. Note that since { f~![{z}] : € Range(f)}
is a set of pairwise disjoint sets and pu(S) = 1, ZzeRange(f ( [{x}]) < 1
Then ‘V(f)| < ZxERango(f) |;v|u(f_l[{x}]) < aZmGRangc(j)'u( [{CL‘}]) <a
as required.

We claim that for all f,g € Fandc € R, v(cf) = cv(f) and v(f+g) = v(f)+
v(g). Indeed, the first is immediate. To see the second, suppose Range(f)
{c1,...,¢cn} and Range(g) = {di,...,dn}. Let 4;; = {s € S| f(s) =
ci and g(s) = d;}. Note that f =370, >0 eiXa, ;, 9= 2y > iey diXa, ,,
and that the A; ;’s are pairwise disjoint. It follows that

)

m

Z Cl+d ZZCZM J)"'szjM(A J)

i=1j=1 i=1 j=1 i=1 j=1

The left hand side is v(f + ¢) and the right hand side is v(f) + v(g), whence
v(f+g)=v(f)+v(g)

We claim that v : E — R is uniformly continuous. Indeed, suppose f,g €
E are such that ||f — g|lc < €. By the definition of || - ||s, the range of



f — g is contained in the interval [—e, €]. Since u(S) = 1, we see from (*) that
w(f) —v(g)l =v(f -9l <e

Because v is uniformly continuous and E is dense, the function v extends
uniquely to a uniformly continuous function v : I (S) — R. Clearly v(Xg) =1
and v > 0. For ¢ € R, the functions f +— v(cf) and f — cv(f) are continuous
and agree on E, hence are equal. Similarly, the functions (f, g) — v(f + ¢g) and
(f,9) — v(f)+v(g) are continuous and agree on F, hence are equal. Therefore,
v is linear, and hence is a mean on S.

It is easy to see that any mean extending p must be equal to v when restricted
to the set E. It follows by the work above, then, that v is the unique mean on
S extending p. O

We remind the reader that, if s € S and A C S, s71A denotes {t € S : st €
A}.

Lemma 1.6. Let (S, ) be a semigroup, and let u € MN(S). Then p € LIM(S)
if and only if u(s~+A) = u(A) for every s € S and every A C S.

Proof. Observe that X,-14 = X4 0 A, for every s € S and every A C S. So, if
pu€ LIM(S), u(s™*A) = u(A) for every s € S and every A C S.

To prove the converse, assume that p is a mean on .S with the property that
p(s7LA) = p(A) for every s € S and every A C S.

For s € S, define 75 : lo(S)* = loo(S)* by, for f € I(S), 7s(n)(f) =
n(f o As). Note that 7, is a linear map. We claim that 75 is continuous for
the norm topology on I (S)*. By [6, Theorem B.10], it suffices to show that
Ts is bounded. So let n € Io(S5)*. We claim that ||75(n)|| < ||n||, for which it
suffices to let f € [ (S) and note that || foAs||ec < ||f]|oo, Whereby |7s(n)(f)] =
n(f o As)l < [n(f)l-

Let E denote the linear subspace of I (S) generated by the functions X4,
where A denotes a subset of S, which is uniformly dense in [ (S) by Lemma
1.4. Given s € S and A C S, we have noted that X,-14 = X4 o A4, so that
Ts(1)(Xa) = p(Xa0Xs) = p(Xs-14) = p(Xa). This implies that 7(u)(f) = p(f)
for every f € E. Since F is dense in [, (S) and 74 is continuous, this implies
that p(f o As) = u(f) for every f € 1o(S), so that u € LIM(S). O

1.2 Fglner density

The following conditions provide a way to understand left amenability in terms
of sets and their images under left multiplication.

Definition 1.7. Let (5,-) be a semigroup.

(a) The semigroup S satisfies the Folner Condition (FC) if and only if
(VH € Ps(9)) (Ve > 0) (3K € Ps(S)) (Vs € H)(|sK \ K| < €+ |K]).

(b) The semigroup S satisfies the Strong Folner Condition (SFC) if and only
if (VH € Ps(S))(Ve > 0)(3K € Ps(S))(Vs € H)(|K \ sK| < e |K]).

The Strong Fglner Condition leads to a natural notion of density.



Definition 1.8. Let (S,-) be a semigroup which satisfies SFC, and let A C S.
The Folner density of A is defined by

d(A) = sup{a € [0,1] : (VH € Ps(S))(Ve > 0)(IK € Py(5))

(Vs e H)(|K \ sK| <e-|K|) and [ANK| > a- |K|)}.

The reader is referred to [16, Section 4.22] for a readable discussion of the
relationship among FC, SFC, and left amenability and relevant references. In
particular, any left amenable semigroup satisfies FC and any semigroup satis-
fying SFC is left amenable. By [1, Theorem 4], any commutative semigroup
satisfies SFC and by (the left-right switch of) [15, Corollary 3.6], any left amen-
ble and left cancellative semigroup satisfies SFC.

Definition 1.9. Let (S,-) be a semigroup. A Fglner net in Py(S) is a net
|Fo \ sFy|

=0.
|Fal

(Fa)aep such that for each s € S, lim
aeD

Of course, a Fglner sequence is a Fglner net in which the relevant directed
set is the set N of positive integers, with its usual order. It is immediate that if
there exists a Fglner net in Py (S), then S satisfies SFC. It is a consequence of
Theorem 1.13 below that the converse holds.

Definition 1.10. Let (5,-) be a semigroup.

(1) For F € Py(S), pr € l(S)* is defined by, for g € 1(S), pr(g) =
ERS)

(2) LIMy(S) = {v : there exists a Fglner net (F,)aecp in Ps(S) such that v
is a cluster point of the net (ur )acp in the weak™* topology of 1o (5)*}.

As the notation suggests, elements of LIMy(S) are, in fact, left invariant
means. This is recorded in the following lemma.

Lemma 1.11. Let (S,-) satisfy SFC. Then LIMy(S) C LIM(S).
Proof. This is shown in [12, Lemma 2.2]. O

Theorem 1.12. Let (S,-) be a semigroup satisfying SFC. Then LIM(S) is
convez, and LIM(S) and LIMy(S) are both compact in the weak* topology of

loo(S)*.

Proof. Tt is easy to see that LIM(S) is convex and weak® compact. We shall
show that LIMy(S) is weak* compact.
For every H € P;(S) and every € > 0, let

Fre={F €Ps(S): (Vs H)(|F\ sF| <e-|F|)},
and let pugy . = {pr: F € Fu}. We shall show that

LIMy(S) = N{clun.c : H € P4(S) and e > 0} .



This will suffice since each pp is a mean on S. First, let v € LIMy(S) and
pick a Fglner net (F,)qep in P¢(S) such that v is a cluster point of (ur, )acn
in I(S)*. Let H € P;(S) and ¢ > 0. To see that v € clug,, let U be a
neighborhood of v in I (S)*. Pick 7 € D such that for all s € H and all
a>7in D, |F, \ sF,| < €-|F,| and pick & > 7 such that up, € U. Then
pr, €EUN U .

Now let v € ({clpum, : H € Ps(S) and € > 0}. Let U be the set of open
neighborhoods of v in 1 (S)*. Let D = U x Py(S) x (0,1) and direct D by
(U H,¢) < (V,K,0) providedVCU,H C K,and § <e. Fora= (U,H,¢) € D,
pick Fy, € Fp, such that up, € U N pge. Then (Fi)aep is a Folner net in
P¢(S) and (ur,)acp converges to v. O
Theorem 1.13. Let (S,-) be a semigroup satisfying SFC, let A C S, and let
0 = d(A). There is a Folner net (Fy)acp such that the net <F|'11?|A>
converges to 9. oep

If v is any cluster point of the net (i, )acn 1 X rer_(s)[=I|flloos [|f]]oo]s
then v € LIMy(S) and v(X4) = 0. In particular d(A) < d*(A).

Proof. Since d(A) =4, it is a routine exercise to show that
(VH € P#(S)) (Ve > 0) (3K € Ps(S))((Vs € H)(|K \ sK| < e-|K]|) and
(6—e) - |K|<|[ANK|< (6 +¢€)-|K]).
Let D =P¢(S) x N, and direct D by (H,n) < (K, m) if and only if H C K
and n < m. For a = (H,n) € D, pick F, € P¢(S) such that
(Vs € H)(|[Fa \ sFu| < 2 |Foland (60— 1) |[Fo| < [FaNA| < (64 1) |F.|
Let v be a cluster point of the net (up, Yaep. Since (ur, (Xa))aecp converges
to d, we have that v(X4) = 4. O

Theorem 1.14. Let (S,-) be a semigroup satisfying SFC, and let A C S. Then
d(A) = max{v(Xa) : v € LIMy(S)}.

Proof. By Theorem 1.13, it suffices to show that if v € LIM(S), then v(X4) <
d(A). So let v € LIMy(S) and suppose that ¥(X4) = § > v = d(A). Pick a
Folner net (F,)qep in Py(S) such that v is a cluster point of the net (g, )oen
i X ger (s)[= 1 flloos [1f1]oc]-

Let f = § — . We shall show that d(4) > § — g, a contradiction. So let
H € P¢(S) and € > 0 be given. Since (Fy)qep is a Folner net, pick a € D such

Fy \ sF
that for every b € D with b > a and every s € H, |b|\FSb < e Let g=Xyu
b
and let U = 7, '[(6 — g, o+ g)] Then U is a neighborhood of v, so pick b € D
ANF
such that b > a and pp, € U. Then | A 0 =pp,(g) >0 — g O
b

Question 1.15. Let (S,-) be a semigroup satisfying SFC. Is LIM(S) the weak*
closed convex hull of LIMy(S)?

We know that the answer is affirmative if S is left cancellative. This follows
from the Krein-Milman Theorem and [7, Corollary 2.13].



1.3 Translation density

We will consider a third notion of density, denoted by d;, which is defined in any
semigroup. (The ¢ stands for translate which seems appropriate if the operation
is written additively (so As™! = {z € S : s € A} in the definition becomes
A—s={x e S:x+se A}).) This notion of density was defined first in [2,
Theorem 3.2] but appeared and was considered in relation to the upper Banach
density in various other places: in [3, Lemma 9.6] for (R, +), in [5, Corollary
9.2] for (Z,+), and in a pre-publication version of [13] (as Theorem G) for
cancellative semigroups satisfying SFC.

Definition 1.16. Let (S,-) be a semigroup and let A € S. Then di(A) =
sup{a € [0,1] : (VF € P;(S))(Fs € S)([FNAs™!| > a - |F|)}.

The proof of the next lemma is based on the proof of [2, Theorem 3.2]. This
lemma plays an important role in our paper.

Lemma 1.17. Let (S,-) be a left amenable semigroup, let A C S, let u be a
left invariant mean on S such that p(Xa) > 0. Assume that F' € P(S) and
0<n <8< uXa) andlet R ={s €S :|FNAs ! >n-|F|}. Then

5—
w(Xg) > ﬁ In particular, R # ().

Proof. Note that for x € S, Xz-14 = Xa 0 Az 50 p(Xg-14) = p(Xa 0 Ag) =

-1
w(X4). Define g : S — [0,1] by g(t) = W?tl Then for t € S, g(t) =

ﬁ Yower Xa1(x) = ‘—Iﬁ' Y ower Xo—14(t) so g = ﬁ Y wer Xo—1a. Thus u(g) =
177 wer HXa-14) = [y Lger #(Xa) = 1(Xa).

Since p is additive, u(Xa) = p(g) < u(9Xr) + u(9Xs\r). Since gXrp < Xg,
w(gXr) < u(Xg). For t € S\ R, |[FN At < n-|F| so g(t) < n. Also,
n(Xs\r) = 1 = p(Xg) so p(Xa) < p(gXr) + (gXs\r) < w(XR) + nu(Xs\r) =
#(Xgr) +n(1 — p(Xg)). Therefore u(Xa) —n < p(Xgr) - (1 —n) so p(Xg) >
pXa) = 6—n

L=n —1=n

O

Corollary 1.18. Let (S,-) be a left amenable semigroup. For every subset A of
S, dy(A) > d(A).

Proof. Suppose di(A) < d*(A), pick n such that d;(4) < n < d*(A), and pick
p € LIM(S) such that § = u(Xa) > n. Since di(A) < n pick F' € P¢(S) such
that for all s € S, |[F N As~!| < n-|F|. But then the set R in Lemma 1.17 is
empty, a contradiction. O

Combining the conclusions of Theorem 1.13 and Corollary 1.18, we have
shown that in any semigroup (5, -) satisfying SFC, for all A C S,

d(A) < d*(A) < di(A).

Bergelson and Glasscock [2, Theorem 3.5] showed that these three quantities
are equal if .S satisfies SFC and is either left cancellative or commutative. We



shall show in Theorem 3.15 in Section 3 that the same conclusion holds for any
semigroup satisfying SFC.

It is easy to see that in any left amenable semigroup, d* is both left invariant
and subadditive. Therefore, as a consequence of Theorem 3.15, if S satisfies
SFC, then both d and d; are left invariant and subadditive. While d; is defined
on the subsets of every semigroup, there are semigroups in which d; is neither
subadditive nor left invariant. For example, let .S be the free semigroup on two
generators a and b, let A be the set of elements of S whose first letter is a, and
let B be the set of elements of S whose first letter is b. Then d;(A) = di(B) = 0,
because {a} N Bs~! = () for every s € S. However, d;(AUB) = 1. Furthermore,
di(a=1A) =1, because a 1A = S.

Question 1.19. Let (S,) be a semigroup.
(1) If S is left amenable and A C S, must di(A) = d*(A)?
(2) Is dy(z=1A) > d(A) for every A C S and every z € S?

If S is any semigroup, A C S, and x is a left cancelable element of S, then
it is easy to show that dy(z~1A) > d;(A). We do not know of any example for
which dt($71A) < df(A)

2 The ideal of ultrafilters whose members have
positive density

Given a discrete semigroup (S,-), the Stone-Cech compactification, 3S of S,
is the set of ultrafilters on S. We identify a point x € S with the principal
ultrafilter {A C S : 2 € A}. The topology on 8S has a basis consisting of the
open and closed subsets {A : A C S}, where A = {p € S : A € p}. The
notation is justified by the fact that A = clgs(A).

If X is a compact Hausdorff space and f : S — X, we denote by f the
continuous extension of f taking 8S to X. The operation on S extends to 8.9,
making (35, ) a right topological semigroup with S contained in the topological
center of 3S. That is, for each p € 55, the function p, : S — S defined by
pp(q) = gp is continuous and for each z € S, the function A\, : 35S — (S defined
by A\:(q) = zq is continuous. As does any compact Hausdorff right topological
semigroup, 3S has a smallest two sided ideal, denoted K(8S), which is the
union of all minimal left ideals and is also the union of all minimal right ideals.
Any two minimal left ideals are isomorphic, any two minimal right ideals are
isomorphic, and the intersection of any minimal right ideal and any minimal
left ideal is a group. For basic information about the algebraic structure of 85
see [8, Part I].

Definition 2.1. Let (S,-) be a semigroup satisfying SFC. Then
A(S)={pepS:(VAep)(d(A) >0)}.

Definition 2.2. Let (S, ) be a left amenable semigroup. Then
A%(S) = {p € 65 : (VA € p)(d*(4) > 0)}.



For any semigroup (5,-) that satisfies SFC, A(S) is a left ideal of 8S. Tt
has been an open question for decades whether A(S) is a right ideal of 8S. We
will show at the conclusion of this section that for any left amenable semigroup
S, A*(S) is an ideal of 8S. When we have shown that d = d* for semigroups
satisfying SFC, the following lemma will be an immediate consequence. But
we need it earlier, and it follows quickly from a recent result. For the purposes
of this paper we will take as the definition of piecewise syndetic the fact from
[8, Corollary 4.41] that a subset A of S is piecewise syndetic if and only if
clANK(BS) #0.

Lemma 2.3. If (S,+) is a semigroup satisfying SFC, ctK(BS) C A(S).

Proof. Let p € clK(BS) and let A € p. Then A is piecewise syndetic, so by [12,
Corollary 3.5(2)], d(A4) > 0. O

It is the first point in Lemma 2.5 that justifies the notation “Ag¢~!” in the
following definition.

Definition 2.4. Let (S,-) be a semigroup, A C S, and ¢ € 3S. We define
Ag~t = {s €S:stAc q}.
Lemma 2.5. Let (S,-) be a semigroup. For all A,BC S,t€ S, andp,q € 35S,
1. A € pq if and only if Ag~! € p.
2. t71(Aq™Y) = (t7tA)q L.
3. (AUB)qg ' =A¢tUBg L.
4. (ANB)q~t = Ag=t N Bq~'. Therefore, if the sets A and B are disjoint,
then the sets Aqg~' and Bq~! are disjoint.

Proof. These are all routine computations using the fact from [8, Theorem 4.12]
that for any p and ¢ € 55 and any A C S, A € pq if and only if
{seS:stAeq}ep. O

Lemma 2.6. Let (S,-) be a semigroup, ¢ € S, and u € MN(S). Define
v : P(S) — R by putting v(A) = u(Aq=?t) for every A C S. Then the set
function v extends uniquely to a mean on S. If u is left invariant, then v
extends uniquely to a left invariant mean on S.

Proof. The set function v is real valued and non-negative. It follows from
Lemma 2.5 and the finite additivity of p that v is finitely additive. More-
over, since Sq¢~! = S, we have that v(S) = 1. It follows from Lemma 1.5 that
v extends uniquely to a mean on S. Abusing notation slightly, we denote this
mean by v.

We wish to show that if u is left invariant, then v is left invariant. Let A C .S
and s € S. We see by Lemma 2.5 that

v(sTrA) = p((sT A)g7Y) = p(sT (Agh) = u(Ag™h) = v(A).
It follows by Lemma 1.6 that v is left invariant. U



We present now one of the major results of this paper, namely that whenever
S is a left amenable semigroup, A*(S) is an ideal of 3S. Part of that conclusion
is very easy.

Lemma 2.7. Let (S,-) be a left amenable semigroup. Then A*(S) is a left ideal
of BS.

Proof. Let p € A*(S),let ¢ € 3S, and let A € gp. Then {s€ S:s1Aep}eq
so pick s € S such that s7'A € p. Then d*(s~1A) > 0 so pick n € LIM(S) such
that n(Xs_lA) > 0. Since X4 0\s = Xg—14, W(XA) = W(Xs—lA) SO d*(A) >0. O

Theorem 2.8. Let (S,-) be a left amenable semigroup. Then A*(S) is a two
sided ideal of BS.

Proof. Let p € A*(S),let ¢ € S, and let A € pq. We shall show that d*(A) > 0.
This will establish that pg € A*(S) and hence that A*(S) is a right ideal of
B(S). It will follow then from Lemma 2.7 that A*(S) is a two-sided ideal of
5(5).

Let P = Ag~'. Then P € p so d*(P) > 0, and we can choose pu € LIM(S)
for which p(P) > 0.

We define v on P(S) by v(B) = u(Bq™!) for every B C S. By Lemma
2.6, v extends uniquely to a member of LIM(S). Now P = Aq~! so v(A) =
w(Ag™t) = u(P) > 0. Therefore, d*(A) > 0. O

We will need to use the following notion of size for a semigroup.

Definition 2.9. Let (S,-) be a semigroup. A set A C S is thick if and only if
for each F' € Py(S), there is some = € S such that Fa C A.

The following theorem shows that thickness is characterized by having den-
sity 1 with respect to each of the three notions of density considered in this

paper.
Theorem 2.10. Let (S,-) be a semigroup, and let A be a subset of S.
(1) di(A) =1 if and only if A is thick.
(2) If S is left amenable, d*(A) =1 if and only if A is thick.
(3) If A satisfies SFC, d(A) =1 if and only if A is thick.

Proof. (1) Assume that A is thick. Then, for every finite subset F' of S, there
exists s € S such that F's C A so that |[F N As™!| = |F|.

If A is not thick, there is a finite subset F' of S such that, for every s € S,
Fs Z A. So, for every s € F, [FN As™!| < |F| — 1 and d;(A) < |ITJ|;‘1 < 1.

(2) If d*(A) = 1, then by Corollary 1.18, d;(A) =1, so (1) applies.

Now assume that A is thick. The family F = {s7'A : s € S} has the
finite intersection property and hence is contained in some ultrafilter ¢ € 55.
By the choice of ¢, we have that Aq~' = S. Pick p € LIM(S), and define
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v:P(S) = R by v(B) = u(Bg?) for all B C S. By Lemma 2.6, v extends
uniquely to a member of LIM(S) and v(A) = u(S) =1, so d*(4) = 1.

(3) This statement was proved in [12, Theorems 2.4 and 3.4]. It is also a
consequence of the fact that d(A) = d*(A) = d¢(A) for every subset A of S,
which we shall prove in Theorem 3.15. O

3 Density and quotients

In this section, we investigate quotients of left amenable semigroups, paying
special attention to the left cancellative quotient produced by Lemma 3.8. And
we establish that d = d* in any semigroup satisfying SFC.

Definition 3.1. Let (5,-) be a left amenable semigroup, and let h be a homo-
morphism from S onto a semigroup (T, ). For v € I (5)*, define v, € l(T)*
by v, (g) = v(g o h) for each g € I (T).

Lemma 3.2. Let (S,-) be a left amenable semigroup, let h be a homomorphism
from S onto a semigroup (T\,-), and let v € LIM(S). Then vy, € LIM(T).

Proof. Given g € lo(T), ||g © hl|loo = ||g||oo, S0 V1, is @ mean. To see that vy, is
left invariant, let g € loo(T") and let z € T'. Pick s € S such that h(s) = 2. Then
goAzoh = goholg so vy (goX;) = v(goA,oh) = v(gohods) = v(goh) = vi(g). O

Theorem 3.3. Let (S, ) be a left amenable semigroup, let h be a homomorphism
from S onto a semigroup (T,-), and let pw € LIM(T). There exists v € LIM(S)
such that vy, = .

Proof. Let E = {foh: f € l(T)}. Then E is a linear subspace of [(S5).
Define n : E — R by n(f o h) = u(f), noting that 7 is well defined. Note also
that if g € F and g(s) > 0 for all s € S, then 7n(g) > 0. Since Xg = X7 o h we
have that n(Xs) = u(Xr) =1 so ||n|| = 1.

We need to produce v € LIM(S) which agrees with 1 on E.

We claim that, for every g € E and every s € S, go A € E and n(go \s) =
n(g). To see this, let t = h(s) and let g = f o h, where f € loo(T'). Observe that
(fohols)(x) = f(h(sz)) = (foroh)(x) for every x € S. So goAs = foloh.
Then go Ay € E and n(g o As) = u(f o Ae) = u(f) =n(g).

By [6, Theorem B.14] (a version of the Hahn-Banach Theorem), there is an
extension 77 of 1 to 1, (S) with ||7]| = 1.

Let X = {p € lo(9)" : ||pll = 1 and (Vg € E)(p(g9) =n(g))}. Then 7 € X
so X # 0. We claim that if p € X, p > 0 so that the members of X are all
means. To see this, suppose that p(g) < 0 for some g > 0 in I (S). We may
suppose that ||g[| < 1. Then [[X5 —g|| <1 and p(Xs —g) > 1, contradicting the
assumption that ||p|| = 1.

For s € S and p € X, we define s x p in X by s* p(g) = p(g o As) for each
g € lo(S). We want to apply Day’s Fixed Point Theorem [16, Theorem 1.14].
The conclusion of that theorem is that there is some v € X such that for each
s €8, sxv =v. Then for each g € [o(S) and each s € S, v(go As) = v(g),
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so that v is a left invariant mean on S. Since v € X, for each f € [ (T),

vh(f) =v(foh) =n(foh)=u(f), as required.
To apply Day’s Fixed Point Theorem, we need to show

1) forseSandpe X, sxpe X;

2) for s,t € Sand p € X, sx* (t*p) = (st) * p;

4

(1)
(2)
(3) X is compact in X ger__ ()[=I[flo0, [[f]]oo];
(4) X is convex; and

()

5) for a € [0,1], p1 and po in X, and s € S, s* (ap1 + (1 — a)p2) =
a(s*p1) + (1 —a)(s * pa).

For (1), we need that ||s * p|| = 1 and for each g € E, (s* p)(g) = n(g).
Since ||s * p|| < ||p|| =1 and s * p(Xg) = p(Xs) = 1 we have that ||s * p|| = 1.
Given g € E, since go A\s € E, (s*xp)(g) = p(goAs) = n(goAs) = n(g), whereby
sxpe X.

For (2), let g € Ioo(S). Then sx* (t*p)(g) = (t*xp)(goAs) = p(goAso ) =
p(g e Ast) = (st)  p(g).

It is a routine exercise to establish (3). To verify (4), let n € N, let {¢;)?_; be
elements of [0, 1], such that " ; ¢; = 1, and let (p;)"_; be elements of X. Given
9 € B, (CiLicpi)lg) = (Ciiicipi(g)) = (i canlg)) = (i, cinlg) =
n(g). And, since the norm is additive on the set of means, || Y. ¢;pi|| =
> allpdll = 1.

Finally, the verification of (5) is a routine evaluation. O

Theorem 3.4. Let (S, ) be a left amenable semigroup, let h be a homomorphism
from S onto a semigroup (T,-), and let B C T. Then d*(B) = d*(h~'[B]).

Proof. Suppose first that we have some § such that d*(B) > § > d*(h~1[B]).
By Theorem 3.3, pick u € LIM(T) such that u(Xp) > ¢ and pick v € LIM(S)
such that Vyp = W. Then § < ,LL(XB) = V(XB o h) = V(Xh—l[B]) < d*(hil[B] , &

contradiction.
Now suppose we have some § such that d*(h~1[B]) > § > d*(B) and pick v €
LIM(S) such that v(X-1p)) > ¢. Then d*(B) > v(Xp) > 0, a contradiction.
O

Theorem 3.5. Let (S, ) be a left amenable semigroup, let h be a homomorphism
from S onto a semigroup (T,-), and let A C S. Then d*(h[A]) > d*(A).

Proof. Since A C h=*[h[A]], by Theorem 3.4, d*(A) < d*(h='[h[A]]) =
d* (h[A]).

Denote by h: BS — BT the continuous extension of h. Note that by [8,
Corollary 4.22], h is a homomorphism of 35 onto 5T

Theorem 3.6. Let (S,-) be a left amenable semigroup, and let h be a homo-
morphism from S onto a semigroup (T,-). Then h[A*(S)] = A*(T).
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Proof. To see that h[A*(S)] € A*(T), let ¢ € h[A*(S)] and pick p € A*(S)
such that h(p) = ¢. Suppose ¢ ¢ A*(T) and pick B € ¢ such that d*(B) = 0.
Then h=1[B] € p, and by Theorem 3.4, d*(h~1[B]) = 0, a contradiction.

To see that A*(T) C h[A*(S)], let ¢ € A*(T). Then, by Theorem 3.4, for
each B € ¢, d*(h™![B]) > 0. Let A= {h7}[B]: B € gq}andlet R = {AC
S : d*(A) > 0}. Then by [8, Theorem 3.11], there exists p € £S5 such that
ACpCR. SopeA*(S) and?z(p):q. O

It is a consequence of Lemma 1.2 that if (.9, -) is a left amenable semigroup,
then the intersection of finitely many right ideals of S is nonempty and, hence,
is a right ideal.

Lemma 3.7. Let (S,-) be a left amenable semigroup, let n € N, and let
a1,as,...,a, and by, by, ... b, be elements of S with the property that for all
i €41,2,...,n}, there exists x € S such that a;x = b;x. There is a right ideal
R of S such that a;u = bju for every u € R and every i € {1,2,...,n}.

Proof. Let R; = {u € S : a;u = b;u}. Then each R; is a right ideal of S. Since
(S,-) is left amenable, R = (), R; is a right ideal. O

Lemma 3.8. Let (S,-) be a semigroup satisfying SFC and define a relation
~ on S by, for a,b € S, a ~ b if and only if there exists x € S such that
ax = bx. Then ~ is an equivalence relation on S and the quotient T = S/~ s
a cancellative semigroup which satisfies SF'C.

Proof. This is [12, Lemma 3.2]. Its proof was based on the proofs of [4, Lemma
2 and Remark 3] and [14, Theorem 2.2]. O

Throughout the rest of this section we will assume that (5, -) is a semigroup
satisfying SFC, ~ is the equivalence relation of Lemma 3.8, (7)) is the can-

cellative quotient of S, h : S — T is the projection map, and h: BS — BT is
the continuous extension of h.

Lemma 3.9. Let p € A(S) and let z,y € BS. Ifﬁ(x) = E(y), then xp = yp.

Proof. Assume that E(m) = E(y) = ¢ and suppose that xp # yp. Pick A €
zp \ yp. Since p, is continuous, pick X € z and Y € y such that p,[X] C A
and p,[Y] € S\ A. Then q € h[X] = clh[X] and q € h[Y ] = clh[Y]. Since
BS is extremally disconnected, h[X] N A[Y] # 0, so pick a € X and b € Y such
that h(a) = h(b). By Lemma 4.4, ap = bp. This is a contradiction since ap € A
and bp € S\ A. O

Theorem 3.10. If there is an element of A(S) which is right cancelable in 35S,
then h : BS — BT is an isomorphism.

Proof. Pick p € A(S) such that p is right cancelable in 8S. Since h is a surjective
homomorphism, it sufices to show that h is injective. Let x,y € 8S and assume
that h(z) = h(y). Then by Lemma 3.9, 2p = yp so x = y. O
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Corollary 3.11. If there is an element of clK (5S) which is right cancelable in
BS, then h : BS — BT is an isomorphism.

Proof. By Lemma 2.3, c(K(5S) C A(S). O

Corollary 3.12. If there is an element of A(S) which is right cancelable in 35S,
then S is cancellative.

Proof. By Theorem 3.10, S and T are isomorphic, and by Lemma 3.8, T is
cancellative. O

If S is cancellative and countable, c/K(5S) does contain right cancelable el-
ements ([8, Corollary 8.26]). It follows from Corollary 3.12 that, for a countable
semigroup S which satisfies SFC, the existence of right cancelable elements of
BS in ¢/K(8S) is equivalent to S being cancellative.

Theorem 3.13. The minimal left ideals of BS and BT are isomorphic.

Proof. Let L be a minimal left ideal of S. By [8, Exercise 1.7.3], h[L] is a
minimal left ideal of BT. We will show that the restriction of h to L is an
isomorphism. So let a,b € L, and assume that h(a) = h(b). Pick an idempotent
pin L. By Lemma 3.9, ap = bp so, since p is a right identity for L by [8, Lemma
1.30], a = b. O

Theorem 3.14. Assume that T is finite. Then:
(1) T is a finite group.
(2) T is the unique minimal left ideal of 5T
(3) The minimal left ideals of S are isomorphic to T.
(4) BS has a unique minimal right ideal.
(5) T=K(BT) =A(T).

Proof. (1) By Lemma 3.8, T is cancellative. As a finite cancellative semigroup,
T is a group.

(2) Since T has a unique idempotent, it has only one minimal left ideal. If
e is the identity of T, then T = Te.

(3) This follows from (2) and Theorem 3.13.

(4) Let L be a minimal left ideal of 8S. By (3), L is isomorphic to T, so it has
a unique idempotent. If Ry and Ry were distinct (hence disjoint) minimal right
ideals of 8S, both Ry N L and Ry N L, being groups, would have idempotents.

(5) By (2), Lemma 2.3, and the fact that K(5T) is the union of the minimal
left ideals of ST, T = K(BT) CA(T)CpT =T. O

In this part of this section, we are assuming that S satisfies SFC. Since the
next result is probably the most important result of the paper, we recall in its
statement that SFC is the only assumption needed.
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Theorem 3.15. Let (S,-) be a semigroup which satisfies SFC. Then, for every
subset A of S, d(A) = d*(A) = d(A4).

Proof. By Theorem 1.13 and Corollary 1.18 we have that d(A4) < d*(A) < d,(A)
so it suffices to show that d;(A) < d(A). To see this we will show that if
n < d¢(A), then d(A) >n. So let n < d¢(A) be given.

To see that d(A) >, let H € Py(S) and € > 0 be given and let F = {K €
Ps(S): (Vs € H)(|K \ sK| < e-|K|)}. We shall show that there exists K € F
such that |[K N A| > n-|K].

Let g : T — S be a choice function for ~ and note that h(g(t)) =t for every
t € T. Observe that g is injective and h is injective on g[T]. We claim that for
each s € S, ps is injective on g[T]. To see this, let a,b € T and assume that
g(a)s = g(b)s. Then g(a) ~ g(b) so a = h(g(a)) = h(g(b)) =b.

Now h[H] € Ps(T) and by Lemma 3.8, T satisfies SFC, so pick F' € Py(T)
such that for all s € H, |F'\ h(s)F| < €-|F|. Now y € F N h(s)F if and only
if y € F and y = h(s)y’ for some y' € F. The equation y = h(s)y’ implies that
h(sg(y’)) = h(s)h(g(y’)) =h(s)y =y = h(g(y)) so, by Lemma 3.7, there is a
right ideal R of S such that g(y)u = sg(y')u for every u € R, every y,y’ € F,
and every s € H for which y = h(s)y’.

For each u € R, let G, = g[F]u and note that |G| = |g[F|u| = |g[F]| = | F],
because p,, is injective on g[F] and g is injective. We claim that for each u € R,
G, € F. To see this, let w € Rand let s € H. It suffices to show that G, \sG,, C
{9(y)u:y € F\ h(s)F}, for then |Gy \ sGu| < |F\Q(s)F| < e-|F| =€ |Gyl
So let x € Gy, \ sG,, and pick y € F such that z = g(y)u. If we had y € h(s)F,
there would be some 3y’ € F such that y = h(s)y’ so z = g(y)u = sg(y')u and
thus = € sG,,.

Choose u € R. Since d¢(A) > 7, we may pick € S such that |G,,N Az~ >
n-|Gul|. If z € G,NAz™1, then 2z € G,zNA. So (G,NAz" )2 C G,xNA. Now
pz is injective on G, because p, is injective on g[F]. So |G,zNA| > |G, ,NAz ™!
and therefore |Gy N A| > - |G| =1 |Gyux|. Since Gyz = Gy € F, we are
done. O

Corollary 3.16. If (S,-) is a semigroup which satisfies SFC, then A(S) is a
two sided ideal in BS.

Proof. Theorems 2.8 and 3.15. O

Corollary 3.17. h[A*(S)] = A(T) = A*(T) and for each B C T, d(B) =
d*(h*[B]).

Proof. By Theorem 3.15, A(S) = A*(S) and A(T) = A*(T). The conclusions
are then immediate consequences of Theorems 3.4 and 3.6. O
4 When minimal left ideals are singletons

Hindman and Strauss have dealt with versions of this subject before. In [9] they
had a section titled Semigroups with isolated points in minimal left ideals; in
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[10] they had a section titled Finitely many minimal right ideals; and in [11]
they had a section titled Finite minimal left ideals and showed that 58S has
finite minimal left ideals if and only if it has finitely many minimal right ideals.

In this paper, we arrive at this subject from a different direction and with a
particular interest in density, which the aforementioned works do not address.
As we noted earlier, Bergelson and Glasscock showed in [2, Theorem 3.5] that if
S satisfies SFC and is either left cancellative or commutative, then for each A C
S, d(A) = d*(A). Also, it is an old fact noted by Klawe in [14, Corollary 2.3] that
if S satisfies SFC and is right cancellative, then S is also left cancellative. At that
point we were actively considering the possibility of finding a counterexample to
the assertion that d and d* are always equal. So to find a semigroup for which
d and d* are not equal, we needed a semigroup which satisfies SFC and is not
commutative and not left or right cancellative. The following simple observation
provides such examples.

Lemma 4.1. Let (S,-) be a semigroup. If S has a right zero, then S satisfies
SFC.

Proof. Let z be a right zero in S. Let H € P;(S), and let € > 0. Let K = {z}.
Then for all s € H, sK = K so |[K \sK|=0<e¢-|K]|. O

If S is the semigroup of 2 x 2 matrices over the set w of nonnegative in-
tegers, then S satisfies SFC, is not commutative, and is neither right nor left
cancellative.

Lemma 4.2. Let (S,-) be a semigroup which satisfies SFC, let A C S, and
assume that for each v € LIMy(S), v(Xa) =1. Then A(S) C A.

Proof. Suppose we have some p € A(S)\ A. Then S\ A € psod(S\A)>0so
by Theorem 1.13 we may pick v € LIMy(S) such that v(Xg, 4) > 0. But since
v(Xa) = 1, one must have v(Xg\ 4) = 0, a contradiction. O

Lemma 4.3. Let (S,-) be a semigroup which satisfies SFC, let C' be a compact
subset of BS, and assume that there exists x € S such that ©S C C. Then
A(S) CC.

Proof. Pick x € S such that xS C C, and let A = zS. By Lemma 4.2, it suffices
to show that for each p € LIMy(S), u(X4) = 1. In fact, for each p € LIM(S),
1(X4) = 1. Since A is a right ideal of S, this follows immediately from Lemma
1.2 O

Lemma 4.4. Let (S,-) be a semigroup which satisfies SFC. Let a,b € S, and
assume that there exists x € S such that ax = bx. Then for all p € A(S5),

ap = bp.

Proof. Pick z € S such that ax = bx. Let C = {p € 8S : ap = bp}. Then C is
compact and 2S5 C C so by Lemma 4.3, A(S) C C. O

The following lemma does not need the assumption that S satisfies SFC.
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Lemma 4.5. Let (S,-) be a semigroup. Assume that the minimal left ideals of
BS are singletons and p € K(B8S). Then for every s € S, {t € S : st =t} € p.

Proof. Let s € S. Since {p} is a left ideal, sp = p so by [8, Theorem 3.35],
{teS:st=t}ep. O

Observe that examples of semigroups which satisfy statement (1) of Theorem
4.6 are abundant because this class of semigroups includes all semilattices and
all semigroups which have a right zero.

Theorem 4.6. For every semigroup (S,-), statements (1)-(6) are equivalent.
Each of statements (1)-(6) implies statements (7) and (8).

(1) For every a,b € S, there exists x € S such that ax = bx.

(2) For every H € Py(S), there exists x € S such that ax = bz for every
a,be H.

(3) The minimal left ideals of S are singletons.
(4) For every p € K(8S) and every q € 8S, qp = p.

(5) K(BS) is a right zero semigroup, that is, all elements of K(8S) are right
zeros of K(3S).

(6) The semigroup S satisfies SFC and for every subset A of S, d(A) € {0,1}.
(7) Every member of K(BS) is idempotent.
(8) The semigroup S satisfies SFC and K(8S) = A(S).

Proof. To show that (1) implies (2), assume that (1) holds. We shall show that
(2) holds by induction on |[H|. Assume that that n > 2 is an integer, and that
(2) holds for every H € Py(S) for which |H| < n. Choose H € Ps(S) with
|H| = n, and choose any a € H. There exists € S such that bx = cx for
every b,c € H \ {a}. Choose any b € H \ {a}, and then choose y € S such
that ay = by. There exists z € S such that xz = yz. So brz = cxz for every
c € H\ {a}, and ayz = byz. If w = xz = yz, then cw = dw for every ¢,d € H.

We now show that (2) implies (3). Assume that (2) holds. For each H €
Py (S), pick zg € S such that for all @ and b in H, axy = bry. The relation
C directs Py(S). Let p be a cluster point of the net (xx)pep,(s) in BS. Then
ap = bp for all @ and b in S, so |Sp| = 1 and 8Sp = ¢l(Sp) so |3Sp| = 1. Thus
BS has a minimal left ideal which is a singleton. Since all minimal left ideals
are isomorphic, all minimal left ideals are singletons.

That (3) implies (4) and that (4) implies (5) are both trivial.

To see that (5) implies (1), pick p € K(B8S). Let a,b € S. Then ap and
bp are in K(BS) so ap = a(pp) = (ap)p = p and bp = p, so by Lemma 4.5,
{teS:at=t} epand {t € S:bt =t} € p. Choose z in the intersection of
these two sets so that ax = bx.

We have shown thus far that statements (1)-(5) are equivalent.
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We now show that if (2) and (3) hold, so does (6). So assume that (2) and
(3) hold. Let H € P¢(S), and let € > 0. Pick & € S such that for all a and b
in HUHH, ax = bx. Pick a € H, and let K = {az}. Then for each s € H,
|K \ sK| =0 < e |K|. Therefore, S satisfies SFC.

Let AC S. If d*(A) =0, then d(A) = 0. If, on the other hand, d*(A) > 0,
we shall show that A is thick. It will then follow from [12, Theorem 3.4] that
d(A) =1 and that (6) holds. Assume that d*(A) > 0, and choose A € LIM(S)
for which A(4) > 0. Let F € P;(S) and p € K(85). By Lemma 4.5, for every
seS, {teS:st=1t}c€p SoR=\cp{teS:st=t} cp Now Risa
right ideal of S and so, by Lemma 1.2, A(R) = 1, and hence A(S\ R) = 0. Since
A(A) > 0, we have ANR # (. Pickt € ANR. Then Ft = {t} C A and so A is
thick.

Now we will show that (6) implies (3). Recall that a set A C S such that
ANK(BS) # 0 is piecewise syndetic. By [12, Corollary 3.5(2)], if A is piecewise
syndetic, then d(A) > 0, so if A is a piecewise syndetic subset of S, then
d(A) =1.

Let L be a minimal left ideal of 85 and pick an idempotent p € L. Then
BSp = L. We claim that 8Sp = {p} for which it suffices that Sp = {p}.
Suppose instead that there is some s € S such that sp # p. Choose disjoint
subsets P and Q of S such that P € p and Q € sp. Since s~ 'Q NP € p,
d(s~'Q N P) = 1. It follows from Theorem 1.14 that there exists v € LIM(S)
such that v(s7'Q N P) = 1. But this implies that v(Q) = v(s7'Q) = 1 and
v(P) = 1, which contradicts the assumption that P N Q = @. Therefore, (3)
holds.

We have shown thus far that statements (1)-(6) are equivalent. Now we will
show that each of (1)-(6) implies (7) and (8).

That (5) implies (7) is trivial. To see that (3) implies (8), assume that
(3) holds. Since (3) implies (6) we have S satisfies SFC so by Lemma 2.3,
K(BS) C A(S). To see that A(S) C K(8S), let p € A(S). We shall show that
for all @ € S, ap = p so that 8Sp = {p} and thus {p} is a minimal left ideal.
So let a € S, and pick ¢ € K(B8S). Then aq € 85S¢ = {q} so by Lemma 4.5,
we may pick s € S such that as = s. Then sS C {x € 85 : ax = x}. The set
{z € BS : ax = x} is compact, and so it contains A(S) by Lemma 4.3 so that
ap = p, as claimed. O

We conclude this section by characterizing sets with positive density.

Theorem 4.7. Let (S,-) be a semigroup for which the mimimal left ideals of
BS are singletons. Define a relation < on S by s <t if and only if st =t. The
relation < is a directed set order on S. Given A C S, the following statements
are equivalent.

(a) d(A) > 0.
(b) d(A) = 1.

(c) A is cofinal in S with respect to <.
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Proof. By s <t we mean, of course, that s < ¢ or s = ¢, so < is reflexive. To
verify transitivity, assume z < y and y < z. If either x = y or y = z, then
trivially < z. So assume that © < y and y < z; that is zy = y and yz = z.
Then zz = xyz = yz = z. To complete the proof that < directs S, let =,y € S.
Pick p € K(8S). By Lemma 4.5, {t € S:at =t} n{t € S: yt =t} € pso is
nonempty.

It follows from Theorem 4.6 that (a) and (b) are equivalent.

To see that (c) implies (b), assume that A is cofinal in S. To see that
d(A) =1, let H € Py(S) and € > 0 be given. Using Lemma 4.5, pick y € S
such that for each s € H, s < y. Pick € A such that y <z, and let K = {«}.
Then for all s € H, K = sK, so |K\sK|=0<e¢-|K|and |[KNA|=|K|

To see that (a) implies (c), we assume that A is not cofinal and show that
d(A) = 0. By Theorem 4.6, K(3S) = A(S), so it suffices to show that AN
K(BS) = . Suppose instead that we have some p € AN K(3S). Since A is not
cofinal, we may pick some s € S such that there is no t € A with s < ¢t. But
by Lemma 4.5, {t € S : st =t} € p. Pickingt € An{t € S : st =t} gives a
contradiction. O

Corollary 4.8. Let (S,-) be a semigroup with a right zero element, let Z =
{z € S:zis aright zero in S}, and let A C S. Then

1 ifANZ£D
d(A)_{O ifANZ =10.

Proof. Let < be as in Theorem 4.7. We show that A is cofinal in S if and only
if ANZ #0. If z € ZN A, then {z} is cofinal in S, so A is cofinal in S. If A is
cofinal in S, pick z € Z and pick y € A such that z < y. Then eithery =2z € Z
or zy =y so that y € Z. O

5 Density is determined by an arbitrary Fglner
net

We saw in Theorem 1.13 that if (S,-) satisfies SFC and A C S, then there is
ANF,
a Felner net (F,)aep in Py(S) such that d(A) = lir% |F|| We will show
ae o
in Theorem 5.3 that in any semigroup satisfying SFC, the density d(A) — and,
hence, by Theorem 3.15, the densities d*(A) and d¢(A) — are determined by
an arbitrary Fglner net. This improves on a result of Bergelson and Glasscock
[2, Corollary 3.6], who showed that if (.S, ) is countable and right cancellative,
then given any Fglner sequence (F,,)0%; in Py(S) and any A C S, d(4) =

} AN s
1m Ssup maxX —————
”_’OOmEE)v ses |Fm|

Definition 5.1. Let (S,-) be a semigroup, H € P;(S), and ¢ > 0. A set
F e Ps(S) is (H,e€)-invariant if for all h € H, |F'\ hF| < e-|F|.
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Lemma 5.2. Let (S,-) be a semigroup, and let A C S. For every e > 0, there
exists H € Py(S) such that for every (H,e/2)-invariant set F' € P¢(S),

—1
di(A) < max |As” 0 F

eg W < dt(A) + €.

Proof. Let € > 0. By the definition of d;(A), there exists H € P¢(S) such that

|As~1n H| €
max K < di(A) + 5

Let F' € P¢(S) be (H,¢€/2)-invariant, and define

|As~t N F|
v=maX ——
sES |F|

Let so € S achieve this maximum so that |Asy* N F| = v - |F|.
By the definition of d;(A), we see that v > d;(A4). Therefore, to conclude
the proof of the lemma, we need only show that v < d;(A) + €.
We claim that for all h € H, [h~'Asy' N F| > (v —¢/2) - |F|. Indeed, let
h € H. Since
(Asg"NRF) U (F\ hF) 2 Asg' N F,

we have that |[Asy* N hF| > |Asyt N F| — |F\ hF|. Since \y[h ' Asy ' N F] D
Asg1 N hF,
W~ Asg N F| > |Asy " NRF| > sy 0 F| = [F\RF| > (v—£) - |F|

Now we see that
|h~ 1Aso NF|
v— =
2 |H| Z |F|

|H|| ZZ han

heH feF

= (T 2 2, e

fEF heH

|A(fso)~' N H|
|F|J§, I

It follows that there exists f € F such that

|A(fso)~* ﬁH| |As~1 N H| €
o — < d(A) + .
YT H] smax g <@ +3

This implies that v < d;(A) + €, as was to be shown. O
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Theorem 5.3. Let (S,-) be a semigroup satisfying SFC, and let (Fy)aecp be a
Folner net in Py(S). For all AC S,

o L |As~1 N F,|

d(A) =d"(A) =di(A) = olzler% max TR
Proof. The first two equalities follow from Theorem 3.15. It follows from the
definition of a Fglner net that for any H € Py(S) and any € > 0 there exists
a € D such that for all o > «, F, is (H, €)-invariant, so the last equality follows
from Lemma 5.2. O

We extend the result of [2, Corollary 3.6] to uncountable semigroups.

Corollary 5.4. Let (S,-) be a right cancellative semigroup satisfying SFC, and
let (Fo)aep be a Folner net in Ps(S). For all AC S,

. B . |[AN Fys|
d(A) =d*(A) =di(A) = olélenzl) max BT AR

Proof. Since S is right cancellative, for any A C S, any F' € Ps(S), and any
seS, |[ANFs|=|As~tNF|. O

In the absence of right cancellation the conclusion of Corollary 5.4 can fail
badly. For example, let (S,-) be an infinite right zero semigroup, and let } #
A C 5. By Theorem 4.7, d(A) = 1. Any net in Pf(S) is a Folner net. If

ANF, 1
Fo)aep is a net in P¢(S) with each |F,| = 2, then lim maxM = —.
f

aeD s€S  |F,| 2
ANF,
On the other hand, lim max M

= 1. So one can ask what conditions
aeD sesS |Fa8‘

ANF,
short of right cancellation guarantee that d(A) = lim max A0 Fas|

. Thi 1
a€D seS ‘Fa8| e ony

positive answer that we have is if d(A4) = 1.

Theorem 5.5. Let (S,-) be a semigroup satisfying SFC, and let A C S. If
d(A) =1, then for every Folner net (Fy)aep in Pyr(S),

L |AN Fys|
A) = iy max TR
Proof. Assume that d(A) =1, and let (F,,)aep be a Folner net in P;(S). Then
by Theorem 2.10, A is thick. Given « € D, pick s € S such that F,s C A.

|AN Fys|
Then ———— = O
en ol

We see now that we cannot add the case that d(A) = 0 to the statement
of Theorem 5.5. In this theorem, we deal with the semigroup (P;(N),U). In
a semigroup (S,:), if A C S and z € S, we write A-z for {y-z:y € A}. If
A C P¢(N) and M € Ps(N), then AUM already means something, so we write
out what we intend, i.e. {AUM : A € A}. Note that because the semigroup
(P¢(N),U) is commutative, it satisfies SFC.
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Theorem 5.6. In the semigroup (Pr(N),U), let A ={X € Py(N):1¢ X}.
Then d(A) = 0, but there is a Folner sequence (Fp)nen in Py (Pr(N)) such that

lim max AN{ZUT:ZeF}| 1
neNTep,(ny HZUT:ZeF,}| — 2°

Proof. By Theorem 4.6, the minimal left ideals of 5P (.5) are singletons. Define
< on Ps(S) by A < B if and only if A C B. Since A is not cofinal in Pf(S), by
Theorem 4.7, d(A) = 0.

For n € N, let F,, = {{2,3,...,2n}} U {{1,2,...,k} n < k< 2n}. Note
that |F,| =n + 1. We claim that (F,)52, is a Fglner sequence.

Let X € P¢(N), and let € > 0 be given. Pick n € N such that n > max X
and n%_l < e Let m >n. Then F,, \{XUZ:Z € F,} C{{2,3,...2m}} so
[Fn\{XUZ:ZeF,}|<l<e-(n+1)<e-(m+1)=c¢€-|Fnl

IAN{ZUT: Z € F)|
Now let N. We shall show that =
ow let n € e shall show tha Tg;)a;(cN) (ZUT:Z< 7]

1
§.SO let T € Pp(N). If 1 € T, then AN{ZUT : Z € F,} =0, so

assume that 1 ¢ T. Then {2,3,...,.2n} UT € A and for n < k < 2n,
{1,2,....2n}UT ¢ Aso |[AN{ZUT : Z € F,}| =1. Also, {2,3,...,2n}UT #
AN{ZuUT:Ze F,} 1 )
1,2,...,2 T < -, Andif T = {2,3,...,2
AN{ZUT:ZeF,}| 1

th == O
MTHZOT Ze R 2

6 Density in Product Spaces

It has been known for some time that the product of two left amenable semi-
groups is left amenable. This follows from a more powerful theorem, due to
Maria Klawe, about the semidirect product of two left amenable semigroups
[14, Proposition 3.4]. We prove this directly in Theorem 6.1, then establish in
Theorem 6.2 a product property that generalizes [7, Theorem 3.4].

Theorem 6.1. Let (S,) and (T,-) be left amenable semigroups, and let u €
LIM(S) andv € LIM(T). Then there exists p € LIM (S x T) with the property
that, for every A C S and every B C T, p(A x B) = u(A)v(B).

Proof. Let f € 1o(S x T). For each s € S, we define f; € Io(T) by fs(t) =
f(s,t). Then (v(fs))ses € loo(S). Put 7(f) = p({(v(fs))ses). For A C S and
B C T, we claim that 7(A x B) = pu(A)v(B). That is, T(Xaxs) = p(Xa)v(Xp).
To see this let f = Xaxp and let g = (V(fs))scs. For s € Sand t € T, fs(t) =
Xp(t)if s€ Aand fs(t) =0if s ¢ A. So for s € S, g(s) = v(fs) = v(XB)Xa(s)
so g = v(Xp)Xa. Thus T(Xaxp) = pu(g) = v(Xp)p(Xa).

We claim that 7 is a left invariant on [ (S xT). It is clear that 7 is a positive
linear functional on lo (S x T'). Since 7(Xsx1) = 1, 7 is a mean by Lemma 1.3.
To see that 7 is left invariant, let f € (S x T'), and let (a,b) € S x T. In the
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notation from the previous paragraph, (foA(4))s = fas © Ap. Therefore, by the
left invariance of p and v,

T(foXap) = w((U((foAap))s))ses)
= p((V(fas © Xo))ses
= M(<V(fas)>ses)
= M(<V(fs)>ses © )\a)
= M(<V(fs)>s€S)
=7(f),
demonstrating the left invariance of 7. 0

Theorem 6.2. Let (S,-) and (T,-) be left amenable semigroups, let A C S, and
let BCT. Then d*(A x B) =d*(A)d*(B).

Proof. Tt is a consequence of Theorem 6.1 that d*(A x B) > d*(A)d*(B), so
suppose that d*(A)d*(B) < d*(A x B) and pick 7 such that d*(A)d*(B) <n <
d*(A x B). Pick p € LIM(S x T) such that p(A x B) > n. Note in particular
that p(AxT) > p(A x B) > 0.

We define p and v mapping P(S) and P(T'), respectively, to R by first

. p(AxY)

putting u(X) = p(X x T) for every X C S, and v(Y) = DA xT)
Y C T. These functions are finitely additive on P(S) and P(T) respectively,
and u(S) = v(T) = 1. By Lemma 1.5, they extend uniquely to means on S and
T, respectively.

We claim that these means are left invariant. To see this, observe that, for
every s€ S, teT, X CS,andY CT,

for every

i(s™X) = p(s™'X x T) = p((s,) (X x T)) = p(X x T) = pu(X)
and
p(ANEY) = p((s,8)(ANEIY)) = p((s,#2) " (ANY)) = p(ANY),

L1y PAXETY)  p(AXY)
whereby v(t7Y) = AXT) ~ pAxT) ~ v(Y). So, by Lemma 1.6, u

and v are left invariant means.
Then d*(A)d*(B) > u(A)v(B) = p(A x B) > 7, a contradiction. O
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