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Abstract. Let a finite partition F of the real interval (0, 1) be given. We show that
if every member of F is measurable or if every member of F is a Baire set, then one
member of F must contain a sequence with all of its finite sums and products (and, in
the measurable case, all of its infinite sums as well).

These results are obtained by using the algebraic structure of the Stone-Čech com-
pactification of the real numbers with the discrete topology. And they are also obtained
by elementary methods. In each case we in fact get significant strengthenings of the
above stated results (with different strengthenings obtained by the algebraic and ele-
mentary methods).

Some related (although weaker) results are established for arbitrary partitions of
the rationals and the dyadic rationals, and a counterexample is given to show that even
weak versions of the combined additive and multiplicative results do not hold in the
dyadic rationals.

1. Introduction.

The Finite Sums Theorem [8, Theorem 3.1] says that whenever the set N of positive
integers is partitioned into finitely many classes, one of these classes must contain a
sequence together with all of its finite sums taken without repetition. As an immediate
corollary one obtains the corresponding statement for a sequence with all of its finite
products. That is, whenever N is partitioned into finitely many classes, one of these
classes must contain a sequence together with all of its finite products. (Simply consider
the powers of 2.) For some time it was an open question as to whether or not one could
always get in one cell of a partition of N a sequence with all of its sums and products.
(This question was answered in the negative in [10].)

The Finite Unions Theorem [8, Corollary 3.3] is equivalent to the Finite Sums
Theorem: it states that whenever the finite nonempty subsets of N are partitioned into
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finitely many classes, one of these classes contains all finite unions of some sequence
〈Fn〉∞n=1 of pairwise disjoint sets. By way of the Finite Unions Theorem, one easily
sees that similar statements hold in the real interval (0, 1). That is, whenever (0, 1)
is partitioned into finitely many classes there must exist a sequence 〈xn〉∞n=1 with all
of its finite sums in one class and there must exist a sequence 〈yn〉∞n=1 with all of its
finite products in one class (possibly a different class). (See, for example, [11, Lemma
3.8].) The question as to whether or not the sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 can be
chosen to be the same remains open. In Section 5 of this paper we are able to answer
the restriction of this question to the dyadic rationals in (0, 1) in the negative. Let us
briefly remark here that, of course, any positive result about (0, 1) trivially implies a
positive result about the entire set of non-zero reals – one works with (0, 1) mainly for
convenience. However, the above negative result about D ∩ (0, 1) (D being the set of
dyadic rationals) does in fact extend to a negative result about the full set of non-zero
dyadics.

In Section 4 of this paper we show that given any finite partition F of (0, 1), if all
of the members of F are measurable or if all of the members of F are Baire sets, then
there exists one cell of the partition which contains a sequence 〈xn〉∞n=1 together with
all of its finite sums and all of its finite products. This seems to be the first positive
result linking addition and multiplication of the same sequence. (There was an earlier
result [9] concerning special partitions of N: if only one cell of the partition supports
a sequence with finite sums, i.e., one cell is an “IP*-set”, then that cell will contain a
sequence 〈xn〉∞n=1 together with all of its finite sums and all of its finite products.)

In fact, the results of Section 4 are stronger than this in three directions.

Firstly, one allows the sums and products to be intermixed in a restricted fashion.
(One allows expressions built up from items whose “supports” do not overlap. For
example, the support of x1 + x3 is {1, 3} and 3 < 5 so (x1 + x3) · x5 is an allowable
expression as is (x7 +x9) ·x11. Since 5 < 7, (x1 +x3) ·x5 +(x7 +x9) ·x11 is an allowable
expression also.)

The second strengthening is related to the (m, p, c)-systems of [6]. That is, instead
of producing a sequence of numbers 〈xn〉∞n=1, one produces a sequence of finite sets
〈Gn〉∞n=1 and then allows any choice of xn ∈ Gn in the expressions described above.
The sets Gn consist of solution sets for partition regular systems of equations, either
additive or multiplicative – so one could, for example, ask that each G2n be a length n
arithmetic progression and each G2n−1 be a length n geometric progression. See [7] for
general background about partition regular equations.
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The third strengthening concerns infinite sums. Given a sequence 〈xn〉∞n=1 with
all of its finite sums in (0, 1), one has that Σ∞

n=1xn converges. Consequently, one may
ask whether given any finite partition of (0, 1) there must exist one cell and a sequence
〈xn〉∞n=1 with all of its sums without repetition (finite or infinite) in that cell. It is
easy to see via a standard diagonalization argument that this is false in such generality.
However, Prömel and Voigt [16] showed that if one assumes that each cell of the partition
is a Baire set, then one does get one cell and a sequence with all of its sums, finite or
infinite, in that cell. (We remind the reader that the Baire sets are the members of
the smallest σ-algebra containing the open sets and the nowhere dense sets. Thus the
Baire sets are precisely those sets that can be expressed as the symmetric difference of
an open set and a meager set, where a set is meager provided it is the countable union
of nowhere dense sets.)

Later, Plewik and Voigt [15] obtained the same conclusion from the assumption that
each cell of the partition is Lebesgue measurable. A simplified and unified presentation
of the results in [15] and [16] is given in [4], along with several strengthenings and
(counter)examples.

The third strengthening in Section 4 is to allow, as well as finite sums and products,
infinite sums as well, in the measurable case. In other words, we show that given any
finite partition F of (0, 1), if all of the members of F are measurable then there exists
one cell of the partition which contains a sequence 〈xn〉∞n=1 together with all of its finite
and infinite sums and all of its finite products. It turns out that we obtain these infinite
sums with almost no extra work. Interestingly, we do not know what happens in the
Baire case.

Our methods in Section 4 involve ultrafilter techniques. It is therefore natural
to ask how much can be proved by “elementary” techniques (in other words, without
appeal to the structure of the Stone-Čech compactifications of various spaces).

This question is addressed in Section 2. Although we are unable to recover any
of the results concerning the sets Gn, we are able to prove the statements about sums
and products in a Baire or measurable partition that were mentioned in the Abstract.
Rather curiously, we also prove some rather strong extensions of this that we have not
been able to prove by the techniques of Section 4. For example, in the Baire case, we
show that given any sequence of increasing homeomorphisms 〈ϕn〉∞n=1 from (0, 1) onto
(0, 1) and a finite coloring of (0, 1) one can get a sequence 〈yn〉∞n=1 such that the color
of sums of products of the functions applied to the terms of 〈yn〉∞n=1 in appropriate
order depends only on the function applied to the lowest order term. (For concrete
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illustrations see the discussion before Theorem 2.15.) Similar results are obtained for
the measurable case for a more restricted class of functions. We do not know if there
are common extensions of the results of Sections 2 and 4.

In Section 5, in addition to the counterexample mentioned earlier, we establish in
Q ∩ (0, 1) (and indeed in D ∩ (0, 1)) separate additive and multiplicative statements
involving sequences 〈Gn〉∞n=1 similar to those in Section 4.

Since the methods used in Sections 4 and 5 involve topological semigroups, Section
3 consists of some topological-algebraic preliminaries. In spite of the fact that the results
in Section 4 use notions based on the usual topology of the reals, we will work with
the algebraic structure of the Stone-Čech compactification βXd, where X = (0, 1) or
(0, 1) ∩ D, and the subscript indicates that one puts the discrete topology on X. We
emphasise once again that the restriction to (0, 1) is purely for convenience.

Our notation is mostly standard. We write Pf (A) for {B : B ⊆ A, B is finite, and
B 6= ∅}, and we often write c` to denote closure.

We use the notations FS, FP , and FU for “finite sums”, “finite products”, and
“finite unions” respectively. That is given a sequence 〈xn〉∞n=1 in R and a sequence
〈Gn〉∞n=1 in Pf (N) we write FS(〈xn〉∞n=1) = {Σn∈F xn : F ∈ Pf (N)}, FP (〈xn〉∞n=1) =
{Πn∈F xn : F ∈ Pf (N)}, and FU(〈Gn〉∞n=1) = {

⋃
n∈F Gn : F ∈ Pf (N)}.

2. Elementary Results.

As will be the case in Section 4, the proofs of the results for Baire sets and for
measurable sets are nearly identical. We develop the corresponding notions side by
side, beginning with the parallel notions of largeness that we shall need. Several of the
preliminary lemmas are similar to results in [4].

For our results about measurable partitions of (0, 1) we use the notion of upper
density near 0. We denote Lebesgue measure by µ and write µ∗(A) for the outer
Lebesgue measure of the set A. In this section when we use Lebesgue measure, it will
always be with measurable sets. However, in later sections we will deal with ultrafilters
with the property that for every member A, its upper density d(A) > 0 and we cannot
assume that every member of an ultrafilter is measurable. Consequently we define d(A)
in terms of the outer measure.

Let A be a subset of R. A point x is a density point of A if and only if limε↓0 µ
∗(A∩

(x− ε, x+ ε)
)
/(2ε) = 1.

2.1 Definition. Let A ⊆ (0, 1).
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(a) The upper density near 0 of A, d(A), is defined by

d(A) = lim sup
ε↓0

µ∗
(
A ∩ (0, ε)

)
/ε .

(b) The density near 0 of A, if it exists, is d(A) = lim
ε↓0

µ∗
(
A ∩ (0, ε)

)
/ε.

(c) δ(A) = {x ∈ A : x is a density point of A}.

Observe that if x is a density point of A, then d(A−x) = 1. (When we write A−x
in this section we mean {y ∈ (0, 1) : y + x ∈ A}, that is {y − x : y ∈ A} ∩ (0, 1).)

We now introduce a notion of largeness at 0 in terms of meager sets, that is sets
that are the countable union of nowhere dense sets. (The terminology “Baire large” was
also used in [4], but the notions do not coincide unless A is a Baire set.)

2.2 Definition. Let A ⊆ (0, 1).

(a) A is Baire large (at 0) if and only if for every ε > 0, A ∩ (0, ε) is not meager.

(b) A is Baire small (at 0) if and only if A is not Baire large. (Equivalently A is
Baire small (at 0) if and only if there is some ε > 0 such that A ∩ (0, ε) is meager.)

(c) A is Baire huge (at 0) if and only if there is some ε > 0 such that (0, ε)\A is
meager.

(d) δb(A) = {x ∈ A : A− x is Baire huge}.

Thus a set A is Baire huge if and only if (0, 1)\A is Baire small.

2.3 Lemma. Let A be a measurable subset of R. Then µ
(
A\δ(A)

)
= 0.

Proof. This is the Lebesgue Density Theorem – see for example [14, Theorem 3.20].

2.4 Lemma. Let A be a Baire subset of R. Then A\δb(A) is meager.

Proof. Pick open U and meager M such that A = U∆M . We show that A\δb(A) ⊆M ,
or equivalently that A\M ⊆ δb(A). Let x ∈ A\M . Then x ∈ U\M so pick ε > 0 such
that (x− ε, x+ ε) ⊆ U . Then (0, ε)\(A− x) ⊆M − x.

Note that if A is measurable and d(A) = 1, then δ(A) is measurable and d
(
δ(A)

)
=

1. Similarly, if A is a Baire set which is Baire huge, then δb(A) is a Baire set which is
Baire huge. (One has deleted a meager set from a Baire set.)

We combine the Baire and measurable versions of the next two results, and omit
the trivial proofs.
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2.5 Lemma. Let A,B ⊆ (0, 1).
(a) If d(A) = d(B) = 1, then d(A ∩B) = 1.
(b) If A and B are Baire huge, then A ∩B is Baire huge.

When we write A/x in this section we mean

{y ∈ (0, 1) : yx ∈ A} = {z/x : z ∈ A} ∩ (0, 1) .

2.6 Lemma. Let A ⊆ (0, 1) and let x ∈ (0,∞).
(a) If d(A) = 1, then d(A/x) = 1. (Similarly, if d(A) = 1, then d(A/x) = 1.)
(b) If A is Baire huge, then A/x is Baire huge.

In one respect the results of this section are stronger for Baire partitions than for
measurable partitions. (In another respect the results for measurable partitions are
stronger. See the discussion before Lemma 2.11.) That is, the results in either case
are stated in terms of a collection of functions from an interval (0, α) to (0,∞). In the
case of Baire partitions, this collection is simply the increasing continuous functions
which would (if extended) take 0 to 0. The collection used in the measurable case is
considerably more restricted.

Our guiding principle is that we need Lemma 2.9 to hold. In the measurable case
one might at first expect absolutely continuous functions to be sufficiently restrictive,
but a little thought shows that they are not. (See Proposition 2.10.) We use the
definition of admissible functions that we do, because it allows us to prove Lemma 2.9.

2.7 Definition. A function ϕ is an admissible function if and only if
(1) there is some α > 0 such that ϕ : (0, α) −→ (0,∞) and lim

x↓0
ϕ(x) = 0,

(2) ϕ is differentiable on (0, α) and for each x ∈ (0, α), ϕ′(x) > 0, and
(3) either

(a) ϕ′ is nonincreasing on (0, α) and for every η < 1, lim sup
x↓0

ϕ(ηx)
ϕ(x)

< 1 or

(b) ϕ′ is nondecreasing on (0, α) and for every τ > 0, lim inf
x↓0

ϕ(τx)
ϕ(x)

> 0.

Given any τ > 0 one has that the function ϕ defined by ϕ(x) = xτ is an admissible
function. Other examples include the function γ defined by γ(x) = ex−1 and its inverse
γ−1(x) = log(x+1). On the other hand, consider the function ν defined by ν(x) = −1

log(x) .

Then ν′ is decreasing on (0, e−2) but given any η < 1 one has lim
x↓0

ν(ηx)
ν(x)

= 1, so ν is not

an admissible function. (And by Proposition 2.10, it could not be under any definition,
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given that we want Lemma 2.9 to apply to any admissible function.) Also ν−1 fails to

be an admissible function because given any τ > 0, lim
x↓0

ν−1(τx)
ν−1(x)

= 0.

It is easy to check that the inverse of an admissible function is again an admissible
function.

2.8 Definition. (a) H = {ϕ : there is some α > 0 such that ϕ is an increasing
continuous map from (0, α) to (0,∞) and lim

x↓0
ϕ(x) = 0}.

(b) I = {ϕ : ϕ is an admissible function}.

2.9 Lemma. (a) Let ϕ ∈ H where domain(ϕ) = (0, α) and let A ⊆ (0, α) such that
ϕ[A] is Baire huge. Then A is Baire huge.

(b) Let ϕ ∈ I where domain(ϕ) = (0, α) and let A ⊆ (0, α) such that d(ϕ[A]) = 1.
Then d(A) = 1.

Proof. (a) Since ϕ is a homeomorphism (onto its image), so is ϕ−1.
(b) Observe first that if ϕ′ is nonincreasing, then given a < b < α− c one has

ϕ(b)− ϕ(a) =
∫ b

a

ϕ′(t) dt ≥
∫ b+c

a+c

ϕ′(t) dt = ϕ(b+ c)− ϕ(a+ c) .

Consequently, if 0 < η < 1, x ∈ (0, α), 〈(an, bn)〉kn=1 is a sequence of pairwise disjoint
intervals in (0, x), and Σkn=1(bn − an) < ηx, then
(*) Σkn=1

(
ϕ(bn)− ϕ(an)

)
< ϕ(ηx).

(Shifting intervals to the left keeps the first sum fixed and increases the second sum.
Consequently the worst possible case is when a1 = 0 and for each t ∈ {1, 2, . . . , k − 1},
bt = at+1.)

Similarly, if ϕ′ is nondecreasing, then given c < a < b < α one has ϕ(b) − ϕ(a) ≤
ϕ(b− c)− ϕ(a− c). Consequently, if 0 < η < 1, x ∈ (0, α), 〈(an, bn)〉kn=1 is a sequence
of pairwise disjoint intervals in (0, x), and Σkn=1(bn − an) < ηx, then
(**) Σkn=1

(
ϕ(bn)− ϕ(an)

)
< ϕ(x)− ϕ(x− ηx).

(Shifting intervals to the right keeps the first sum fixed and increases the second sum.
Consequently the worst possible case is when bn = x and for each t ∈ {1, 2, . . . , k − 1},
bt = at+1.)

To see that lim
ε↓0

µ∗
(
A ∩ (0, ε)

)
/ε = 1, let η < 1 be given. If ϕ is nonincreasing,

choose γ < 1 such that γ > lim sup
x↓0

ϕ(ηx)
ϕ(x)

. If ϕ is nondecreasing, choose γ < 1 such

that 1− γ < lim inf
x↓0

ϕ
(
(1− η)x)
ϕ(x)

.
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Then γ < 1 so pick ε > 0 (with ε in the range of ϕ) such that whenever 0 < x < ε,
one has that µ∗

(
ϕ[A] ∩ (0, x)

)
> γx. We may also presume that if ϕ is nonincreasing,

then whenever 0 < x < ε, one has ϕ(ηx)
ϕ(x) < γ and if ϕ is nondecreasing, then whenever

0 < x < ε, one has
ϕ
(
(1−η)x

)
ϕ(x) > 1− γ.

Now let 0 < x < ϕ−1(ε). We claim that µ∗
(
A ∩ (0, x)

)
≥ ηx. So suppose instead

that µ∗
(
A ∩ (0, x)

)
< ηx and pick pairwise disjoint intervals 〈(an, bn)〉∞n=1 such that

A ∩ (0, x) ⊆
⋃∞
n=1(an, bn) and Σ∞

n=1(bn − an) < ηx.
Then ϕ[A] ∩

(
0, ϕ(x)

)
⊆

⋃∞
n=1

(
ϕ(an), ϕ(bn)

)
so choose k ∈ N such that

Σkn=1

(
ϕ(bn)−ϕ(an)

)
> γ ·ϕ(x). If ϕ is nonincreasing, then we have that γ ·ϕ(x) > ϕ(ηx)

contradicting statement (*). So assume that ϕ is nondecreasing. Then we have that
γ · ϕ(x) > ϕ(x)− ϕ

(
(1− η)x

)
, contradicting statement (**).

We pause now to observe that at least part of the requirement in the definition of
an admissible function is necessary. Notice that we do not assume any monotonicity for
ϕ′ in the following.

2.10 Proposition. Let α > 0 and let ϕ be an increasing function from (0, α) to (0,∞)

such that lim
x↓0

ϕ(x) = 0. If there is some η < 1 such that lim sup
x↓0

ϕ(ηx)
ϕ(x)

= 1, then there

is a set A ⊆ (0, α) such that d(ϕ[A]) = 1 but d(A) 6= 1.

Proof. Choose a sequence 〈bn〉∞n=1 converging to 0 such that for each n, ϕ(bn+1) <
ϕ(ηbn)

2n and ϕ(ηbn)
ϕ(bn) > 1− 1

2n . Let A = (0, α)\
⋃∞
n=1(ηbn, bn).

Then for each n, µ
(
A ∩ (0, bn)

)
< ηbn so d(A) 6= 1. To see that d(ϕ[A]) = 1, let

ε > 0 be given, pick n such that 1
2n < ε, and let x < ϕ(ηbn) be given. Pick m such that

ϕ(ηbm) ≤ x < ϕ(ηbm−1) and note that m ≥ n+ 1.
Assume first that x ≤ ϕ(bm). Then

(0, x)\A ⊆
(
0, ϕ(bm+1)

)
∪ (ϕ(ηbm), x)

so
µ
(
(A ∩ (0, x)

)
≥ x− ϕ(bm+1)−

(
x− ϕ(ηbm)

)
> ϕ(ηbm) · (1− 1

2m )
> (1− 1

2m )2 · ϕ(bm)
> (1− 1

2n ) · x .

Next assume that x > ϕ(bm). Then

µ
(
(A ∩ (0, x)

)
≥ x− ϕ(bm+1)−

(
ϕ(bm)− ϕ(ηbm)

)
> x− ϕ(bm)

2m−1

> (1− 1
2n ) · x .
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We do not know the precise class of functions for which Lemma 2.9 holds.

We have already seen that in one respect the results of this section for Baire par-
titions are stronger than for measurable partitions. In another respect, the results for
the measurable case are stronger. One gets the closure of the set of all of the finite
configurations contained in one set. This stronger conclusion depends on the following
simple lemma.

2.11 Lemma. Let A be a measurable subset of (0, 1) such that d(A) > 0. Then there
exists B ⊆ A such that B ∪ {0} is compact and d(A\B) = 0.

Proof. For each n ∈ N, let An = A ∩ (1/2n, 1/2n−1) and let T = {n ∈ N : µ(An) > 0}.
As is well known (see [14, Definition 3.8]) given any measurable set C and any ε > 0
there is a compact subset D of C with µ(D) > µ(C) − ε. Thus for each n ∈ T , pick
compact Bn ⊆ An with µ(Bn) > µ(An) − 1

4n+1 . Let B =
⋃
n∈T Bn. Then B ∪ {0} is

compact.
Suppose now that d(A\B) = α > 0. Pick m ∈ N such that 1

3·2m < α. Pick
x < 1/2m such that µ∗((A\B)∩ (0, x))/x > 1

3·2m . Pick n ∈ N with 1/2n ≤ x < 1/2n−1

and note that n > m. Then

µ((A\B) ∩ (0, x)) ≤ Σ∞
k=nµ(An\Bn) < Σ∞

k=n

1
4k+1

=
1

3 · 4n

and x ≥ 1
2n so

µ((A\B) ∩ (0, x)/x <
1

3 · 2n
<

1
3 · 2m

,

a contradiction.

2.12 Lemma. Let r ∈ N and let (0, 1) =
⋃r
i=1 Ci where each Ci is measurable. Then

for each i ∈ {1, 2, . . . , r} there exists Di ⊆ Ci such that Di ∪ {0} is compact and
d(

⋃r
i=1Di) = 1.

Proof. For each i ∈ {1, 2, . . . , r}, if d(Ci) = 0, let Di = ∅ and if d(Ci) > 0 pick Di ⊆ Ci

as guaranteed by Lemma 2.11. Then d
(
(0, 1)\

⋃r
i=1Di

)
≤ d

(⋃r
i=1(Ci\Di)

)
= 0.

As a final preliminary, we have the following well known result. (See the discussion
in [3] regarding the fact that this result is “elementary”.) Given finite nonempty subsets
of N, we write F < G to mean that maxF < minG.

2.13 Definition. Let 〈Fn〉∞n=1 and 〈Gn〉∞n=1 be sequences in Pf (N). Then 〈Fn〉∞n=1 is
a union subsystem of 〈Gn〉∞n=1 if and only if there is a sequence 〈Hn〉∞n=1 in Pf (N) such
that for each n ∈ N, Hn < Hn+1 and Fn =

⋃
t∈Hn

Gt.
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2.14 Lemma. Let 〈Fn〉∞n=1 be a sequence in Pf (N), let r ∈ N, and let

ϕ : FU(〈Fn〉∞n=1) −→ {1, 2, . . . , r} .

There exists a union subsystem 〈Gn〉∞n=1 of 〈Fn〉∞n=1 such that ϕ is constant on
FU(〈Gn〉∞n=1).

Proof. This follows immediately from [3, Lemma 2.1].

Let a partition (or coloring) of (0,1) into Baire sets, or into measurable sets, be
given. Our elementary results will produce a sequence 〈yn〉∞n=1 such that all sums of
products of images under nice functions (in appropriate order) have a color depending
only on the function applied to the lowest order product. We allow the functions to vary
within a particular product except that only one function can be applied to the lowest
order product. Consider for example functions of the form ϕ(x) = xτ , which we have
already observed are members of I (and of course, members of H). We will get that
the colors of y73 · y51/2 + y3 · y1 and y10

√
2 · y9 + y8 · y6 · y2 are the same. Also the colors

of y73 · y51/2 + y3
100 · y1100, y10

√
2 · y9 + y8

100 · y6100 · y2100 and log(y12 + 1) · y8 + y7
100

are the same. (Recall that log(x+ 1) defines a admissible function.)
We prove our main elementary result for Baire partitions first.

2.15 Theorem. Let (0, 1) =
⋃r
i=1 Ci where each Ci is a Baire set and let 〈ϕn〉∞n=1

be a sequence in H. There exist a sequence 〈yn〉∞n=1 and γ : N −→ {1, 2, . . . , r}
such that for each k ∈ N and each F ∈ Pf (N) with minF ≥ k, {Πn∈F ϕk(yn)} ∪
{Σmi=1Πn∈Gi

ϕsn
(yn) + Πn∈F ϕk(yn) : m ∈ N, G1, G2, . . . , Gm ∈ Pf (N), G1 < G2 <

. . . < Gm, and for each n ∈
⋃m
i=1 Gi, sn ≤ n} ⊆ Cγ(k).

Proof. We may presume the sets C1, C2, . . . , Cr are disjoint. For each x ∈ (0, 1), let
ψ(x) be the color of x (so that x ∈ Cψ(x)). We inductively construct sequences 〈Bk〉∞k=1,
〈xk〉∞k=1, and 〈Ak〉∞k=1. Let B1 =

⋃r
i=1 Ci and let A1 =

⋃r
i=1 δb(Ci) =

⋃r
i=1 δb(B1 ∩Ci).

(Recall that δb(A) = {x ∈ A : A− x is Baire huge}.)
Note that by Lemma 2.4, A1 is a Baire huge Baire set. Pick x1 ∈ ϕ−1[A1]. Then

ϕ(x1) ∈ δb(B1 ∩ Cψ(ϕ(x1))) so (B1 ∩ Cψ(ϕ(x1))) − ϕ(x1) is a Baire huge Baire set. Let
B2 = A1 ∩A1/ϕ(x1) ∩

(
(B1 ∩Cψ(ϕ(x1)))− ϕ(x1)

)
. Then by Lemmas 2.5 and 2.6, B2 is

a Baire huge Baire set.
Inductively, given Bk which is a Baire huge Baire set, let Ak =

⋃r
i=1 δb(Bk ∩ Ci).

Then by Lemma 2.4, Ak is a Baire huge Baire set. By Lemma 2.9 ϕn−1[Ak] is Baire
huge for each n ∈ {1, 2, . . . , k}, so by Lemma 2.5,

⋂k
n=1 ϕn

−1[Ak] is Baire huge, and is
in particular nonempty. Pick xk ∈

⋂k
n=1 ϕn

−1[Ak].
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For each ` ∈ {1, 2, . . . , k}, let H`,k = {Πt∈F ϕst(xt) : ∅ 6= F ⊆ {`, ` + 1, . . . , k},
minF = `, maxF = k, and for each t ∈ F , st ≤ t}. Let

Bk+1 = Ak ∩
⋂k
`=1Ak/ϕ`(xk) ∩

⋂k
`=1

⋂
z∈H`,k

(
(B` ∩ Cψ(z))− z

)
.

(Note that H1,1 = {ϕ1(x1)} so that the definition previously given of B2 abides by this
formula.) In order to show that Bk+1 is a Baire huge Baire set, it suffices to show that
for each ` ∈ {1, 2, . . . , k}, H`,k ⊆ A`. Indeed, assume we have done so. Then given
z ∈ H`,k, z ∈ δb(B` ∩ Cψ(z)) so (B` ∩ Cψ(z))− z is a Baire huge Baire set. Further, by
Lemma 2.6, each Ak/ϕ`(xk) is a Baire huge Baire set. Thus Bk+1 is a finite intersection
of Baire huge Baire sets, so by Lemma 2.5, Bk+1 is a Baire huge Baire set.

So we establish by induction on |F | that if ` ∈ {1, 2, . . . , k} and x = Πt∈F ϕst
(xt)

where minF = `, maxF = k, and each st ≤ t, then z ∈ A`. Assume first that |F | = 1
in which case ` = k. Then z = ϕn(xk) for some n ∈ {1, 2, . . . , k} so by the choice of xk,
z ∈ Ak. Now assume |F | > 1, let G = F\{`}, let v = minG , and let w = Πt∈G ϕst(xt).
Then w ∈ Hv,k ⊆ Av ⊆ B`+1 ⊆ A`/ϕs`

(x`) so z = ϕs`
(x`) · w ∈ A` as required.

The construction of 〈xk〉∞k=1 being complete, we now construct the sequences
〈yn〉∞n=1 and 〈γ(n)〉∞n=1. For each k ∈ N, define νk : Pf (N) −→ {1, 2, . . . , r} by
νk(F ) = ψ

(
Πt∈F ϕk(xt)

)
. By Lemma 2.14, pick a sequence 〈F1,n〉∞n=1 in Pf (N) such

that for each n ∈ N, F1,n < F1,n+1 and ν1 is constant on FU(〈F1,n〉∞n=1). Let γ(1) be
this constant value.

Inductively, given a sequence 〈Fk−1,n〉∞n=1, pick by Lemma 2.14 a subsystem
〈Fk,n〉∞n=1 of 〈Fk−1,n〉∞n=1 such that νk is constant on FU(〈Fk,n〉∞n=1). Let γ(k) be
this constant value. For each n ∈ N, let yn = Πt∈Fn,n xt.

Then if F ∈ Pf (N) and k ≤ minF , one has that ψ
(
Πn∈F ϕk(yn)

)
= γ(k), that is,

Πn∈F ϕk(yn) ∈ Cγ(k). To see this just observe that for each n ∈ F there is some Gn,
with Gn < Gv if n < v, such that Fn,n =

⋃
t∈Gn

Fk,t. Thus if H =
⋃
n∈F

⋃
t∈Gn

Fk,t,
then νk(H) = γ(k) so ψ

(
Πn∈F ϕk(yn)

)
= ψ

(
Πs∈H ϕk(xs)

)
= γ(k).

To complete the proof, let m ∈ N, let G1 < G2 < . . . < Gm in Pf (N), and for each
n ∈

⋃m
i=1Gi, let sn ∈ {1, 2, . . . , n}. Let a = minG1, b = maxG1, ` = minFa,a, and

k = maxFb,b. We show by induction on m that Σmi=1Πn∈Gi ϕsn(yn) ∈ B`. If m = 1,
then Πn∈G1 ϕsn(yn) ∈ H`,k ⊆ A` ⊆ B`. Now assume that m > 1. Let c = minG2 and
let q = minFc,c. Then Σmi=2Πn∈Gi ϕsn(yn) ∈ Bq ⊆ Bk+1 ⊆ B` − Πn∈G1 ϕsn(yn), so
Σmi=1Πn∈Gi ϕsn(yn) ∈ B`.

Now let v = min
⋃
n∈F Fn,n and let w = max

⋃
n∈F Fn,n. Then Σmi=1Πn∈Gi ϕsn(yn)

∈ B` ⊆ Bw+1 ⊆ C
ψ
(
Πn∈F ϕk(yn)

) −Πn∈F ϕk(yn) = Cγ(k) −Πn∈F ϕk(yn).
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2.16 Corollary. Let (0, 1) =
⋃r
i=1 Ci where each Ci is a Baire set. There exist a

sequence 〈yn〉∞n=1 and some i ∈ {1, 2, . . . , r} such that FS(〈yn〉∞n=1)∪FP (〈yn〉∞n=1) ⊆ Ci.

2.17 Theorem. Let (0, 1) =
⋃r
i=1 Ci where each Ci is measurable and let 〈ϕn〉∞n=1

be a sequence in I. There exist a sequence 〈yn〉∞n=1 and γ : N −→ {1, 2, . . . , r} such
that for each k ∈ N and each F ∈ Pf (N) with minF ≥ k, c`

(
{Πn∈F ϕk(yn)} ∪

{Σmi=1Πn∈Gi
ϕsn

(yn) + Πn∈F ϕk(yn) : m ∈ N, G1, G2, . . . , Gm ∈ Pf (N), G1 < G2 <

. . . < Gm, and for each n ∈
⋃m
i=1 Gi, sn ≤ n}

)
⊆ Cγ(k) ∪ {0}.

Proof. For each i ∈ {1, 2, . . . , r}, pick Di ⊆ Ci as guaranteed by Lemma 2.12. Then
proceed exactly as in the proof of Theorem 2.15 using Di in place of Ci, with all
references such as “A is a Baire huge Baire set” replaced by “A is measurable and d(A) =
1” and all references to δb replaced by δ. One then concludes that {Πn∈F ϕk(yn)} ∪
{Σmi=1Πn∈Gi ϕsn(yn) + Πn∈F ϕk(yn) : m ∈ N, G1, G2, . . . , Gm ∈ Pf (N), G1 < G2 <

. . . < Gm, and for each n ∈
⋃m
i=1 Gi, sn ≤ n} ⊆ Dγ(k). The conclusion then follows

since Dγ(k) ∪ {0} is compact.

2.18 Corollary. Let (0, 1) =
⋃r
i=1 Ci where each Ci is measurable. There exist a

sequence 〈yn〉∞n=1 and some i ∈ {1, 2, . . . , r} such that c`
(
FS(〈yn〉∞n=1)∪FP (〈yn〉∞n=1)

)
⊆

Ci ∪ {0}.

3. Algebraic Preliminaries.

Recall that βXd denotes the Stone-Čech compactification of the set X with the
discrete topology. The points of βXd are the ultrafilters on X, the principal ultrafilters
being identified with the points of X. If (X, ·) is a semigroup, then the operation · on X
extends to βXd so that βXd is a right topological semigroup. That is, for each p ∈ βXd,
the function ρp : βXd → βXd, defined by ρp(q) = q · p, is continuous. Also, given any
x ∈ X, the function λx : βXd → βXd, defined by λx(p) = x · p, is continuous. Similarly
if Y = R or Q or D, the operation + extends to βYd so that (βYd,+) is a compact right
topological semigroup. The operations + and · on βYd can be characterized as follows.
Given p, q ∈ βYd and A ⊆ Y one has A ∈ p · q if and only if {x ∈ Y : x−1A ∈ q} ∈ p,
and A ∈ p+ q if and only if {x ∈ Y : −x+A ∈ q} ∈ p, where x−1A = {y ∈ Y : xy ∈ A}
and −x+ A = {y ∈ Y : x+ y ∈ A}. See [12] for an introduction to (βS, ·) where (S, ·)
is a discrete semigroup (with the caution that there βS is taken to be left topological
rather than right topological).
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The reader might wonder why we work for example with (0, 1)d rather than with
(0, 1). The reason is that it turns out that the algebraic operations on (0, 1) do not
extend sensibly to β(0, 1).

As a compact right topological semigroup (βXd, ·) has significant known algebraic
structure. In particular it has idempotents. (The fact that compact right topological
semigroups have idempotents will often be used without specific mention.) Also, again
as a consequence of the fact that it is a compact right topological semigroup, (βXd, ·)
has a smallest two-sided ideal (that is, a two-sided ideal contained in all other two-sided
ideals), which is the union of all minimal right ideals and also the union of all minimal
left ideals. (Recall that in a semigroup (S, ·) a subset A is a left (respectively right) ideal
provided SA ⊆ A (respectively AS ⊆ A).) See [5] for the basic facts about compact
right topological semigroups.

Since we are working with β(0, 1)d rather than β(0, 1), it seems that we have lost
all the topology of (0, 1). Thus our first task is to put the topology of (0, 1) back in.

Let us call an ultrafilter p ∈ β(0, 1)d large at 0 if the interval (0, ε) belongs to p
for every 0 < ε < 1. (The set {(0, ε) : ε > 0} has the finite intersection property, so of
course it is contained in an ultrafilter.) We shall restrict our attention to the ultrafilters
that are large at 0, and in this way essentially recover the topology of (0, 1). Let us now
introduce our main algebraic tool, namely the space OX , showing it to be an ideal of
βXd under multiplication.

3.1 Definition. Let X be a dense subsemigroup of
(
(0, 1), ·

)
. Then OX = {p ∈ βXd :

for every ε > 0, (0, ε) ∩X ∈ p}.

Note that there are no principal ultrafilters corresponding to real numbers in OX .
It consists of “infinitesimal” ultrafilters, that is ultrafilters living in the vicinity of zero.

The set OX is also a semigroup under addition and has interesting and intricate
algebraic structure. We put off a detailed study of this structure for another day,
presenting only enough here to establish our combinational results.

3.2 Lemma. Let X be a dense subsemigroup of
(
(0, 1), ·

)
. Then OX is a compact two-

sided ideal of (βXd, ·). Consequently the smallest ideal of OX is the same as the smallest
ideal of βXd. OX is also a subsemigroup of (βSd,+) where S is the subsemigroup of
(R,+) generated by X.

Proof. First observe that {(0, ε) ∩ X : ε > 0} has the finite intersection property, so
OX 6= ∅. If p ∈ βXd\OX , then for some ε > 0, (0, ε) ∩ X /∈ p so cl((ε/2, 1) ∩ X) is a
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neighborhood of p missing OX and hence OX is compact. That OX is a two-sided ideal
follows immediately from the fact that for any ε > 0,

(
(0, 1)∩X

)
·
(
(0, ε)∩X

)
⊆ (0, ε)∩X.

Since OX is a two-sided ideal of βXd, it follows that the smallest ideal of βXd is
contained in OX . Thus by [5, Corollary I.2.15], the smallest ideal of OX is the smallest
ideal of βXd.

To see that (OX ,+) is a semigroup, let p, q ∈ OX . Let ε > 0. Then (0, ε) ∩X ⊆
{x ∈ X : −x+ (0, ε) ∩X ∈ q} so (0, ε) ∩X ∈ p+ q.

For most of our algebraic preliminaries we will be dealing only with the multiplica-
tive structure of OX .

3.3 Definition. Let X be a dense subsemigroup of
(
(0, 1), ·

)
. Then KX is the smallest

ideal of (OX , ·).

As a consequence of Lemma 3.2 we obtain “for free” some important information
about members of multiplicative idempotents in KX . We first describe the “columns
condition” introduced by Rado [17] in his characterization of partition regularity of
homogeneous equations.

3.4 Definition. Let u, v ∈ N, let C be a u × v matrix with entries from R, and let
R be a subring of R. Then C satisfies the columns condition over R if the columns
~c1,~c2, . . . ,~cv of C can be ordered so that there exist m ∈ N and k1, k2, . . . , km in N with
1 ≤ k1 < ... < km = v such that

(1) Σk1i=1~ci = ~0 and,

(2) if m > 1, then for every t ∈ {2, 3, . . . ,m} we have a1,t, a2,t, . . . , ak+1,t in R with
Σkt

i=kt−1+1~ci = Σkt−1
i=1 ai,t~ci.

3.5 Theorem. Let X be a dense subsemigroup of
(
(0, 1), ·

)
and let p be a multiplicative

idempotent in KX . Let A ∈ p and let D = 〈dij〉 be a u× v matrix with entries from Z.

(a) If D satisfies the columns condition over Z, then there exist x1, x2, . . . , xv in A
such that for each i ∈ {1, 2, . . . , u}, Πv

j=1x
dij

j = 1.

(b) If X = (0, 1) and D satisfies the columns condition over Q, then there exist
x1, x2, . . . , xv in A such that for each i ∈ {1, 2, . . . , u}, Πv

j=1x
dij

j = 1.

Proof. Since p is an idempotent in KX , which is also the smallest ideal of (βXd, ·),
and A ∈ p, A is known as a “central” set in X. Then, after converting from additive
to multiplicative notation, condition (a) follows immediately from [13, Theorem 2.5(a)].
Also, if X = (0, 1), then for any n ∈ N, (0, 1) = {xn : x ∈ (0, 1)} so conclusion (b)
follows from [13, Theorem 2.5(b)].
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As an example, note that Theorem 3.5 tells us that whenever A is a member of
a multiplicative idempotent in KX , one has that A contains arbitrarily long geomet-
ric progressions, together with their increments. For example, to see that A contains
{r, a, ar, ar2, ar3}, consider the matrix

 1 1 −1 0 0
1 0 1 −1 0
1 0 0 1 −1

 .

We will be interested in showing that sets central in (X, ·), i.e. members of multi-
plicative idempotents in KX , also contain additive configurations (like arithmetic pro-
gressions).

3.6 Definition. LetD be a u×v matrix and letX be a dense subsemigroup of
(
(0, 1), ·

)
.

Then UX,D = {p ∈ OX : for all A ∈ p there exist x1, x2, . . . , xv in A with D~x = ~0}.

3.7 Lemma. Let D be a u × v matrix and let X be one of D ∩ (0, 1), Q ∩ (0, 1), or
(0, 1). Then if either

(1) the entries of D are rational and D satisfies the columns condition over Q or

(2) the entries of D are real, D satisfies the columns condition over R, and X =
(0, 1),

then UX,D is a two-sided ideal of (OX , ·) and a subsemigroup of (OX ,+).

Proof. Let V = {p ∈ βXd : for all A ∈ p, there exists x1, x2, . . . , xv in A such that
D~x = ~0} (so UX,D = V ∩OX). We first show that if V 6= ∅, then V is a two-sided ideal
of (βXd, ·). Indeed, let p ∈ V and let q ∈ βXd. To see that q · p ∈ V , let A ∈ q · p and
pick y ∈ X such that y−1A ∈ p. Then pick x1, x2, . . . , xv in y−1A such that D~x = ~0.
Then yx1, yx2, . . . , yxv are in A and Dy~x = ~0.

To see that p · q ∈ V , let A ∈ p · q and pick x1, x2, . . . , xv in {x ∈ X : x−1A ∈ q}
with D~x = ~0. Pick y ∈

⋂v
i=1 x

−1
i A. Then yx1, yx2, . . . , yxv are in A and Dy~x = ~0.

Thus if V 6= ∅, then UX,D = V ∩ OX is a two sided ideal of (Xd, ·) and hence
of (OX , ·), by Lemma 3.2. Thus in particular, if V 6= ∅, then UX,0 6= ∅. To see that
under this assumption (UX,D,+) is a semigroup, let p, q ∈ UX,D and let A ∈ p+ q. Pick
x1, x2, . . . , xv in {x : −x+A ∈ q} such that D~x = ~0. Pick y1, y2, . . . , yv ∈

⋂v
i=1(−xi+A)

such that D~y = ~0. Then x1 + y1, x2 + y2, . . . , xv + yv are in A and D(~x+ ~y) = ~0 .

Consequently, it suffices to show that V 6= ∅. By [7, Theorem 6.2.3] it in turn
suffices to show that whenever X is partitioned into finitely many cells, ones of them
contains x1, x2, . . . , xv with D~x = 0.
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If D satisfies the columns condition over Q then by [17, Theorem VII] D is partition
regular over N so by compactness (see [7, Section 1.5]) given any r ∈ N, there is some
n(r) ∈ N so that whenever {1, 2, . . . , n(r)} is r-colored there is a monochrome solution
to D~x = ~0. Picking k with 2k > n(r) one has { 1

2k , 2
2k ,..., n(r)

2k } ⊆ X and whenever
{ 1

2k , 2
2k ,..., n(r)

2k } is r-colored there must be a monochrome solution to D~x = ~0.

The proof in case (2) is similar. Again by [17, Theorem VII] D is partition regular
over R+ = {x ∈ R : x > 0} so given r ∈ N there is a finite subset F of R+ such that
whenever F is r-colored there is a monochrome solution to D~x = ~0. Pick n > maxF .
Then whenever { xn : x ∈ F} is r-colored there is a monochrome solution to D~x = ~0.

3.8 Definition. L = {p ∈ O(0,1) : for all A ∈ p, d(A) > 0}.

3.9 Lemma. L is a left ideal of (O(0,1), ·).

Proof. It is an easy exercise to show that if d(A ∪ B) > 0 then either d(A) > 0 or
d(B) > 0. Consequently, by [7, Theorem 6.2.3], we have L 6= ∅.

Let p ∈ L and let q ∈ O(0,1). To see that q · p ∈ L, let A ∈ q · p and pick x such
that x−1A ∈ p. Another easy exercise establishes that d(A) = d(x−1A) > 0.

The next theorem, and its Baire analogue, Theorem 3.13, are the ones that allow
us to obtain our combined additive and multiplicative results.

3.10 Theorem. Let p be a multiplicative idempotent in L and let A be a measurable
member of p. Then {x ∈ A : x−1A ∈ p and A− x ∈ p} ∈ p.

Proof. Let B = {x ∈ A : x−1A ∈ p}. Then B ∈ p since p = p · p. Let C = {y ∈ A : y
is not a density point of A}. By Lemma 2.3, µ(C) = 0. Consequently since p ∈ L,
C /∈ p so B\C ∈ p. We claim that B\C ⊆ {x ∈ A : x−1A ∈ p and A − x ∈ p}.
Indeed, given x /∈ C one has 0 is a density point of A − x so by an easy computation,
d
(
(0, 1)\(A− x)) = 0 so (0, 1)\(A− x) /∈ p so A− x ∈ p.

3.11 Definition. B = {p ∈ O(0,1) : for all A ∈ p, A is Baire large}.

3.12 Lemma. B is a left ideal of (O(0,1), ·).

Proof. Since the union of finitely many meager sets is meager, one sees easily that
whenever (0, 1) is partitioned into finitely many sets, one of them is Baire large. Con-
sequently, by [7, Theorem 6.2.3], it follows that {p ∈ β(0, 1)d : for all A ∈ p, A is Baire
large} 6= ∅. On the other hand, if p ∈ β(0, 1)d\O(0,1) one has some (ε, 1) ∈ p and (ε, 1)
is not Baire large. Thus B 6= ∅ . To see that B is a left ideal of O(0,1), let p ∈ B
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and q ∈ O(0,1) and let A ∈ q · p. Pick x ∈ (0, 1) such that x−1A ∈ p. Given ε > 0,
x−1A ∩ (0, ε) is not meager and A ∩ (0, xε) ⊆ A ∩ (0, ε).

3.13 Theorem. Let p be an idempotent in B and let A be a Baire set which is a member
of p. Then {x ∈ A : x−1A ∈ p and A− x ∈ p} ∈ p.

Proof. Let B = {x ∈ A : x−1A ∈ p}. Then since p = p · p, B ∈ p. Also A is a Baire
set so pick an open set U and a meager set M such that A = U∆M . Now M\U is
meager so M\U /∈ p so U\M ∈ p. We claim (U\M) ∩ B ⊆ {x ∈ A : x−1A ∈ p and
A − x ∈ p}. So let x ∈ (U\M) ∩ B and pick ε > 0 such that (x, x + ε) ⊆ U . To
see that A − x ∈ p, we observe that (0, 1)\(A − x) is not Baire large. Indeed one has(
(0, 1)\(A − x)

)
∩ (0, ε) ⊆ M − x, a meager set. (Given y ∈ (0, ε), y + x ∈ U so, if

y + x /∈ A, then y + x ∈M .)

We thank A. Blass for pointing out that B∩L = ∅. Indeed, as is well known (see eg.
[14, Theorem 1.6]), there is a set A ⊆ (0, 1) which is meager such that µ((0, 1)\A) = 0.
Then B ∩ c`A = ∅ and L ⊆ c`A.

4. Ramsey Theory Near 0 in (0, 1).

We begin by defining the kinds of combined additive and multiplicative configura-
tions that we shall produce in one cell of a measurable or Baire partition of (0,1). The
notation “FSP” stands for “finite sums and products” and σ(x) is intended to be the
“support” of x. We remind the reader that Pf (N) is the set of finite nonempty subsets
of N.

4.1 Definition. Let 〈Gn〉∞n=1 be a sequence of finite subsets of (0, 1). We define

FSP (〈Gn〉∞n=1) and σ : FSP (〈Gn〉∞n=1) → P
(
Pf (N)

)
inductively to consist of only those objects obtainable by iteration of the following:

(1) If m ∈ N and x ∈ Gm, then x ∈ FSP (〈Gn〉∞n=1) and {m} ∈ σ(x) .
(2) If x, y ∈ FSP (〈Gn〉∞n=1), F ∈ σ(x), H ∈ σ(y), and maxH < minF , then

{y · x, y + x} ⊆ FSP (〈Gn〉∞n=1) and F ∪H ∈ σ(y + x) and F ∪H ∈ σ(y · x).

For example, if each Gn = {xn} and z =
(
(x1 + x3) · x5 + (x7 + x9) · x11

)
· x12 · x13

then z ∈ FSP (〈Gn〉∞n=1) and {1, 3, 5, 7, 9, 11, 12, 13} ∈ σ(z). (Of course, it is also
possible that z = x4 + x12 · x13, in which case also {4, 12, 13} ∈ σ(z).) Note also that
(x3 + x5) · (x2 + x4) is not, in general, a member of FSP (〈Gn〉∞n=1).

In the case that Gn = {xn}, we write FSP (〈xn〉∞n=1) rather than FSP (〈{xn}〉∞n=1).
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Given a partition of (0, 1) all of whose cells are Baire sets (or all of whose cells
are measurable) we are after the result that we can get a sequence 〈xn〉∞n=1 with
FSP (〈xn〉∞n=1) contained in one cell of the partition. Unfortunately, we don’t quite
get this result, obtaining instead arbitrarily close approximations to it. To be precise,
we define below the notions FSPk(〈xn〉∞n=1) for each k ∈ N ∪ {0} in such a way that
FSP (〈xn〉∞n=1) =

⋃∞
k=0 FSPk(〈xn〉∞n=1) and get one cell A of the partition so that for

each k ∈ N, FSPk(〈xn〉∞n=k) ⊆ A.

4.2 Definition. Let α ∈ N ∪ {∞} and let 〈Gn〉αn=1 be a sequence of finite subsets of
(0, 1). We define

FSPk(〈Gn〉αn=1) and σk : FSPk(〈Gn〉αn=1) → P
(
(Pf ({n ∈ N : n ≤ α})

)
inductively to consist of only those objects obtainable by iteration of the following:

(1) FSP0(〈Gn〉αn=1) =
⋃α
n=1Gn and if n ∈ N, n ≤ α, and x ∈ Gn, then {n} ∈ σ0(x).

(2) If k ∈ N∪{0}, x ∈ FSPk(〈Gn〉αn=1), and F ∈ σk(x), then x ∈ FSPk+1(〈Gn〉αn=1)
and F ∈ σk+1(x).

(3) If k ∈ N ∪ {0}, x ∈ FSPk+1(〈Gn〉αn=1), y ∈ FSPk(〈Gn〉αn=1), F ∈ σk+1(x),
H ∈ σk(y), and maxH < minF , then {y · x, y + x} ⊆ FSPk+1(〈Gn〉αn=1) and F ∪H ∈
σk+1(y + x) and F ∪H ∈ σk+1(y · x).

To return to the example above, (x1 + x3) · x5 ∈ FSP2(〈xn〉∞n=1) but need not be
in FSP1(〈xn〉∞n=1), while x1 + x3 · x5 ∈ FSP1(〈xn〉∞n=1). We leave it as an exercise to
determine the first k for which z =

(
(x1 + x3) · x5 + (x7 + x9) · x11

)
· x12 · x13 must be

in FSPk(〈xn〉∞n=1). At any rate, we have the following lemma whose routine proof we
omit.

4.3 Lemma. Let 〈Gn〉∞n=1 be a sequence of subsets of (0, 1). Then FSP (〈Gn〉∞n=1) =⋃∞
k=0 FSPk(〈Gn〉∞n=1).

4.4 Definition. G = {S : S is a set of finite subsets of (0, 1) and for every p = p · p in
K(0,1) and every A ∈ p there exists G ∈ S such that G ⊆ A.}

We pause to observe that G is a large collection.

4.5 Theorem. Let D be a u× v matrix with real entries.
(a) If the entries of D are integers and D satisfies the columns condition over Q,

then
{
{x1, x2, . . . , xv} : for each i ∈ {1, 2, . . . , u}, Πv

j=1x
dij

j = 1
}
∈ G.

(b) If D satisfies the columns condition over R then
{
{x1, x2, . . . , xv} : for each

i ∈ {1, 2, . . . , u}, Σvj=1dij · xj = 0
}
∈ G.
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Proof. (a) This follows immediately from Theorem 3.5(b).

(b) By Lemma 3.7 we have that U(0,1),D is a two sided ideal of (O(0,1), ·) and hence
K(0,1) ⊆ U(0,1),D.

Thus p ∈ U(0,1),D.

In the following theorem we choose Sn ∈ G. One could, for example, let for each n,

S2n = {{a, d, a+ d, a+ 2d, . . . , a+ nd} ∩ (0, 1) : a, d ∈ (0, 1)}

and

S2n+1 = {{a, r, ar, ar2, . . . , arn} : a, r ∈ (0, 1)}.

One thus obtains, in the special sets A, arithmetic and geometric progressions of every
length as well as all sums and all products (and some combined sums and products)
choosing at most one from each progression. (See [1], [2], and [3] for additional examples
of the kinds of monochrome expressions that one can guarantee.)

4.6 Theorem. For each n ∈ N, let Sn ∈ G. Let p = p · p in B ∩K(0,1). If A ∈ p and
A is a Baire set, then there exists a choice of Gn ∈ Sn for each n such that for each
k ∈ N, FSPk(〈Gn〉∞n=k) ⊆ A.

Proof. Let A1,0 = A and inductively let A1,t+1 = {x ∈ A1,t : x−1A1,t ∈ p and
A1,t − x ∈ p}. By Theorem 3.13 A1,2 ∈ p so, since p ∈ K(0,1) there is some G1 ∈ S1

with G1 ⊆ A1,2. Let A2,0 = A1,2 ∩
⋂
x∈G1

(
x−1A1,1 ∩ (A1,1 − x)

)
and note that A2,0 is

Baire and A2,0 ∈ p.
Inductively, given An,0 a Baire set such that An,0 ∈ p, let for each t ∈ {0, 1, . . . , n},

An,t+1 = {x ∈ An,t : x−1An,t ∈ p and An,t − x ∈ p}. By Theorem 3.13 An,n+1 ∈ p

so pick Gn ∈ Sn with Gn ⊆ An,n+1. For r ∈ {1, 2, . . . , n} and k ∈ {0, 1, . . . , r}, let
Hn,k,r = {z ∈ FSPk(〈Gt〉nt=1) : there exists F ∈ σk(z) such that maxF = n and
minF = r}. Let An+1,0 = An,n+1 ∩

⋂n
r=1

⋂r
k=0

⋂
z∈Hn,k,r

(
z−1An,n−k ∩ (An,n−k − z)

)
.

(Observe that FSP1(〈Gt〉1t=1) = FSP2(〈Gt〉1t=1) = G1 so that the definition here agrees
with the definition given above for A2,0.)

Then An+1,0 is a Baire set. To see that An+1,0 ∈ p it suffices to show that
(*) for each r ∈ {1, 2, . . . , n}, k ∈ {0, 1, . . . , r}, and z ∈ Hn,k,r, z ∈ Ar,r−k+1.
We show this by induction on |F | where F ∈ σk(z), maxF = n, and minF = r.
If |F | = 1, then F = {n}, r = n and z ∈ Gn ⊆ An,n+1 ⊆ An,n−k+1 = Ar,r−k+1.
Now assume |F | > 1 and the claim is true for smaller values of |F |. We proceed
by induction on k. If k = 0, then F ∈ σ0(z) so F = {n}, a case we have already
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handled. So assume k > 0. If F ∈ σk(z) because of clause (2) of Definition 4.2,
then z ∈ Hn,k−1,r ⊆ Ar,r−k+2 ⊆ Ar,r−k+1. So we may assume that we have some
x ∈ FSPk(〈Gt〉nt=1), y ∈ FSPk−1(〈Gt〉nt=1), L ∈ σk(x), and H ∈ σk−1(y) such that
maxH < minL, z ∈ {y + x, y · x} and F = H ∪ L. Let ` = maxH and let v = minL.
Then y ∈ H`,k−1,r so A`+1,0 ⊆ y−1Ar,r−k+1 ∩ (Ar,r−k+1 − y). Also, x ∈ Hn,k,v and
since |L| < |F |, Hn,k,v ⊆ Av,v−k+1 ⊆ A`+1,0 ⊆ y−1Ar,r−k+1 ∩ (Ar,r−k+1 − y) so that
{y + x, y · x} ⊆ Ar,r−k+1 as required.

The construction of the sequence 〈Gn〉∞n=1 is now complete. Let k ∈ N and let
z ∈ FSP (〈Gn〉∞n=k). Pick F ∈ σk(z) and let n = maxF and r = minF . Then
z ∈ Hn,k,r ⊆ Ar,r−k+1 ⊆ A.

4.7 Corollary. Let r ∈ N and let (0, 1) =
⋃r
i=1Ai. If each Ai is a Baire set, then there

exists i ∈ {1, 2, . . . , r} such that given any choice of Sn ∈ G(0,1) for n ∈ N there exists a
choice of Gn ∈ Sn such that for each k ∈ N, FSPk(〈Gn〉∞n=k) ⊆ Ai.

Proof. By Lemma 3.12 B is a left ideal of (O(0,1), ·) so (see [5, Theorem 1.3.11]) there
a multiplicative idempotent p ∈ B ∩K(0,1). Pick i such that Ai ∈ p and apply Theorem
4.6.

In particular we have the following corollary.

4.8 Corollary. Let r ∈ N and let (0, 1) =
⋃r
i=1Ai. If each Ai is a Baire set, then there

exist i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 such that for each k ∈ N, FSP (〈xn〉∞n=1) ⊆
Ai.

In the case of a Lebesgue measurable partition, just as with the elementary results,
we will obtain the stronger conclusion that for each k ∈ N, c`RFSPk(〈Gn〉∞n=k) ⊆
Ai ∪ {0}. In particular AS(〈Gn〉∞n=1) = {Σn∈Ixn : ∅ 6= I ⊆ N and for each n ∈ I,
xn ∈ Gn} ⊆ Ai.

4.9 Theorem. For each n ∈ N, let Sn ∈ G. Let p = p · p in L∩K(0,1). If A ∈ p and A
is measurable then there exists a choice of Gn ∈ Sn for each n such that for each k ∈ N
c`RFSPk(〈Gn〉∞n=k) ⊆ A ∪ {0}.

Proof. Since A ∈ p and p ∈ L, one has µ(A) > 0. Pick by Lemma 2.11 some B ⊆ A

such that B ∪ {0} is compact and d(A\B) = 0. Then A\B /∈ p so B ∈ p.
Now proceeding identically as in the proof of Theorem 4.6, using Theorem 3.10 in

place of Theorem 3.13, one obtains 〈Dn〉∞n=1 with FSPk(〈Dn〉∞n=k) ⊆ B for each k ∈ N.
Since B ∪ {0} is compact, one has c`RFSPk(〈Dn〉∞n=k) ⊆ B ∪ {0} ⊆ A ∪ {0}.
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4.10 Corollary. Let r ∈ N and let (0, 1) =
⋃r
i=1Ai. If each Ai is measurable, then

there exists i ∈ {1, 2, . . . , r} such that given any choice of Sn ∈ G(0,1) for n ∈ N there
exists a choice of Gn ∈ Sn such that for each k ∈ N, c`RFSPk(〈Gn〉∞n=k) ⊆ Ai ∪ {0}.

Proof. By Lemma 3.9, L is a left ideal of O(0,1) so there is a multiplicative idempotent
p ∈ L ∩K(0,1). Pick i such that Ai ∈ p and apply Theorem 4.9.

4.11 Corollary. Let r ∈ N and let (0, 1) =
⋃r
i=1Ai. If each Ai is measurable, then

there exist i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 such that c`RFSP (〈xn〉∞n=1) ⊆
Ai ∪ {0}.

In contrast with the results of [4], some of the results we obtained here are weaker
for Baire partitions than for measurable partitions. We do not know how much remains
true for Baire partitions. For instance, we have the following question.

4.12 Question. Let r ∈ N and let (0, 1) =
⋃r
i=1Ai. If each Ai is a Baire set,

must there exist i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 such that for each k ∈ N,
c`RFSPk(〈xn〉∞n=k) ⊆ Ai ∪ {0}?

If A is measurable and d(A) = 1, then L ⊆ c`A so we get immediately from
Theorem 4.9 (or, by revising the proof, from Theorem 2.17) that one can get a sequence
〈xn〉∞n=1 with FS(〈xn〉∞n=1) ∪ FP (〈xn〉∞n=1) ⊆ A. On the other hand, given any α > 0
there is a set A with d(A) > 1−α such that for any x, y ∈ A, x · y /∈ A. To see this, let
b1 = α. Inductively, given bn, let an = bn ·α and let bn+1 = an

2. Let A =
⋃∞
n=1(an, bn)

and let x ≤ y be members of A. Pick n such that an < x < bn. Then an < y < b1 = α

so bn+1 = an
2 < x · y < α · bn = an.

4.13 Question. Can one replace c`RFSPk(〈Gn〉∞n=k) in Theorem 4.9 by
c`RFSP (〈Gn〉∞n=1)?

5. Ramsey Theory Near 0 in the Rationals
and the Dyadic Rationals.

In this section we obtain results for Q ∩ (0, 1) (and indeed for (D ∩ (0, 1)) that
are much weaker than the results of Section 4 for (0, 1). These results yield separate
sequences for sums and products. We also show that, at least in the case of D ∩ (0, 1),
the stronger conclusions are not possible.

5.1 Definition. Let 〈Gn〉∞n=1 be a sequence of finite subsets of (0, 1).
(a) FS(〈Gn〉∞n=1) = {Σn∈Fxn : F is a finite nonempty subset of N and for each

n ∈ F , xn ∈ Gn}.

21



(b) FP (〈Gn〉∞n=1) = {Πn∈Fxn : F is a finite nonempty subset of N and for each
n ∈ F , xn ∈ Gn}.

We stated the results in Theorems 4.6 and 4.9 in terms of choices from G because
one cannot enumerate the matrices with coefficients from R that satisfy the columns
condition over R. In the current context we have no such problem.

5.2 Definition. Fix an enumeration 〈Dn〉∞n=1 of the matrices with rational coefficients
that satisfy the columns condition over Q so that 〈D2n〉∞n=1 enumerates the matrices
with integer entries that satisfy the columns condition over Z. For each n ∈ N, pick
(u(n), v(n)) ∈ N× N such that Dn is a u(n)× v(n) matrix. For each n ∈ N, let

(a) Rn =
{
{x1, x2, . . . , xv(n)} ⊆ D : Dn~x = ~0

}
and

(b) Sn =
{
{x1, x2, . . . , xv(2n)} ⊆ D : for each i ∈ {1, 2, . . . , u(2n)}, Πv(2n)

j=1 x
dij

j = 1
}

where D2n = 〈dij〉.

In the following lemma, note that we are not yet claiming that there is an additive
idempotent in

⋂∞
n=1 UX,Dn . (Recall Definition 3.6.)

5.3 Lemma. Let X = D ∩ (0, 1), let p be an additive idempotent in
⋂∞
n=1 UX,Dn , and

let A ∈ p. Then there is a choice of Gn ∈ Rn for each n such that FS(〈Gn〉∞n=1) ⊆ A.

Proof. This is a simplified version of the proof of Theorem 4.6. Let A1 = A and
let B1 = {x ∈ X : −x + A1 ∈ p}. Then B1 ∈ p and p ∈ UX,Dn so pick G1 ∈ R1

with G1 ⊆ B1 and let A2 = A1 ∩ ∩x∈G1(−x + A1). Inductively given An ∈ p, let
Bn = {x ∈ X : −x + An ∈ p} and pick Gn ∈ Rn with Gn ⊆ Bn and let An+1 =
An ∩ ∩x∈Gn(−x+An). One then shows by induction on |F | that if m = minF and for
each n ∈ F , xn ⊆ Gn, then Σn∈Fxn ∈ Am.

5.4 Lemma. Let X = (0, 1) ∩ D, let p be a multiplicative idempotent in KX , and let
A ∈ p. Then there is a sequence 〈Hn〉∞n=1 such that FP (〈Hn〉∞n=1) ⊆ A and for each
n ∈ N, H2n ∈ Sn and H2n−1 ∈ Rn.

Proof. Observe that by Theorem 3.5 one has for each B ∈ p and each n ∈ N some
H ∈ Sn with H ⊆ B. Further, by Lemma 3.7, one has that

⋂∞
n=1 UX,Dn

is a two sided
ideal of (OX , ·) so that KX ⊆

⋂∞
n=1 UX,Dn

.
Thus for each B ∈ p and each n ∈ N one has some H ∈ Rn with H ⊆ B.

Now let A1 = A, let B1 = {x ∈ X : x−1A1 ∈ p}, and pick H1 ∈ R1 with H1 ⊆ B1.
Let A2 = A1∩∩x∈H1(x

−1A1). Inductively given An ∈ p, let Bn = {x ∈ X : x−1A1 ∈ p}.
If n = 2m, pick Hn ∈ Sm with Hn ⊆ Bn. If n = 2m− 1, pick Hn ∈ Rm with Hn ⊆ Bn.
Let An+1 = An ∩

⋂
x∈Hn

(x−1An).
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One then verifies as before that FP (〈Hn〉∞n=1) ⊆ A.

Now we worry about finding additive idempotents in
⋂∞
n=1 UX,Dn

that are located
near KX .

5.5 Lemma. Let X = (0, 1) ∩ D and let M = {p : p + p = p and p ∈
⋂∞
n=1 UX,Dn

}.
Then c`M is a left ideal of (OX , ·).

Proof. Since (by Lemma 3.7) KX ⊆
⋂∞
n=1 UX,Dn

we have
⋂∞
n=1 UX,Dn

6= ∅ so by
Lemma 3.7 one has

⋂∞
n=1 UX,Dn

is a subsemigroup of (OX ,+). Since also each UX,Dn
is

closed, as one sees easily from the form of its definition, one has
⋂∞
n=1 UX,Dn

is compact
and thus contains an additive idempotent. Consequently, M 6= ∅. To see that c`M is
a left ideal of (OX , ·) let q ∈ c`M and let r ∈ OX . Let A ∈ r · q and pick x ∈ X such
that x−1A ∈ q. Since x−1A ∈ q (so c`(x−1A) is a neighborhood of q) one has some
p ∈ c`(x−1A) ∩

⋂∞
n=1 UX,Dn

with p+ p = p. Then x−1A ∈ p so A ∈ x · p = x · p+ x · p.
Further, as was shown in the proof of Lemma 3.7, each UX,Dn

is a left ideal of (βXd, ·)
so x · p ∈

⋂∞
n=1 UX,Dn

. Thus c`A ∩M 6= ∅.

The following is the main (affirmative) result of the section. Note that of course it
immediately implies that corresponding statements hold for (0, 1) and for (0, 1) ∩Q.

5.6 Theorem. Let X = (0, 1) ∩ D, let r ∈ N, and let X =
⋃r
i=1Ai. Then there exists

i ∈ {1, 2, . . . , r} and for each n ∈ N there exist choices of Gn ∈ Rn, H2n ∈ Sn, and
H2n−1 ∈ Rn with FS(〈Gn〉∞n=1) ∪ FP (〈Hn〉∞n=1) ⊆ Ai.

Proof. Let M = {p : p + p = p and p ∈
⋂∞
n=1 UX,Dn

}. Then by Lemma 5.5, c`M is
a left ideal of (OX , ·) so c`M ∩KX is a left ideal which thus contains a multiplicative
idempotent q. Pick i ∈ {1, 2, . . . , r} such that Ai ∈ q. Now q ∈ c`M and c`Ai is a
neighborhood of q so pick p = p + p ∈

⋂∞
n=1 UX,Dn

with Ai ∈ p. Since Ai ∈ p apply
Lemma 5.3 to get the sequence 〈Gn〉∞n=1. Since Ai ∈ q apply Lemma 5.4 to get the
sequence 〈Hn〉∞n=1.

5.7 Corollary. Let X = (0, 1) ∩ D, let r ∈ N, and let X =
⋃r
i=1Ai. Then there exists

i ∈ {1, 2, . . . , r} and sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 in X such that FS(〈xn〉∞n=1) ∪
FP (〈yn〉∞n=1) ⊆ Ai.

We conclude by showing that one cannot get a combined sums and products result
like those in Corollaries 4.7 and 4.10 for an arbitrary finite partition of D.

5.8 Definition. Let 〈xn〉∞n=1 be a sequence in R.
(a) FS(〈xn〉∞n=1) = {Σn∈Fxn : F is a finite nonempty subset of N}.
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(b) FP (〈xn〉∞n=1) = {Πn∈Fxn : F is a finite nonempty subset of N}.
(c) PP (〈xn〉∞n=1) = {xn · xm : n,m ∈ N and n 6= m}.

Thus FS(〈xn〉∞n=1) as defined in Definition 5.8 and FS(〈{xn})∞n=1) as defined in
Definition 5.1 are identical, and similarly for FP .

Our final result states that, for partitions of D∩(0, 1), or even of the whole of D\{0},
one cannot guarantee to find a sequence 〈xn〉∞n=1 with FS(〈xn〉∞n=1)∪FP (〈xn〉∞n=1) con-
tained in one cell. In fact, one cannot even guarantee to find FS(〈xn〉∞n=1)∪PP (〈xn〉∞n=1)
contained in one cell.

In the proof, when we talk of a “coloring” we mean a function to a finite set. In
this case the members of the finite set will typically be k-tuples of natural numbers, for
various k.

5.9 Theorem. There exists a finite partition D\{0} =
⋃r
i=1Ai such that there do not

exist i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 with FS(〈xn〉∞n=1) ∪ PP (〈xn〉∞n=1) ⊆ Ai.

Proof. We start by giving a coloring for just D ∩ (0, 1): this will contain some of the
ideas to be used in the general case. For x ∈ D ∩ (0, 1), write

x =
∑
i∈I

2−i,

where I is a finite subset of N = {1, 2, 3, . . .}. The start of x is s = min I, and the
end of x is e = max I. If x is not a power of 2 (in other words, if |I| ≥ 2) then we
say that the type t of x is 1 if e − 1 ∈ I and 0 if e − 1 6∈ I. The previous point p
of an x that is not a power of 2 is max {1 ≤ i ≤ e− 1 : i ∈ I} if x is of type 0 and
max {0 ≤ i ≤ e− 1 : i 6∈ I} if x is of type 1, and the gap length of x is g = e− p. Thus
we always have g ≥ 2. Finally, if x is not a power of 2 then the ratio r of x is 1 if g > s

and 0 if g ≤ s.
We now color D ∩ (0, 1) by giving x the color c(x) = (t, gmod2, r) if x is not a

power of 2 and c(x) = 0 (say) if x is a power of 2. Thus we are coloring D ∩ (0, 1) with
9 colors.

We claim that, for the coloring c, there is no sequence (xn)∞n=1 with FS((xn)) ∪
PP ((xn)) monochromatic. Indeed, suppose to the contrary that (xn) is such a sequence.
Since all finite sums must belong to (0, 1), we have xn → 0 as n → ∞. In particular,
the xi are not powers of 2 (since the sum of two distinct powers of 2 is not a power of
2).

Now, since xn → 0, we certainly have s(xn) →∞ and e(xn) →∞. We claim that,
in addition, we have g(xn) → ∞. For if this is not the case then we can find infinitely

24



many xn with a common value of g(xn), and hence there certainly exist distinct m
and n such that g(xm) = g(xn) and either p(xm) − 1 6∈ I(xm), p(xn) − 1 6∈ I(xn) or
p(xm) − 1 ∈ I(xm), p(xn) − 1 ∈ I(xn). However, in each case it is easy to check that
we have g(xmxn) = g(xn) + 1 (whether the type of all the xn is 0 or 1), contradicting
c(xmxn) = c(xn).

Because s(xn) →∞, it follows that r(x1+xn) = 1 for n sufficiently large. However,
it is also clear that r(x1xn) = 0 for n sufficiently large, a contradiction as required.

We now turn to the more general case of the dyadics. It is enough to give a coloring
for the positive dyadics D+, since we may then extend to D by giving all negative dyadics
a different color: the fact that all xn and all xnxm have the same color then forces all
xn to be positive. Our aim is, roughly speaking, to use new colors to force enough
conditions onto a sequence (xn) that we can somehow argue as for D ∩ (0, 1).

For a finite subset I of N, let us put c(I) = −1 if I is empty. If I is not empty,
put s(I) = min I, and if |I| = 1 then put c(I) = smod2. If |I| ≥ 2, we define c(I)
as follows. Put e(I) = max I, and define t(I), p(I), g(I) and r(I) as before. Also, let
the parity q(I) of I be 1 if 1 ∈ I and 0 if 1 6∈ I. Finally, let the zero-start of I be
z(I) = min {i ∈ N : i 6∈ I}, and let the opposite ratio u(I) of I be 1 if g > z and 0 if
g ≤ z. Define c(I) = (smod2, emod2, t, gmod2, l, q, zmod2, u).

For x ∈ D+, write
x =

∑
i∈J

2i−1 +
∑
i∈I

2−i,

where I and J are finite subsets of N. Color D+ by giving x the color c(x) = (c(J), c(I)).
We will often write eg. s+(x) for s(J(x)), and similarly s−(x) for s(I(x)).

We claim that this is a suitable coloring of D+. Indeed, suppose to the contrary
that there is a sequence (xn)∞n=1 in D+ such that the set FS((xn)) ∪ PP ((xn)) is
monochromatic.

We cannot have J(x1) = ∅, because then xn → 0, and so we would be done by the
argument for D∩ (0, 1). Can we have I(x1) = ∅? If so, then we must have s+(xn) →∞,
for otherwise we could find distinct m and n with s+(xm) = s+(xn) (= s, say) and
s + 1 6∈ J(xm) 4 J(xn), and this implies s(xm + xn) = s + 1, a contradiction. But,
given s+(xn) → ∞, we may argue for J in a manner similar to the argument for I in
the D ∩ (0, 1) case, arriving at a contradiction.

Thus we now know that I(x1) 6= ∅ and J(x1) 6= ∅. We must have e+(xn) → ∞,
because if e+(xm) = e+(xn) then e+(xm + xn) = e+(xm) + 1. We must also have
e−(xn) → ∞. Indeed, if this is not the case then we can find distinct m and n with
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e−(xm) = e−(xn) (=e, say) and e−1 6∈ I(xm)4 I(xn). But this implies e−(xm+xn) =
e− 1, a contradiction.

It follows immediately that I(x1) cannot be a singleton, because I(x1 + xn) is
certainly not a singleton, for n sufficiently large. Similarly, J(x1) is not a singleton.
Thus we may assume from now on that |I(xn)|, |J(xn)| ≥ 2 for all n.

We now turn to the parity of J(x1). If p+(x1) = 0 then we must have s−(xn) →∞,
for otherwise some finite sum x of the xn would have p+(x) = 1, and we must also have
s+(xn) →∞, for otherwise we could find, as above, distinctm and n with s+(xm+xn) =
s+(xm)+1 (by choosing m and n with s+(xm) = s−(xn) and s+(xm) 6∈ J(xm)4J(xn)).
Similarly, if p+(x1) = 1 then we must have z−(xn) →∞ and also z+(xn) →∞.

Now, just as for D ∩ (0, 1), we certainly have g−(xn) → ∞. Hence in the case
p+(x1) = 0 we have r−(x1 +xn) = 1 and r−(x1xn) = 0 for n sufficiently large (whether
the type of all the I(xn) is 0 or 1), a contradiction. And in the case p+(x1) = 1 we have
u−(x1 + xn) = 1 and u−(x1xn) = 0 for n sufficiently large, again a contradiction.

Unfortunately, we are not able to extend the above construction even to Q. However
we are willing to conjecture that it can be done.

5.10 Conjecture. There exists a finite partition Q\{0} =
⋃r
i=1Ai such that there do

not exist i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 with FS(〈xn〉∞n=1) ∪ FP (〈xn〉∞n=1) ⊆
Ai.

At least one of the authors is less confident about the situation with respect to R
so we conclude with the following.

5.11 Question. (a) Does there exist a finite partition R\{0} =
⋃r
i=1Ai such that there

do not exist i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 with FSP (〈xn〉∞n=1) ⊆ Ai?

(b) Does there exist a finite partition R\{0} =
⋃r
i=1Ai such that there do not exist

i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 with FS(〈xn〉∞n=1) ∪ FP (〈xn〉∞n=1) ⊆ Ai?

In view of Corollary 4.7, an affirmative answer to Question 5.11(a) could not be
a partition into sets with the property of Baire – one would thus expect that it would
involve some diagonal arguments (in other words, use of the Axiom of Choice).

We are grateful to A. Blass for making the above remark precise in a rather appeal-
ing way. There is a model M of ZF in which all sets of reals have the property of Baire.
(This was constructed by Shelah [18], following related work by Solovay [19]. The essen-
tial difference in the models is in the hypotheses used to construct them–Solovay used
an inaccessible cardinal while Shelah did not.) Now, of course AC fails in this model,
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so we cannot directly apply Corollary 4.7 in this model (since we have made heavy use
of AC in our proof of Corollary 4.7). However, what Shelah actually constructed was a
model of ZFC that contains the above model M as a transitive submodel with the same
set of reals. It can now be checked that we may pass from M to this model, and apply
Corollary 4.7 there. It follows that, in M , Question 5.11 has a negative answer. Thus
any example answering Question 5.11 in the affirmative must involve AC.
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