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Multiplications in Additive Compactifications of N and Z

Neil Hindman1, John Pym and Dona Strauss

ABSTRACT. There is a natural action (n, x) 7→ nx of (N, · ) on any semigroup (S, +).
When S is compact, there is always an extension to a map βN×S → S. When S has
additional properties, there are extensions to other familiar semigroup compactifica-
tions of N, for example wapN, apN and sapN ∼= bZ (the Bohr compactification of Z).
Special cases of these extensions yield multiplications ∗ on these compactifications.
The properties of multiplication, and its relationships with the natural addition, in
each compactification are discussed. In particular, (bZ,+, ∗ ) is a ring and its prop-
erties can often be pulled back to the other structures. The final section is devoted
to the enveloping semigroups (which are in fact rings) of the actions of Z on compact
groups. There turn out to be few possibilities: for example, if the group is not totally
disconnected, then the enveloping ring for the action n 7→ nx is just (bZ,+, ∗ ).

1. Introduction.

The theory of compactifications of the semigroup (N,+) has produced several impor-
tant compact semigroups, including βN, wapN, apN and sapN (definitions will be given
below); we shall denote the operation in each of these semigroups by + in the customary
fashion. There are corresponding compactifications of Z; the first two, βZ and wapZ, will
be of little concern to us in this paper. The compactifications apZ and sapZ both coincide
with the Bohr compactification bZ of Z, and in fact bZ is also identical with sapN.

The purpose of our paper is to investigate a binary operation ∗ defined on these
compact semigroups which is a natural extension of the operation of multiplication on
N. Multiplication, · , on N can also be extended to a different binary operation on βN,
where it provides a semigroup operation. A determining property of p · q for p, q ∈ βN is

p · q = lim
m→p

lim
n→q

m · n

(where m and n are restricted to lie in N and the order in which the limit operations
are taken is important). The algebraic structure (βN,+, · ) is difficult but interesting,
and does have important combinatorial applications [8]. However, the multiplication of N
does not seem to have been extended to the other compactifications. Indeed the formula
just given for the product in βN cannot be used to define a binary operation on wapN,
as we shall see in Theorem 5.4.

1This author acknowledges support received from the National Science Foundation (USA) via grant
DMS-0070593
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However, multiplication can be extended in another way. We could say that the
product mn of integers m and n simply means a sum of m copies of n:

m ∗ n = n+ n+ . . .+ n

(where we have used a different notation, ∗ , as the operations ∗ and · will not always
coincide in our compactifications). Below we shall show how the approach using the
operation ∗ does provide extensions of multiplication to all the above compactifications
of N and to bZ. In βN this new operation ∗ is different from · , but its relationship with
+ is hardly any more satisfactory. In wapN the situation is a little better in that the
associative law and one distributive law hold. In apN and bZ the operation ∗ coincides
with · and (bZ,+, ∗) is even a ring. We provide a detailed description of this ring and use
it to deduce properties of βN and wapN. Although bZ is very extensively studied we know
of no papers on its ring structure. This may be because topologically the multiplication
∗ is not so satisfactory. We shall point out the extent to which it is continuous.

The overall context of our work is a little more general than we have so far admitted.
We begin with any semigroup (S,+); as is often the case in this field, the use of the +
sign is not intended to imply that the operation is commutative, and we shall adhere to
this convention even when S is a non-commutative group. We consider the action of N
on S by

n ∗ x = x+ x+ . . .+ x

for n ∈ N, x ∈ S, where there are n occurrences of x on the right. Of course, n ∗ x would
usually be denoted by nx. If (S,+) is a group, x 7→ n ∗ x is well-defined for n ∈ Z and
determines an action of Z on S.

When S has a compact topology, for each x ∈ S the map

n 7→ n ∗ x

must have a continuous extension
q 7→ q ∗ x

from βN to S. In particular we can take (S,+) = (βN,+) and so produce a binary
operation ∗ on βN. In Theorem 2.1 we show how the properties of the ‘action’ ∗ of βN on
S depend on the continuity properties of the multiplication in S. We have put inverted
commas around the word action since the normal associative property (p∗q)∗x = p∗(q∗x)
does not always hold. In addition, for a given q ∈ βN, the map x 7→ q ∗ x from S to
itself can be discontinuous. This is even so when q = 2. Examples of situations where
this occurs are given in Theorems 6.1 and 5.1. Later theorems in §2 show that other
compactifications of N provide more satisfactory actions on S.

This approach to our topic suggests that we should look at the enveloping semigroups
for our actions of N on S, that is the pointwise closure in the set of all mappings from
S to itself of {x 7→ n ∗ x : n ∈ N}. Two answers are particularly interesting. When S
is a compact topological group, the enveloping semigroup is always a ring. It is the ring
(bZ,+, ∗) if S is not totally disconnected. So (bZ, ∗) arises naturally in this case as the
enveloping semigroup of the action of (N, · ) (or of (Z, · )) on S defined by the maps
x 7→ n ∗ x. The enveloping rings associated in this way with compact topological groups
which are totally disconnected, are precisely the quotients of the ring

∏
p primeAp, where

Ap denotes the ring of p-adic integers.
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Our semigroups will usually be right topological, that is, multiplication xy is continuous
in x for every fixed y. A few of our results do not require this hypothesis, and we shall then
refer to S as having a compact topology, with no continuity of multiplication implied. We
shall assume that all hypothesized topological spaces are Hausdorff. If X is a topological
space, Xd will denote X with the discrete topology.

We shall find it useful to use some of the terminology of semigroup theory for a binary
operation which is not assumed to be associative. Let � be a binary operation on a
topological space S. We shall say that � is right topological if the map x 7→ x � y is
continuous for each y ∈ S. In this case, we define the topological centre Λ(S, �) to be
the set of elements x ∈ S for which the map y 7→ x � y is a continuous map from S to
itself. If � and �′ are binary operations on the sets S and S ′ respectively, we shall say
that h : S → S ′ is a homomorphism from (S, �) to (S ′, �′) if h(x � y) = h(x) �′ h(y) for
every x, y ∈ S.

We regard βN as the set of ultrafilters on N, with the topology defined by taking the
sets of the form A = {p ∈ βN : A ∈ p}, where A ⊆ N, as a base for the open sets. Then
A = clβN(A). It is well known that the operations of addition and multiplication on N
extend to binary operations on βN, denoted by + and · respectively, for which (βN,+)
and (βN, · ) are right topological semigroups. (The extension of · is described by the
iterated limit formula above; see [8] for formal definitions of these operations.)

The organisation of this paper is as follows. We begin, in §2, and end, in §8, by
considering actions of N and Z on compact semigroups S. §2 is concerned with general
results about how the extension of these actions to compactifications depends on the
continuity properties of S. It ends with a ‘simultaneous idempotent theorem’, giving
conditions under which a compact set with two semigroup operations has an element
which is an idempotent for both (2.15). §8 develops the special theory when S is a group;
here the enveloping semigroups turn out to be rings of particular forms. Between come
a series of sections which discuss the properties of the multiplication ∗ in the various
compactifications. In §3, bZ is studied, and some detail is given about its ring structure.
The short §4 looks at apN. We know least about wapN; mainly negative results are given
in §5. §6 is devoted to βN. In §7 the properties of bZ are used to obtain corresponding
properties for most of the other compactifications.

2. Extending ∗ .

2.1 Theorem. Let (S,+) be a semigroup with a compact topology. Let (n, x) 7→ n∗x,
N× S → S be the action of N on S defined above.

(i) The action extends to a map ∗ : βN× S → S

(a) which is continuous in the left-hand (i.e. the βN) variable,

(b) and for which 1 ∗ x = x for all x ∈ S.

In particular, βN itself has a unique binary operation ∗ which is continuous in the
left-hand variable and extends the operation (n, q) 7→ n ∗ q for n ∈ N, q ∈ βN.
(βN, ∗) has the two-sided identity 1.

(ii) In addition, let (S,+) be separately continuous. Then also

3



(c) ∗ is distributive over + from the right (that is, for p, q ∈ βN and x ∈ S we have
(p+ q) ∗ x = p ∗ x+ q ∗ x),

(d) βN× S → S is an action in the sense that (p ∗ q) ∗ x = p ∗ (q ∗ x) for p, q ∈ βN
and x ∈ S.

(iii) In addition, let (S,+) be jointly continuous and abelian. Then also

(e) ∗ is distributive over + from the left (that is, for p ∈ βN and x, y ∈ S we have
p ∗ (x+ y) = p ∗ x+ p ∗ y).

Proof (i) is essentially in our introduction above, except for the fact that 1 is a right
identity for (βN, ∗). But this is easy, since for n ∈ N we have n ∗ 1 = 1 + 1 + . . .+ 1 = n,
and continuity gives the result. For (ii)(c) first observe that

(m+ n) ∗ x = x+ x+ . . .+ x = m ∗ x+ n ∗ x

for m,n ∈ N and x ∈ S where there are m+n x’s in the middle term. Now let n converge
to q and subsequently m converge to p; we get the required result on using continuity of
q′ 7→ m′ + q′ and of p′ 7→ p′ + q′ in (βN,+) and separate continuity in S. To prove (d)
begin by taking m ∈ N, q ∈ βN and x ∈ S. Then, using the distributive law we have just
established,

(m ∗ q) ∗ x = (q + q + . . .+ q) ∗ x = q ∗ x+ q ∗ x+ . . .+ q ∗ x = m ∗ (q ∗ x).

(d) follows on letting m→ p. For (iii)(e) we notice that for n ∈ N and x, y ∈ S,

n ∗ (x+ y) = x+ y+ x+ y+ . . .+ x+ y = x+ x+ . . .+ x+ y+ y+ . . .+ y = n ∗ x+n ∗ y,

since S is now commutative. Our result follows on letting n converge to p, using joint
continuity in S. �

The question of whether we have the right conditions in the above theorem arises.
What this means – for example, in the case of (c) – is, do we actually need S to be
separately continuous in order that the distributivity property should hold? In fact,
looking at this particular proof, we need only separate continuity of + in the subset
βN ∗ x for each x ∈ S. This condition does not seem in any way natural and it is not
obvious that it has a nice interpretation in terms of familiar theories.

2.2 Corollary. Let (S,+) be a semigroup with a compact topology. A subset of S
is an invariant subset for the ‘∗-action’ of βN if it is a union of closed subsemigroups of
(S,+). If (S,+) is separately continuous, the converse holds.

In particular, idempotents of (S,+) are minimal invariant subsets.

Proof. If x is in a closed subsemigroup T then n ∗ x ∈ T for all n ∈ N and so also
βN∗x ⊆ T . Any union of invariant subsets is invariant. If (S,+) is separately continuous
then for any x ∈ S the subset βN ∗ x is a semigroup from (ii)(c) of the Theorem, and it
is evidently closed. The conclusion follows. �

We say that a compact right topological semigroup (κΣ,+) is a semigroup compactifi-
cation of a semigroup (Σ,+) with a topology if there is a continuous homomorphism from
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Σ to κΣ for which the image of Σ is dense in κΣ and contained in its topological centre.
(Notice that the continuous homomorphism is not required to be an embedding, so a
semigroup compactification need not be a compactification in the topological sense.) We
shall say that a compactification κ1Σ is larger than another κ2Σ if there is a continuous
homomorphism π : κ1Σ → κ2Σ such that the composite Σ → κ1Σ → κ2Σ is just the map
Σ → κ2Σ.

If (κN,+) is a compactification of (N,+) and the canonical homomorphism N → κN
is not injective, easy algebraic arguments show that the image, and so also κN itself, is
finite. Including such cases leads to complications in proofs, though our results, in so
far as they are relevant in this situation, hold for reasons which are usually trivial. We
shall therefore consider only compactifications κN for which N → κN is injective. We
shall then make the simplifying assumption that N ⊆ κN. The reader should be warned
however that in one of the compactifications that we consider, namely κN = sapN, the
copy of N is not discrete in κN.

We shall be considering several different compactifications of the semigroup (N,+).
The first, βN, we have already looked at in Theorem 2.1. The second, (wapN,+), is
the largest in which the operation + is separately continuous. The third, (apN,+) is
the largest for which the operation + is jointly continuous, and the fourth, (sapN,+),
is the largest which is a compact topological group. Each of these compactifications is
larger than the succeeding one; we shall denote the natural surjective homomorphism
between the compactifications κ1N and κ2N by πκ1,κ2 . The canonical map N → sapN is
injective (and therefore the canonical maps into the other compactifications are injective)
because there is an injective homomorphism from N into the circle group T. (βN,+) is
not commutative, but (wapN,+) is, and so are all the others. For the existence of these
compactifications and the relationships between them, see [1] or [8].

In fact, (sapN,+) is identical with the Bohr compactification (bZ,+) (which can
be defined either as the largest compactification apZ of (Z,+) in which + is jointly
continuous, or as the largest compactification sapZ of (Z,+) which is a topological group;
these are easily seen to be the same). To prove this, recall the easy result that the closure
of a semigroup in a compact topological group is a subgroup. Then (i) (bZ,+) is larger
than (sapN,+) because (sapN,+) is a group compactification of N and is therefore a
topological group compactification of the group Z generated by N, and (ii) that (sapN,+)
is larger than (bZ,+) because the closure of the image of the map N → Z → bZ is a
compact subgroup of (bZ,+) containing Z and is therefore equal to bZ, which is thus a
topological group compactification of N. The canonical homomorphism κN → bZ will be
denoted by πκ,b.

2.3 Definition. Let (S,+) be a compact right topological semigroup. Let (κN,+)
be a semigroup compactification of (N,+). We say that ∗ extends to κN × S if for each
x ∈ S, the function n 7→ n ∗ x from N to S extends to a continuous function from κN to
S. In this case, if p ∈ κN, then p ∗ x will denote the value of this function at p. If (S,+)
is taken to be (κN,+) we say that the multiplication ∗ extends to κN.

Both extensions exist (for all S) when κN = βN as we saw above. We shall use this
fact in discussing extensions to other compactifications.

2.4 Proposition. (i) Let p ∈ βN, x ∈ S, and suppose ∗ extends to κN × S. Then
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p ∗ x = πβ,κ(p) ∗ x.
(ii) If the multiplication ∗ extends to κN then πβ,κ is a ∗-homomorphism.

Proof. (i) Take m ∈ N. The limit of m ∗ x ∈ S as m → p in βN is p ∗ x. But when
m → p, also m → πβ,κ(p) in κN. Since ∗ extends to κN × S the limit of m ∗ p is also
πβ,κ(p) ∗ x. Thus (i) is proved.

(ii) Observe that for q ∈ κN,

πβ,κ(m ∗ q) = πβ,κ(q + q + . . .+ q) = πβ,κ(q) + πβ,κ(q) + . . .+ πβ,κ(q) = m ∗ πβ,κ(q),

and then let m→ p, using (i). �

We now investigate how the operation ∗ behaves in each of our compactifications. We
deal with these semigroups separately.

2.5 Theorem. If (S,+) is a compact separately continuous semigroup the action
(n, x) 7→ n ∗ x of N on S extends to an action of wapN on S. By taking S = wapN we
obtain a structure (wapN,+, ∗) in which the operation ∗ is associative, distributes over
addition from the right, has an identity 1, is continuous in the left-hand variable (so that
(wapN, ∗) is a right topological semigroup), and 1 ∈ Λ(wapN, ∗).

Proof. We first show that ∗ extends to wapN × S → S. For each x ∈ S the map
n 7→ n ∗ x is a homomorphism from (N,+) to (S,+) because

(m+ n) ∗ x = x+ x+ . . .+ x = m ∗ x+ n ∗ x

where there arem+n x’s in the middle term, and the extension of this map to a continuous
homomorphism from wapN to S exists by the defining property of wapN. The properties
of this extension now follow from Theorem 2.1 and Proposition 2.4 because πβ,wap is
surjective (for example the distributive law follows directly from (p+ q) ∗x = p ∗x+ q ∗x
for p, q ∈ βN and x ∈ wapN on applying 2.4(i) to πβ,wap). That 1 ∈ Λ(wapN, ∗) is trivial
because 1 is a left identity. �

There is a parallel result for apN.

2.6 Theorem. If (S,+) is a compact jointly continuous semigroup the action (n, x) 7→
n∗x of N on S extends to an action of apN on S. By taking S = apN we obtain a structure
(apN,+, ∗) in which (apN, ∗) is a right topological semigroup with identity, ∗ distributes
over + on both sides, and N ⊆ Λ(apN, ∗).

Proof. The proof is exactly like that of Theorem 2.5, except that for the final part
we need to observe that since addition is jointly continuous in apN, the map

x 7→ n ∗ x = x+ x+ . . .+ x

is continuous for any n ∈ N. �

There is a minor subtlety in the next theorem. When (S,+) is a group, besides
the action ∗ of N on S there is a natural action ∗ of Z on S, which we again denote
by (n, x) 7→ n ∗ x. This action will of course extend to βZ × S and the analogue of
Theorem 2.1 holds, though (ii) is redundant since a separately continuous compact group
is a topological group. Our theorem asserts not only that ∗ extends to a multiplication
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on bZ, but that the structure (bZ,+, ∗) is the same as that obtained by extending ∗ to
(sapN,+).

2.7 Theorem. If (S,+) is a compact jointly continuous group the action (n, x) 7→ n∗x
of N on S (resp. of Z on S) extends to an action of sapN on S (resp of bZ on S). By
taking S = sapN and S = bZ we obtain rings (sapN,+, ∗) and (bZ,+, ∗); these are
isomorphic. (bZ, ∗) is right topological and Z ⊆ Λ(bZ, ∗).

Proof. The proof that (sapN,+, ∗) and (bZ,+, ∗) are well-defined and algebraically
rings is just like that of Theorem 2.5. We have already observed that the natural map
ψ : (sapN,+) → (bZ,+) is an isomorphism of topological groups, and therefore for
m ∈ N, x ∈ sapN we have ψ(m ∗ x) = m ∗ ψ(x). The right continuity of ∗ shows that ψ
is a ∗-homomorphism.

To get the topological centre result we must add to the conclusion of 2.6 the remark
that in the topological group (bZ,+) the operation x 7→ −x is continuous. �

Later we shall determine the topological centres of our semigroups. For the moment
we observe that this topological problem is sometimes the same as an algebraic one. We
give the proof of the next (well-known) lemma because we do not know of a convenient
reference.

2.8 Lemma. Let S be a compact right topological semigroup in which the topological
centre Λ(S) contains a commutative subset Z which is dense in S. Then Λ(S) coincides
with the algebraic centre Z(S).

Proof. We first show that Z ⊆ Z(S). Let z ∈ Z. Take any s ∈ S and then si ∈ Z
with si → s. Then, since z ∈ Λ(S), zs = lim zsi = lim siz = sz, as required.

Now obviously Z(S) ⊆ Λ(S). Take s ∈ Λ(S). Given any t ∈ S, choose ti ∈ Z with
ti → t. Then tis → ts by right continuity. But since ti ∈ Z(S) we find tis = sti → st
because s ∈ Λ(S). Thus ts = st and s ∈ Z(S). �

Next we give another lemma which has uses in determining topological centres.

2.9 Lemma. Let X, Y be compact spaces and let π : X → Y be a continuous
surjective map. Let ϕ : X → X and ψ : Y → Y be such that π ◦ ϕ = ψ ◦ π. If ϕ is
continuous, then so is ψ.

Proof. All that needs to be done to prove this is to observe that if K ⊆ Y is closed
and so compact, ψ−1(K) = π

(
ϕ−1

(
π−1(K)

))
is compact and therefore closed. �

This lemma has the immediate consequence that ifX and Y are compact right topolog-
ical semigroups and π is a surjective homomorphism then p ∈ Λ(X) implies π(p) ∈ Λ(Y ).

2.10 Definition. We say that the operation · is defined on the compactification κN
if the formula

p · q = lim
m→p

lim
n→q

m · n

defines a binary operation on κN. (It is to be understood that in the above formula, the
variables m and n range over N.)

As we saw in the introduction, · is always defined on βN. We omit the proof of the
following lemma; the conclusions involving continuity of the multiplication follow from
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Lemma 2.9 (recall that N = Λ(βN)).

2.11 Lemma. Let (κN,+) be a semigroup compactification of (N,+). If the operation
· is defined on κN, then (κN, · ) is a compact right topological semigroup and the projection
πβ,κ is a homomorphism from (βN, · ) onto (κN, · ). Moreover, N ⊆ Λ(κN, · ). �

We now give a relationship between the multiplications ∗ and · and topological
centres.

2.12 Theorem. Let (κN,+) be a semigroup compactification of (N,+) to which the
operation ∗ extends. Then N ⊆ Λ(κN, ∗) if and only if · is defined on κN and ∗ = · on
κN. In particular ∗ = · in apN and bZ.

Proof. If ∗ = · in κN then from Lemma 2.11, N ⊆ Λ(κN, · ) = Λ(κN, ∗).
Conversely, when m,n ∈ N we have m · n = m ∗ n. Since m ∈ Λ(κN, ∗), for any

q ∈ κN, we have m ∗ q = lim
n→q

m ∗ n = lim
n→q

m · n. Then, from the continuity of p 7→ p ∗ q
we find p ∗ q = lim

m→p
m ∗ q = lim

m→p
lim
n→q

m · n.

The “in particular” conclusions follow from Theorems 2.6 and 2.7. �

Theorem 2.12 says that both apN and bZ are compactifications of N in which ∗ = · .
The question arises, is apN the largest compactification for which this is true? There is
a little evidence that this might be the case, since · does not extend to wapN (Theorem
5.4).

We now show that the ring bZ has a universal property.

2.13 Definition. We say that (R,+, · ) is a compact right topological ring if (R,+, · )
is a ring, (R,+) is a compact topological group, and (R, · ) is a right topological semi-
group.

2.14 Theorem. Let (R,+, · ) be a compact right topological ring. Any ring homo-
morphism h : (N,+, · ) → (R,+, · ) for which h(N) ⊆ Λ(R, · ) has a unique continuous

extension to a ring homomorphism h̃ : (bZ,+, ∗) → (R,+, · ) .

Proof. By the universal property of the compact group (bZ,+), there is a unique

continuous group homomorphism h̃ : (bZ,+) → (R,+) extending h. Because h is a ring
homomorphism, h(m · n) = h(m) · h(n). If we take p, q ∈ bZ and let n→ q and afterwards

m→ p using h(m) ∈ Λ(R, · ) and the continuity of h̃, we find h̃(p · q) = h̃(p) · h̃(q) as
required. �

The additional condition involving the topological centre in the last theorem is common
in the theory of right topological semigroups (see [1]).

The existence of idempotents has played an important role in applications of the
algebra of βS. We close this section by recording a simple observation about the existence
of joint idempotents if addition and multiplication are both defined and possess certain
properties.

2.15 Theorem. Let (X,+) and (X, ·) be compact right topological semigroups such
that · distributes over + from the right. There exists x ∈ X such that x = x+ x = x · x.

Proof. (This is a simple adaptation of a proof of Ellis – Corollary 2.10 in [4].) By
Zorn’s Lemma, let D ⊆ X be minimal subject to being non-empty, compact and closed
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for both + and · . By Corollary 2.10 of [4], we can choose x ∈ D such that x = x + x.
We note that D · x is non-empty, compact and closed for both + and · . (The fact that
D · x+D · x ⊆ D · x follows from the right distributivity.) Thus, since D · x ⊆ D, in fact
D · x = D. In particular, y · x = x for some y ∈ D. Let E = {y ∈ D : y · x = x}. Since E
is non-empty, compact, closed for + (again using right distributivity), and closed for ·, it
follows that E = D and hence that x · x = x. �

It is an immediate consequence of Theorems 2.5 and 2.7 that each of wapN, apN, and
bZ have points x satisfying x = x+ x = x ∗ x. However, this conclusion is actually trivial
because every x such that x+ x = x automatically satisfies y ∗ x = x for every y.

3. bZ.

We have seen that ∗ and · coincide in bZ and that (bZ,+, ∗) is a ring. However a
useful way to view (bZ,+) is not as a universal compactification but using the fact from
the duality theory of locally compact groups that

(bZ,+) ∼= (apZ,+) ∼= (̂Ẑd),

where ̂ denotes the Pontryagin dual group and the suffix d means taking the discrete
topology (see [7] Theorem 26.12). Since Ẑ = T, the circle group, bZ can be identified
with the dual group of Td, that is the group of all characters, or homomorphisms, from
Td to T. But T is isomorphic with (R/Z,+), and therefore (bZ,+) can be identified
with all group homomorphisms from (R/Z,+) to itself, or in other words with the Z-
module endomorphisms of the abelian group (R/Z,+). We shall denote this object by
End(R/Z,+).

Observe that the Pontryagin topology on bZ = T̂d is the topology of pointwise con-
vergence for functions from Td to the circle T with its usual topology. This translates to
the topology of pointwise convergence of functions from R/Z to R/Z when the latter has
its usual topology as a quotient of the real line.

3.1 Theorem. (bZ,+, ∗) is algebraically naturally isomorphic with the endomorphism
ring End(R/Z,+) (the multiplication in this ring is of course composition of endomor-
phisms).

Proof. Under the isomorphism which identifies (bZ,+) and End(R/Z,+), the integer
n ∈ bZ corresponds to the endomorphism χn determined by χn(x) = nx (x ∈ R/Z). Thus
for any χ ∈ (bZ,+) ∼= End(R/Z,+) we have for x ∈ R/Z

n ∗ χ(x) = χ(x) + χ(x) + . . .+ χ(x) = (χn ◦ χ)(x),

whence n ∗χ = χn ◦χ. Since ∗ is right continuous in bZ and convergence in End(R/Z,+)
is pointwise, we can take limits to see that for any ψ ∈ bZ we have ψ ∗ χ = ψ ◦ χ. �

We now consider ways of representing the algebraic structure of End(R/Z,+). The
abelian group R/Z is the direct sum of its torsion part Q/Z and its vector space part
Q(c), which is a direct sum of c copies of the field Q. The isomorphism can be realized
by taking a Hamel basis (bα)α<c for R with b0 chosen to be 1, and sending y = (yα)α<c

with y0 ∈ Q/Z, yα ∈ Q for α ≥ 1, to
∑

α yαbα(mod Z). Duality theory now tells us that

9



bZ is the direct product Q̂/Z × Q̂c ([7], Theorem 23.22). Q̂/Z is the compact totally
disconnected group

∏
p primeAp of all groups of p-adic integers (see [7] section 25.4 or [9],

Example 1.38). Q̂c is a compact connected group ([7] Theorem 24.25 or [9] Corollary
7.70). In fact, because R itself is algebraically isomorphic to the direct sum Q(c), the

compact group Q̂c is isomorphic with R̂d, and this is just the Bohr compactification bR
of the additive real line R. Thus we can write

bZ ∼=

( ∏
p prime

Ap

)
× bR,

with the first factor totally disconnected and the second connected; moreover bR is mono-
thetic with weight w(bR) = c (see [7], (25.14) and (25.18)).

Our alternative way of considering bZ is as the Z-module or abelian group homomor-
phisms from Q/Z⊕Q(c) to itself. If we regard elements of this group as column vectors,

these homomorphisms can be considered to be matrices

(
J H
K L

)
where J : Q/Z →

Q/Z, H : Q(c) → Q/Z, K : Q/Z → Q(c) and L : Q(c) → Q(c). Since all elements of Q/Z
have finite order, but no elements of Q(c) do, K must be 0. L is not only Z-linear but
Q-linear, and so is given by a c× c matrix with entries from Q; since the image of L is in
the direct sum Q(c), the columns of L can have only a finite number of non-zero entries.
H is a row matrix whose entries are homomorphisms from Q to Q/Z. The multiplication
∗ in bZ is, of course, just ordinary matrix multiplication. We should also draw attention
to the fact that the inclusion Z ⊂ bZ is obtained by sending the integer n to the diagonal
matrix all of whose entries are n, that is, nI where I is the identity matrix.

Sometimes it will be convenient for us to spell out the matrix formulation. Let 1 ≤
α, β < c. We denote by δαβ the homomorphism from R/Z to itself given by δαβ(bγ) = bα
if γ = β and 0 otherwise, and δαβ(Q/Z) = 0. We can then write a general homomorphism
ϕ : bZ → bZ in the form

ϕ = ϕ00 +
∑

1≤β<c

ϕ0β +
∑

1≤α,β<c

ϕαβδαβ

where ϕ00 is a homomorphism from Q/Z to itself and zero on Qc, ϕ0β is a homomorphism
from Qbβ to Q/Z and is zero on the rest of R/Z, and for α, β ≥ 1, ϕαβ are rational
numbers with ϕαβ 6= 0 for only finitely many α for any given β. If ψ is a second such
homomorphism we can write the product ϕ ∗ ψ as

ϕ ∗ ψ = ϕ00 ∗ ψ00 +
∑

β

ϕ00 ∗ ψ0β +
∑

β

∑
γ

ϕ0γ ∗ ψγβδγβ +
∑
α,β

∑
γ

ϕαγψγβδαβ.

It is now easy to determine the topological centre of bZ.

3.2 Theorem. The topological and algebraic centres of (bZ, ∗) are both Z.

Proof. From Theorem 2.7 the topological centre contains Z, which is dense. Since
Z is commutative, from Lemma 2.8, the two centres are the same. We shall give two
different proofs our theorem; the first shows that the topological centre is a subset of Z,
and the other (using the algebraic structure described above) shows that the algebraic
centre is a subset of Z.
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Here is the topological proof. Consider (bZ,+ ) as End(R/Z,+) and take p ∈ Λ(bZ,+ ).
We shall show the endomorphism p is continuous on R/Z with its usual topology; this
gives the result since the continuous characters of R/Z are in Z.

Fix an irrational u ∈ R/Z. The map π : bZ → R/Z, q 7→ q(u) is continuous and
contains Z(u), so is surjective. The relationship (pq)(u) = p(q(u)) shows that left multi-
plication by p in bZ composed with π is the same as π composed with the action of p on
R/Z. Thus the conditions of Lemma 2.9 are satisfied when p ∈ Λ(R/Z, ∗ ), whence p is
continuous on R/Z.

Now we give the algebraic proof. Take ϕ ∈ Z(bZ). For all λ, µ with 1 ≤ λ, µ < c we
have ϕ ∗ δλµ = δλµ ∗ ϕ, that is

ϕ0µ +
∑

1≤α<c

ϕαλδαµ =
∑

1≤β<c

ϕµβδλβ.

Immediately we see that ϕ0µ = 0 for all µ. Evaluating both sides of this equation at bµ
gives us that ϕαλ = 0 if α 6= λ, and ϕλλ = ϕµµ (or in other words, H = 0 and L is a
multiple of the identity matrix). Now for µ ≥ 1 and q ∈ Q put δ0µ(qbγ) = q(mod Z) ∈ Q/Z
if µ = γ and = 0 if µ 6= γ. Then

ϕ ∗ δ0µ(qbµ) = ϕ00(q)(mod Z), δ0µ ∗ ϕ(qbµ) = (ϕµµq)(mod Z).

These two must be equal, and taking q = 1 shows that ϕµµ is an integer, and then we
see that ϕ00 is just multiplication by the integer ϕµµ. Thus ϕ is just multiplication by an
element of Z. �

The formula for the product shows immediately

3.3 Theorem.

(i) If A,B ⊆ [1, c) and A ∩B = ∅ then
(∑

α∈A, β∈B ϕαβδαβ

)2

= 0.

(ii) If A,B ⊆ [1, c) and A ∩B = ∅ then
∑

α∈A δαα +
∑

α∈A, β∈B ϕαβδαβ is idempotent.

�
By fixing A and allowing B to vary in [1, c) we see from this theorem that the Q-

vector space Q̂c contains subspaces of dimension 2c consisting entirely of idempotents or
of elements of square zero. The idempotents in (βN,+), and those in (βN, · ), are key
elements in applications to number theory and they can be pulled back from bZ using the
continuous homomorphism πβ,b.

Since any finite matrix can be embedded in a matrix L, we see immediately that

3.4 Theorem. (bZ, ∗) contains n × n matrix groups over Q for all n, and indeed
matrix groups of size c× c. �

The topology of bZ is determined by the requirement that ϕi → ϕ if and only if
ϕi(x) → ϕ(x) for each x ∈ R/Z. This is the same as saying that ϕi(q) → ϕ(q) for each
q ∈ Q/Z and ϕi(bγ) → ϕ(bγ) for each γ ≥ 1, since elements of bZ are Q-linear.

In particular then, {ϕ : ϕ(bγ) = 0 for all γ ≥ 1} is closed. This set is just Q̂/Z (which
we have already observed is compact) or equivalently the set of all matrices of the form

11



(
J 0
0 0

)
. The matrix viewpoint shows that this is obviously a left ideal, but not a right

ideal.

The set {ϕ : ϕ(q) = 0 for all q ∈ Q/Z} is also closed. It is the set Q̂c (which as we
observed early in this section is isomorphic with bR), or the set of matrices of the form(

0 H
0 L

)
. This is a two-sided ideal (thus the group bR also has a ring structure), and

the quotient of bZ by this ideal is Q̂/Z.

We have already remarked that Q̂c is connected and that Q̂/Z is totally disconnected.

Therefore Q̂c is the connected component containing 0 in the compact group (bZ,+).

3.5 Theorem. (i) The elements of Q̂c with ∗-square 0 are dense in Q̂c.

(ii) The ∗-idempotents in Q̂c are dense in Q̂c .

Proof. (i) Elements of Q̂c are completely determined by their values on the elements
bγ with γ ≥ 1. Take any elements aγ ∈ R/Z. For any finite set F ⊂ [1, c) and any ε > 0

we shall find ϕF,ε ∈ Q̂c such that ϕ2
F,ε = 0 and |ϕF,ε(bγ) − aγ| < ε. The net (ϕF,ε) then

converges to the (arbitrary) endomorphism ϕ with ϕ(bγ) = aγ for all γ ≥ 1.

So let F , ε be given. Take β with β ≥ 1 and β 6∈ F . Define ϕF,ε for γ ∈ F by
ϕF,ε =

∑
γ∈F qγδβγ where qγ is chosen so that |qγbβ − aγ| < ε. Thus ϕF,ε(bγ) = qγbβ. Then

ϕ2
F,ε = 0 by Theorem 3.3 and ϕF,ε satisfies our other conditions.

(ii) is proved in a similar way. �

We can determine all closed right ideals in (bZ, ∗).
3.6 Theorem. Every closed, non-trivial right ∗-ideal in bZ is a two-sided ring ideal

which contains Q̂c. If π : bZ → Q̂/Z denotes the natural quotient map, each such ideal is

of the form π−1(I) where I is a ring ideal in Q̂/Z.

Proof. Let R be a closed right ∗-ideal. Take ϕ ∈ R. Then ϕ ∗bZ ⊆ R. Now ϕ ∗bZ is
a right ideal which is also an additive subgroup. Its closure is firstly a right ∗-ideal, and
secondly an additive subgroup and therefore, from Corollary 2.2, also a left ∗-ideal. Thus
ϕ ∗ bZ is a ring ideal.

Now suppose the ideal ϕ ∗ bZ contains a non-zero element

ψ = ψ00 +
∑

1≤β<c

ψ0β +
∑

1≤α,β<c

ψαβδαβ.

If not all scalars ψαβ are zero, say ψγξ 6= 0, then ϕ ∗ bZ also contains δαγ ∗ ψ ∗ δξβ and so

all δαδ with α, β ≥ 1. Since it is closed it contains the whole of Q̂c.

If all these ψαβ are zero, but ψ0β 6= 0 for some β ≥ 1, then for each γ ≥ 1 the
homomorphism ψ′0γ = ψ ∗ δβγ is non-zero. Since ψ′0γ 6= 0, the set

{ψ′0γ(qbγ) : q ∈ Q}

is dense in R/Z. A proof on the lines of Theorem 3.5 (i) shows that ϕ ∗ bZ contains Q̂c.
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The final possibility is that ψ is of the form ψ00 with ψ00 6= 0. In that case, for each
γ ≥ 1, ψ′0γ = ψ00 ∗ δ0γ is non-zero, and as in the last pragraph we see that ϕ ∗ bZ contains

Q̂c. Our first assertion is proved.

Take ϕ ∈ R. Then we know ϕ ∈ ϕ ∗ bZ and also that Q̂c ⊆ ϕ ∗ bZ. Since ϕ ∗ bZ is
an additive subgroup, ϕ + Q̂c ⊆ ϕ ∗ bZ ⊆ R. Therefore R = π−1

(
π(R)

)
, where π is the

quotient map. Since π(R) is a multiplicative right ideal in the commutative ring Q̂/Z, R
is in fact a two-sided ideal in (bZ, ∗).

It remains to show that R is an additive subgroup of bZ, or equivalently that any

∗-ideal in Q̂/Z is an additive subgroup. We use the fact that Q̂/Z =
∏

p primeAp, where
Ap denotes the ring of p-adic integers. Each element x ∈ Ap can be expressed in the form
x = x0 + x1p+ x2p

2 + · · ·, where each xi ∈ {0, 1, 2, · · · , p− 1}. The only proper non-zero
multiplicative ideals in Ap are the ideals In defined by the condition x0 = x1 = x2 = · · · =
xn = 0, where n ∈ ω. (This follows easily from the fact that x is invertible in Ap unless
x0 = 0.) Each In is an additive subgroup and therefore an ideal in the ring Ap.

Conversely, each ring ideal I in Q̂/Z is closed, so that π−1(I) is a closed right ideal in
(bZ,+, ∗). �.

Remark. It follows from Theorem 3.6 that (bZ, ∗) has exactly c closed right ideals.
On the other hand, it is easy to see that there are closed left ideals of (bZ, ∗) which are
not right ideals. In fact, (bZ, ∗) has at least 2c closed left ideals. To see this, let (bα)α<c

denote the Hamel basis described in the discussion following Theorem 3.1. For each set
X of of ordinals in [1, c), LX = {ϕ ∈ bZ : ϕ(bα) = 0 for α ∈ X} is a closed left ideal, and
different sets X determine different ideals.

Other algebraic questions can be decided quite easily. For example, we can determine
when an element of (bZ, ∗) is left invertible. This question is significant because an
element of bZ is left invertible in (bZ, ∗) if and only if it is a topological generator of the
compact group (bZ,+) (notice that x ∈ bZ is a generator if and only if {n ∗ x : n ∈ N} is

dense). Represent the left invertible element ϕ as the matrix ϕ =

(
J H
0 L

)
and its left

inverse as

(
J ′ H ′

0 L′

)
. The image π(ϕ) must be invertible in the commutative semigroup

bZ/Q̂c, and this means J is invertible with J ′ = J−1. Also, the Q-linear L has the left
inverse L′, and this is equivalent to the requirement that L should be injective. Finally
we need J ′H + H ′L = 0 Thus H ′ = −J−1HL′ on the Q-subspace L(Q̂c); we can take
H ′ to be any group homomorphism which extends this map to the whole of Q(c) (see [7]
Theorem A7 or [9] Proposition A1.35; the image group is commutative and divisible).
Thus ϕ is left invertible if and only if J is invertible and L is injective.

A slight extension of the argument shows that ϕ is invertible if and only if J and L
are invertible.

We can also see that the set of left invertible elements is small in two senses: it is not
dense in bZ nor does it have positive Haar measure in the group (bZ,+). These assertions

follow because they hold in the quotient space Q̂/Z.

4. apN.
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As is well known, apN can be written as the disjoint union of N and sapN = bZ
(see for example [6]). To be more precise, there is a continuous injective homomorphism
ϕ : bZ → apN such that apN = N ∪ ϕ(bZ). The group (ϕ(bZ),+) is the smallest ideal
of (apN,+) and for n ∈ N, x ∈ bZ we have n+ ϕ(x) = ϕ(n+ x). The topology of apN is
determined by the properties that N is a discrete subspace and a base of neighbourhoods
of ϕ(x) ∈ ϕ(apN) is formed by the sets {n ∈ N : ϕ(n) ∈ ϕ(V )} ∪ ϕ(V ) when V runs
through a neighbourhood base of x in bZ.

The operation ∗ on apN is easily described. Both (N, ∗) and (bZ, ∗) are substructures
of (apN, ∗), and for n ∈ N, ϕ(x) ∈ bZ we have n ∗ ϕ(x) = ϕ(x) ∗ n = ϕ(n ∗ x).

We can now read the properties of apN from those of bZ. For example, from Theorem
3.2 we find easily

4.1 Theorem. The topological and algebraic centres of (apN, ∗) are both N ∪ ϕ(Z).
�

5. wapN.

The first point to make about wapN is that the multiplication · does not extend to
it. We prove this in Theorem 5.4. We begin by showing that the topological centre of
(wapN, ∗) is surprisingly small.

5.1 Theorem. Λ(wapN, ∗) = Z(wapN, ∗) = {1}.
Proof. Of course, the identity 1 is always in the algebraic centre, and the algebraic

centre is a subset of the topological centre.
To prove that no elements other than 1 are in Λ(wapN, ∗), we need a result slightly

stronger than the assertion that the set of idempotents in (wapN,+) is not closed. There
are two ways of obtaining what we need from the literature. First we consider the approach
of Bouziad, Lemańczyk and Mentzen [3]. They show that the unit ball B1 of L∞[0, 1],
which is a compact separately continuous semigroup in its weak∗ topology when given the
pointwise multiplication of functions (in fact they use L2[0, 1] but that makes no difference
here), actually contains a dense homomorphic image of (N,+). We let g : N → B1 be that
homomorphism and note that it extends to a continuous homomorphism g : wapN → B1.
Since the image is compact, g(wapN) = B1. In [3] it is also shown that the closure of the
set of multiplicative idempotents in L∞[0, 1] – these are just the characteristic functions
of measurable sets – contains the constant function 1

2
.

We now take a family (ei) of additive idempotents in wapN such that g(ei) → 1
2
. Let x

be a cluster point in wapN of the net (ei), so that g(x) = 1
2
. By replacing (ei) by a subnet

we may assume ei → x. We show first that if m ∈ N and m > 1 then m 6∈ Λ(wapN, ∗)
by proving that m ∗ ei 6→ m ∗ x. Indeed, g(m ∗ ei) = g(ei + . . . + ei) = g(ei) → 1

2
, but

g(m ∗ x) = g(x + . . . + x) = g(x)m = (1
2
)m. The argument that q ∈ wapN \ N does not

belong to Λ(wapN, ∗) is now easy. g(q ∗ ei) = limm→q g(m ∗ ei) = g(ei) for every i, and
g(ei) → 1

2
, but g(q ∗ x) = limm→q g(m ∗ x) = limm→q(

1
2
)m = 0.

The alternative is to use the more elementary – but harder – approach to idempotents
in wapN in [2]. There a continuous function g : wapN → [0,∞] is produced together
with a sequence (ei) of additive idempotents for which g(ei1 + . . . + eim) = m for any
distinct suffices i1, . . . , im. Then if x is any cluster point of (ei) we have g(m ∗ x) = m
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for each integer m, and so for q ∈ wapN \ N we have g(q ∗ x) = ∞. But of course
g(m ∗ ei) = g(ei) = 1 for each i. Thus m 6∈ Λ(wapN, ∗) when m > 1 and q 6∈ Λ(wapN, ∗).

�

5.2 Corollary. In (wapN,+, ∗), ∗ does not distribute over + from the left.

Proof. Since 2 6∈ Z(wapN, ∗), there is x ∈ wapN such that x + x = 2 ∗ x 6= x ∗ 2 =
x ∗ (1 + 1). �

In Definition 2.10 we said that · is defined on κN if p·q = lim
m→p

lim
n→q

m·n is well-defined.

We next show that this is not true of wapN. Notice that for any m ∈ N, m · q = lim
n→q

m ·n
exists. To see this observe that the function n 7→ m · n is a homomorphism hence has a
continuous extension to wapN.

5.3 Lemma. Write A = {2m+r + 2n+r : m,n, r ∈ N,m < n < r}. Let g : N → R be
any function which is bounded on A and is 0 off A. Then g is weakly almost periodic and
thus has a unique continuous extension to wapN.

Proof. Recall that a bounded function g : N → R is weakly almost periodic if it
satisfies the iterated limit condition: if (xi), (yj) are any sequences in N with the property
that the limits

lim
i

lim
j
g(xi + yj), lim

j
lim

i
g(xi + yj)

both exist, then they are equal (see [1] or [8]). Here we may suppose that xi → ∞ and
yj →∞ (the other cases are trivial). Suppose that the left-hand limit exists and

lim
i

lim
j
g(xi + yj) 6= 0.

Then for large i there is Ji such that when j > Ji we have xi + yj ∈ A. Fix such an i1.
Take j, j′ > Ji1 with j′ > j. Then

xi1 + yj = 2m1+r1 + 2n1+r1 (m1 < n1 < r1)
xi1 + yj′ = 2m′

1+r′1 + 2n′1+r′1 (m′
1 < n′1 < r′1)

By taking j′ sufficiently large we can ensure that r′1 > 2r1 + 1 so that

2m1+r1 + 2n1+r1 < 2r1+r1 + 2r1+r1 = 22r1+1 < 2r′1 .

Now take i2 > i1. We get similar expressions involving m2,m
′
2 and so on. If we take

j > max{Ji1 , Ji2}, then j′ > j and sufficiently large, and subtract the expressions obtained
we find

yj′ − yj = 2m′
1+r′1 + 2n′1+r′1 − 2m1+r1 − 2n1+r1

= 2m′
2+r′2 + 2n′2+r′2 − 2m2+r2 − 2n2+r2 .

In each of these two lines, no two of the exponents are equal. The uniqueness of binary
expansions of integers shows that

m′
1 + r′1 = m′

2 + r′2, n′1 + r′1 = n′2 + r′2, m1 + r1 = m2 + r2, n1 + r1 = n2 + r2

Therefore xi1 + yj = xi2 + yj, and so xi1 = xi2 . This means that for i ≥ i1, the sequence
(xi) is constant, contradicting xi →∞. Thus the iterated limit we began with cannot be

15



non-zero. We conclude that if the two iterated limits exist they must both be zero, and
thus equal. �

Notice that as a consequence of Lemma 5.3, we have that the restriction of πβ,wap to
clsβN(A) is a bijection onto clswapN(A). (It is trivially surjective. Given p 6= q ∈ clsβN(A),
pick B ∈ p\q and let g = χA∩B, the characteristic function of A∩B. Let g̃ : wapN → {0, 1}
be the continuous extension of g. Then g̃ ◦ πβ,wap(p) = 1 and g̃ ◦ πβ,wap(q) = 0.)

5.4 Theorem. The multiplication · is not defined on wapN.

Proof. Pick q ∈ clswapN(A) \ A. Now observe that

clswapN{22n + 22m+1 : n,m ∈ N, n < m} ∩ clswapN{22n + 22m+1 : n,m ∈ N, n > m} 6= ∅ .

(If the intersection were empty, there would be, by Urysohn’s Lemma, a function
h : wapN → [0, 1] such that h(clswapN{22n + 22m+1 : n,m ∈ N, n < m}) = {0} and
h(clswapN{22n+22m+1 : n,m ∈ N, n > m}) = {1}. But then lim

m
lim

n
h(22n+22m+1) = 1 and

lim
n

lim
m
h(22n+22m+1) = 0 so the restriction of h to N would not be weakly almost periodic.)

Pick p ∈ clswapN{22n+22m+1 : n,m ∈ N, n < m}∩clswapN{22n+22m+1 : n,m ∈ N, n > m}.
Suppose that p · q is defined. Then

p · q ∈ clswapN{(22n + 22m+1)22r : n,m, r ∈ N, n < m < r} ∩
clswapN{(22n + 22m+1)22r : n,m, r ∈ N,m < n < r} .

But this is a contradiction because, if B = {(22n + 22m+1)22r : n,m, r ∈ N, n < m < r},
we have by Lemma 5.3 that χB is weakly almost periodic. �

6. βN.

In this section as usual we write N∗ = βN \N. We begin by looking at the topological
centre of βN with the operation ∗.

6.1 Theorem. Λ(βN, ∗) = Z(βN, ∗) = {1}.
Proof. If q ∈ βN is in the topological centre then πβ,wap(q) is in the topological centre

of wapN by Lemma 2.9. If q ∈ N∗ = βN \ N then πβ,wap(q) ∈ wapN \ N, so in this case
q 6∈ Λ(βN, ∗) from Theorem 5.1. If m ∈ N and m 6= 1 then πβ,wap(m) = m 6∈ Λ(wapN, ∗)
so m 6∈ Λ(βN, ∗). �

In just the same way as Corollary 5.2 followed from Theorem 5.1 we can obtain from
Theorem 6.1

6.2 Corollary. In βN, ∗ does not distribute over + from the left. �

However this conclusion is also immediate from Corollary 5.2 and the fact that πβ,wap

is a surjective ‘homomorphism’ for both ∗ and +. More important is the failure of the
other distributive law. We could simply quote [8] which contains much stronger results
than this, but we shall give a proof which allows us to show at the same time that ∗ is
not associative on βN.
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Any m ∈ N has a unique expression in the form m =
∑∞

i=0 ai2
i with each ai either 0 or

1. We write supp(m) = {i : ai 6= 0}, a finite set, and γ(m) = |supp(m)|. Let γ : βN → βN
denote the continuous extension of γ.

Let H =
⋂

n∈N clβN(2nN). We observe that H is a closed subsemigroup of βN (see
Lemma 6.8 in [8]). For m,n ∈ N we have the simple result that, if max{supp(m)} <
min{supp(n)}, then γ(m + n) = γ(m) + γ(n). It is easy to deduce that γ(x + y) =
γ(x)+γ(y) for every x ∈ βN and every y ∈ H, by first letting n tend to y and then letting
m tend to x in this equation.

Now take p ∈ {2k : k ∈ N} ∩ N∗. Then γ(p) = 1. Moreover if r ∈ N then for any
integer M , r ∗ p = p+ p+ . . .+ p is in the closure of

{2k1 + 2k2 + . . .+ 2kr : M ≤ k1 < k2 . . . < kr},

showing that γ(r ∗ p) = r. It follows by continuity that γ(x ∗ p) = x for every x ∈ βN.
We note that p ∈ H and hence that βN ∗ p ⊆ H, because βN ∗ p is the closed

subsemigroup of (βN, +) generated by p.
We use these observations in our next proof.

6.3 Proposition. Let p ∈ {2k : k ∈ N} ∩ N∗. Then

(βN ∗ p) ∩ (βN + N∗ ∗ p) = ∅.

Proof. Suppose there is t ∈ N∗ with (βN ∗ p) ∩ (βN + t ∗ p) 6= ∅. We note that
βN ∗ p = clβN(N ∗ p) and βN + t ∗ p = clβN(N + t ∗ p). It follows from Theorem 3.40 in [8]
that either

(a) there are n ∈ N, q ∈ βN with n ∗ p = q + t ∗ p, or

(b) there are n ∈ N, q ∈ βN with q ∗ p = n+ t ∗ p.

From the properties of γ above we find that if (a) holds then

n = γ(n ∗ p) = γ(q + t ∗ p) = γ(q) + γ(t ∗ p) = γ(q) + t ∈ N∗,

which is impossible. However, (b) cannot hold because q ∗ p ∈ H and n+ t ∗ p /∈ H. �

6.4 Theorem. In βN, ∗ is not associative, nor is it distributive over addition from
the right.

Proof. For q, p ∈ βN we have (2 ∗ q) ∗ p = (q + q) ∗ p and 2 ∗ (q ∗ p) = q ∗ p + q ∗ p;
we can therefore establish both parts of our assertion by showing that these two elements
are sometimes different. If we take q ∈ N∗ and p as in Proposition 6.3, we see that
(2 ∗ q) ∗ p ∈ βN ∗ p and q ∗ p+ q ∗ p ∈ βN + N∗ ∗ p must be distinct. �

There is yet another proof of the failure of distributivity which provides more infor-
mation. If q ∈ N∗ and if (x+ y)∗ q = x∗ q+ y ∗ q for every x, y ∈ βN, then the continuous
map p 7→ p ∗ q from (βN,+) to itself is a semigroup homomorphism. So the image of βN
is finite and the image of N∗ under this map is a singleton {e} for some idempotent e in
(βN,+) (see Theorem 10.18 in [8]). So q must generate a finite subsemigroup of (βN,+).
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It is easy to give one example of an element q which generates an infinite semigroup, since
πβ,b(N∗) = bZ contains elements of infinite (additive) order (see §3) (and it is conjectured
that the only case in which the semigroup is finite is when q is an idempotent for +).

Our next result provides yet another confirmation that ∗ is neither associative nor
right distributive over addition (it has the consequence that 2 ∗ (x ∗ p) = x ∗ p + x ∗ p
differs from (2 ∗ x) ∗ p).

6.5 Theorem. If p ∈ N∗ = βN\N is right cancellable in (N∗,+) then {x∗p : x ∈ N∗}
generates algebraically a free subsemigroup in (βN,+).

Proof. This conclusion is an immediate consequence of Theorem 4.3 of [5]. �.

For any p ∈ N∗ the elements n ∗ p (n ∈ N) are also usually distinct.

6.6 Theorem. If p ∈ βN and there are distinct positive integers m,n such that
m ∗ p = n ∗ p then there is r ∈ N such that r ∗ p is idempotent and x ∗ p = r ∗ p when
x ∈ N∗ or x ∈ N and x ≥ r.

Proof. The hypothesis guarantees that the additive subsemigroup {n ∗ p : n ∈ N} is
finite. Since (βN,+) has only trivial finite subgroups (Zelenjuk’s Theorem, 7.17 in [8]),
there is r ∈ N with n ∗ p = r ∗ p for all n ≥ r. The conclusion now follows easily. �

We next look at a relationship between bZ and βN. There are large parts of these two
compact spaces which are topologically the same. This fact was shown by Ruppert [10];
we shall give a proof in a slightly more general form.

6.7 Theorem. Let (bn)∞n=1 be an increasing sequence in N with the property that bn+1

is a multiple of bn for every n ∈ N. Let B = {bn : n ∈ N} and B∗ = B \ B, with the
closure being taken in βN. Then πβ,b : βN → bZ is a homeomorphism on B∗.

Proof. Since B∗ is compact all we need do is prove that πβ,b is injective on B∗. We
do this by considering the ∗-actions of βN and bZ on the group R/Z. Proposition 2.4(i)
tells us that for q ∈ βN and s ∈ R/Z we have πβ,b(q) ∗ s = q ∗ s. In other words, the
action of βN factors through the action of bZ. So to prove that πβ,b is injective on B∗,
it is enough to show that if p 6= q are elements of B∗ then there is s ∈ R/Z such that
p ∗ s 6= q ∗ s.

Since p 6= q we can find disjoint subsets Bp, Bq of B such that p ∈ Bp, q ∈ Bq. We
also note that if Sp = {r : br ∈ Bp} then Sp∩ 3N, Sp∩ (3N+1) and Sp∩ (3N+2) produce
a partition of Bp \ {1, 2}, so by replacing Bp by a subset if necessary we may assume that
Sp ⊆ (3N + i) for just one i. Then Sp, Sp + 1 and Sp + 2 are disjoint sets.

We now write ar+1 = br+1/br ∈ N and

sr =
bar+1/2c
br+1

if r ∈ Sp, sr = 0 otherwise

and put

s =
∑
r∈Sp

sr.
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The series converges in R/Z because sr ≤
1

2br
and br ≥ 2r−1 for each r. Notice also that

1

3
≤ bar+1/2c

ar+1

= brsr ≤
1

2
.

and that

brsr+k =
br
br+k

br+ksr+k ≤
1

2k+1
.

Now take m ∈ Sp. Since bmsr = 0 in R/Z if m > r, and Sp ⊆ 3N + i, the relevant
values of r in the following sums are contained in {m,m+ 3,m+ 6, . . .}, so that

1

3
≤ bmsm ≤

∑
r∈Sp

bmsr = bm ∗ s ≤ 1

2
+

1

24
+

1

27
+ . . . =

4

7
.

Since this holds for each m ∈ Sp we can take limits to find that p∗s ∈ [1
3
, 4

7
]. On the other

hand, if we take m 6∈ Sp then sm = 0 and

0 ≤
∑
r∈Sp

bmsr ≤
1

22
+

1

25
+ +

1

28
+ . . . =

2

7
.

As before we see that q ∗ s ∈ [0, 2
7
] and since 2

7
< 1

3
, p ∗ s 6= q ∗ s. �

This way of looking at the problem allows us to see one of the main results of [10]
from a new perspective.

6.8 Corollary. The enveloping semigroup of the action of N on R/Z given for n ∈ N
by

s 7→ 2n ∗ s

is (βN,+). The closure of {2n : n ∈ N} in (bZ, ∗) is a subsemigroup of (bZ, ∗) isomorphic
with (βN,+).

Proof. The semigroup (bZ, ∗) has Z as its topological centre (Theorem 3.2). Z
contains the elements 2n with n ∈ N and therefore the closure of {2n : n ∈ N} in bZ is a
subsemigroup of (bZ, ∗). But from our theorem, the map n 7→ 2n extends to a continuous
isomorphism from (βN,+) onto this subsemigroup of (bZ, ∗). �

Remark. This innocent looking corollary might have some worthwhile consequences
when combined with §3. There we saw that (bZ, ∗) is representable as a semigroup of
matrices, so the corollary gives us a way of looking at (βN,+) as a semigroup of matrices.

7. κN.

Now we shall consider some properties which pertain to all our compactifications. Let
(κN,+, ∗) denote any one of them. Except in the case κN = βN, (κN, ∗) is a compact
right topological semigroup and so it has all the general structure these semigroups enjoy
[1], [8]. For example, it has minimal left and right ideals, a smallest two-sided ideal and
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it contains idempotents. We can already say much about these. In this section we shall
denote the smallest two sided ideal of the semigroup S by K(S).

7.1 Proposition. Assume that κ 6= β. (i) Every closed additive subsemigroup of κN
is a ∗-left ideal. In particular the minimal ∗-left ideals are the additive idempotents of κN.
(ii) The set of additive idempotents is a ∗-right-zero semigroup.
(iii) There is a unique minimal right ideal in (κN, ∗), namely the set of all additive idem-
potents of κN. It is also the smallest ∗-two-sided ideal.

Proof. (i) follows from the observation that closed additive subsemigroups are ∗-
invariant (Corollary 2.2) and the fact that all minimal left ideals are algebraically isomor-
phic.

(ii) is a consequence of (i).
(iii) The argument uses some basic structure theory for compact right topological

semigroups. The union of all minimal left ideals is well known to be the smallest ideal.
As this set is a right-zero semigroup it must be the only minimal right ideal. �

Every additive idempotent in κN is also a ∗-idempotent. We shall next show that
there are many ∗-idempotents which are not additive idempotents.

7.2 Theorem. K(κN,+) contains 2c ∗-idempotents which are not additive idempo-
tents. K(βN,+) contains 2c · -idempotents which are not additive idempotents. These
sets of idempotents are not closed.

Proof. First exclude the case κ = β. If q denotes the minimum idempotent of κN
(there is a unique one), πκ,b(κN + q) = πκ,b(κN) = bZ. Then if e ∈ bZ is a ∗-idempotent,
π−1

κ,b({e}) ∩ (κN + q) is a compact ∗-subsemigroup of κN and so contains a ∗-idempotent,
which is not an additive idempotent unless e = 0. Since (bZ, ∗) has 2c ∗-idempotents
(see §3), we immediately conclude that there are 2c ∗-idempotents in κN + q = K(κN,+)
which are not additive idempotents.

The same argument works when κ = β if we replace ∗ by · . From Proposition 2.4(ii),
πβ,b is a homomorphism from (βN, · ) to (bZ, · ), and on bZ the operations ∗ and ·
coincide. So we can pull back ∗-idempotents of bZ to · -idempotents of βN. However the
smallest ideal of (βN,+) is not closed, so we can only assert that these · -idempotents
lie in the closure of K(βN,+). (Indeed, we can see that if p ∈ βN is a · -idempotent for
which πκ,b(p) is in the component of bZ which contains 0, then nN ∈ p for every n ∈ N
and so p /∈ K(βN,+) (see Theorem 13.14 in [8])).

We show that K(βN,+) contains 2c ∗-idempotents by giving, for any κ, a more explicit
demonstration of the existence of ∗-idempotents in κN which are not additive idempotents
(though this method only produces one idempotent in bZ, namely the integer 1). For any
additive idempotent p ∈ κN, for any x ∈ κN, we have

x ∗ (1 + p) = lim
n→x

n ∗ (1 + p) = lim
n→x

(n+ p) = x+ p.

Taking x ∈ κN + p shows that 1 + p is a right identity in (κN + p, ∗) so that 1 + p is a
∗-idempotent. It is obviously not an additive idempotent. This argument works even for
βN, in which the distributive laws do not hold.

The only point remaining is to show that the these sets of idempotents are not closed.
If they were, then their continuous image in bZ under the map πκ,b would be closed, that
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is, the set of ∗-idempotents in bZ would be closed. But this is not the case since (bZ, ∗)
contains a copy of (βN,+) (see Corollary 6.8). �

Can we pull back ∗-group structures from bZ in the same way? The answer is given
in the following lemma.

7.3 Lemma. Let π : S → T be a continuous surjective homomorphism between
compact right topological semigroups. Let G be a subgroup of T . Then G = π(H) for
some subgroup H of S.

Proof. Let e denote the identity of G and let Ge be the maximal group in T with
identity e. Then π−1({e}) is a compact subsemigroup of S; we take f to be an idempotent
in the smallest ideal of π−1({e}). Then f ·π−1({e}) · f = π−1({e})∩ fSf is a group. (See
[8, Theorem 1.48] or [1, Theorem I.2.12].)

Consider the semigroups fSf and eTe, noting that Ge ⊆ eTe. We have π(fSf) = eTe
and so π is a continuous surjective homomorphism between these semigroups too.

Let Gf be the maximal group in fSf with identity f . If x ∈ Gf , then x is invertible
with respect to f and therefore π(x) is invertible with respect to e. Thus π(Gf ) ⊆ Ge.

Now we claim that fSf ∩ π−1(Ge) is a group. To see this, let y ∈ fSf ∩ π−1(Ge).
We produce v ∈ fSf ∩ π−1(Ge) such that vy = f . Since π(y) ∈ Ge, pick w ∈ Ge such
that wπ(y) = e and pick z ∈ fSf such that π(z) = w. Let u be an idempotent in
the left ideal π−1({e})zy of π−1({e}). Pick x ∈ π−1({e}) such that u = xzy and let
v = fxzf . Then v ∈ fSf ∩ π−1(Ge). Also, u ∈ Sy ⊆ Sf so uf = u and thus fu is an
idempotent. Also fu ∈ fSf ∩ π−1({e}) which we have observed is a group with identity
f . Since f is the only idempotent in fSf ∩ π−1({e}), we must have that fu = f . Thus
vy = fxzfy = fxzy = fu = f as required and so fSf ∩ π−1(Ge) is a group with identity
f . Therefore fSf ∩ π−1(Ge) ⊆ Gf and so Ge ⊆ π(Gf ), and thus π(Gf ) = Ge.

It follows that if H = π−1(G) ∩Gf , then H is a subgroup of S and π(H) = G. �

7.4 Theorem. If κ 6= β, K(κN,+) contains ∗-subgroups with homomorphic im-
ages which are matrix groups of any size appearing in (bZ, ∗). Also, K(βN,+) contains
· -subgroups of the same kind. �

We give another application of these ideas to the algebra of βN. By [8, Remark
16.23 and Theorem 16.24] there are left ideals in (βN, ·) contained in K(βN,+). We
now show that there are 2c left ideals in (βN, ·) which are disjoint from K(βN,+). This
is a consequence of the following theorem and the fact that wapN contains 2c additive
idempotents.

7.5 Theorem. If p is an idempotent in (βN,+) for which πβ,wap(p) is not equal to

the minimum idempotent in (wapN,+), βN · p does not meet K(βN,+).

Proof. For every x ∈ βN, we have

πβ,wap(x · p+ p) = lim
m→x

lim
n→p

πβ,wap(m · n+ p)

= lim
m→x

lim
n→p

πβ,wap

(
(n+ p) + (n+ p) + · · · (n+ p)

)
(with m terms in the sum)

= lim
m→x

πβ,wap(p) (by Theorem 2.38 in [8])

= πβ,wap(p).
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Since πβ,wap(p) /∈ K(wapN,+), it follows that x · p /∈ K(βN,+). �

8. Enveloping rings.

Let (G,+) be a (not necessarily commutative) compact topological group. Then GG,
the set of all maps from G to itself, has a compact topological group operation + as
a product of the compact groups G (or equivalently as functions with values in G and
the pointwise operations and topology), and a semigroup operation ◦ , composition of
functions. Generally these two operations have little to do with each other, However, we
shall be concerned with the subset determined by the set of maps {σn : n ∈ Z} where
σn(g) = n ∗ g for g ∈ G. For these maps

σm+n = σm + σn, σm∗n = σm ◦ σn

for m,n ∈ Z. We shall write

EnvG(Z) = {σn : n ∈ Z},

where the closure is taken in GG, and call this the enveloping semigroup of Z on G. It is,
in fact, the enveloping semigroup for the natural action of (Z, ·) on G. EnvG(Z) is also an
abelian subgroup of GG. If we use + for the operation on EnvG(Z) induced by the group
operation of GG, we now see that (EnvG(Z),+, ◦) is a right topological ring.

8.1 Theorem. For any compact topological group G, EnvG(Z) is a compact right
topological ring.

Proof. (EnvG(Z),+) is of course a compact abelian topological group and (EnvG(Z), ◦)
is obviously a right topological semigroup as it is the enveloping semigroup for an action
on G. So we only need to show that ◦ distributes over +.

Let ρ, γ, τ ∈ EnvG(Z) and let x ∈ G. Then

(ρ ◦ (γ + τ))(x) = lim
σn→ρ

(σn ◦ (γ + τ))(x) = lim
σn→ρ

(σn ◦ γ + σn ◦ τ)(x) = (ρ ◦ γ + ρ ◦ τ)(x).

Also

((γ+τ)◦ρ)(x) = lim
σm→γ

lim
σn→τ

((σm+σn)◦ρ)(x) = lim
σm→γ

lim
σn→τ

(σm◦ρ+σn◦ρ)(x) = (γ◦ρ+τ◦ρ)(x).

�

Let G be a compact topological group. We observe that σn ∈ Λ(EnvG(Z), ◦) for every
n ∈ Z, because σn is a continuous function from G to itself.

8.2 Definition. σ : bZ → EnvG(Z) is the continuous surjective ring homomorphism
for which σ(n) = σn for every n ∈ Z. For p ∈ bZ and x ∈ G, we put p ∗ x = σ(p)(x).

The existence of σ follows from Theorem 2.14. We also see that

p ∗ x = lim
n→p

σn(x) = lim
n→p

n ∗ x.
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8.3 Theorem. If G is a totally disconnected compact topological group, the ring
EnvG(Z) is a commutative totally disconnected topological ring. It is, in fact, a quotient
of
∏

p primeAp, where Ap denotes the ring of p-adic integers.

Proof. There is a continuous ring homomorphism σ from bZ onto EnvG(Z). Since
EnvG(Z) is a subgroup of GG, it is totally disconnected. So, with the notation of §3,

σ({0}× Q̂c) = {0} and therefore EnvG(Z) is a homomorphic image of Q̂/Z. Since Q̂/Z =∏
p primeAp is a commutative topological ring, our claim follows. �

Our next result is that the ring EnvR/Z(Z) is easy to determine.

8.4 Theorem. (EnvR/Z(Z),+, ◦) ∼= (bZ,+, ∗).
Proof. As we remarked at the beginning of Section 3, the Pontryagin duality

theory tells us that bZ can be identified with all group homomorphisms from (R/Z,+)
to itself with the topology of pointwise convergence when the target space R/Z is given
its usual compact topology. Under this identification, the element n ∈ Z goes to the
homomorphism x 7→ n ∗ x, that is to σn, and the Pontryagin theory tells us that Z is
dense in bZ. Thus bZ ∼= EnvR/Z(N). �

This result will be used to obtain the following much more general theorem.

8.5 Theorem. Let G be any compact group which is not totally disconnected. Then
(EnvG(Z),+, ◦) ∼= (bZ,+, ∗). In fact, the mapping which takes p ∈ bZ to the element
x 7→ p ∗ x of EnvG(Z) is a continuous ring isomorphism.

In our proof we require the following simple lemma.

8.6 Lemma. Let G and H be compact topological groups and let h : G → H be a
continuous homomorphism. For every p ∈ bZ, we have h(p ∗ x) = p ∗ h(x).

Proof. This follows by continuity from the fact h(n ∗ x) = n ∗ h(x) for every n ∈ Z.
�

Proof of Theorem 8.5. By Theorem 2.7, bZ acts on G. We shall show that the ring
homomorphism σ described in Definition 8.2 is injective by showing that, for any q ∈ bZ
different from the identity, there exists x ∈ G with q ∗ x 6= 0. We use the fact that this
holds for G if it holds for any closed subgroup of G, by applying Lemma 8.6 with h as an
inclusion map. Furthermore, by applying Lemma 8.6 again, it holds for G if it holds for
the image of G under a continuous homomorphism.

Because the connected component C of G containing the identity is a closed subgroup,
it is enough to prove the result when G is replaced by C. Then C has a quotient CL

which is a connected non-trivial Lie group; CL has a closed non-trivial connected abelian
subgroup CLA (see for example [9], Lemma 6.20); finally CLA has R/Z as a quotient since
there is a complex homomorphism from any non-trivial connected compact abelian group
onto the circle group. So it is enough to find x ∈ R/Z with q ∗ x 6= 0. This is always
possible by Theorem 8.4. �

We can now extend Corollary 6.8.

8.7 Corollary. Let G be a compact topological group which is not totally disconnected.
Then (βN,+) is the enveloping semigroup for the action of (N,+) on G defined by the
maps x 7→ 2n ∗ x.
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Proof. By Theorems 6.7 and 8.5, for any two distinct elements p and q in clβN{2n :
n ∈ N}, there exists x ∈ G for which p ∗ x 6= q ∗ x. �

If S is a semigroup with a compact topology, X is a compact space and (s, x) 7→ s � x
is a mapping from S ×X to X which is continuous in the S-variable, we write

Λ(S, �, X) = {s ∈ S : x 7→ s � x is continuous }.

This is an obvious generalisation of the topological centre of a semigroup.

8.8 Theorem. Let G be a compact topological group.

(i) If G is totally disconnected, Λ(bZ, ∗, G) = bZ.

(ii) If G is not totally disconnected, Λ(bZ, ∗, G) = Z.

Proof. (i) If G is totally disconnected, it is the projective limit of finite groups. Since
the action of bZ commutes with taking quotients (Lemma 8.6) and since the action of bZ
on finite groups is obviously continuous, the projective limit maps are also continuous.

(ii) If G is not totally disconnected, EnvG(N) ∼= (bZ, ∗) ⊆ GG (Theorem 8.5). Let
p ∈ Λ(bZ, ∗, G) and let qi → q in bZ. Then for any x ∈ G, (p ∗ qi) ∗ x = p ∗ (qi ∗ x) →
p ∗ (q ∗ x) = (p ∗ q) ∗ x, and therefore p ∗ qi → p ∗ q. Thus p ∈ Λ(bZ, ∗) = Z, by Theorem
3.2. �

8.9 Corollary. Let G be a totally disconnected compact topological group. Every
element of EnvG(Z) is a continuous map from G to itself.

Proof. Let q ∈ EnvG(Z). Then q = σ(p) for some p ∈ bZ, where σ is the mapping
described in Definition 8.2. Since q(x) = p ∗ x for every x ∈ G, our claim follows from
Theorem 8.8. �

8.10 Theorem. If G is a singly-generated compact group and totally disconnected
then (EnvG(Z),+) = G.

Proof. Let g be a generator of G. The map h : q 7→ q(g), EnvG(Z) → G, is an
additive homomorphism. We show it is bijective. First its image is a compact additive
subgroup of G containing g and is therefore equal to G. So h is surjective. Let q ∈ Ker(h);
so q(g) = 0, the identity of G. It follows that q(ng) = 0 for every n ∈ Z. Taking limits
and applying Corollary 8.9, shows that q(x) = 0 for every x ∈ G. Thus q is the identity
of (EnvG(Z),+) and h is injective. �

We prove several results about compact monothetic topological groups. We observe
that these include all compact connected abelian topological groups of weight at most c

([7] Theorem 25.14).

8.11 Theorem. Let C be a compact monothetic topological group. Then C is iso-
morphic to a group of the form (EnvG(Z),+) if and only if C satisfies one of the two
following conditions:

(i) C is totally disconnected;

(ii) C ∼= (bZ,+).
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Proof. This is immediate from Theorems 8.5 and 8.10. �

We now see that the rings EnvG(Z) are precisely the compact right topological rings
which have a multiplicative identity as a generator. Among these bZ has several unique
properties. It is the only one which is not totally disconnected, the only one which is not
a topological ring and the only one with more than c points.

8.12 Theorem. Let (R,+, · ) be a compact right topological ring with a generator u
which is an identity for · . Then R is topologically isomorphic to the ring (EnvR(Z),+, ◦).

Proof. We note that the mapping n 7→ n ∗ u is a ring homomorphism from Z to
R. Since n ∗ u ∈ Λ(R, ·) for every n ∈ Z, it follows from Theorem 2.14 that there is a
continuous ring homomorphism ρ : bZ → R such that ρ(n) = n ∗ u for every n ∈ Z. It
follows by continuity that ρ(p) = p ∗ u for every p ∈ bZ.

Let σ : bZ → EnvR(Z) be the mapping described in Definition 8.2. Clearly, for any
p, q ∈ bZ, σ(p) = σ(q) implies that ρ(p) = ρ(q). Conversely, suppose that ρ(p) = ρ(q).
For any r ∈ bZ, we have ρ(p ∗ r) = ρ(p) · ρ(r) = ρ(q) · ρ(r) = ρ(q ∗ r). So p ∗ ρ(r) =
ρ(p ∗ r) = ρ(q ∗ r) = q ∗ ρ(r), by Lemma 8.6. Since ρ is surjective, p ∗ x = q ∗ x for every
x ∈ R and so σ(p) = σ(q). �

8.13 Corollary. Let (R,+) be a compact monothetic topological group. Then R
admits a multiplication · such that (R,+, · ) is a ring satisfying the hypotheses of Theorem
8.12 if and only if one of the two following conditions holds:

(i) R is totally disconnected;

(ii) R ∼= (apZ,+).

Proof. This is a consequence of Theorems 8.11 and 8.12. �

The following simple theorem seems worth noting.

8.14 Theorem. Let κ be any cardinal. Tκ does not admit a non-trivial binary
operation · which is right topological and distributive over addition.

Proof. Let · be a binary operation on Tκ such that (Tκ, ·) is right topological and ·
distributes over addition. We show that x ·y = 0 for all x and y in Tκ. For each α < κ, let
πα : Tκ → T denote the projection map. Let h : T → Tκ be an arbitrary homomorphism.
Given α < κ and x ∈ Tκ the map t 7→ πα

(
x · h(t)

)
from T to itself defines an element of

T̂d
∼= bZ. Since bZ has no non-trivial elements of additive finite order (this is immediate

from the matrix description of bZ) πα

(
x · h(t)

)
= 0 for every t ∈ T if x has finite order.

The set of elements of finite order is dense in Tκ and so πα

(
x · h(t)

)
= 0 for every x ∈ Tκ

and every t ∈ T. Thus x · h(t) = 0 for every x ∈ Tκ and every t ∈ T.
To complete the proof, we observe that, for every y ∈ Tκ, we can define a homomor-

phism h : T → Tκ for which y ∈ h(T). To see this, choose any irrational t ∈ T and define
h(nt) = ny for every n ∈ Z. We can then extend h to a homomorphism defined on T (see
[7] Theorem A7 or [9] Proposition A1.35; the image group is commutative and divisible).

�

We now, in part (ii) of our final theorem, give an application of these ideas. Part (i) is a
simpler result, offered for comparison. We recall that for any sequence (xi) in a semigroup
the set FP (xi) consists of all finite products xi1xi2 . . . xik with i1 < i2 < . . . < ik.
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8.15 Theorem. Let (C,+) be a compact topological group with identity 0.

(i) For every x ∈ C and every neighbourhood U of x in C, there is an infinite sequence
(ni) in N such that nx ∈ U whenever n ∈ FP (ni).

(ii) Let (ai) be an increasing sequence in N for which
∏n

i=1 ai divides an+1 for every n.
If C is not totally disconnected, there exists x ∈ C \ {0} such that, for every neigh-
bourhood U of x, there is an infinite subsequence (ni) of FP (ai) with the property
that nx ∈ U whenever n ∈ FP (ni).

Proof. (i) Since σ1(x) = x, it follows that V = {p ∈ EnvC(Z) : p(x) ∈ U} is a
neighbourhood of σ1 in EnvC(Z). If EnvC(Z) is finite, there exists k ∈ N such that kx = 0.
In this case, we simply choose an infinite sequence (ni) in N such that ni ≡ 1 mod(k)
for every i. So we may suppose that EnvC(Z) is infinite. Let h : βN → EnvC(Z) be the
continuous surjective homomorphism from (βN, ·) to (EnvC(Z), ◦) extending h(n) = σn

(n ∈ N). Since σ1 is not isolated in EnvC(Z), σ1 ∈ h(βN \ N). By applying Lemma 2.10
in [4] to (βN \ N) ∩ h−1(σ1), we see that there exists q ∈ βN \ N for which q · q = q and
h(q) = σ1. Since h−1(V ) is a neighbourhood of q in βN, our claim follows from Theorem
5.8 in [8].

(ii) Let X =
⋂

m∈N

clβNFP (an)∞n=m. Note that for any x, y ∈ X with x < y, x is a factor

of y. By Lemma 5.11 and Corollary 6.33 in [8], X contains 2c idempotents of (βN, ·). If
p, q ∈ X are distinct idempotents of (βN, ·), then πβ,b(p) 6= πβ,b(q), by Theorem 6.7. So
there exists y ∈ C such that πβ,b(p)∗y 6= πβ,b(q)∗y by Theorem 8.5. We may suppose that
πβ,b(p) ∗ y 6= 1. If x = πβ,b(p) ∗ y, then πβ,b(p) ∗ x = x. Since {r ∈ βN : πβ,b(r) ∗ x ∈ U}
is a neighbourhood of p in βN, our claim follows from Theorem 5.14 in [8]. �

Remark. We observe that (ii) of Theorem 8.15 does not hold if C is totally discon-
nected. In this case, C is a subgroup of a product of finite groups. If we define (an)
inductively by putting a1 = 1 and an = na1a2 · · · an−1, then xan → 1 as n→∞ for every
x ∈ C.
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