
This paper was published in Topology and its Applications 155 (2008), 433-444. To
the best of my knowledge, this is the final version as it was submitted to the publisher.
–NH

Almost Disjoint Large Subsets of Semigroups

Timothy J. Carlson

Neil Hindman1

Jillian McLeod2

and

Dona Strauss

Abstract. There are several notions of largeness in a semigroup S that originated in
topological dynamics. Among these are thick , central , syndetic and piecewise syndetic.
Of these, central sets are especially interesting because they are partition regular and
are guaranteed to contain substantial combinatorial structure. It is known that in
(N, +) any central set may be partitioned into infinitely many pairwise disjoint central
sets. We extend this result to a large class of semigroups (including (N, +)) by showing
that if S is a semigroup in this class which has cardinality κ then any central set can
be partitioned into κ many pairwise disjoint central sets. We also show that for this
same class of semigroups, if there exists a collection of µ almost disjoint subsets of
any member S, then any central subset of S contains a collection of µ almost disjoint
central sets. The same statement applies if “central” is replaced by “thick”; and in the
case that the semigroup is left cancellative, “central” may be replaced by “piecewise
syndetic”. The situation with respect to syndetic sets is much more restrictive. For
example there does not exist an uncountable collection of almost disjoint syndetic
subsets of N. We investigate the extent to which syndetic sets can be split into disjoint
syndetic sets.

1. Introduction

Central subsets of the set N of positive integers were introduced by Furstenberg in [5].
They were defined in terms of notions from topological dynamics, shown to be partition
regular (meaning that if a central set was divided into finitely many parts, one of these
parts must be central), and shown to contain an extensive amount of combinatorial
structure. For example, any central subset of N contains a sequence together with all of
the finite sums of distinct terms and contains solutions to any partition regular system
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of homogeneous linear equations. See Chapters 14 and 15 of [7] for a detailed description
of some of the structure which must exist in any central set.

The definition of “central” given by Furstenberg makes sense in an arbitrary semi-
group S. In [3] and [11] that notion was shown to have a simple equivalent charac-
terization in terms of the algebraic structure of the Stone-Čech compactification of the
discrete semigroup S. (We shall present this characterization below as our definition of
the notion.) Based on this characterization, it is immediate that in any semigroup, if a
central set is partitioned into finitely many pieces, then one of these pieces is central.
The question then arose whether an arbitrary central set could be divided into two dis-
joint central sets. (There is more than idle curiosity behind this question. Each of the
disjoint central sets would have to contain all of the combinatorial structure guaranteed
to any central set.) In the case of (N,+), that question was answered in the affirmative
in [6, Theorem 2.12]. Of course, since a central subset of N can be again split into two
central subsets, any central subset of N can be split into infinitely many pairwise disjoint
central sets. That is as much as one can expect in a countable semigroup. But one can
ask how many almost disjoint central sets a given central subset of N can contain.

1.1 Definition. Let X be an infinite set. A set A is a set of almost disjoint subsets
of X if and only if A ⊆ P(X), for each A ∈ A, |A| = |X|, and for A 6= B in A,
|A ∩B| < |X|.

We denote by ω the first infinite cardinal, and recall that ω = N ∪ {0}. As is well
known, there is a set A of c = 2ω almost disjoint subsets of N. Probably the simplest
example of a set of c almost disjoint subsets of a countably infinite set can be obtained as
follows: For each α ∈ R, choose an increasing sequence 〈xα,n〉∞n=0 in Q which converges
to α. Then

{
{xα,n : n ∈ ω} : α ∈ R

}
is a set of almost disjoint subsets of Q.

If |S| = κ > ω, there may not exist any set of 2κ almost disjoint subsets of
S. (Baumgartner proved [2, Theorem 2.8] that there is always a family of κ+ almost
disjoint subsets of S, and also showed that it is consistent with ZFC that if κ = ω1,
there is no family of 2κ almost disjoint subsets of S.)

1.2 Definition. Let S be a semigroup. A subset A of S is a left solution set of S

(respectively a right solution set of S) if and only if there exist w, z ∈ S such that
A = {x ∈ S : w = zx} (respectively A = {x ∈ S : w = xz}).

1.3 Definition. Let S be an infinite semigroup with cardinality κ. We shall say that
S is very weakly left cancellative if the union of fewer than κ left solution sets of S must
have cardinality less than κ. We shall say that S is very weakly right cancellative if the
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union of fewer than κ right solution sets of S must have cardinality less than κ. We
shall say that S is very weakly cancellative if it is both very weakly left and very weakly
right cancellative.

We remark that if κ is regular, S is very weakly left cancellative if and only if every
left solution set of S has cardinality less than κ. If κ is singular, S is very weakly left
cancellative if and only if there is a cardinal less than κ which is an upper bound for
the cardinalities of all left solution sets of S.

We remind the reader that S is said to be weakly left cancellative if all left so-
lution sets of S are finite. Of course, weak left cancellativity implies very weak left
cancellativity. The two notions are equivalent if κ = ω.

The corresponding remarks are also valid for very weak right cancellativity.

Very weak left cancellativity has interesting algebraic implications. Theorem 1.7 is
an example, which we shall present after introducing the necessary terminology.

We show in Section 3 that if S is an infinite semigroup which is very weakly can-
cellative, then whenever there exists a family of µ almost disjoint subsets of S, each
central subset of S contains a family of µ almost disjoint central subsets. We also ex-
tend the theorem cited above [6, Theorem 2.12], by showing that, in an infinite very
weakly cancellative semigroup with cardinality κ, every central set contains κ disjoint
central sets.

There are several other notions of size in a semigroup besides “central”. We shall
be concerned here with four of them: thick , very thick , syndetic, and piecewise syndetic.
Unlike, central sets, they each have simple elementary definitions. Given a semigroup
S, a set A ⊆ S, and x ∈ S we let x−1A = {y ∈ S : xy ∈ A}. We also write Pf (S) for
the set of finite nonempty subsets of S.

1.4 Definition. Let S be a semigroup and let A ⊆ S.

(a) A is thick if and only if
(
∀F ∈ Pf (S)

)
(∃x ∈ S)(Fx ⊆ A).

(b) A is very thick if and only if
(
∀F ∈ P(S)

)(
|F | < |S| ⇒ (∃x ∈ S)(Fx ⊆ A)

)
.

(c) A is syndetic if and only if
(
∃H ∈ Pf (S)

)
(S =

⋃
t∈H t−1A).

(d) A is piecewise syndetic if an only if
(
∃H ∈ Pf (S)

)(
∀F ∈ Pf (S)

)
(∃x ∈ S)

(Fx ⊆
⋃

t∈H t−1A).

Notice that in (N,+) a set A is thick if and only if it contains arbitrarily long
blocks; it is syndetic if and only if it has bounded gaps; and it is piecewise syndetic if
and only if there is a fixed bound b and arbitrarily long blocks of N in which the gaps
of A are bounded by b.
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Also notice that a subset A of a semigroup S is syndetic in just the case that its
complement is not thick.

In Section 2 we will show that the results mentioned above about central sets remain
valid if “central” is replaced by “thick”.

Like central sets, piecewise syndetic sets are partition regular. Also, any piece-
wise syndetic set has a substantial amount of combinatorial structure guaranteed to it
(though significantly less than central sets). For example, any piecewise syndetic subset
of (N,+) must contain arbitrarily long arithmetic progressions. We shall also show in
Section 3 that the results mentioned above about central sets remain valid if “central”
is replaced by “piecewise syndetic” and “very weakly cancellative” is replaced by “left
cancellative and very weakly right cancellative”.

The situation with respect to syndetic sets is quite different, and we investigate
that situation in Section 4. For example, in any countable left cancellative semigroup,
there does not exist an uncountable collection of almost disjoint syndetic subsets. In
that section we determine several cancellation conditions that guarantee the ability to
at least split a syndetic set into two syndetic sets.

We use throughout the algebraic structure of the Stone-Čech compactification of a
discrete semigroup S. We present a brief overview here. Please refer to [7] for details of
any unfamiliar assertions about this algebraic structure. We take the points of βS to
be the ultrafilters on S, the principal ultrafilters being identified with the points of S.
Given a set A ⊆ S, A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a basis for the open
sets (as well as a basis for the closed sets) of βS.

There is a natural extension of the operation · of S to βS. This natural extension
makes (βS, ·) a compact right topological semigroup with S contained in its topological
center. This says that for each p ∈ βS the function ρp : βS → βS is continuous and
for each x ∈ S, the function λx : βS → βS is continuous, where ρp(q) = q · p and
λx(q) = x · q. Given p, q ∈ βS and A ⊆ S one has that A ∈ p · q if and only if
{x ∈ S : x−1A ∈ q} ∈ p.

A subset U of a semigroup S is called a left ideal if it is nonempty and S · U ⊆ U .
It is called a right ideal if it is nonempty and U · S ⊆ U . It is called a two-sided ideal,
or simply an ideal, if it is both a left ideal and a right ideal. Any compact Hausdorff
right topological semigroup T has a smallest two sided ideal K(T ) which is the union
of all of the minimal left ideals of T and is also the union of all of the minimal right
ideals of T . The intersection of any minimal left ideal and any minimal right ideal is a
group. In particular there are idempotents in the smallest ideal. An idempotent p in T
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is “minimal” if and only if p ∈ K(T ).

1.5 Definition. Let S be a semigroup and let A ⊆ S. Then A is central if and only if
there is some minimal idempotent p ∈ βS such that A ∈ p.

There are simple characterizations of three of the other notions of largeness in terms
of the algebra of βS.

1.6 Lemma. Let S be a semigroup and let A ⊆ S.

(a) A is thick if and only if there is a left ideal of βS contained in A.

(b) A is syndetic if and only if for every left ideal L of βS, L ∩A 6= ∅.
(c) A is piecewise syndetic if and only if A ∩K(βS) 6= ∅.

Proof. (a) [4, Theorem 2.9(c)].

(b) [4, Theorem 2.9(d)].

(c) [7, Theorem 4.40].

Notice that each of the notions of size that we are considering is one sided in its
definition (if S is not commutative). This fact is obvious for “thick”, “syndetic”, and
“piecewise syndetic”. For central sets the definition can be seen to depend on the
choice of continuity for βS making it a right topological rather than a left topological
semigroup. Each of these notions can be prefaced by “right” (and are in [4]) and there
are corresponding “left” notions.

The following theorem will not be needed in the remainder of the paper, but it
provides significant information about the structure of βS when S is very weakly left
cancellative. We remind the reader that any ultrafilter p on a set of cardinality κ is
uniform if and only if every member of p has cardinality κ.

1.7 Theorem. Let S be an infinite very weakly left cancellative semigroup with cardi-
nality κ. There is a collection of 22κ

pairwise disjoint left ideals of βS. In particular,
βS has 22κ

minimal idempotents.

Proof. Enumerate the elements of S as 〈sι〉ι<κ. Inductively construct an injective
κ-sequence 〈tι〉ι<κ so that for all λ < µ < κ, sλtµ /∈ {sιtγ : ι < γ < µ}. (This is possible
because S is very weakly left cancellative.)

There are 22κ

uniform ultrafilters on T = {tι : ι < κ}. (See [7, Theorem 3.58].) So
it suffices to show that if p and q are distinct uniform ultrafilters on T , then βSp∩βSq =
∅. So let p and q be distinct uniform ultrafilters on S and pick P ∈ p and Q ∈ q. Let
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D = {sιtγ : tγ ∈ P and ι < γ} and let E = {sιtγ : tγ ∈ Q and ι < γ}. Then D ∩E = ∅,
βSp = Sp ⊆ D, and βSq = Sq ⊆ E.

We thank the referee for providing us with several relevant references, as well as
the statement and proof of Theorem 2.4.

2. Almost disjoint thick sets

In this section, we establish the existence of large almost disjoint families of thick subsets
of a given thick subset for all infinite very weakly cancellative semigroups.

2.1 Lemma. Let κ be an infinite cardinal.

(i) If there is a family 〈Bι〉ι<µ of almost disjoint subsets of κ, then there is a fam-
ily 〈Bι〉ι<µ of almost disjoint subsets of Pf (κ) such that

(
∀F ∈ Pf (κ)

)
(∀ι < µ)

(∃G ∈ Bι)(F ⊆ G).

(ii) There is a family 〈Cι〉ι<κ of pairwise disjoint subsets of Pf (κ), each with cardinality
κ, such that

(
∀F ∈ Pf (κ)

)
(∀ι < κ)(∃G ∈ Cι)(F ⊆ G).

Proof. (i) Enumerate Pf (κ) as 〈Fσ〉σ<κ. For each ι < µ inductively define an injective
function fι : Pf (κ) → Bι so that for all σ < κ, fι(Fσ) > max(Fσ). (Since |{τ ∈ Bι :
τ > max(Fσ)}| = κ, such a choice is always possible.)

For ι < µ let Bι = {F ∪ {fι(F )} : F ∈ Pf (κ)}. Then |Bι| = κ.

The function max takes each Bι injectively to Bι and thus, if ι < δ < µ, then
|Bι ∩ Bδ| ≤ |Bι ∩Bδ| < κ.

(ii) This proof is essentially the same, using the fact that there is a family 〈Cι〉ι<κ

of pairwise disjoint subsets of κ such that |Cι| = κ for every ι < κ.

2.2 Lemma. Let S be an infinite semigroup which is very weakly right cancellative,
and let κ = |S|. If A is a thick subset of S then |A| = κ.

Proof. Notice that for x ∈ S, A ∩ xA is nonempty (since there exists y such that
{x, xx}y ⊆ A). We will see that this condition is enough to guarantee that A has size
κ.

Argue by contradiction and assume that |A| < κ. For each (w, z) ∈ A × A, let
Tw,z = {y ∈ S : yw = z}. Since each Tw,z is a right solution set of S,

|
⋃
{Tw,z : (w, z) ∈ A×A}| < κ .

Pick x ∈ S \
⋃
{Tw,z : (w, z) ∈ A×A}. Then A ∩ xA = ∅, a contradiction.
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For groups, Theorem 2.3(ii) follows from (the left-right switch of) [8, Theorem 1]
and if S is countable, the same result follows from [1, Theorem 11.5]. For countable
groups Theorem 2.3(i) is in [10, p. 105].

2.3 Theorem. Let S be an infinite semigroup which is very weakly cancellative, let
κ = |S|, and let A be a thick subset of S.

(i) If there is a family of µ almost disjoint subsets of κ, then there is a family of µ

almost disjoint thick subsets of A.

(ii) There is a family of κ pairwise disjoint thick subsets of A.

Proof. (i) Enumerate Pf (S) as 〈Fσ〉σ<κ and pick by Lemma 2.1(i) a family 〈Bι〉ι<µ of
almost disjoint subsets of Pf (S) such that

(
∀F ∈ Pf (S)

)
(∀ι < µ)(∃G ∈ Bι)(F ⊆ G).

We inductively choose a κ-sequence 〈xσ〉σ<κ in S such that for all σ < κ, Fσ·xσ ⊆ A,
and for all δ < σ < κ, Fσ · xσ ∩ Fδ · xδ = ∅. To see that we can do this, let σ < κ

and assume that 〈xδ〉δ<σ has been chosen. Let H =
⋃

δ<σ Fδ · xδ. Observe that
|H| ≤ max{ω, |σ|} < κ.

Given any w ∈ H and z ∈ Fσ, {x ∈ S : w = zx} is a left solution set of S. So since
|H × Fσ| < κ, we have |{x ∈ S : Fσ · x ∩H 6= ∅}| < κ.

For any finite subset G of S, there is some y such that FσGy ⊆ A implying that
Gy ⊆ {x ∈ S : Fσ · x ⊆ A}. Therefore, {x ∈ S : Fσ · x ⊆ A} is thick. By Lemma 2.2,
|{x ∈ S : Fσ · x ⊆ A}| = κ. Pick

xσ ∈ {x ∈ S : Fσ · x ⊆ A} \ {x ∈ S : Fσ · x ∩H 6= ∅} .

For ι < µ, let Dι =
⋃
{Fσ · xσ : σ < κ and Fσ ∈ Bι}. Then |Dι| = κ.

If ι < γ < µ, then Dι∩Dγ =
⋃
{Fσ ·xσ : σ < κ and Fσ ∈ Bι∩Bγ} so |Dι∩Dγ | < κ.

To see that each Dι is thick, let G ∈ Pf (S) and pick Fσ ∈ Bι such that G ⊆ Fσ. Then
G · xσ ⊆ Dι.

(ii) The proof is essentially the same, using Lemma 2.1(ii) instead of Lemma 2.1(i).

The following theorem is due to the referee. Its proof combines elements of the
proofs of Lemma 2.1 and Theorem 2.3. Notice that one cannot necessarily begin by
enumerating the subsets of S with cardinality less than κ as a κ-sequence. For example,
if κ = ω1, then there are 2ω subsets of S that are smaller than κ and one might have
ω1 < 2ω.

2.4 Theorem. Let S be an infinite semigroup which is very weakly cancellative, let
κ = |S|, assume that κ is regular, and let A be a very thick subset of S.
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(i) If there is a family of µ almost disjoint subsets of κ, then there is a family of µ

almost disjoint very thick subsets of A.

(ii) There is a family of κ pairwise disjoint very thick subsets of A.

Proof. We do both proofs at once. For (i) let 〈Bι〉ι<µ be a family of almost disjoint
subsets of κ. For (ii), let µ = κ and let 〈Bι〉ι<µ be a family of pairwise disjoint subsets
of κ with each |Bι| = κ.

Enumerate S as 〈sσ〉σ<κ. For σ < κ, let Iσ = {sδ : δ < σ}.
We now claim that we can choose 〈xσ〉σ<κ in S such that for each σ, Iσ · xσ ⊆ A

and for all δ < σ < κ, Iσ · xσ ∩ Iδ · xδ = ∅. So let σ < κ and assume that 〈xδ〉δ<σ has
been chosen. Let H =

⋃
δ<σ Iδ · xδ. Since κ is regular, |H| < κ.

Given any w ∈ H and z ∈ Iσ, {x ∈ S : w = zx} is a left solution set of S so is
smaller than κ. So since |H × Iσ| < κ, we have |{x ∈ S : Iσ · x ∩H 6= ∅}| < κ.

For any subset G of S with |G| < κ, there is some y such that IσGy ⊆ A so that
Gy ⊆ {x ∈ S : Iσ · x ⊆ A}. Therefore, {x ∈ S : Iσ · x ⊆ A} is very thick (and in
particular, thick). By Lemma 2.2, |{x ∈ S : Iσ · x ⊆ A}| = κ. Pick xσ ∈ {x ∈ S :
Iσ · x ⊆ A} \ {x ∈ S : Iσ · x ∩H 6= ∅}.

For ι < µ, let Dι =
⋃

τ∈Bι
Iτ · xτ . By the regularity of κ, every subset of κ of size

less than κ is bounded in κ implying it is a subset of Iτ for any sufficiently large τ . This
clearly implies that Dι is very thick.

Since the sets Iτ ·xτ are pairwise disjoint, we see that Dι ∩Dγ =
⋃

τ∈Bι∩Bγ
Iτ ·xτ .

Therefore if Bι ∩ Bγ = ∅, then Dι ∩Dγ = ∅. Moreover if Bι ∩ Bγ has size less than κ

then so does Dι ∩Dγ .

3. Almost disjoint central and piecewise syndetic sets

We shall show that, if S is an infinite very weakly cancellative semigroup of cardinality
κ and if κ contains µ almost disjoint sets, then every central set in S contains µ almost
disjoint central subsets. The same statement holds for piecewise syndetic subsets of S

if S is left cancellative and very weakly right cancellative.

3.1 Lemma. Let S be an infinite semigroup with cardinality κ and let U denote the set
of uniform ultrafilters on S. If S is very weakly left cancellative, U is a left ideal of βS.
If S is very weakly cancellative, U is an ideal of βS.

Proof. Assume first that S is very weakly left cancellative. Let p ∈ U . To show that
βSp ⊆ U it is sufficient to show that sp ∈ U for every s ∈ S, because U is closed
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and βSp = clβS(Sp). Since {sP : P ∈ p} is a base for sp, it is sufficient to show that
|sP | = κ if P ∈ p. Now, for every t ∈ sP , λ−1

s [{t}] is a left solution set of S. Since
P ⊆

⋃
t∈sP λ−1

s [{t}], it follows that |sP | = κ.

Now suppose that S is very weakly cancellative. To show that U is a right ideal,
let p ∈ U and q ∈ βS. We claim that pq ∈ U . To see this we assume that, on the
contrary, pq /∈ U . Then, since U is a left ideal, q /∈ U and so there exists Q ∈ q for
which |Q| < κ. Since pq /∈ U , there also exists X ∈ pq such that |X| < κ. We may
pick P ∈ p and Qa ∈ q for each a ∈ P such that

⋃
a∈P aQa ⊆ X by [7, Theorem 4.15].

Now, for each b ∈ Q and x ∈ X, Tb,x = {s ∈ S : sb = x} is a right solution set of S.
However, P ⊆

⋃
(b,x)∈Q×X Tb,x. (Given a ∈ P , pick b ∈ Q ∩Qa. Then a ∈ Tb,ab.) This

is a contradiction because |Q×X| < κ.

3.2 Definition. Let S be a semigroup, let p be an idempotent in βS and let C ∈ p.
We put C? = {s ∈ C : sp ∈ C}.

We note that C? ∈ p and that, for every s ∈ C?, s−1C? ∈ p [7, Lemma 4.14].

3.3 Theorem. Let κ be an infinite cardinal and let S be a very weakly left cancellative
semigroup with cardinality κ, let p be a minimal idempotent of βS which is uniform,
and let C ∈ p.

(i) If there is a family of µ almost disjoint subsets of κ, then C contains µ almost
disjoint sets each of which is a member of a uniform minimal idempotent in βS.

(ii) C contains κ disjoint sets each of which is a member of a uniform minimal idem-
potent in βS.

Proof. (i) For each F ∈ Pf (C?), let

SF = {t ∈ C? : Ft ⊆ C?} = C? ∩
⋂

s∈F s−1C? .

We note that SF ∈ p.

We claim that, for each F ∈ Pf (C?) and each s ∈ SF , if H = {s} ∪ Fs, then
sSH ⊆ SF . To see this, let t ∈ SH . Since s ∈ H, st ∈ C?. Also for every r ∈ F ,
rs ∈ H and so rst ∈ C?. Thus st ∈ SH . This shows that sSH ⊆ SF , as claimed. Let
V =

⋂
F∈Pf (C?) SF . Then p ∈ V and by [7, Theorem 4.20], V is a subsemigroup of βS.

Well order Pf (C?) as a κ-sequence and inductively choose xF ∈ SF for every
F ∈ Pf (C?) so that FxF ∩ HxH = ∅ and xF 6= xH if F and H are distinct members
of Pf (C?). (Having chosen 〈xF 〉F<H , one sees as in the proof of Theorem 2.3 that
|{y ∈ S : Hy ∩

⋃
F<H FxF 6= ∅}| < κ, while SH ∈ p and so |SH | = κ.) Since xF ∈ SF ,

FxF ⊆ C? implying FxF ⊆ C.
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By Lemma 2.1(i), there is an almost disjoint family 〈Bσ〉σ<µ of subsets of Pf (C?)
such that, for every F ∈ Pf (C?) and every σ < µ, there exists H ∈ Bσ for which F ⊆ H.
For each σ < µ, put Dσ =

⋃
F∈Bσ

FxF . Then 〈Dσ〉σ<µ is almost disjoint and each Dσ

is a subset of C. We shall show that, for each σ < µ, Dσ is a member of a uniform
minimal idempotent of βS so that the family 〈Dσ〉σ<µ is a family with the required
properties.

To this end, let σ < µ be given. Notice that for F ∈ Pf (C?), {H : H ∈ Bσ and F ⊆
H} has cardinality κ, being a a collection of finite sets whose union is κ. Therefore,
{xH : H ∈ Bσ and F ⊆ H} has cardinality κ. Since

{
{xH : H ∈ Bσ and F ⊆ H} : F ∈

Pf (C?)
}

has the κ-uniform finite intersection property [7, Theorem 3.62], we may pick
a uniform ultrafilter q ∈ βS such that{

{xH : H ∈ Bσ and F ⊆ H} : F ∈ Pf (C?)
}
⊆ q .

Given F ∈ Pf (C?) and H ∈ Bσ such that F ⊆ H, one has xH ∈ SH ⊆ SF so q ∈ V .

We claim now that V q ⊆ Dσ. We show in fact that C?q ⊆ Dσ. So let s ∈ C?.
To see that s−1(Dσ) ∈ q it suffices to show that {xH : s ∈ H ∈ Bσ} ⊆ s−1Dσ. So let
s ∈ H ∈ Bσ. Then sxH ∈ HxH ⊆ Dσ.

We can choose a minimal idempotent r of V in the left ideal V q of V . Since V

meets K(βS), K(V ) ⊆ K(βS) so r is also minimal in βS. Since q is uniform and since,
by Lemma 3.1, the collection of uniform ultrafilters form a left ideal of βS, r is uniform.

(ii) This proof is essentially the same, using Lemma 2.1(ii), instead of Lemma 2.1(i).

3.4 Corollary. Let κ be an infinite cardinal and let S be a very weakly cancellative
semigroup with cardinality κ. Suppose that κ contains µ almost disjoint sets. Then
every central set in S contains µ almost disjoint central sets. Furthermore, every central
set in S contains κ disjoint central subsets.

Proof. Let C be a central set and pick a minimal idempotent p of βS such that C ∈ p.
By Lemma 3.1 p is uniform, so Theorem 3.3 applies.

We observe that any result about almost disjoint central subsets of an arbitrary
central set in a left cancellative semigroup yields a corresponding result about piecewise
syndetic sets.

3.5 Theorem. Let S be a left cancellative semigroup, let µ be a cardinal, and assume
that every central subset of S contains a family of µ almost disjoint (respectively disjoint)
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central subsets of S. Then every piecewise syndetic subset of S contains a family of µ

almost disjoint (respectively disjoint) piecewise syndetic subsets of S.

Proof. According to [7, Theorem 4.43], a subset C of S is piecewise syndetic if and only
if there is some x ∈ S such that x−1C is central. Let C be a piecewise syndetic subset
of S. Pick some x ∈ S such that x−1C is central and pick an indexed family 〈Dι〉ι<µ

of almost disjoint (respectively disjoint) central subsets of x−1C. Then for each ι < µ,
Dι ⊆ x−1(xDι) so xDι is piecewise syndetic. Also Dι ⊆ x−1C so xDι ⊆ C. And, by
left cancellativity, if ι < δ < µ, then |xDι ∩ xDδ| = |Dι ∩Dδ|.

4. Disjoint syndetic sets

The situation with respect to syndetic subsets of a semigroup is significantly different
from that with respect to central, thick, and piecewise syndetic sets. We begin by
showing that for an infinite semigroup S of cardinality κ, there can not be a family
of more than κ almost disjoint syndetic subsets of S unless there is a syndetic set of
size less than κ. In the latter case there are such families of size µ whenever there is
an almost disjoint family of subsets of S of size µ. To see this notice that if B is an
almost disjoint family of subsets of S and A is a subset of S of size less than κ then the
collection of sets B ∪A for B ∈ B form an almost disjoint family.

4.1 Theorem. Let S be an infinite semigroup with |S| = κ. Either there is a syndetic
subset of S of size less than κ or there does not exist a family of κ+ almost disjoint
syndetic subsets of S.

Proof. Argue by contradiction.

Say that a subset X of S is small if there is some t ∈ S such that |tX| < κ. The
assumption that there is no syndetic set of size less than κ implies that S is not the
union of finitely many small sets (in fact, the two conditions are equivalent).

Let B be a collection of κ+ almost disjoint syndetic subsets of S. For each B ∈ B,
pick FB ∈ Pf (S) such that S =

⋃
t∈FB

t−1B. Note first that we may choose F ∈ Pf (S)
such that |{B ∈ B : FB = F}| > κ. (Otherwise |B| ≤

∑
F∈Pf (S) |{B ∈ B : FB = F}| ≤

κ · κ = κ.)

Pick D ⊆ {B ∈ B : FB = F} such that |D| = |F | + 1. For B ∈ D and s ∈ S,
pick ts,B ∈ F such that (ts,B)s ∈ B. For each s ∈ S pick by the pigeon hole principle
Bs 6= Cs in D such that ts,Bs = ts,Cs . Pick B 6= C in D, t ∈ F , and T ⊆ S such that
T is not small and for all s ∈ T , (Bs, Cs) = (B,C) and ts,B = ts,C = t. Let D = tT .
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Then D ⊆ B ∩ C so |D| < κ. On the other hand, since T is not small, D must have
size κ, a contradiction.

4.2 Corollary. Let S be an infinite semigroup with |S| = κ. If S is very weakly left
cancellative, there does not exist a family of κ+ almost disjoint syndetic subsets of S.

Proof. Let A be a syndetic subset of S and pick t ∈ S such that |t−1A| = κ. Then
t−1A =

⋃
s∈A {y ∈ S : ty = s} so |A| = κ.

Notice that some sort of left cancellation assumption is needed in Corollary 4.2.
Indeed, in a left zero semigroup (that is a semigroup in which ab = a for all a and b),
every nonempty subset is syndetic. More generally, if there exist a, b ∈ S such that
aS = {b}, then any set with b as a member is syndetic.

We show now that syndetic subsets of free semigroups on infinite alphabets contain
as large as possible collections of pairwise disjoint syndetic sets.

4.3 Theorem. Let |A| = κ ≥ ω, let S be the free semigroup on A, and let B be a
syndetic subset of S. There is a collection of κ pairwise disjoint syndetic subsets of B.

Proof. For t ∈ S let α(t) be the set of letters occurring in t. Pick F ∈ Pf (S) such that
S =

⋃
t∈F t−1B and let D =

⋃
t∈F α(t). For each a ∈ A \D let Ca = {wav : w, v ∈ S

and α(w) ⊆ D} ∩ B. If s ∈ Ca then a is the first letter from A \ D occurring in s.
Consequently, if a and b are distinct members of A \D, then Ca ∩ Cb = ∅.

Let a ∈ A \D. We show that S =
⋃

t∈Fa t−1Ca. So let s ∈ S and pick t ∈ F such
that as ∈ t−1B. Then tas ∈ Ca so s ∈ (ta)−1Ca.

Notice that a subset of N with the operation a ∨ b = max{a, b} is syndetic if and
only if it is cofinite. Consequently, (N,∨) is a weakly left and weakly right cancellative
semigroup which does not contain disjoint syndetic subsets. We characterize now those
syndetic sets which can be split into disjoint syndetic subsets.

The following lemma strengthens [7, Lemma 3.33].

4.4 Lemma. Let A be a set and let g : A → A be a function which has no fixed
points. Then A can be partitioned into three disjoint sets A0, A1, A2 with the property
that g[A0] ⊆ A1, g[A1] ⊆ A0 ∪A2 and g[A2] ⊆ A0.
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Proof. Let

A = {f :f is a function, range(f) ⊆ {0, 1, 2} ,

domain(f) ⊆ A, and
(
∀x ∈ domain(f)

)(
g(x) ∈ domain(f) , (f(x) = 0 ⇒ f

(
g(x)

)
= 1) ,

(f(x) = 1 ⇒ f
(
g(x)

)
∈ {0, 2}), and (f(x) = 2 ⇒ f

(
g(x)

)
= 0)

)
} .

Let g0 be the identity function. We claim that for all x ∈ A, there is some f ∈ A
such that domain(f) = {gn(x) : n ∈ ω}. If for all k 6= n in ω, gk(x) 6= gn(x), then one
can define f ∈ A with domain(f) = {gn(x) : n ∈ ω} by

f
(
gn(x)

)
=

{
0 if n is even
1 if n is odd.

So assume that we have some k < m such that gk(x) = gm(x) and pick the least
such m (in which case k is uniquely determined). Note that m ≥ k + 2. Note also that
{gn(x) : n ∈ ω} =

{
gn(x) : n ∈ {0, 1, . . . ,m− 1}

}
. For i ∈ {0, 1, . . . ,m− 2},

if k is even let f
(
gi(x)

)
=

{
0 if i is even
1 if i is odd

and if k is odd let f
(
gi(x)

)
=

{
0 if i is odd
1 if i is even .

If f
(
gm−2(x)

)
= 0, let f

(
gm−1(x)

)
= 1. If f

(
gm−2(x)

)
= 1, let f

(
gm−1(x)

)
= 2. The

claim is established.

In particular A 6= ∅ and trivially the union of a chain in A is in A so pick by
Zorn’s Lemma a maximal member f of A. We claim that domain(f) = A. Suppose
instead we have some x ∈ A \ domain(f). If {gn(x) : n ∈ ω} ∩ domain(f) = ∅ pick
h ∈ A such that domain(h) = {gn(x) : n ∈ ω}. Then f ∪ h ∈ A, a contradiction. Thus
{gn(x) : n ∈ ω} ∩ domain(f) 6= ∅ so pick the least n such that gn(x) ∈ domain(f).
If k, r ∈ {0, 1, . . . , n} and gk(x) = gr(x), then k = r. (If k < r, then

{
gm(x) :

m ∈ {0, 1, . . . , n}
}

=
{
gm(x) : m ∈ {0, 1, . . . , r − 1}

}
.)

If f
(
gn(x)

)
∈ {0, 2} let for i ∈ {1, 2, . . . , n}

h(gn−i(x)
)

=
{

0 if i is even
1 if i is odd

and if f
(
gn(x)

)
= 1 let for i ∈ {1, 2, . . . , n}

h(gn−i(x)
)

=
{

1 if i is even
0 if i is odd .

Then f ∪ h ∈ A, a contradiction.
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Our claim now follows by putting Ai = f−1[{i}] for each i ∈ {0, 1, 2}.

According to the referee, some special cases of the following theorem with the same
approach are in [1].

4.5 Theorem. Let S be a semigroup and let A ⊆ S. The following statements are
equivalent.

(a) A contains disjoint syndetic subsets.

(b)
(
∃F ∈ Pf (S)

)
(∀x ∈ S)(∃t ∈ F )(tx ∈ A \ {x}).

(c) A is syndetic and
(
∃F ∈ Pf (S)

)
(∀x ∈ A)(∃t ∈ F )(tx ∈ A \ {x}).

Proof. (a) implies (b). Pick disjoint syndetic subsets B and C of A. Pick G, H ∈ Pf (S)
such that S =

⋃
t∈G t−1B =

⋃
t∈H t−1C. Let F = G ∪ H. Let x ∈ S. If x ∈ B then

there is t ∈ H such that tx ∈ C in which case tx ∈ A and tx 6= x. If x 6∈ B there is
t ∈ G such that tx ∈ B in which case tx ∈ A and tx 6= x.

(b) implies (c). This is trivial.

(c) implies (a). Pick F as guaranteed and for each x ∈ A pick tx ∈ F such that
txx ∈ A \ {x} and let g(x) = txx. Let A0, A1, A2 be the subsets of A guaranteed by
Lemma 4.4.

Pick G ∈ Pf (S) such that S =
⋃

t∈G t−1A and let H = G∪FG∪FFG. We claim
that S =

⋃
t∈H t−1A0 =

⋃
t∈H t−1A1. To see this, let x ∈ S. Pick y ∈ G such that

yx ∈ A. If yx ∈ A0, then tyxyx = g(yx) ∈ A1. If yx ∈ A1 and g(yx) ∈ A0, then
tyxyx ∈ A0. If yx ∈ A1 and g(yx) ∈ A2, then g2(yx) ∈ A0 so tg(yx)tyxyx ∈ A0. If
yx ∈ A2, then g(yx) ∈ A0 and g2(yx) ∈ A1 so tyxyx ∈ A0 and tg(yx)tyxyx ∈ A1.

4.6 Corollary. Let S be a semigroup. The following statements are equivalent.

(a) S does not contain disjoint syndetic subsets.

(b)
(
∀F ∈ Pf (S)

)
(∃x ∈ S)(∀t ∈ F )(tx = x).

(c) There exists p ∈ βS such that βSp = {p}.
(d) All minimal left ideals of βS are singletons.

Proof. (a) implies (b). Theorem 4.5.

(b) implies (c). For each t ∈ S, let Xt = {x ∈ S : tx = x}. Then {Xt : t ∈ S} has
the finite intersection property by (b) so pick p ∈ βS such that {Xt : t ∈ S} ⊆ p. Then
for each t ∈ S, λt is equal to the identity on a member of p so λt(p) = p. Therefore
Sp = {p} and thus βSp = {p}.

(c) implies (d). By [7, Lemma 1.62] all minimal left ideals of S are isomorphic.
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(d) implies (a). Pick a minimal left ideal L = {p} of βS. Then for any syndetic
subset B of S, p ∈ B by Lemma 1.6.

If S is an infinite right zero semigroup no proper subset is syndetic. We see that
for left cancellative semigroups, that is the only way to avoid proper syndetic subsets.

4.7 Theorem. Let S be a left cancellative semigroup. The following statements are
equivalent.

(a) S contains no proper syndetic subsets.

(b) All elements of S are idempotents.

(c) S is a right zero semigroup.

Proof. (a) implies (b). Let a ∈ S. Then S \ {a} is not syndetic so for all F ∈ Pf (S)
there exists x ∈ S such that Fx = {a}. Pick x ∈ S such that ax = a and pick y ∈ S

such that {a, x}y = {a}. Then ay = ax so y = x. Therefore ax = a so axx = ax and
thus xx = x. Also xx = xy = a so a = x and therefore aa = a.

(b) implies (c). Any idempotent in a left cancellative semigroup is a left identity.
(If xx = x, then for any a, xxa = xa so xa = a.) If all elements of S are left identities,
then S is a right zero semigroup.

(c) implies (a). If A ⊆ S and a ∈ S \A, then Sa ∩A = ∅.

For the remainder of this section we turn our attention to finding conditions guar-
anteeing that any syndetic set may be split into two disjoint syndetic subsets.

4.8 Lemma. Let S be an infinite semigroup, let A be a syndetic subset of S, and let
H ⊆ S. If |H| < |S| and S is very weakly left cancellative, then there exists F ∈
Pf (S \H) such that S ⊆

⋃
t∈F t−1A.

Proof. Pick F ∈ Pf (S) such that S =
⋃

t∈F t−1A. Since S is very weakly left cancella-
tive, there is some g ∈ S such that Fg ∩H = ∅. Then S =

⋃
t∈Fg t−1A.

4.9 Theorem. Let S be an infinite semigroup which is left cancellative and weakly right
cancellative. Then any syndetic subset of S contains disjoint syndetic subsets.

Proof. Let T = {t ∈ S : for all s ∈ S, ts 6= s}. and let V = S \ T . Let E = {t ∈ S :
t2 = t}. For s ∈ S, let Us = {u ∈ S : us = s}. If Us 6= ∅, then since S is weakly right
cancellative, Us is a finite subsemigroup of S. Since V =

⋃
s∈S Us we have that every

element of V has finite order.

Since S is left cancellative, any idempotent in S is a left identity for S so, since S

is weakly right cancellative, E is finite.
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Let A be a syndetic subset of S and pick by Lemma 4.8 some F ∈ Pf (S \E) such
that S =

⋃
t∈F t−1A. Suppose that A does not contain disjoint syndetic subsets and

pick by Theorem 4.5 some s ∈ S such that for all u ∈ F , us /∈ A \ {s}. Pick u ∈ F such
that us ∈ A so that us = s and thus u ∈ V \ E.

Let X = {t ∈ S : ut = t}. We claim that X ⊆ T . To see this, suppose instead that
we have t ∈ X ∩ V . Now X is a right ideal of S, so in particular is a subsemigroup.
Since t ∈ V , t has finite order so {tn : n ∈ N} is a finite subsemigroup of X. Thus there
is an idempotent e ∈ X. Then e is a left identity for S so eu = u. But e ∈ X so ue = e

and thus uu = ueu = eu = u, a contradiction.

Since X is a right ideal of S, we have by [7, Corollary 4.18] that X is a right ideal
of βS so we may pick an idempotent q ∈ X ⊆ T . We claim that for all p ∈ βS, Sqp has
no points that are isolated in βSqp. Suppose instead that we have p ∈ βS and s ∈ S

such that sqp is isolated in βSqp and pick B ∈ sqp such that B ∩ βSqp = {sqp}. Then
s−1B ∈ qp = qqp. Let Q = {t ∈ T : t−1(s−1B) ∈ qp}. Then Q ∈ q. Pick t ∈ Q.
Then B ∈ stqp so stqp = sqp and thus by [7, Lemma 8.1] tqp = qp. Since t ∈ T , λt

has no fixed points in S and so by [7, Theorem 3.34] it has no fixed points in βS, a
contradiction.

Now let p ∈ βS be given. Then A ∩ βSqp 6= ∅ by Lemma 1.6(b) so A ∩ Sqp 6= ∅
and we may thus pick ap and bp in S such that apqp and bpqp are distinct members of
A. Pick Bp ∈ bpqp \ apqp. Then {t ∈ S : t−1

(
bp
−1(A ∩ Bp) ∩ ap

−1(A \ Bp)
)
∈ p} ∈ q,

so pick tp ∈ S such that Pp = tp
−1

(
bp
−1(A ∩Bp) ∩ ap

−1(A \Bp)
)
∈ p.

Then {Pp : p ∈ βS} covers βS so pick finite D ⊆ βS such that βS =
⋃

p∈D Pp and
in particular S =

⋃
p∈D Pp.

Let G = {bptp : p ∈ D} ∪ {aptp : p ∈ D}. By Theorem 4.5 pick s ∈ S such that for
all x ∈ G, xs /∈ A\{s}. Pick p ∈ D such that s ∈ Pp. Then bptps ∈ A so s = bptps ∈ Bp.
But also aptps ∈ A so s = aptps /∈ Bp, a contradiction.

We see that one cannot replace “weakly right cancellative” by “very weakly right
cancellative” in Theorem 4.9.

4.10 Theorem. Let κ > ω. There is a left cancellative semigroup S of cardinality
κ which does not contain disjoint syndetic subsets and has the property that any right
solution set has cardinality less than κ. In particular, if κ is regular, then S is very
weakly right cancellative.

Proof. The semigroup consisting of the ordinal κ with ordinal addition provides an
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example. For those unfamiliar with ordinal arithmetic, we describe an isomorphic semi-
group for which the necessary properties can be verified directly.

Let S be the set of nonempty words over the alphabet κ with letters in nonincreasing
order and for x ∈ S let α(x) be the set of letters occurring in x. Define an operation
· on S as follows. Let a1a2 · · · an and b1b2 · · · bm be in S where n, m ∈ N and for
each i ∈ {1, 2, . . . , n} ai ∈ κ and for each j ∈ {1, 2, . . . ,m}, bj ∈ κ. If a1 < b1,
then (a1a2 · · · an) · (b1b2 · · · bm) = b1b2 · · · bm. If a1 ≥ b1, let t = max{i ∈ {1, 2, . . . ,

n} : ai ≥ b1} and let (a1a2 · · · an) · (b1b2 · · · bm) = a1a2 · · · atb1b2 · · · bm.

It is routine (though tedious) to verify that this operation is associative. To see
that S is left cancellative, let a1a2 · · · an, b1b2 · · · bm, and c1c2 · · · ck be members of S

(where each ai, bi, and ci is a letter) and assume that (a1a2 · · · an) · (b1b2 · · · bm) =
(a1a2 · · · an) · (c1c2 · · · ck). We may assume without loss of generality that m ≥ k. If
m = k we have that the rightmost m letters agree and so b1b2 · · · bm = c1c2 · · · ck.
So suppose m > k. Then the length of (a1a2 · · · an) · (c1c2 · · · ck) is at least m so
a1 ≥ c1. Pick the largest t such that at ≥ c1 and let s = t + 1 + k − m. Then
b1b2 · · · bm = asas+1 · · · anc2c2 · · · ck so that as = b1 and consequently the length of
(a1a2 · · · an) · (b1b2 · · · bm) is at least s+m while the length of (a1a2 · · · an) · (c1c2 · · · ck)
is exactly t + k so that t + k ≥ s + m = t + k + 1, a contradiction.

To see that all right solution sets have cardinality less than κ, let a1a2 · · · an and
b1b2 · · · bm be members of S and let T = {x ∈ S : x ·a1a2 · · · an = b1b2 · · · bm}. If m < n,
then T = ∅. If m = n, then T = {x ∈ S : α(x) ⊆ b1}. (Recall that b1 is an ordinal, so is
the set of its predecessors.) If m > n, then T = {xb1b2 · · · bm−n : x ∈ S and α(x) ⊆ b1}.
Consequently in any case |T | ≤ max{ω, |b1|} < κ.

Finally, suppose one has disjoint syndetic subsets B and C of S and pick finite
subsets F and G of S such that S =

⋃
t∈F t−1B =

⋃
t∈G t−1C. Pick a < κ such that

a > max{α(x) : x ∈ F ∪G}. Then for any t ∈ F ∪G, ta = a so a ∈ B ∩ C.

As mentioned in the proof above, the example is isomorphic to the semigroup (κ, +)
(the sequence a1a2 . . . an corresponds to ωa1 +ωa2 . . .+ωan). The ordering of the ordinal
κ corresponds to the lexicographic ordering in our example. A slight elaboration of the
proof shows that a set is thick iff it is unbounded. Therefore, a set is syndetic iff it has
bounded compliment. Hence, the syndetic sets form a filter.

Since every nonempty subset of a left zero semigroup is syndetic, right cancellation
is not sufficient to guarantee the ability to split any syndetic subset into disjoint syndetic
subsets. But it almost is.
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4.11 Theorem. Let S be a right cancellative semigroup and let A be a syndetic subset
of S with at least two points. Then A contains disjoint syndetic subsets.

Proof. Suppose the conclusion fails. Let U = {e ∈ S : e is a right identity for S}.
(Then U = {e ∈ S : ee = e}, but we shall not need that fact.) Let F = {F ∈ Pf (S) :
S =

⋃
t∈F t−1A}.

We claim that for all F ∈ F , F ∩ U 6= ∅. So let F ∈ F . By Theorem 4.5 we may
pick x ∈ A such that for all t ∈ F , tx /∈ A\{x} and we may pick t ∈ F such that tx ∈ A

so that tx = x. Then for all y ∈ S, ytx = yx and so yt = y.

Since A is syndetic, pick F ∈ F and note that for all s ∈ S, Fs ∈ F . Thus, for all
s ∈ S we may pick xs ∈ F such that xss ∈ U . This implies that every singleton, hence
every nonempty set, is syndetic (to see this, fix y ∈ S and let G = yF . For any s ∈ S,
y = yxss ∈ yFs = Gs). Therefore, A contains disjoint syndetic sets contradicting our
assumption.

4.12 Corollary. Let S be an infinite semigroup which is right cancellative and has the
property that S is not the union of any finite family of left solution sets of S. Then any
syndetic subset of S contains disjoint syndetic subsets.

Proof. By Theorem 4.11 it suffices to show that no singleton in S is syndetic. If a ∈ S

and if {a} is syndetic, there is a finite subset F of S such that S =
⋃

t∈F t−1{a},
contradicting our hypothesis that S is not the union of a finite family of left solution
sets.

We have already noted that our definitions of the various notions of largeness are
one-sided. Of course all of the left-right switches of our results are valid. But we do
not know the answers to various questions about sets which are simultaneously left-
large and right-large. For example, it is shown in [1, Chapter 3] that every infinite
group can be partitioned into infinitely many sets that are both left and right syndetic.
We do not know whether the corresponding statement is true for any cancellative or
weakly cancellative semigroup. Several results about the relations between left-large
and right-large sets are in [4] and several other questions of this type are in [9].
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