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Abstract. If u, v ∈ N, A is a u × v matrix with entries from Q, and ~b ∈ Qu, then

(A,~b ) determines an affine transformation from Qv to Qu by ~x 7→ A~x + ~b. In 1933
and 1943 Richard Rado determined precisely when such transformations are kernel
partition regular over N, Z, or Q, meaning that whenever the nonzero elements of the
relevant set are partitioned into finitely many cells, there is some element of the kernel
of the transformation with all of its entries in the same cell. In 1993 the first author
and Imre Leader determined when such transformations with ~b = 0 are image partition
regular over N, meaning that whenever N is partitioned into finitely many cells, there is
some element of the image of the transformation with all of its entries in the same cell.
In this paper we characterize the image partition regularity of such transformations

over N, Z, or Q for arbitrary ~b.

1. Introduction

In his famous 1933 paper [8] Richard Rado studied partition regularity of systems of
linear equations. That is, given a system of equations

a1,1x1 + a1,2x2 + . . . + a1,vxv = b1
a2,1x1 + a2,2x2 + . . . + a2,vxv = b2

...
...

...
...

...
au,1x1 + au,2x2 + . . . + au,vxv = bu

and given a finite partition of the set N of positive integers, could one guarantee a
solution set {x1, x2, . . . , xv} contained in one cell of the partition? In alternative coloring
terminology, one is asking whether, whenever N is finitely colored, there must be a
monochromatic solution set.

For instance, Schur’s Theorem [10], published in 1916, stated that whenever N is
finitely colored, there must exist monochromatic x, y, and x + y. That is, the single
equation x+ y − z = 0 is partition regular over N.

1This author acknowledges support received from the National Science Foundation (USA) via
grants DMS-0243586 and DMS-0554803.
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In matrix notation, the question being investigated was whether, given a finite
coloring of N, one could find ~x with monochromatic entries such that A~x = ~b. (We
will follow the usual custom of denoting the entries of a matrix by the lower case letter
corresponding to the upper case name of the matrix.) Most attention has been paid to
the case where the system of equations is homogeneous, that is where ~b = 0, and we
shall address that first. In that case, the mapping ~x 7→ A~x is a linear transformation.

1.1 Definition. Let u, v ∈ N and let A be a u× v matrix with entries from Q. Let S
be one of N, Z, or Q. Then A is kernel partition regular over S (KPR/S) if and only if,
whenever S \ {0} is finitely colored, there must exist monochromatic ~x ∈ Sv such that
A~x = 0.

Of course, since we are taking N to be the set of positive integers, coloring N and
coloring N\{0} are the same thing. Notice that the exclusion of 0 from the items being
colored is necessary to avoid triviality, since otherwise any matrix would be KPR/Z by
taking ~x = 0.

The characterization which Rado obtained of kernel partition regularity is in terms
of the following notion.

1.2 Definition. Let u, v ∈ N and let A be a u× v matrix with entries from Q. Denote
the columns of A by ~c1, ~c2, . . . ~cv. Then A satisfies the columns condition if and only if
there exist m ∈ {1, 2, . . . , v} and a partition {I1, I2, . . . , Im} of {1, 2, . . . , v} such that

(a)
∑

i∈I1
~ci = 0 and

(b) for each t ∈ {2, 3, . . . ,m} (if any),
∑

i∈It
~ci is a linear combination with coefficients

from Q of {~ci : i ∈
⋃t−1

j=1 Ij}.

1.3 Theorem (Rado). Let u, v ∈ N and let A be a u× v matrix with entries from Q.
The following statements are equivalent.

(a) The matrix A is KPR/N.

(b) The matrix A is KPR/Z.

(c) The matrix A is KPR/Q.

(d) The matrix A satisfies the columns condition.

Proof. That (a) implies (b) and (b) implies (c) is trivial. That (c) implies (d) is [9,
Theorem VI] and that (d) implies (a) is [8, Satz IV].

Call a subset B of N “large” if whenever A is KPR/N there must exist ~x with entries
from B such that A~x = 0. Rado conjectured that large sets are partition regular. That
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is whenever a large set is partitioned into finitely many cells, one of these must be large.
Deuber [1] proved this conjecture using what he called (m, p, c)-sets.

1.4 Definition. Let m, p, c ∈ N with p ≥ c. Then B is an (m, p, c)-set if and only if
there exists ~x ∈ Nm such that B = {

∑m
i=1 λixi : each λi ∈ {−p,−p + 1, . . . , p − 1, p}

and if t = min{i : λi 6= 0}, then λt = c}.

Notice that each (m, p, c)-set is the image of a first entries matrix .

1.5 Definition. Let u, v ∈ N and let A be a u × v matrix with entries from Q. Then
A is a first entries matrix if and only if

(1) no row of A is 0,

(2) the first nonzero entry of each row is positive, and

(3) the first nonzero entries of any two rows are equal if they occur in the same
column.

Deuber’s proof of Rado’s conjecture involved showing that first entries matrices are
image partition regular over N.

1.6 Definition. Let u, v ∈ N and let A be a u× v matrix with entries from Q.

(a) Let S be one of N, Z, or Q. The matrix A is image partition regular over S
(IPR/S) if and only if whenever S \{0} is finitely colored, there exists ~x ∈ Sv such that
the entries of A~x are monochromatic.

(b) The matrix A is weakly image partition regular over N (WIPR/N) if and only
if whenever N is finitely colored, there exists ~x ∈ Zv such that the entries of A~x are
monochromatic.

There are some other notions which might be considered as reasonable for image
partition regularity over Z or Q. See [7] for a detailed analysis of these notions. (What
we are calling IPR/Z and IPR/Q were called WIPR/Z and WIPR/Q in [7], but those
notions were shown to be equivalent for finite matrices, such as those we are dealing
with in this paper.)

Matrices that are IPR/N and matrices that are WIPR/N were characterized in [3],
and several additional characterizations for matrices that are IPR/N were found in [5].
Some of the known characterizations of WIPR/N will be given in Theorem 2.4 along
with some new ones.

Some of the characterizations of the following theorem refer to the notion of a
central subset of a semigroup. We shall define this notion later in this introduction. For
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now it suffices to note that if a semigroup is partitioned into finitely many classes, at
least one of these classes must be central.

1.7 Theorem. Let u, v ∈ N and let A be a u × v matrix with entries from Q. The
following statements are equivalent.

(a) The matrix A is IPR/N.

(b) Given any central subset C of N, {~x ∈ Nv : A~x ∈ Cu} is central in Nv.

(c) There exist m ∈ {1, 2, . . . , v} and a u×m first entries matrix B with the property
that for each ~y ∈ Nm there exists ~x in Nv such that A~x = B~y.

(d) For any row ~r ∈ Qv \ {0} there exists b ∈ Q such that b > 0 and
(
A
b~r

)
is IPR/N.

(e) Given any central subset C of N, there exists ~x ∈ Nv such that A~x ∈ Cu, all entries
of ~x are distinct, and entries of A~x corresponding to distinct rows of A are distinct.

Proof. [3, Theorem 3.1] and [5, Theorem 2.10].

We now turn our attention to the case that ~b 6= 0, in which case the mapping
~x 7→ A~x+~b is an affine transformation.

1.8 Definition. Let u, v ∈ N, let A be a u×v matrix with entries from Q, and let~b ∈ Qu.
Let S be one of N, Z, or Q. Then (A,~b ) is kernel partition regular over S (KPR/S) if
and only if, whenever S \{0} is finitely colored, there must exist monochromatic ~x ∈ Sv

such that A~x+~b = 0.

Notice that (A, 0) is KPR/S if and only if A is KPR/S. If ~b 6= 0, then the
assumption that S \ {0} is finitely colored can be replaced by the assumption that
S is finitely colored. (To see this, assign 0 to its own color. If ~x is monochromatic in
this color, that is if ~x = 0, then A~x+~b = ~b 6= 0.)

As we remarked earlier, Rado also characterized completely those pairs for which
(A,~b ) is kernel partition regular over N, Z, or Q.

1.9 Theorem (Rado). Let u, v ∈ N, let A be a u× v matrix with entries from Q, and
let ~b ∈ Qu \ {0}.
(a) The pair (A,~b ) is KPR/Z if and only if there exists k ∈ Z such that Ak +~b = 0.

(b) The pair (A,~b ) is KPR/Q if and only if there exists k ∈ Q such that Ak +~b = 0.

(c) The pair (A,~b ) is KPR/N if and only if either

(i) there exists k ∈ N such that Ak +~b = 0 or

(ii) there exists k ∈ Z such that Ak+~b = 0 and A satisfies the columns condition.
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Proof. (a) [8, Satz VIII].

(b) The ideas needed for the proof are in [9]. See [4, Theorem 2.5] for the details.

(c) [8, Satz V].

At least in the cases of Z and Q, one sees why the case ~b 6= 0 has received less
attention; the pair (A,~b ) is monochromatic if and only if it has a trivial solution.
Notice also that the equivalence between KPR/N and KPR/Z is lost.

In [4], Imre Leader and the first author of this paper addressed nonconstant kernel
partition regularity of (A,~b ).

1.10 Definition. Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let
~b ∈ Qu. Let S be one of N, Z, or Q. Then (A,~b ) is nonconstantly kernel partition
regular over S (NCKPR/S) if and only if, whenever S is finitely colored, there must
exist monochromatic nonconstant ~x ∈ Sv such that A~x+~b = 0.

Notice that, regardless of whether ~b = 0, this definition is equivalent to one that
only requires that S \ {0} be colored. Indeed, given a finite coloring of S \ {0}, extend
it to S by giving 0 its own color. Any nonconstant vector cannot be contained in {0}.

One motivation for considering nonconstant kernel partition regularity was provided
by van der Waerden’s Theorem [11] which says that whenever N is finitely colored, there
exist arbitrarily long monochromatic arithmetic progressions. The length five case of this
theorem is precisely the assertion that (A, 0) is nonconstantly kernel partition regular,
where

A =

 1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

 .

Another motivation was the possibility of eliminating the trivialities from Theorem
1.9.

1.11 Theorem. Let u, v ∈ N and let A be a u × v matrix with entries from Q. The
following statements are equivalent.

(a) The pair (A, 0) is NCKPR/N.

(b) The pair (A, 0) is NCKPR/Z.

(c) The pair (A, 0) is NCKPR/Q.

(d) The matrix A satisfies the columns condition and there exists nonconstant ~x ∈ Qv

such that A~x = 0.
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(e) The matrix A satisfies the columns condition and if the sum of the columns of A
is 0, then there exists nonempty B ⊆6 {1, 2, . . . , v} and for each j ∈ B there exists
αj ∈ Q \ {0} such that

∑
j∈B αj ~cj = 0, where ~cj is column j of A.

Proof. [4, Theorem 3.2].

1.12 Theorem. Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let
~b ∈ Qu \ {0}. The following statements are equivalent.

(a) The pair (A,~b ) is nonconstantly kernel partition regular over Q.

(b) There exists k ∈ Q such that Ak +~b = 0, A satisfies the columns condition, and
there exists nonconstant ~x ∈ Qv such that A~x+~b = 0.

Proof. [4, Theorem 3.3].

1.13 Theorem. Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let
~b ∈ Qu \ {0}. The following statements are equivalent.

(a) The pair (A,~b ) is NCKPR/N.

(b) The pair (A,~b ) is NCKPR/Z.

(c) There exists k ∈ Z such that Ak +~b = 0, A satisfies the columns condition, and
there exists nonconstant ~x ∈ Qv such that A~x+~b = 0.

Proof. [4, Theorem 3.4].

In this paper we address image partition regularity and nonconstant image partition
regularity of the affine transformation ~x 7→ A~x+~b when ~b 6= 0.

1.14 Definition. Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let
~b ∈ Qu \ {0}.

(a) The pair (A,~b ) is weakly image partition regular over N (WIPR/N) if and only
if whenever N is finitely colored, there exists ~x ∈ Zv such that the entries of A~x+~b are
monochromatic.

(b) Let S be any of N, Z, or Q. The pair (A,~b ) is image partition regular over S
(IPR/S) if and only if whenever S is finitely colored, there exists ~x ∈ Sv such that the
entries of A~x+~b are monochromatic.

When ~b 6= 0 there seems to be no good reason to forbid coloring 0, so in Definition
1.14(b) we allow all of S to be colored. Notice, however, that if one applied Definition
1.14(b) to the pair (A, 0 ) for S = Z or S = Q, one would obtain a statement which is
not equivalent to the assertion that the matrix A is IPR/S. This difficulty disappears
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when one is dealing with nonconstant image partition regularity so we allow ~b = 0 in
the following definition.

1.15 Definition. Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let
~b ∈ Qu.

(a) The pair (A,~b ) is nonconstantly weakly image partition regular over N
(NCWIPR/N) if and only if whenever N is finitely colored, there exists ~x ∈ Zv such
that the entries of A~x+~b are monochromatic and nonconstant.

(b) Let S be any of N, Z, or Q. The pair (A,~b ) is nonconstantly image partition
regular over S (NCWIPR/S) if and only if whenever S is finitely colored, there exists
~x ∈ Sv such that the entries of A~x+~b are monochromatic and nonconstant.

Section 2 of this paper consists of preliminary results.

In Section 3 we present characterizations of WIPR/N, IPR/Z, and IPR/Q for
pairs (A,~b ) with ~b 6= 0 as well as the nonconstant versions of each of these notions. In
Section 4 we characterize IPR/N and nonconstantly IPR/N for such pairs. The material
in Sections 2 and 3 is taken from the second author’s doctoral dissertation.

We conclude this introduction with a brief description of central sets. Central sets
were introduced by Furstenberg [2] and defined in terms of notions of topological dynam-
ics. These sets enjoy very strong combinatorial properties. (See [2, Proposition 8.21] or
[6, Chapter 14].) They have a nice characterization in terms of the algebraic structure
of βN, the Stone-Čech compactification of N. We shall present this characterization
below, after introducing the necessary background information.

Let (S,+) be an infinite discrete semigroup. We take the points of βS to be the
ultrafilters on S, the principal ultrafilters being identified with the points of S. Given
a set A ⊆ S, A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a basis for the open sets
(as well as a basis for the closed sets) of βS.

There is a natural extension of the operation + of S to βS, making βS a compact
right topological semigroup with S contained in its topological center. This says that
for each p ∈ βS the function ρp : βS → βS is continuous and for each x ∈ S, the
function λx : βS → βS is continuous, where ρp(q) = q + p and λx(q) = x + q. See [6]
for an elementary introduction to the semigroup βS. The reader should be cautioned
that even if the semigroup (S,+) is commutative (which we are not assuming), the
semigroup (βS,+) seldom is. In particular, the center of (βN,+) is N.

Any compact Hausdorff right topological semigroup (T,+) has a smallest two sided
idealK(T ) which is the union of all of the minimal left ideals of T , each of which is closed
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[6, Theorem 2.8] and any compact right topological semigroup contains idempotents.
Since the minimal left ideals are themselves compact right topological semigroups, this
says in particular that there are idempotents in the smallest ideal. There is a partial
ordering of the idempotents of T determined by p ≤ q if and only if p = p+q = q+p. An
idempotent p is minimal with respect to this order if and only if p ∈ K(T ) [6, Theorem
1.59]. Such an idempotent is called simply “minimal”

1.16 Definition. Let (S,+) be an infinite discrete semigroup. A set A ⊆ S is central
if and only if there is some minimal idempotent p in βS such that A ∈ p.

Notice that whenever S is divided into finitely many classes, some one of these
classes must be central.

Notice also that if S is a cancellative semigroup, then by [6, Theorem 4.36] βS \ S
is an ideal of βS and consequently K(βS) ⊆ βS \ S. In particular, no singleton subset
of S can be central.

2. Preliminary Results

In this section we present some technical results which will be needed later.

2.1 Definition. Let u, v ∈ N and let A be a u × v matrix with entries from Q. Let
rank(A) = l < u. Assume that the first l rows of A are linearly independent and
denote the rows of A by ~r1, ~r2, . . . , ~ru. For i ∈ {1, 2, . . . , u − l} and j ∈ {1, 2, . . . , l},
let γl+i,j ∈ Q be determined by, −−→rl+i =

∑l
j=1

γl+i,j · ~rj . Then D(A) is the (u − l) × u

matrix such that, for i ∈ {1, 2, . . . , u− l} and j ∈ {1, 2, . . . , u},

di,j =


γl+i,j if j ≤ l
−1 if j = l + i
0 otherwise.

2.2 Lemma. Let u, v ∈ N and let A be a u× v matrix with entries from Q and assume
that l = rank(A) < u. Assume also that the first l rows of A are linearly independent
and let D = D(A). Then DA = O.

Proof. For i ∈ {1, 2, . . . , u− l} and j ∈ {1, 2, . . . , v}, let αi,j be the entry in row i and
column j of the matrix DA. Then,

αi,j =
∑u

r=1 di,r · ar,j

=
∑l

r=1
γl+i,r · ar,j − al+i,j

= al+i,j − al+i,j

= 0 .
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Lemma 2.3. Let u, v ∈ N and let A be a u × v matrix with entries from Q. Let
~b ∈ Qu \ {0}. If all the rows of A are identical, then (A,~b ) is not NCIPR/Q.

Proof. Assume that the rows of A are identical. If ~b ∈ Qu \ {0} is a constant column
vector, then for any ~x ∈ Qv, A~x+~b = k for some k ∈ Q. Hence (A,~b ) is not (NCIPR/Q).
Thus we may assume that ~b ∈ Qu \ {0} is a nonconstant column vector. So, pick
i, j ∈ {1, 2, . . . , u} such that bj < bi. Let ϕ be a finite coloring of Q defined by, for
x ∈ Q,

ϕ(x) =


0 if

⌊
x

bi−bj

⌋
is even

1 if
⌊

x
bi−bj

⌋
is odd.

Suppose (A,~b ) is NCIPR/Q. Pick ~x ∈ Qv such that the entries of A~x + ~b are ψ-
monochromatic and nonconstant. Since the rows of A are equal, A~x = k for some
k ∈ Q. Therefore, ψ(k + bi) = ψ(k + bj). Therefore, there exist l,m ∈ Z such that

l ≤ k + bi
bi − bj

< l + 1 and,

m ≤ k + bj
bi − bj

< m+ 1

where l and m are either both even or both odd. Then

m(bi − bj) ≤ k + bj < (m+ 1)(bi − bj) and

(m+ 1)(bi − bj) ≤ k + bi < m+ 2(bi − bj), so

m+ 1 ≤ k + bi
bi − bj

< m+ 2.

Therefore, l = m+ 1, which is a contradiction.

Notice that if A has only one row, then trivially A is IPR/N.

Theorem 2.4. Let u, v ∈ N and let A be a u×v matrix with entries from Q and assume
that A has at least two distinct rows. If l = rank(A) < u, assume that the first l rows
of A are linearly independent. The following statements are equivalent.

(a) The matrix A is WIPR/N.

(b) There exists m ∈ N and a u×m first entries matrix B such that for each ~y ∈ Zm

there exists ~x ∈ Zv such that A~x = B~y.

(c) Either rank(A) = u or D(A) satisfies the columns condition.

(d) For each ~r ∈ Qv \ {0}, there exists b ∈ Q \ {0} such that
(
A
b~r

)
is WIPR/N.

(e) For every central set C in N, there exists ~x ∈ Zv such that A~x ∈ Cu.

9



(f) Whenever m ∈ N and φ1, φ2, . . . , φm are nonzero linear mappings from Qv to Q,
there exists ~b ∈ (Q\{0})m such that whenever C is central in N, there exists ~x ∈ Zv

for which A~x ∈ Cu and for each i ∈ {1, 2, . . . ,m}, biφi(~x) ∈ C and in particular
φi(~x) 6= 0.

(g) For every central set C in N, there exists ~x ∈ Zv such that ~y = A~x ∈ Cu, all entries
of ~x are distinct and for all i, j ∈ {1, 2, . . . , u} if rows i and j of A are not equal
then yi 6= yj.

(h) The pair (A, 0 ) is NCWIPR/N.

(i) The pair (A, 0 ) is NCIPR/Z.

(j) The pair (A, 0 ) is NCIPR/Q.

(k) The matrix A is IPR/Q.

(l) The matrix A is IPR/Z.

Proof. That (a), (b), (c), and (d) are equivalent is part of [3, Theorem 2.2].

(b) ⇒ (e). Let B be a u×m first entries matrix as guaranteed by (b). Let C be a
central set in N. By [5, Lemma 2.8], pick ~y ∈ Nv such that B~y ∈ Cu. By assumption,
pick ~x ∈ Zv such that A~x = B~y.

Since in any finite partition of N one cell is central, it is trivial that (e) implies (a).

(d) ⇒ (f). Let m ∈ N and let φ1, φ2, . . . , φm be nonzero linear mappings from Qv

to Q. For each i ∈ {1, 2, . . . ,m}, there exists ~ri 6= 0 such that φi(~x) = ~ri · ~x for all

~x ∈ Qv. By assumption, pick b1 ∈ Q \ {0} such that
(

A
b1~r1

)
is WIPR/N. Repeating

this process m − 1 times, using at each stage the fact that (a) implies (d), we obtain
b2, b3, . . . , bm ∈ Q \ {0} such that 

A
b1~r1

...
bm~rm


is WIPR/N. Let C be a central set in N. Now, using the fact that (a) implies (e), pick
~x ∈ Qv such that 

A
b1~r1

...
bm~rm

 ~x ∈ Cu+m .

(f) ⇒ (g). For i 6= j in {1, 2, . . . , v}, let φi,j be the linear mapping from Qv to
Q taking ~x to xi − xj . For i 6= j in {1, 2, . . . , u}, if rows i and j of A are unequal, let
ψi,j be the linear mapping from Qv to Q taking ~x to

∑v
t=1(ai,t − aj,t) · xt. Applying
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statement (f) to the set
{
φi,j : i 6= j in {1, 2, . . . , v}

}
∪

{
ψi,j : i 6= j in {1, 2, . . . ,

u} and rows i and j of A are unequal
}
, we reach the desired conclusion.

(g) ⇒ (h). Given a finite coloring of N, one of the color classes is central.

It is trivial that each of (h), (i), (j), and (k) implies the next.

(k) ⇒ (l). [7, Theorem 2.4].

(l) ⇒ (a). Let ψ : N → {1, 2, . . . , r}. Define ϕ : Z \ {0} → {1, 2, . . . , 2r} by, for
x ∈ N, ϕ(x) = ψ(x) and ϕ(−x) = ψ(x) + r. Since A is IPR/Z, pick ~x ∈ Zv such that
the entries of A~x are ϕ-monochromatic. If A~x ∈ (ϕ−1[{i}])u for i ∈ {r+1, r+2 . . . , 2r},
then A(−→−x) = −A~x ∈ (ψ−1[{i− r}])u.

2.5 Lemma. Let a, v ∈ N. For every central subset E of Nv,

E ∩ {~x ∈ Nv : for all i ∈ {1, 2, . . . , v} , xi ≥ a} 6= ∅ .

Proof. Let E be central in Nv and let W = {~x ∈ Nv : for all i ∈ {1, 2, . . . , v},
xi ≥ a}. Then W is an ideal of Nv so by [6, Corollary 4.18] W is an ideal of β(Nv)
and thus K

(
β(Nv)

)
⊆W . Pick a minimal idempotent p of βNv such that E ∈ p. Then

p ∈ K
(
β(Nv)

)
so W ∈ p so E ∩W 6= ∅.

One can in fact show that the set W in the proof of the above lemma is in fact a
member of every idempotent in β(Nv), not just every minimal idempotent.

3. Weak Image Partition Regularity over N and
Image Partition Regularity over Z and Q

In this section we obtain characterizations of WIPR/N, NCWIPR/N, IPR/Z, NCIPR/Z,
IPR/Q, and NCIPR/Q for affine transformations with ~b 6= 0.

Notice that both of the equivalent characterizations given by the following theorem
are computable.

3.1 Theorem. Let u, v ∈ N and let A be a u × v matrix with entries from Q. Let
~b ∈ Qu \ {0}. Let l = rank(A). If l < u assume that the first l rows of A are linearly
independent and let D = D(A). The following statements are equivalent.

(a) The pair (A,~b ) is IPR/Q.

(b) Either

(i) l = u, or

(ii) l < u and there exists k ∈ Q such that Dk = D~b.

(c) There exists k ∈ Q and ~x ∈ Qv such that A~x+~b = k.
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Proof. (a) ⇒ (b). Assume that l < u. If D~b = 0, let k = 0. So assume that D~b 6= 0
We claim that (D,−D~b ) is KPR/Q so that by Theorem 1.9(b), there exists k ∈ Q such
that Dk − D~b = 0. To this end, let ψ be a finite coloring of Q and pick ~x ∈ Qv such
that ~z = A~x +~b is monochromatic with respect to ψ. Then DA~x + D~b = D~z and by
Lemma 2.2 DA = O so D~z −D~b = 0 as required.

(b) ⇒ (c). If u = l, then the dimension of the column space of A is u so for any
k ∈ Q, k −~b is in the column space of A. So assume that l < u and pick k ∈ Q such
that Dk = D~b. We are already assuming that the first l rows are linearly independent.
Assume now also that the first l columns of A are linearly independent. Let C be the
upper left l × l corner of A. Then C is invertible. Recall that γl+i,j ∈ Q is determined
by, −−→rl+i =

∑l
j=1

γl+i,j · ~rj for i ∈ {1, 2, . . . , u− l} and j ∈ {1, 2, . . . , l}.
Let ~b′ consist of the first l entries of ~b. Let ~y = C−1k − C−1~b′. Then ~y ∈ Ql and

C~y + ~b′ = k. Let ~x ∈ Qv such that

xi =
{
yi for i ≤ l
0 otherwise.

We now show that A~x+~b = k. For i ∈ {1, 2, . . . , l},∑v
j=1 ai,j · xj + bi =

∑l
j=1 ai,j · xj + bi

=
∑l

j=1 ci,j · yj + b′i

= k .

For i ∈ {l + 1, l + 2, . . . , u},∑v
j=1 ai,j · xj + bi =

∑l
j=1 ai,j · xj + bi

=
∑l

j=1 xj ·
∑l

r=1
γi,r · ar,j + bi

=
∑l

r=1
γi,r ·

∑l
j=1 ar,j · xj + bi

=
∑l

r=1
γ

i,r(k − br) + bi

=
∑l

r=1
γi,r · k −

∑l
r=1

γi,r · br + bi

=
∑l

r=1 di−l,r · k −
∑l

r=1 di−l,r · br + bi .

Since one has∑u
r=1 di−l,r · k =

∑l
r=1 di−l,r · k − k and

∑u
r=1 di−l,r · br =

∑l
r=1 di−l,r · br − bi ,∑v

j=1 ai,j · xj + bi =
∑u

r=1 di−l,r · k + k − (
∑u

r=1 di−l,r · br + bi) + bi

=
∑u

r=1 di−l,r · k −
∑u

r=1 di−l,r · br + k

= k

12



since D · k = D ·~b.
It is trivial that (c) implies (a).

For IPR/Z we obtain a characterization nearly identical to that given by Theorem
3.1(c) for IPR/Q. We thank Dona Strauss for providing the proof of the necessity in
the following theorem. This proof significantly shortens our original proof.

3.2 Theorem. Let u, v ∈ N and let A be a u × v matrix with entries from Q. Let
~b ∈ Qu \{0}. Then the pair (A,~b ) is IPR/Z if and only if there exists k ∈ Z and ~x ∈ Zv

such that A~x+~b = k.

Proof. The sufficiency is trivial. For the necessity let l = rank(A). We proceed by
induction on u − l. Assume first that u − l = 0. Without loss of generality, assume
that the first u columns of A are linearly independent and let C consist of the first u
columns of A. Then C is invertible. Let d be an element of N such that the entries of
dC−1 are integers. Let ψ be a d-coloring of Z such that for x ∈ Z, ψ(x) ≡ x (mod d).
By assumption, pick ~y ∈ Zv, k ∈ {1, 2, . . . , d} and ~w ∈ Zu such that A~y +~b = k + d~w.
Let ~z′ = dC−1 ~w. Then ~z′ ∈ Zu and C~z′ = d~w. Let ~z ∈ Zv such that,

zi =
{
z′i for i ≤ u
0 otherwise.

Let ~x = ~y − ~z. Then ~x ∈ Zv. We now show that A~x+~b = k. For i ∈ {1, 2, . . . , u},∑v
j=1 ai,jxj + bi =

∑v
j=1 ai,jyj + bi −

∑u
j=1 ci,jz

′
j

= k + dwi − dwi

= k

Now assume that u − l > 0 and the conclusion holds for smaller values of u − l.
Assume without loss of generality that the first l rows of A are linearly independent.
Let A′ = (A 1 ), the u× (v + 1) matrix obtained by adding a column of 1’s to A. For
i ∈ {1, 2, . . . , u} denote the ith row of A by ~ri and the ith row of A′ by ~ri

′. If ~ru
′ is

linearly independent of ~r1
′, ~r2

′, . . . , ~rl
′, then since u− (l+1) < u− l we may pick by the

induction hypothesis some k ∈ Z and some ~x ∈ Zv+1 such that A′~x+~b = k. If we let ~y
consist of the first v entries of ~x, we then have that A~y +~b = k − xv+1 as required. So
we assume that ~ru

′ is a linearly combination of ~r1
′, ~r2

′, . . . , ~rl
′. Since we already know

that ~ru =
∑l

j=1
γu,j · ~rj , where γu,j is as given by Definition 2.1 in the definition of

D = D(A), we have that ~ru
′ =

∑l
j=1

γ
u,j · ~rj ′. By considering the last entry of each of

these vectors, we see that
∑l

j=1
γ

u,j = 1.

13



Since the pair (A,~b ) is IPR/Q, pick by Theorem 3.1 some s ∈ Q such thatDs = D~b.
The last entry of Ds is

∑l
j=1

γu,j ·s−s = 0 and the last entry of D~b is
∑l

j=1
γu,j ·bj−bu

and thus
∑l

j=1
γu,j · bj = bu.

Let B consist of the first u−1 rows of A. Since (u−1)−l < u−l we may pick by the
induction hypothesis some k ∈ Z and some ~x ∈ Zv+1 such that B~x +~b = k. We claim
that A~x+~b = k. We have directly that for i ∈ {1, 2, . . . , u− 1},

∑v
j=1 ai,j · xj + bi = k.

Finally ∑v
j=1 au,j · xj + bu =

∑v
j=1 xj ·

∑l
i=1

γu,i · ai,j + bu

=
∑l

i=1
γu,i ·

∑v
j=1 ai,j · xj + bu

=
∑l

i=1
γ

u,i · (k − bi) + bu

=
∑l

i=1
γu,i · k −

∑l
i=1

γu,i · bi + bu

= k − bu + bu .

The following theorem, which is analogous to Theorem 1.9(c), establishes that again
things get more interesting when one is talking about partition regularity over N.

3.3 Theorem. Let u, v ∈ N and let A be a u× v matrix with entries from Q. The pair
(A,~b ) is WIPR/N if and only if either

(i) there exists k ∈ N and ~x ∈ Zv such that A~x+~b = k or,

(ii) there exists k ∈ Z and ~x ∈ Zv such that A~x+~b = k and the matrix A is WIPR/N.

Proof. Necessity. By Theorem 3.2, pick k ∈ Z and ~x ∈ Zv such that A~x +~b = k. If
k ∈ N, we are done. Assume k ∈ Z \ N. To see that A is WIPR/N let r ∈ N and let ψ
be an r-coloring of N. Let ϕ be an r-coloring of N such that for x ∈ N, ϕ(x) = ψ(x−k).
Pick ~y ∈ Zv such that A~y + ~b = ~d, where the entries of ~d are monochromatic with
respect to ϕ. Let ~z = ~y − ~x. Then ~z ∈ Zv. Therefore, A~z = ~d −~b − (k −~b ) = ~d − k.
And ψ(di − k) = ϕ(di), for i ∈ {1, 2, . . . , u}.

Sufficiency. If (i) holds, we are done, so assume that (i) does not hold. Pick k ∈ Z\N
and ~x ∈ Zv such that A~x+~b = k. Let r ∈ N and let ψ : N → {1, 2, . . . , r}. Let ϕ be an
(r − k)-coloring of N such that for x ∈ N,

ϕ(x) =
{
ψ(x+ k) if x > −k
r + x if x ≤ −k.

Since no singleton is central in N, pick t ∈ {1, 2, . . . , r} such that ϕ−1[{t}] is central in
N. By Theorem 2.4(e), pick ~y ∈ Zv such that A~y = ~d ∈ (ϕ−1[{t}])u. So for i ∈ {1, 2,
. . . , u}, di > −k and ϕ(di) = t. Let ~z = ~x+ ~y. Then ~z ∈ Zv and A~z +~b = ~d+ k. And
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ψ(di + k) = ϕ(di) = t, for i ∈ {1, 2, . . . , u}.

We see now that, as in the case of kernel partition regularity, when we demand
nonconstancy the triviality of solutions disappears.

3.4 Theorem. Let u, v ∈ N, let A be a u×v matrix with entries from Q, let ~b ∈ Qu\{0},
and let l = rank(A). If l < u assume that the first l rows of A are linearly independent
and let D = D(A). The following statements are equivalent.

(a) The pair (A,~b ) is NCIPR/Q.

(b) Either

(i) l = u ≥ 2 or

(ii) l < u and (D,−D~b ) is NCKPR/Q.

(c) either

(i) l = u ≥ 2 or

(ii) l < u, D satisfies the columns condition, there exists nonconstant ~z ∈ Qu such
that D~z = D~b, and there exists k ∈ Q such that Dk = D~b.

(d) There exist k ∈ Q and ~y ∈ Qv such that A~y +~b = k, A is IPR/Q, and A has at
least two distinct rows.

Proof. (a) ⇒ (b). By Lemma 2.3, A has at least two distinct rows. Consequently
u ≥ 2. If l = u we are done. Assume that l < u. To see that (D,−D~b ) is NCKPR/Q
let ψ be a finite coloring of Q. By assumption, pick ~x ∈ Qv such that A~x + ~b = ~z,
where the entries of ~z are monochromatic with respect to ψ and nonconstant. Since by
Lemma 2.2, DA = O, D~z −D~b = 0 as required.

(b) ⇒ (c). Assume that (b)(ii) holds. If D~b = 0 we have by Theorem 1.11 that D
satisfies the columns condition and there is a nonconstant ~z ∈ Qu such that D~z = 0. In
this case D0 = D~b. Assume then that D~b 6= 0. Then by Theorem 1.12 condition (c)(ii)
holds.

(c) ⇒ (d). Assume first that l = u ≥ 2. Then the dimension of the column space
of A is u so for any k ∈ Q there is some ~y ∈ Qv such that A~y +~b = k and by Theorem
2.4, A is IPR/Q. Since l ≥ 2, A has at least two distinct rows.

Now assume that condition (c)(ii) holds. To see that A has at least two distinct rows

suppose instead that all rows of A are identical. Then for any ~z ∈ Qu, D~z =


z1 − z2
z1 − z3

...
z1 − zu

.
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In particular, for any k ∈ Q, Dk = 0 and so D~b = 0. But given any nonconstant ~z ∈ Qu,
D~z 6= 0 and so D~b 6= D~z, a contradiction.

By Theorem 2.4 A is IPR/Q, and by Theorem 3.1 there exist k ∈ Q and ~y ∈ Qv

such that A~y +~b = k.

(d) ⇒ (a). Since A is IPR/Q and A has at least two distinct rows, we have by
Theorem 2.4 that (A, 0 ) is NCIPR/Q. Pick k ∈ Q and ~y ∈ Qv such that A~y+~b = k. To
see that (A,~b ) is NCIPR/Q, let ψ be an r-coloring of Q and define an r-coloring ϕ of Q
by ϕ(x) = ψ(x+ k). Pick ~z ∈ Qv such that the entries of ~w = A~z are nonconstant and
monochromatic with respect to ϕ. Let ~x = ~z+ ~y. Then A~x+~b = A~z+A~y+~b = ~w+ k.
Since the entries of ~w are nonconstant, so are the entries of ~w + k. And the entries of
~w + k are monochromatic with respect to ψ.

The situation with respect to NCIPR/Z is very similar to the description of
NCKPR/Z provided by Theorem 1.13.

Theorem 3.5. Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let
~b ∈ Qu \ {0}. The following statements are equivalent.

(a) The pair (A,~b ) is NCWIPR/N.

(b) The pair (A,~b ) is NCIPR/Z.

(c) There exist k ∈ Z and ~y ∈ Zv such that A~y +~b = k, A is IPR/Z, and A has at
least two distinct rows.

(d) There exist k ∈ Z and ~y ∈ Zv such that A~y +~b = k, A is WIPR/N, and A has at
least two distinct rows.

Proof. It is trivial that (a) implies (b).

(b) ⇒ (c). By Lemma 2.3 A has at least two distinct rows. Since (A,~b ) is NCIPR/Z,
(A,~b ) is IPR/Z so by Theorem 3.2 pick k ∈ Z and ~y ∈ Zv such that A~y +~b = k. To
see that A is IPR/Z, let r ∈ N and let ψ be an r-coloring of Z \ {0}. Let ϕ be an
(r + 1)-coloring of Z such that, for x ∈ Z,

ϕ(x) =
{
ψ(x− k) if x 6= k
r + 1 if x = k .

Pick ~x ∈ Qv such that A~x + ~b = ~d, where the entries of ~d are ϕ-monochromatic and
nonconstant. Since the entries are nonconstant one has di 6= k for i ∈ {1, 2, . . . , u}. Let
~z = ~x−~y. Then A~z = ~d−~b− (k−~b ) = ~d−k so the entries of A~z are ψ-monochromatic.

(c) ⇒ (d). By Theorem 2.4 A is WIPR/N.
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(d) ⇒ (a). Let r ∈ N and let ψ be an r-coloring of N. Pick k ∈ Z and ~y ∈ Zv such
that A~y +~b = k. Define a coloring ϕ of N by

ϕ(x) =
{
ψ(x+ k) if x > −k
r + x if x ≤ −k .

(If k ≥ 0, then ϕ uses r colors. If k < 0, then ϕ uses r− k colors.) Since A is WIPR/N
we have by Theorem 2.4 that (A, 0 ) is NCWIPR/N. Pick ~x ∈ Zv such that the entries
of ~d = A~x are ϕ-monochromatic and nonconstant. Then, di > −k for each i ∈ {1, 2, . . . ,
u}. Let ~z = ~x+ ~y. Then A~z +~b = ~d+ k and the entries of ~d+ k are ψ-monochromatic
and nonconstant.

4. Image Partition Regularity over N

In this section we characterize those pairs (A,~b ) with ~b 6= 0 which are image partition
regular over N and those which are nonconstantly image partition regular over N.

We need some new characterizations of image partition regularity of A. The ideas
needed for the proof are contained in the proof of [5, Theorem 2.10].

4.1 Theorem. Let u, v ∈ N and let A be a u × v matrix with entries from Q. The
following statements are equivalent.

(a) The matrix A is IPR/N.

(b) Given any column ~c ∈ Qu, the matrix (A ~c ) is image partition regular.

(c) Whenever m ∈ N, φ1, φ2, . . . , φm are nonzero linear mappings from Qv to Q,
and C is a central subset of N, there exist positive b1, b2, . . . , bm in Q such that
{~x ∈ Nv : A~x ∈ Cu and for each i ∈ {1, 2, . . . ,m} , biφi(~x) ∈ C} is central in Nv.

(d) Whenever m ∈ N and C is a central subset of N, {~x ∈ Nv : A~x ∈ Cu, all entries of
~x are distinct, and entries of A~x corresponding to distinct rows of A are distinct}
is central in Nv.

Proof. That (b) implies (a) is trivial. To see that (a) implies (b), let ~c ∈ Qu be given
and let A′ = (A ~c ). Pick by Theorem 1.7(c) some m ∈ {1, 2, . . . , v} and a u×m first
entries matrix B with the property that for each ~y ∈ Nm there exists ~x in Nv such that
A~x = B~y. Let B′ = (B ~c ). Then B′ is a first entries matrix. We claim that for each
~z ∈ Nm+1 there exists ~w in Nv+1 such that A′ ~w = B′~z. So let ~z ∈ Nm+1 be given and
let ~y consist of the first m entries of ~z. Pick ~x in Nv such that A~x = B~y and let the
first v entries of ~w consist of the entries of ~x and let wv+1 = zm+1.

To see that (a) implies (c), let m ∈ N be given and let φ1, φ2, . . . , φm be nonzero
linear mappings from Qv to Q, For each i ∈ {1, 2, . . . ,m}, pick ~ri ∈ Qv \ {0} such that
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for each ~x ∈ Qv, φi(~x) = ~ri · ~x. Applying Therorem 1.7(d) m times in succession, pick
positive b1, b2, . . . , bm in Q such that

B =


A
b1 ~r1

...
bm ~rm


is IPR/N. Now let C be a central subset of N. By Theorem 1.7(b), {~x ∈ Nv : B~x ∈ Cu}
is central in Nv.

Trivially (d) implies (a) so to complete the proof we show that (c) implies (d). For
i 6= j in {1, 2, . . . , v}, let −→φi,j be the linear mapping from Qv to Q taking ~x to xi − xj .
For i 6= j in {1, 2, . . . , u}, if row i of A is not equal to row j of A, let −−→ψi,j be the linear
mapping from Qv to Q taking ~x to

∑v
t=1(ai,t− aj,t) ·xt. Applying statement (d) to the

set
{
φi,j : i 6= j in {1, 2, . . . , v}

}
∪

{
ψi,j : i 6= j in {1, 2, . . . , u} and row i of A is not

equal to row j of A
}
, we reach the desired conclusion.

On our way to characterizing pairs (A,~b ) which are IPR/N, we need to characterize
a stronger condition. Recall that, given any finite partition of N, some cell is central.
Also, no singleton in N is central. (This is true for any cancellative semigroup, but in
the case of N it is true for the trivial reason that N has no idempotents.)

4.2 Lemma. Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let
~b ∈ Qu \ {0}. The following statements are equivalent.

(a) For all a ∈ N and every finite coloring ϕ of N there exists ~x ∈ Nv such that

(i) for each i ∈ {1, 2, . . . , v}, xi ≥ a,

(ii) the entries of A~x +~b are nonconstant and monochromatic with respect to ϕ,
and

(iii) entries of A~x+~b corresponding to distinct rows of A are distinct.

(b) For all a ∈ N and every finite coloring ϕ of N there exists ~x ∈ Nv such that

(i) for each i ∈ {1, 2, . . . , v}, xi ≥ a and

(ii) the entries of A~x+~b are nonconstant and monochromatic with respect to ϕ.

(c) There exist k ∈ Z and ~y ∈ Zv such that A~y +~b = k, the matrix A is IPR/N, and
A has at least two distinct rows.

Proof. That (a) implies (b) is trivial. To see that (b) implies (c), note that (A,~b ) is
IPR/Z. Pick by Theorem 3.2 some k ∈ Z and ~y ∈ Zv such that A~y+~b = k. By Lemma
2.3 A has at least two distinct rows.

18



To see that A is IPR/N, let r ∈ N and let ϕ : N → {1, 2, . . . , r}. Let s = max{r, r+
k} and define ψ : N → {1, 2, . . . , s} by, for x ∈ N,

ψ(x) =
{
ϕ(x− k) if x > k
r + x if x ≤ k .

Let a = max
(
{1}∪

{
yi : i ∈ {1, 2, . . . , v}

})
and pick ~x ∈ Nv such that for each i ∈ {1, 2,

. . . , v}, xi ≥ a and the entries of A~x + ~b are nonconstant and monochromatic with
respect to ψ. Pick t ∈ {1, 2, . . . , s} such that for each entry z of A~x + ~b, ψ(z) = t.
Since the entries of A~x+~b are nonconstant, t ≤ r. Then the entries of A~x+~b − k are
nonconstant and monochromatic with respect to ϕ and A~x +~b − k = A(~x − ~y). Since
each entry of ~x is greater than a, we have that (~x− ~y) ∈ Nv.

To see that (c) implies (a), pick k ∈ Z and ~y ∈ Zv such that A~y+~b = k. Let a, r ∈ N
and let ϕ : N → {1, 2, . . . , r}. Let s = max{r, r− k} and define ψ : N → {1, 2, . . . , s} by,
for x ∈ N,

ψ(x) =
{
ϕ(x+ k) if x > −k
r + x if x ≤ −k .

Pick t ∈ {1, 2, . . . , s} such that ψ−1[{t}] is central in N and note that, since no singleton
is central in N, t ≤ r. Let

B = {~x ∈ Nv : A~x ∈ (ψ−1[{t}])u and entries of A~x corresponding

to distinct rows of A are distinct} .

By Theorem 4.1 B is central in Nv. Let b = max
(
{1}∪

{
− yi : i ∈ {1, 2, . . . , v}

})
. Pick

by Lemma 2.5 some ~x ∈ B such that for all i ∈ {1, 2, . . . , v}, xi > a+b. Since the entries
of A~x are monochromatic with respect to ψ, the entries of A~x + k are monochromatic
with respect to ϕ. And since A has at least two distinct rows, the entries of A~x, and
consequently of A~x+ k, are nonconstant. Now A~x+ k = A(~x+ ~y) +~b. Since each entry
of ~x is bigger than a+ b, each entry of ~x+ ~y is bigger than a.

4.3 Lemma. Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let
~b ∈ Qu \ {0}. If (A,~b ) is NCIPR/N, then for all a ∈ N and every finite coloring ϕ of N
there exists ~x ∈ Nv such that for each i ∈ {1, 2, . . . , v}, xi ≥ a and the entries of A~x+~b
are nonconstant and monochromatic with respect to ϕ.

Proof. We proceed by induction on v, so first assume that v = 1. Let a, r ∈ N and let
ϕ : N → {1, 2, . . . , r}. Let d = max

(
{1} ∪

{
a1,1x+ b1 : x ∈ {1, 2, . . . , a}

})
and define a

finite coloring ψ of N by, for x ∈ N,

ψ(x) =
{
ϕ(x) if x > d
r + x if x ≤ d .
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Pick x ∈ N such that the entries of Ax +~b are nonconstant and monochromatic with
respect to ψ. Pick t ∈ {1, 2, . . . , r+d} such that Ax+~b ∈ (ψ−1[{t}])u. Since the entries
of Ax+~b are nonconstant, t ≤ r. Now ψ(a1,1x+ b1) = t ≤ r so a1,1x+ b1 > d so x > a.

Now let v ∈ N and assume that the lemma is true for every u× v matrix and every
~b ∈ Qu. Let A be a u×(v+1) matrix with entries in Q and let~b ∈ Qu\{0}. Assume that
(A,~b ) is NCIPR/N. Suppose the conclusion fails and pick a ∈ N and a finite coloring
ϕ of N such that whenever ~x ∈ Nv+1 and the entries of A~x + ~b are nonconstant and
monochromatic with respect to ϕ, there is some t ∈ {1, 2, . . . , v + 1} such that xt < a.
We claim that

(∗)
there exist t ∈ {1, 2, . . . , v + 1} and d ∈ {1, 2, . . . , a− 1} such that for every
finite coloring ϕ of N there exists ~x ∈ Nv+1 such that A~x+~b has nonconstant
entries that are monochromatic with respect to ϕ and xt = d .

Suppose instead that (∗) fails and for each t ∈ {1, 2, . . . , v+ 1} and d ∈ {1, 2, . . . , a− 1}
pick a finite coloring ψt,d of N such that whenever ~x ∈ Nv+1 and the entries of A~x+~b

are nonconstant and monochromatic with respect to ψt,d, one has that xt 6= d.

Let µ be a finite coloring of N with the property that whenever x, y ∈ N and
µ(x) = µ(y), one has ϕ(x) = ϕ(y) and for each t ∈ {1, 2, . . . , v + 1} and d ∈ {1, 2, . . . ,
a−1}, ψt,d(x) = ψt,d(y). Pick ~x ∈ Nv+1 such that the entries of A~x+~b are nonconstant
and monochromatic with respect to µ. Then the entries of A~x+~b are nonconstant and
monochromatic with respect to ϕ so pick t ∈ {1, 2, . . . , v + 1} such that xt < a and let
d = xt. We then get a contradiction because the entries of A~x+~b are nonconstant and
monochromatic with respect to ψt,d.

Pick t and d as guaranteed by (∗) and let ~ct be column t of A. Let A′ be the
u× v matrix obtained by deleting column t from A and let ~b′ = ~b+ d~ct. We claim that
(A′,~b′) is nonconstantly image partition regular over N. To this end let δ be a finite
coloring of N and pick ~x ∈ Nv+1 such that the entries of A~x +~b are nonconstant and
monochromatic with respect to δ. Define ~z ∈ Nv by, for i ∈ {1, 2, . . . , v},

zi =
{

xi if i < t
xi+1 if i ≥ t .

Then A′~z + b′ = A′~z + d~ct +~b = A~x+~b so the entries of A′~z + b′ are nonconstant and
monochromatic with respect to δ.

We claim now that A′ is IPR/N. If ~b′ = 0, we have this directly so assume that
~b′ 6= 0. Then by the induction hypothesis we have that for all a ∈ N and every finite
coloring δ of N there exists ~x ∈ Nv such that for each i ∈ {1, 2, . . . , v}, xi ≥ a and
the entries of A′~x+~b′ are nonconstant and monochromatic with respect to δ. Thus by
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Lemma 4.2 the matrix A′ is IPR/N. Consequently by Theorem 4.1(b), A is IPR/N.

By Lemma 2.3 A has at least two distinct rows and by Theorem 3.2 there exist
k ∈ Z and ~y ∈ Zv such that A~y+~b = k. Applying Lemma 4.2, we have that for all a ∈ N
and every finite coloring δ of N there exists ~x ∈ Nv such that for each i ∈ {1, 2, . . . , v},
xi ≥ a and the entries of A~x+~b are nonconstant and monochromatic with respect to δ
as required.

4.4 Theorem. Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let
~b ∈ Qu \ {0}. The following statements are equivalent.

(a) The pair (A,~b ) is NCIPR/N.

(b) There exist k ∈ Z and ~y ∈ Zv such that A~y +~b = k, the matrix A is IPR/N, and
A has at least two distinct rows.

Proof. Lemmas 4.2 and 4.3.

We also obtain immediately a characterization of IPR/N.

4.5 Theorem. Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let
~b ∈ Qu \ {0}. The following statements are equivalent.

(a) The pair (A,~b ) is IPR/N.

(b) Either

(i) there exist k ∈ N and ~y ∈ Nv such that A~y +~b = k or

(ii) there exist k ∈ Z and ~y ∈ Zv such that A~y +~b = k, the matrix A is IPR/N,
and A has at least two distinct rows.

Proof. Trivially (b)(i) implies (a) and by Theorem 4.4, (b)(ii) implies (a).

To see that (a) implies (b) assume that (A,~b ) is IPR/N and suppose that (b)(ii)
fails. Then by Theorem 4.4, (A,~b ) is not nonconstantly image partition regular over N
so pick a finite coloring ϕ of N such that there is no ~x ∈ Nv with the entries of A~x+~b
nonconstant and monochromatic with respect to ϕ. Since (A,~b ) is IPR/N, there is some
~y ∈ Nv with the entries of A~y + ~b monochromatic with respect to ϕ, so these entries
must be constant.

We note that we have established the exact pattern of implications that hold among
the various notions of image partition regularity of nonlinear affine transformations over
N, Z, or Q.
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Theorem 4.6. Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let ~b ∈
Qu \{0}. All of the implications in the following diagram hold and the only implications
that hold among these notions are those shown or ones that follow by transitivity.

NCIPR/N ⇒ NCWIPR/N ⇔ NCIPR/Z ⇒ NCIPR/Q

⇓ ⇓ ⇓ ⇓

IPR/N ⇒ WIPR/N ⇒ IPR/Z ⇒ IPR/Q

Proof. All of the diagramed implications are trivial except for the fact that
NCIPR/Z ⇒ NCWIPR/N which is part of Theorem 3.5. To establish that none
of the other implications are valid, it suffices to show that

(a) IPR/N 6⇒ NCIPR/Q,

(b) WIPR/N 6⇒ IPR/N,

(c) IPR/Z 6⇒ WIPR/N,

(d) IPR/Q 6⇒ IPR/Z,

(e) NCIPR/Z 6⇒ IPR/N, and

(f) NCIPR/Q 6⇒ IPR/Z.

(a) Let A =
(
−1 1
1 −1

)
and ~b =

(
4
6

)
. If ~x =

(
1
2

)
, then A~x + ~b =

(
5
5

)
.

Therefore, the pair (A,~b ) is IPR/N. Since D(A) = (−1 −1 ), which does not satisfy
the columns condition, we have that A is not IPR/Q so by Theorem 3.4, (A,~b ) is not
NCIPR/Q.

(b) The pair
(
(−2), (1)

)
is WIPR/N but not IPR/N.

(c) Let A =

 2 −1
−2 1
−1 1

2

 and~b =

−5
3
1

. Then (A,~b ) is IPR/Z but not WIPR/N.

To see that it is IPR/Z note that if ~x =
(

1
−2

)
, then A~x+~b ==

−1
−1
−1

. This is the

only constant image and D(A) = (− 1
2 0 −1 ), which does not satisfy the columns

condition so by Theorem 3.3 (A,~b ) is not WIPR/N.

(d) The pair
(
(1), ( 1

2 )
)

is IPR/Q but not IPR/Z.

(e) Let A =

−2 −1
−1 0
−4 −3

 and ~b =

−6
−9
0

. If ~x ∈ N2, then −x1−9 6∈ N. Therefore,

(A,~b ) is not IPR/N. If ~x =
(

1
2

)
, then A~x+~b =

−10
−10
−10

. Also, D(A) = ( 3 −2 −1 ).
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Since D(A) satisfies the columns conditions A is IPR/Z. Since A has 3 distinct rows,
by Theorem 3.5, (A,~b ) is NCIPR/Z.

(f) Let A =

−2 −1
−1 0
−4 −3

 and ~b =


13
3
4
3

31
3

. If ~x ∈ Z2, then −x1 + 4
3 6∈ Z. Therefore,

(A,~b ) is not IPR/Z. If ~x =
(

1
2

)
, then A~x+~b =


1
3
1
3

1
3

. Also, D(A) = ( 3 −2 −1 ).

Since D(A) satisfies the columns conditions A is IPR/Q. Since A has 3 distinct rows,
by Theorem 3.4 (A,~b ) is NCIPR/Q.
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