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Abstract. We provide a unified and simplified proof that for any partition of (0, 1]
into sets that are measurable or have the property of Baire, one cell will contain an
infinite sequence together with all of its sums (finite or infinite) without repetition. In
fact any set which is large around 0 in the sense of measure or category will contain
such a sequence. We show that sets with 0 as a density point have very rich structure.
Call a sequence 〈tn〉∞n=1 and its resulting all-sums set structured provided for each n,
tn ≥

∑∞
k=n+1 tk. We show further that structured all-sums sets with positive measure

are not partition regular even if one allows shifted all-sums sets. That is, we produce a
two cell measureable partition of (0, 1] such that neither set contains a translate of any
structured all-sums set with positive measure.

1. Introduction.

In [1] it was shown that whenever the set N of positive integers is partitioned into
finitely many classes, some one of these contains an infinite sequence together with all
of its finite sums (without repetition). That is, if one defines as usual the set of finite
sums of a sequence by FS(〈tn〉∞n=1) = {

∑
n∈F tn : ∅ 6= F ⊆ N and F is finite}, then

whenever r ∈ N and N =
⋃r

i=1 Ai, there exist i ∈ {1, 2, . . . , r} and a sequence 〈tn〉∞n=1

in N with FS(〈tn〉∞n=1) ⊆ Ai.
Given a sequence 〈tn〉∞n=1 in (0, 1], such that

∑∞
n=1 tn converges, define the set of

all sums of the sequence by AS(〈tn〉∞n=1) = {
∑

n∈F tn : ∅ 6= F ⊆ N}. In [6], Prömel
and Voigt considered the question: If (0, 1] =

⋃r
i=1 Ai, must there exist i ∈ {1, 2, . . . , r}

and a sequence 〈tn〉∞n=1 in (0, 1] with AS(〈tn〉∞n=1) ⊆ Ai?
As they pointed out, one easily sees (using the Axiom of Choice) that the answer is

“no” by a standard diagonalization argument. (There are continuum many sequences in
(0, 1] with convergent sums. Well order them. At stage σ < c = 2ℵ0 of the construction

1 These authors gratefully acknowledge support received from the National Science
Foundation (USA) via grants DMS 9401093 and DMS 9424421 respectively. They also
thank the US–Israel Binational Science Foundation for travel support.
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chose previously unassigned elements of the all-sums set of the σth sequence – which
has c members – putting one in each of the two cells being constructed.) At the end of
this introduction we will however observe that one can always get i and 〈tn〉∞n=1 with
FS(〈tn〉∞n=1) ⊆ Ai and

∑∞
n=1 tn ∈ Ai.

Prömel and Voigt showed that if one adds the requirement that each Ai has the
property of Baire, then the answer becomes “yes”. (The sets with the property of Baire
are the members of the smallest σ-algebra containing the open sets and the nowhere
dense sets.) In [5] Plewik and Voigt reached the same conclusion in the event that each
Ai is assumed to be Lebesgue measurable. It is well known (assuming choice) that there
are Baire sets which are not measurable and measurable sets which are not Baire. (See
[4].) Consequently neither of these results is stronger than the other.

In Section 2 we present a unified and simplified proof of both of these results. In
addition to using a common method of argument our approach has the advantage that
the terms of our sequence are chosen and fixed inductively, so that at stage n of the
induction one has at hand the first n terms of the sequence. (In [6] and [5] one chooses
at stage n a new n-term sequence and concludes at the end that the desired infinite
sequence must exist.)

In Sections 3, 4, and 5 we restrict our attention to sets with positive measure. In
Section 3 we show that if a set has 0 as an upper density point, it contains a very rich
additive structure. (The point 0 is a density point of A ⊆ (0, 1] if and only if

lim
ε↓0

µ
(
A ∩ (0, ε)

)
ε

= 1 .

It is an upper density point if and only if

lim sup
ε↓0

µ
(
A ∩ (0, ε)

)
ε

= 1 .

A point x ∈ (0, 1) is a density point of A if and only if

lim
ε↓0

µ
(
A ∩ (x− ε, x + ε)

)
2ε

= 1 .)

As a consequence any set of positive measure contains many translates of sets with this
very rich additive structure since almost all points are points of density.

The results of Sections 2 and 3 raise the question of the possible partition regularity
of all-sums sets with positive measure. That is, one wonders if whenever an all-sums
set with positive measure is partitioned into finitely many measurable sets, must one
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of these contain an all-sums set with positive measure, or at least a translate of such
a set? We show in Section 4 that, at least for sufficiently well behaved sequences, the
ones we call structured , this is not the case. (See Question 4.13.)

It is an important property of the kind of sequences considered in Section 4 that if
the measure of the all-sums set is positive, then it has 0 as a density point (Theorem
5.2). We show in Section 5 that there is a sequence (obviously not of the kind considered
in Section 4) whose all-sums set has measure as close to 1 as we please (in fact contains
an interval of length close to 1) but has 0 as a density point of its complement.

As promised earlier, we show now that any finite partition of (0, 1] must contain a
sequence with all of its finite sums as well as the sum of all of its terms in one cell.

1.1 Lemma. Let 〈tn〉∞n=1 be a sequence in (0, 1] such that
∑∞

n=1 tn converges, let r ∈ N,
and let ϕ : AS(〈tn〉∞n=1) −→ {1, 2, . . . , r}. Then one (or both) of the following statements
holds.
(1) There exists a sequence 〈sn〉∞n=1 such that ϕ is (defined and) constant on

FS(〈sn〉∞n=1) ∪ {
∑∞

n=1 sn}.
(2) There exist 〈zn〉∞n=1 and j ∈ {1, 2, . . . , r} such that AS(〈zn〉∞n=1) ⊆ AS(〈tn〉∞n=1)

and for all x ∈ AS(〈zn〉∞n=1), ϕ(x) 6= j.

Proof. Let F = {F ⊆ N : F 6= ∅ and F is finite}. Define τ : F −→ {1, 2, . . . , r} by
τ(F ) = ϕ(

∑
n∈F tn). By the Finite Union Theorem [1, Corollary 3.3] pick a pairwise

disjoint sequence 〈Fn〉∞n=1 in F and j ∈ {1, 2, . . . , r} such that ϕ(
⋃

n∈G Fn) = j for
every G ∈ F . For each n ∈ N, let wn =

∑
i∈Fn

ti.
Case 1. For some infinite H ⊆ N, ϕ(

∑
n∈H wn) = j. Then let 〈sn〉∞n=1 enumerate

〈wn〉n∈H and one sees that conclusion (1) holds.
Case 2. For each infinite H ⊆ N, ϕ(

∑
n∈H wn) 6= j. Let 〈Hn〉∞n=1 be a pairwise

disjoint sequence of infinite subsets of N and for each n let zn =
∑

i∈Hn
wi. Then

conclusion (2) holds.

1.2 Theorem. Let r ∈ N, let 〈sn〉∞n=1 be a sequence in (0, 1] such that
∑∞

n=1 sn ≤ 1,
and AS(〈sn〉∞n=1) =

⋃r
i=1 Ai, then there exist some 〈tn〉∞n=1 and some i ∈ {1, 2, . . . , r}

with FS(〈tn〉∞n=1) ∪ {
∑∞

n=1 tn} ⊆ Ai. In particular, if (0, 1] =
⋃r

i=1 Ai, then there exist
i ∈ {1, 2, . . . , r} and some sequence 〈tn〉∞n=1 such that FS(〈tn〉∞n=1) ∪ {

∑∞
n=1 tn} ⊆ Ai.

Proof. We proceed by induction on r. The case r = 1 is trivial. Let r ∈ N and assume
the result for r. Let AS(〈sn〉∞n=1) =

⋃r+1
i=1 Ai and define f : AS(〈sn〉∞n=1) −→ {1, 2, . . . ,

r + 1} by

f(
∑

n∈F sn) = min{i ∈ {1, 2, . . . , r + 1} :
∑

n∈F sn ∈ Ai} .
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Now apply Lemma 1.1. If conclusion (1) holds, we are done, while if conclusion (2)
holds, the induction hypothesis applies.

The “in particular” conslusion follows by taking sn = 1
2n .

2. All-sums sets contained in large
Baire sets or measurable sets.

We present here a unified proof that “large” Baire sets or (Lebesgue) measurable
sets contain all-sums sets. We write µ(A) for the Lebesgue measure of A. Both notions
of “large” involve being large close to 0.

2.1 Definition. Let A ⊆ (0, 1].

(a) The set A is measurably large (at 0) if and only if A is measurable and for every
ε > 0, µ

(
A ∩ (0, ε)

)
> 0.

(b) The set A is Baire large (at 0) if and only if there exist an open set U and a meager
set M such that U\M ⊆ A and for every ε > 0, U ∩ (0, ε) 6= ∅. (“Meager” = “First
category” = “Countable union of nowhere dense sets”.)

Recall that 0 is a density point of A ⊆ (0, 1] if and only if lim
ε↓0

µ
(
A ∩ (0, ε)

)
ε

= 1. One

can similarly formulate the notions of 0 being a point of positive upper or lower density of
A. Observe that the statement that A is measurably large is weaker than the statement
that 0 is a point of positive upper density of A. In fact, if A =

⋃∞
n=1(1/22n

, 2/22n

),
then A is measurably large but 0 is a density point of (0, 1]\A.

We thank the referees and the editor for suggesting a simplification of the proof of
the following lemma.

2.2 Lemma. Let A ⊆ (0, 1] be measurably large. There exist (many) t ∈ A such that
A ∩ (A− t) is measurably large.

Proof. We first establish two simple observations.

(1) If E is a measurable subset of R and µ(E) > 0 then there is some ε > 0 such that
for all x ∈ (0, ε), µ

(
E ∩ (E − x)

)
> 0.

(2) If E is a measurable subset of R, µ(E) > 0, and 0 is an accumulation point of
T ⊆ (0,∞), then there is some t ∈ E such that 0 is an accumulation point of
T ∩ (E − t).

To verify (1) pick any density point t of E with t > 0. (By the Lebesgue Density
Theorem [4, Theorem 3.20] almost every point of E is a density point of E.) Pick ε > 0
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such that µ
(
E ∩ (t− ε, t + ε)

)
> 3

2ε. Then given any x ∈ (0, ε),

µ
(
(E − x) ∩ (t− x− ε, t− x + ε)

)
>

3
2
ε ,

so µ
(
E ∩ (E − x) ∩ (t− ε, t− x + ε)

)
> 3

2ε + 3
2ε− (2ε + x) > 0.

Now we verify (2). Notice that we may pick a compact subset D of E such that
µ(D) > 0 so we may presume that E is compact. Let E1 = E and by observation (1)
pick x1 ∈ T such that µ

(
E1 ∩ (E1 − x1)

)
> 0, let E2 = E1 ∩ (E1 − x1) and note that

E2 is compact. Inductively, given En compact with positive measure, pick xn ∈ T with
xn < xn−1

2 such that µ
(
En ∩ (En − xn)

)
> 0 and let En+1 = En ∩ (En − xn).

Clearly lim
n→∞

xn = 0. And {En : n ∈ N} is a nested collection of compact subsets

of R so pick t ∈
⋂∞

n=1 En. Then t ∈ E and for each n ∈ N, xn ∈ T ∩ (E − t).

Now we apply observation (2) with E = T = {x ∈ A : x is a density point of A}.
By the Lebesgue Density Theorem µ(E) = µ(A) > 0. Choose t ∈ E such that 0 is an
accumulation point of E ∩ (E− t). To see that A∩ (A− t) is measurably large, let ε > 0
be given. Pick x ∈ E∩(E−t) such that x < ε/2. Now x and x+t are density points of A

so pick δ < ε/2 such that µ
(
A∩(x−δ, x+δ)

)
> 3

2δ and µ
(
A∩(x+ t−δ, x+ t+δ)

)
> 3

2δ.
Then also µ

(
(A−t)∩(x−δ, x+δ)

)
> 3

2δ, so µ
(
A∩(A−t)∩(x−δ, x+δ)

)
> 3

2δ+ 3
2δ−2δ > 0.

Since x + δ < ε, we have µ
(
A ∩ (A− t) ∩ (0, ε)

)
> 0 as required.

We remark that if we had used the stronger notion of measurably large which
requires that 0 be a point of positive upper density of A, the result of Lemma 2.2 would
be trivial. Simply take any density point of A and observe that 0 is a point of positive
upper density of A ∩ (A− t).

Now we have the Baire version of Lemma 2.2.

2.3 Lemma. Let A ⊆ (0, 1] be Baire large. There exist (many) t ∈ A such that A ∩
(A− t) is Baire large.

Proof. Pick an open set U and a meager set M such that U\M ⊆ A and U ∩ (0, ε) 6= ∅
for each ε > 0. Choose sequences 〈an〉∞n=1 and 〈bn〉∞n=1 such that for each n, bn+1 <

an < bn < 1
n and

⋃∞
n=1(an, bn) ⊆ U . We show that for each t ∈

⋃∞
n=1(an, bn)\M ,

A ∩ (A − t) is Baire large. So let n ∈ N and let t ∈ (an, bn)\M . Let δ = bn − t and
pick m such that bm < δ. Let V =

⋃∞
k=m(ak, bk) and let M̃ = M ∪ (M − t). Then

M̃ is meager and for every ε > 0, V ∩ (0, ε) 6= ∅. We claim that V \M̃ ⊆ A ∩ (A − t).
Let x ∈ V \M̃ and pick k ≥ m such that x ∈ (ak, bk). Then x ∈ U\M so x ∈ A. Also
x < bk ≤ bm < δ so an < t < x + t < δ + t = bn so x + t ∈ U\M .
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2.4 Lemma. Let A ⊆ (0, 1] and let ε > 0.

(a) If A is measurably large, then there exists t ∈ A ∩ (0, ε) such that A ∩ (A − t) is
measurably large.

(b) If A is Baire large, then there exists t ∈ A ∩ (0, ε) such that A ∩ (A − t) is Baire
large.

Proof. In either case A∩ (0, ε) is large so apply Lemma 2.2 or Lemma 2.3 to A∩ (0, ε).

We need one more preliminary result, namely part (b) of the following lemma. Part
(a) will be used in the next section.

2.5 Lemma. Let A ⊆ (0, 1] be measurable. There is a subset B of A such that B ∪ {0}
is compact and

(a) if 0 is an upper density point of A, then 0 is an upper density point of B;

(b) if A is measurably large, then B is measurably large.

Proof. Recall that given any measurable set C and any ε > 0 there is a compact
subset D of C with µ(D) > µ(C) − ε [4, Definition 3.8]. Now for each n ∈ N, let
An = A ∩ (1/2n, 1/2n−1) and let T = {n ∈ N : µ(An) > 0}. For each n ∈ T , pick
compact Bn ⊆ An with µ(Bn) > µ(An)−min{µ(An)

2 , 1
4n+1 }. Let B =

⋃
n∈T Bn. Then

immediately B ∪ {0} is compact and conclusion (b) holds.

We observe now that given any α ∈ (0, 1), if n ∈ N and 1/2n ≤ α < 1/2n−1, then
µ
(
B∩ (0, α)

)
> µ

(
A∩ (0, α)

)
− 1

3·4n from which fact conclusion (a) follows immediately.
To see this, we first note that

µ
(
Bn ∩ (1/2n, α)

)
= µ(Bn)− µ

(
Bn ∩ (α, 1/2n−1)

)
≥ µ(Bn)− µ

(
An ∩ (α, 1/2n−1)

)
> µ(An)− 1/4n+1 − µ

(
An ∩ (α, 1/2n−1)

)
= µ

(
An ∩ (1/2n, α)

)
− 1/4n+1 .

Consequently

µ
(
B ∩ (0, α)

)
=

∑∞
k=n+1 µ(Bk) + µ

(
Bn ∩ (1/2n, α)

)
>

∑∞
k=n+1(µ(Ak)− 1/4k+1) + µ

(
An ∩ (1/2n, α)

)
− 1/4n+1

= µ
(
A ∩ (0, α)

)
− 1

3·4n .

2.6 Theorem. Let A ⊆ (0, 1] be measurably large. There is a sequence 〈tn〉∞n=1 in (0, 1]
such that AS(〈tn〉∞n=1) ⊆ A.
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Proof. Pick by Lemma 2.5(b) some B ⊆ A such that B ∪ {0} is compact and B is
measurably large. Let B1 = B and pick by Lemma 2.4(a) some t1 ∈ B1 ∩ (0, 1/2) such
that B1 ∩ (B1 − t1) is measurably large. Let B2 = B1 ∩ (B1 − t1). Inductively, given
Bn+1 = Bn ∩ (Bn − tn), choose by Lemma 2.4(a) some tn+1 ∈ Bn+1 ∩ (0, tn/2) such
that Bn+1 ∩ (Bn+1 − tn+1) is measurably large.

Now we show by induction on |F | that whenever F is a finite nonempty subset of
N and r = min F , one has

∑
n∈F tn ∈ Br. If |F | = 1, this is immediate, so assume

|F | > 1, let G = F\{r}, and let m = minG. Then
∑

n∈G tn ∈ Bm ⊆ Br+1 ⊆ (Br − tr)
so

∑
n∈F tn ∈ Br as required.
Since every finite sum from 〈tn〉∞n=1 is in B and B ∪ {0} is compact we have that

all infinite sums from 〈tn〉∞n=1 are also in B ∪ {0}. Since none of these sums is 0, we are
done.

2.7 Theorem. Let A ⊆ (0, 1] be Baire large. There is a sequence 〈tn〉∞n=1 in (0, 1] such
that AS(〈tn〉∞n=1) ⊆ A.

Proof. Pick an open set U and a meager set M such that U\M ⊆ A and for every
ε > 0, U ∩ (0, ε) 6= ∅. Since there is no harm in replacing M by a larger meager
set we may presume M = (0, 1]\

⋂∞
n=1 Dn where each Dn is open and dense in (0, 1)

and each Dn+1 ⊆ Dn. Then U ∩
⋂∞

n=1 Dn ⊆ A. Pick sequences 〈an〉∞n=1, 〈bn〉∞n=1,
〈cn〉∞n=1, and 〈dn〉∞n=1 such that for each n, bn+1 < an < cn < dn < bn < 1/n and⋃∞

n=1(an, bn) ⊆ U . Let U1 =
⋃∞

n=1(cn, dn) and let A1 = U1\M . Then A1 is Baire large
so by Lemma 2.4(b), pick some t1 ∈ A1∩ (0, 1/2) such that A1∩ (A1− t1) is Baire large.
Let A2 = A1 ∩ (A1 − t1).

Inductively let n > 1 be given and assume An = An−1 ∩ (An−1 − tn−1) is Baire
large. Now as in the proof of Theorem 2.6 we see that for each nonempty
F ⊆ {1, 2, . . . , n− 1},

∑
k∈F tk ∈ A1, and hence

∑
k∈F tk ∈ Dn. For each such F pick

εn,F > 0 such that (
∑

k∈F tk − εn,F ,
∑

k∈F tk + εn,F ) ⊆ Dn. Let

εn = min({tn−1} ∪
{
εn,F : ∅ 6= F ⊆ {1, 2, . . . , n− 1}

}
) .

Pick tn ∈ An ∩ (0, εn/2) such that An ∩ (An − tn) is Baire large.
Now we have (as in the proof of Theorem 2.6) that

FS(〈tn〉∞n=1) ⊆ A1 ⊆
⋃∞

n=1[cn, dn]

so AS(〈tn〉∞n=1) ⊆
⋃∞

n=1[cn, dn] ⊆ U (since {0}∪
⋃∞

n=1[cn, dn] is compact). Thus we only
need show that AS(〈tn〉∞n=1) ⊆

⋂∞
n=1 Dn. To this end, let I be a nonempty subset of N
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and let n ∈ N be given. Since for each k, Dk+1 ⊆ Dk we may presume that n > min I.
Let F = I ∩ {1, 2, . . . , n− 1} and let H = I\F . Now

(
∑

k∈F tk − εn,
∑

k∈F tk + εn) ⊆ (
∑

k∈F tk − εn,F ,
∑

k∈F tk + εn,F ) ⊆ Dn .

If H = ∅ we have
∑

k∈I tk ∈ Dn as required. Otherwise, we have

∑
k∈H tk ≤

∑∞
k=n tk < tn (since tk < εk/2 ≤ Tk−1/2 < εk−1/4 . . . ),

so
∑

k∈I tk =
∑

k∈F tk +
∑

k∈H tk ∈ (
∑

k∈F tk,
∑

k∈F tk + εn) ⊆ Dn.

2.8 Theorem. Let r ∈ N and let (0, 1] =
⋃r

i=1 Ai. If each Ai is Baire or each Ai is
measurable, then there exist i and a sequence 〈tn〉∞n=1 such that AS(〈tn〉∞n=1) ⊆ Ai.

Proof. If each Ai is measurable, one of them must be measurably large. If each Ai is
Baire, one of them must be Baire large.

3. Sums with repetition.

As was observed in [5], it is easy to prevent repetition of sums in Theorem 2.8.
For example, let A1 =

⋃∞
n=1(1/22n−1, 1/22n−2] and let A2 =

⋃∞
n=1(1/22n, 1/22n−1].

Then given any t < 1/2 and i ∈ 1, 2, if t ∈ Ai, then 2t /∈ Ai and A1 and A2 are both
measurably large and Baire large. We shall see in this section that if 0 is an upper
density point of a measurable set A, one can obtain substantial repetitions. (Notice
that having 0 as a point of positive upper density is not good enough, as is established
by the sets A1 and A2 above, each of which has upper density 2

3 at 0.)

3.1 Lemma. Let A be a measurable subset of (0, 1] and let α > 0.
(a) If 0 is an upper density point of A, then 0 is an upper density point of A/α.
(b) If t ∈ (0, 1) is a density point of A/α, then tα is a density point of A.
(c) If F is a finite subset of (0,∞) and 0 is an upper density point of A, then 0 is an

upper density point of
⋂

α∈F A/α.

Proof. Assertions (a) and (b) are established by routine computations based on the
fact that for 0 ≤ x < y ≤ 1, µ

(
A/α ∩ (x, y)

)
= (1/α) · µ

(
A ∩ (xα, yα)

)
.

To establish (c), we proceed by induction on |F |, the case |F | = 1 being conclusion
(a). Assume |F | > 1 and let ε, ν > 0. We show that there exists positive δ < ν such
that

µ
(
(0, δ) ∩

⋂
α∈F A/α

)
δ

≥ 1− ε .
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Let x = max F and let y = max(F\{x}). Pick positive γ < 1 such that γ − (1 −
γ)x

y ≥ 1 − ε. Let C =
⋂

α∈F\{x} A/α. By the induction hypothesis, 0 is an upper
density point of C so pick δ < ν such that µ

(
(0, δ) ∩ C

)
≥ γ · δ.

Now C ⊆ A/y so y
xC ⊆ A/x so µ

(
(0, δ y

x ) ∩ A/x
)
≥ µ

(
(0, δ y

x ) ∩ y
xC

)
≥ γ · δ · y

x .
Also, (0, δ y

x ) ∩ C =
(
(0, δ) ∩ C

)
\[δ y

x , δ) so µ
(
(0, δ y

x ) ∩ C
)
≥ γ · δ − (δ − δ y

x ). Thus

µ
(
(0, δ y

x ) ∩ C ∩A/x
)

≥ γ · δ − (δ − δ y
x ) + γ · δ · y

x − δ y
x

= (γ − (1− γ)x
y ) · δ · y

x

≥ (1− ε) · δ · y
x

and δ · y
x < δ < ν.

The statement of the following theorem is somewhat complicated. As a simple
example, let f(〈ti〉n−1

i=1 ) = {1, 2, . . . , n}. Then given any measurable set A with 0 as a
density point one can get a sequence 〈tn〉∞n=1 with

{∑
n∈G ktn : ∅ 6= G ⊆ N and for each n ∈ G, k ∈ {1, 2, . . . , n}

}
⊆ A .

We show in the following result that we can get all sums of linear combinations of
a sequence in (0, 1] where the coefficients of the linear combination can vary over any
prespecified finite set (depending only on the earlier terms).

3.2 Theorem. Let f be a function taking the set of finite sequences in (0, 1) to the
set of finite subsets of (0,∞) and let A be a measurable subset of (0, 1] such that 0 is
an upper density point of A. There is a sequence 〈tn〉∞n=1 such that, given any ϕ ∈
×∞

n=1f(〈ti〉n−1
i=1 ), {

∑
n∈G ϕn · tn : ∅ 6= G ⊆ N} ⊆ A.

Proof. Pick by Lemma 2.5(a) a subset B of A such that B ∪ {0} is compact and 0
is an upper density point of B. As in the proof of Theorem 2.6 it suffices to produce
〈tn〉∞n=1 such that, given any ϕ ∈ ×∞

n=1f(〈ti〉n−1
i=1 ) and any finite nonempty G ⊆ N,∑

n∈G ϕn · tn ∈ B.
Let B1 = B and let F1 = f(∅) = f(〈ti〉0i=1). By Lemma 3.1(c), 0 is an upper density

point of
⋂

α∈F1
(B1/α). In particular, for each ε > 0, µ

(
(0, ε) ∩

⋂
α∈F1

(B1/α)
)

> 0. Let
δ1 = max F1 and pick a density point t1 of

⋂
α∈F1

(B1/α) with t1 ∈
⋂

α∈F1
(B1/α) such

that 0 < δ1t1 < 1/2 (using Lebesgue’s Density Theorem [4, Theorem 3.20]). By Lemma
3.1(b), for each α ∈ F1, αt1 is a density point of B1 so 0 is an upper density point of
B2 = B1 ∩

⋂
α∈F1

(B1 − αt1).
Inductively, let Bn be given with 0 as an upper density point of Bn. Then as above,

let Fn = f(〈ti〉n−1
i=1 ). By Lemma 3.1(c), 0 is an upper density point of

⋂
α∈Fn

(Bn/α).
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and hence for each ε > 0, µ
(
(0, ε) ∩

⋂
α∈Fn

(Bn/α)
)

> 0. Let δn = maxFn and pick a
density point tn of

⋂
α∈Fn

(Bn/α) with tn ∈
⋂

α∈Fn
(Bn/α) and 0 < δntn < 1/2n. By

Lemma 3.1(b) for each α ∈ Fn, αtn is a density point of Bn so 0 is an upper density
point of Bn+1 = Bn ∩

⋂
α∈Fn

(Bn − αtn).
Now let ϕ ∈ ×∞

n=1Fn be given. As in the proof of Theorem 2.6, we show by
induction on |G| that if r = minG, then

∑
n∈G ϕn · tn ∈ Br. Again, if |G| = 1 the

conclusion is immediate, so assume |G| > 1, let H = G\{r} and let m = minH. Then∑
n∈H ϕn · tn ∈ Bm ⊆ Br+1 ⊆ Br − ϕr · tr so

∑
n∈G ϕn · tn ∈ Br as required.

3.3 Corollary. Let 〈Fn〉∞n=1 be a sequence of finite subsets of (0,∞) and let A be a
measurable subset of (0, 1] with µ(A) > 0. Then given any finite set H of density points
of A there is a sequence 〈tn〉∞n=1 such that given any ϕ ∈ ×∞

n=1Fn and any a ∈ H,
a + {

∑
n∈G ϕn · tn : ∅ 6= G ⊆ N} ⊆ A.

Proof. Given any sequence 〈tn〉∞n=1 and any n ∈ N define f(〈ti〉n−1
i=1 ) = Fn. We have

that 0 is a density point of
⋂

a∈H (A− a) so Theorem 3.2 applies.

4. Counterexamples to partition regularity of
fat sets of sums and their translates.

In the case of finite sums of integers it is well known that the sets of finite sums
are themselves partition regular. That is, whenever r ∈ N, 〈tn〉∞n=1 is a sequence in N,
and FS(〈tn〉∞n=1) =

⋃r
i=1 Ai, there exist i and 〈sn〉∞n=1 with FS(〈sn〉∞n=1) ⊆ Ai. (As

in the proof of Lemma 1.1, if FS(〈tn〉∞n=1) =
⋃r

i=1 Ai, let for each i ∈ {1, 2, . . . , r},
Bi = {F : ∅ 6= F ⊆ N and F is finite and

∑
n∈F tn ∈ Ai} and apply [1, Corollary 3.3].)

Likewise, both of our largeness notions in Section 2 are partition regular.
Similarly, as was pointed out in [6], all-sums sets are partition regular with respect

to Borel partitions. Thus in view of Theorem 2.8, it is natural to ask whether it is
true that whenever 〈tn〉∞n=1 is a sequence in (0, 1] with

∑∞
n=1 tn ≤ 1, r ∈ N, and

AS(〈tn〉∞n=1) =
⋃r

i=1 Ai with each Ai (Lebesgue) measurable, then for some i and some
〈sn〉∞n=1, one has AS(〈sn〉∞n=1) ⊆ Ai. This is however easily seen to be false. Simply
take any sequence 〈tn〉∞n=1 such that µ

(
AS(〈tn〉∞n=1)

)
= 0, (for example tn = 1

3n ).
Then let B1 and B2 be (nonmeasurable) sets obtained by a diagonal argument (see the
introduction) such that (0, 1] = B1 ∪B2 and for no sequence 〈sn〉∞n=1 and no i ∈ {1, 2}
is AS(〈sn〉∞n=1) ⊆ Bi. Finally let Ai = Bi ∩ AS(〈tn〉∞n=1) for i ∈ {1, 2}. Then µ(A1) =
µ(A2) = 0 so both are measurable.

But that is certainly a cheap way out. If µ
(
AS(〈tn〉∞n=1)

)
> 0, then this counterex-

ample is blocked. In fact, we have the following easy result.
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4.1 Theorem. Let 〈tn〉∞n=1 be a sequence with µ
(
AS(〈tn〉∞n=1)

)
> 0. Then AS(〈tn〉∞n=1)

is measurably large. Consequently, if r ∈ N and AS(〈tn〉∞n=1) =
⋃r

i=1 Ai with each
Ai measurable, then there exist i ∈ {1, 2, . . . , r} and a sequence 〈sn〉∞n=1 such that
AS(〈sn〉∞n=1) ⊆ Ai.

Proof. Given any k ∈ N we have that

AS(〈tn〉∞n=1) =
⋃

F⊆{1,2,...,k}
(∑

n∈F tn + AS(〈tn〉∞n=k+1)
)

so that 0 < µ
(
AS(〈tn〉∞n=1)

)
≤ 2kµ

(
AS(〈tn〉∞n=k+1)

)
and hence µ

(
AS(〈tn〉∞n=k+1)

)
> 0.

Let ε > 0 be given and pick k ∈ N such that
∑∞

n=k+1 tn < ε. Then

µ
(
AS(〈tn〉∞n=1) ∩ (0, ε)

)
≥ µ

(
AS(〈tn〉∞n=k+1)

)
> 0 .

Thus AS(〈tn〉∞n=1) is measurably large. The remaining conclusion of the theorem now
follows from Theorem 2.6.

Notice that Theorem 4.1 does not establish the partition regularity of anything.
That is we assume that the all sums set of 〈tn〉∞n=1 is fat, and we do not guarantee
that the all sums set of 〈sn〉∞n=1 is fat. One is thus naturally led to ask whether fat
all sums sets are partition regular. That is, is it true that whenever 〈tn〉∞n=1 is a se-
quence in (0, 1] with

∑∞
n=1 tn ≤ 1 and µ

(
AS(〈tn〉∞n=1)

)
> 0 and AS(〈tn〉∞n=1) =

⋃r
i=1 Ai

with each Ai measurable, there must exist i and 〈sn〉∞n=1 with AS(〈sn〉∞n=1) ⊆ Ai and
µ
(
AS(〈sn〉∞n=1)

)
> 0? We see now that the answer to this question is “no” as well.

4.2 Theorem. Let A1 =
⋃∞

n=1(
1

22n−1 , 1
22n−2 ], let A2 =

⋃∞
n=1(

1
22n , 1

22n−1 ], and for each
n let tn = 1

2n . Then AS(〈tn〉∞n=1) = (0, 1] = A1 ∪ A2 but there do not exist i ∈ {1, 2}
and 〈sn〉∞n=1 with AS(〈sn〉∞n=1) ⊆ Ai and µ

(
AS(〈sn〉∞n=1)

)
> 0.

Proof. Assume essentially without loss of generality that we have a sequence 〈sn〉∞n=1

with AS(〈sn〉∞n=1) ⊆ A2. We show that µ
(
AS(〈sn〉∞n=1)

)
= 0. Each interval ( 1

22n , 1
22n−1 ]

contains at most one term from the sequence so (assuming 〈sn〉∞n=1 is decreasing) we
have each sn ≤ 1

22n−1 . Then by [3, Theorem 1] µ
(
AS(〈sn〉∞n=1)

)
= 0. (Alternatively let

for each k, ak = 1
3·22k−1 . Then for each k,

AS(〈sn〉∞n=1) ⊆
⋃{

[
∑

n∈F sn, (
∑

n∈F sn) + ak] : ∅ 6= F ⊆ {1, 2, . . . , k}
}

so µ
(
AS(〈sn〉∞n=1)

)
≤ (2k − 1) · ak < 1

3·2k−1 .)

Each cell of the partition of Theorem 4.2 contains intervals, hence will contain a
translate of a “fat” all-sums set (i.e. one with positive measure). Corollary 3.3 then
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suggests that one might be able to get translates of such fat sets of sums in one cell
of such a partition, or even in any set of positive measure. If one could establish the
latter assertion one would have that the set of translates of fat sets of sums is partition
regular just as the ordinary sets of finite sums are.

We present in this section counterexamples to both of these assertions which are,
unfortunately, valid only for a restricted class of sequences, ones we call “structured”
sequences. (These are the sequences considered by Menon in [3].) See Question 4.13. In
the following definition we follow Menon by suppressing the dependence of Rn on the
sequence 〈tn〉∞n=1.

4.3 Definition. Let 〈tn〉∞n=1 be a sequence in (0, 1] such that
∑∞

n=1 tn converges. For
each n ∈ N let Rn =

∑∞
k=n+1 tk. The sequence 〈tn〉∞n=1 is structured if and only if∑∞

n=1 tn ≤ 1 and for each n, tn ≥ Rn.

If 〈tn〉∞n=1 is a structured sequence, µ
(
AS(〈tn〉∞n=1)

)
> 0, and a ∈ (0, 1], then

a + AS(〈tn〉∞n=1) is also known as a “symmetric Cantor set of positive measure”. We
thank the editor, David Preiss, and one of the referees for suggesting the proof that we
present (in Theorem 4.12) that there is a partition of (0, 1] into two Borel sets, neither
of which contains a symmetric Cantor set of positive measure. This proof is based
on an example of Talagrand’s which was presented in [2]. This proof in fact provides
a stronger result than our original proof of Theorem 4.12 in that one of the sets has
measure 1. Our original proof did not depend on [2], but it was longer and (even) more
cumbersome.

Given a decreasing sequence 〈tn〉∞n=1 in (0, 1] such that
∑∞

n=1 tn converges, it is an
easy exercise to show that there is some ε > 0 with (0, ε) ⊆ AS(〈tn〉∞n=1) if and only if
eventually tn ≤ Rn. Consequently, badly nonstructured sequences (i.e. those for which
eventually tn ≤ Rn and frequently tn < Rn) cause us no problem; any measurable set
which contains no interval could not contain a + AS(〈tn〉∞n=1) for any such sequence.
Our problem arises with sequences for which infinitely often tn > Rn and infinitetly
often tn < Rn. We will return to this issue in Section 5.

4.4 Lemma. Let 〈tn〉∞n=1 be a structured sequence. Then

µ
(
AS(〈tn〉∞n=1)

)
= lim

n→∞
2n ·Rn .

Proof. This is precisely [3, Theorem 1] except that it is assumed there that
∑∞

n=1 tn =
1. However, if

∑∞
n=1 tn < 1, we may replace t1 by 1−

∑∞
n=2 tn and apply [3, Theorem

1].
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The following lemma provides a convenient characterization of structured sequences
with fat all-sums sets.

4.5 Lemma. Let 〈tn〉∞n=1 be a structured sequence with µ
(
AS(〈tn〉∞n=1)

)
= γ > 0. Then

there is a sequence 〈δn〉∞n=1 such that
(1) for each n, δn ≥ δn+1 ≥ 0,
(2) lim

n→∞
δn = 0,

(3) γ + δ1 ≤ 1,
(4) for each n, tn+1 = (γ − δn+1) · 1

2n+1 + δn · 1
2n ,

(5) for each n, Rn = (γ + δn) · 1
2n , and

(6) for each n, tn+1 −Rn+1 = (δn − δn+1) · 1
2n .

Conversely, if γ > 0 and 〈δn〉∞n=1 is any sequence satisfying statements (1), (2), and
(3), t1 = 1− (γ + δ1)/2, and for each n, tn+1 = (γ− δn+1) · 1

2n+1 + δn · 1
2n , then 〈tn〉∞n=1

is a structured sequence and µ
(
AS(〈tn〉∞n=1)

)
= γ.

Proof. For each n let δn = 2n · Rn − γ. Then (5) holds directly and (2) holds by
Lemma 4.4. Also, given n, tn+1 = Rn −Rn+1 = (γ − δn+1) · 1

2n+1 + δn · 1
2n as required

by (4). Statement (6) follows from statements (4) and (5), while statement (1) follows
from statements (6) and (2) and the fact that tn+1 ≥ Rn+1.

To verify the converse, let γ > 0, let 〈δn〉∞n=1 be any sequence satisfying statements
(1), (2), and (3), let t1 = 1−(γ+δ1)/2, and for each n, let tn+1 = (γ−δn+1)· 1

2n+1 +δn· 1
2n .

Then for each n,
Rn =

∑∞
k=n+1 tk

=
∑∞

k=n+1(γ − δk) · 1
2k + δk−1 · 1

2k−1

= (γ ·
∑∞

k=n+1
1
2k ) + δn · 1

2n

= (γ + δn) · 1
2n

so (5) holds.

Then immediately statement (6) holds, so the sequence 〈tn〉∞n=1 is structured and
hence by Lemma 4.4, µ

(
AS(〈tn〉∞n=1)

)
= γ.

4.6 Lemma. Let 〈tn〉∞n=1 be a structured sequence, let a ∈ [0, 1], and let b, c ∈ R with
b < c. If (b, c) ∩

(
a + AS(〈tn〉∞n=1)

)
= ∅, then one of the following holds.

(a) c ≤ a.

(b) b ≥ a +
∑∞

n=1 tn.

(c) There exist k ∈ N and F ⊆ {1, 2, . . . , k − 1} such that

(i) a +
∑

`∈F t` +
∑∞

`=k+1 t` ≤ b and

(ii) a +
∑

`∈F t` + tk ≥ c.

13



Proof. Assume that neither conclusion (a) nor conclusion (b) holds. Notice that a < b.
(For if a ≥ b then for some n, a + tn ∈ (b, c).) Let n(1) = min{k ∈ N : a + tk ≤ b}.
Inductively, having chosen n(1), n(2), . . . , n(`), if b = a +

∑`
k=1 tn(k), then stop and

let H = {n(1), n(2), . . . , n(`)}. (We will see that in fact this case cannot happen.)
Otherwise, let n(` + 1) = min{k ∈ N : k > n(`) and a +

∑`
i=1 tn(i) + tk ≤ b}.

When the induction is complete, let H = {n(i) : i ∈ N}. Then a +
∑

n∈H tn ≤ b.
Pick m such that tm < c−b. Then in fact {m,m+1,m+2, . . .} ⊆ H. To see this suppose
instead that for some ` ≥ m one has ` /∈ H. Then a+

∑
n∈H tn+t` ∈ (b, c)∩AS(〈tn〉∞n=1),

a contradiction. Pick the first k ∈ N ∪ {0} such that {k + 1, k + 2, k + 3, . . .} ⊆ H

and notice that k > 0 since we have excluded the possibility that b ≥ a +
∑∞

n=1 tn.
Let F = H ∩ {1, 2, . . . , k − 1}. Since k /∈ H we have a +

∑
n∈F tn + tk > b so

a +
∑

n∈F tn + tk ≥ c. Also a +
∑

`∈F t` +
∑∞

`=k+1 t` = a +
∑

`∈H t` ≤ b.

We now introduce some notation from [2, pages 259, 266, and 268]. The only
change that we make from their definition is that we require the set C to be bounded.
We do this because we will be working with bounded sets and it keeps us from worrying
about infinite values for αn(x|C), which is introduced in the following definition.

4.7 Definition. Let C be a bounded subset of R. For x ∈ R and n ∈ N,

αn(x|C) = inf{|x− b + c

2
| : b, c ∈ R, [b, c] ∩ C = ∅, and

1
2n+1

<
c− b

2
≤ 1

2n
} .

4.8 Lemma. Let 〈tn〉∞n=1 be a structured sequence such that µ
(
AS(〈tn〉∞n=1)

)
= γ > 0,

let a ∈ [0, 1], and let C = a + AS(〈tn〉∞n=1). There is a dense subset D of C such that,
for every x ∈ D, ∑∞

n=1

1
2n · αn(x|C)

< ∞ .

Proof. Let D =
{
a +

∑
`∈F t` +

∑∞
`=k t2` : k ∈ N and F ⊆ {1, 2, . . . , 2k − 1}

}
. Then

trivially D is dense in C. Fix x ∈ D and pick k ∈ N and F ⊆ {1, 2, . . . , 2k − 1} such
that x = a +

∑
`∈F t` +

∑∞
`=k t2`.

Pick a sequence 〈δn〉∞n=1 as guaranteed by Lemma 4.5. If eventually tn = Rn, then
by Lemma 4.5(6), the sequence 〈δn〉∞n=1 is eventually constant, hence by Lemma 4.5(2)
is eventually 0 and thus (by Lemma 4.5(4) ), eventually tn = γ

2n . Then x is interior to
an interval which is contained in C so the conclusion is trivial. Thus we assume that
infinitely often tn > Rn.

Fix q ∈ N such that there is some m > 2k such that tm−Rm > 1
2q . For each n ≥ q

in N, let m(n) = max{m ∈ N : tm −Rm > 1
2n }. We claim that it suffices to show:
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(1)
∑∞

n=q
2m(n)

2n converges
and
(2) For each n ≥ q, αn(x|C) ≥

∑∞
`=1 tm(n)+2` + 1

2n+1

(In fact, equality holds in (2), but we won’t need that.)
So suppose that we have established (1) and (2). Given n ≥ q, we have

2
∑∞

`=1 tm(n)+2` >
∑∞

`=1 tm(n)+2` +
∑∞

`=1 tm(n)+2`+1

= Rm(n)+1

and, since m(n) + 1 > m(n), tm(n)+1 −Rm(n)+1 ≤ 1
2n . Thus for each n ≥ q one has

αn(x|C) ≥
∑∞

`=1 tm(n)+2` + 1
2n+1

> 1
2Rm(n)+1 + 1

2n+1

≥ 1
2 tm(n)+1 .

Thus it suffices to show that
∑∞

n=q
1

2n·tm(n)+1
converges.

By Lemma 4.5(4), we have for each n ≥ q that

1
2n · tm(n)+1

=
2m(n)

2n( 1
2γ − 1

2δm(n)+1 + δm(n))
.

Since eventually 1
2γ− 1

2δm(n)+1+δm(n) ≥ 1
4γ one has that eventually 1

2n·tm(n)+1
≤ 2m(n)+2

2nγ

so (1) applies.
To establish (1), let M =

{
m(n) : n ∈ {q, q + 1, q + 2, . . .}

}
and for each m ∈ M ,

let a(m) = min{n : m = m(n)} and let b(m) = min{n : m = m(n)}. Then∑∞
n=q

2m(n)

2n =
∑

m∈M 2m
∑b(m)

`=a(m)
1
2`

<
∑

m∈M 2m
∑∞

`=a(m)
1
2`

=
∑

m∈M
2m

2a(m)−1 .

For each m ∈ M , tm − Rm > 1
2a(m) so by Lemma 4.5(6), 2m

2a(m)−1 < 4(δm−1 − δm) and
hence, if ` = minM , then∑

m∈M
2m

2a(m)−1 <
∑

m∈M 4(δm−1 − δm)
≤ 4δ`−1 .

To complete the proof, we establish (2). So let n ≥ q and suppose instead that
αn(x|C) <

∑∞
`=1 tm(n)+2` + 1

2n+1 . Pick by the definition of αn(x|C) some b, c ∈ R with
b < c such that [b, c] ∩ C = ∅, 1

2n+1 < c−b
2 ≤ 1

2n , and |x− b+c
2 | <

∑∞
`=1 tm(n)+2` + 1

2n+1 .
Since x ∈ C, we have that b > x or c < x. So assume first that b > x. Then∑∞

`=1 tm(n)+2` + 1
2n+1 > |x− b+c

2 | = (b− x) + c−b
2 > b− x + 1

2n+1
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so b < x +
∑∞

`=1 tm(n)+2` = a +
∑

`∈F t` +
∑∞

`=k t2` +
∑∞

`=1 tm(n)+2`.
Now if m(n) is odd, this tells us directly that b < a +

∑
`∈F t` +

∑∞
`=2k t` while

if m(n) is even, one uses the fact that m(n) > 2k and tm(n)+2` < tm(n)+2`−1 to again
conclude that b < a +

∑
`∈F t` +

∑∞
`=2k t`.

In particular, b < a +
∑∞

`=1 t`. Thus, by Lemma 4.6, pick some p ∈ N and some
H ⊆ {1, 2, . . . , p−1} such that a+

∑
`∈H t`+

∑∞
`=p+1 ≤ b and a+

∑
`∈H t`+tp ≥ c. Since

neither b nor c is in C, both inequalities are strict. Then c−b < tp−
∑∞

`=p+1 t` = tp−Rp

and c− b > 1
2n so p ≤ m(n).

Letting v = bm(n)
2 c, one thus obtains (again using the fact that tm(n)+2` <

tm(n)+2`−1 in the case that m(n) is even)

a +
∑

`∈H t` +
∑∞

`=p+1 t` < b

< x +
∑∞

`=1 tm(n)+2`

≤ a +
∑

`∈F t` +
∑v

`=k t2` +
∑∞

`=m(n)+1 t`

and hence
∑

`∈H t` +
∑∞

`=p+1 t` <
∑

`∈F t` +
∑v

`=k t2` +
∑∞

`=m(n)+1 t`.
Since 〈tn〉∞n=1 is structured one has whenever

∑
`∈G t` <

∑
`∈L t` that

min(G∆L) ∈ L. Thus, letting

r = min
(
(F ∪{2k, 2k+2, . . . , 2v}∪{m(n)+1,m(n)+2, . . .})∆(H ∪{p+1, p+2, . . .})

)
,

one has that r ∈ F ∪ {2k, 2k + 2, . . . , 2v} ∪ {m(n) + 1,m(n) + 2, . . .} and in fact, since
p ≤ m(n), r ∈ F ∪ {2k, 2k + 2, . . . , 2v}.

Also, a +
∑

`∈F t` +
∑∞

`=k t2` = x < b < c < a +
∑

`∈H t` + tp so letting

s = min
(
(F ∪ {2k, 2k + 2, . . .})∆(H ∪ {p})

)
one has that s ∈ H ∪ {p} (and in particular s ≤ p).

Now r ∈ F ∪ {2k, 2k + 2, . . . , 2v} while s /∈ F ∪ {2k, 2k + 2, . . .} so r 6= s. Suppose
that r < s. Then r ∈ (F ∪{2k, 2k +2, . . . , 2v})\(H ∪{p+1, p+2, . . .}) and since r < s,
r /∈ (F ∪ {2k, 2k + 2, . . .})\(H ∪ {p}, so r = p. But then p ≥ s > r = p, a contradiction.

Thus we must have that s < r. Then s ∈ (H ∪ {p})\(F ∪ {2k, 2k + 2, . . .}) and
s /∈ (H ∪ {p + 1, p + 2, . . .})\(F ∪ {2k, 2k + 2, . . . , 2v} ∪ {m(n) + 1,m(n) + 2, . . .}) and
s < r ≤ 2v so s = p. Also r /∈ {p + 1, p + 2, . . .} so p ≥ r > s = p, a contradiction.

This completes the case that b > x. So now assume that c < x. Then b < c < x <

a +
∑∞

`=1 t`. Also,

∑∞
`=1 tm(n)+2` + 1

2n+1 > |x− b+c
2 | = x− c + c−b

2 > x− c + 1
2n+1
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so
c > x−

∑∞
`=1 tm(n)+2` = a +

∑
`∈F t` +

∑∞
`=k t2` −

∑∞
`=1 tm(n)+2` > a .

Thus, by Lemma 4.6, pick some p ∈ N and some H ⊆ {1, 2, . . . , p − 1} such that
a +

∑
`∈H t` +

∑∞
`=p+1 ≤ b and a +

∑
`∈H t` + tp ≥ c. Since neither b nor c is in C,

both inequalities are strict. Then c − b < tp −
∑∞

`=p+1 t` = tp − Rp and c − b > 1
2n so

p ≤ m(n).
Now a+

∑
`∈H t`+tp > c > x−

∑∞
`=1 tm(n)+2` so a+

∑
`∈H t`+tp+

∑∞
`=1 tm(n)+2` >

x. Let v = bm(n)
2 c. Then

x < a +
∑

`∈H t` + tp +
∑∞

`=1 t2v+2`

where, if m(n) is odd, we use the fact that tm(n)+2` < tm(n)+2`−1.
Thus ∑

`∈F t` +
∑∞

`=k t2` <
∑

`∈H t` + tp +
∑∞

`=1 t2v+2` .

Also, x > c > b > a +
∑

`∈H t` +
∑∞

`=p+1 t` so∑
`∈F t` +

∑∞
`=k t2` >

∑
`∈H t` +

∑∞
`=p+1 t` .

Let
r = min

(
(F ∪ {2k, 2k + 2, . . .})∆(H ∪ {p + 1, p + 2, . . .})

)
and

s = min
(
(H ∪ {p} ∪ {2v + 2, 2v + 4, . . .})∆(F ∪ {2k, 2k + 2, . . .})

)
.

Then
r ∈ (F ∪ {2k, 2k + 2, . . .})\(H ∪ {p + 1, p + 2, . . .})

and
s ∈ (H ∪ {p} ∪ {2v + 2, 2v + 4, . . .})\(F ∪ {2k, 2k + 2, . . .}) .

One sees immediately that s 6= r. Since r /∈ {p + 1, p + 2, . . .}, r ≤ p. Suppose that
s < r. Then s < r ≤ p ≤ m(n) ≤ 2v + 1, so s ∈ H\(F ∪ {2k, 2k + 2, . . .}), contradicting
the minimality of r.

Consequently r < s. Now r ∈ (F ∪ {2k, 2k + 2, . . .})\H and r ≤ p < 2v + 2 so if
r 6= p, then r ∈ (F ∪ {2k, 2k + 2, . . .})\(H ∪ {p} ∪ {2v + 2, 2v + 4, . . .}) contradicting
the minimality of s. Thus p = r < s. Since s ∈ (H ∪ {p} ∪ {2v + 2, 2v + 4, . . .}) one has
s ∈ {2v + 2, 2v + 4, . . .}. Since 2v + 2 > m(n) > 2k we have that s ∈ {2k, 2k + 2, . . .}, a
contradiction.

Now we are ready for our final preliminary result.

17



4.9 Lemma. Let ε > 0. There is a closed nowhere dense set E ⊆ [0, 1] such that
µ(E) > 1− ε and for every x ∈ E,∑∞

n=1
1

2n·αn(x|E) = ∞

.

Proof. On pages 269 through 271 of [2] it is proved that:
For any δ > 0 and any K > 0 there is a set Z ⊆ [0, 1] such that µ(Z) > 1 − δ and for
almost all x in Z,

∑∞
n=1

1
2n·αn(x|Z) ≥ K.

Notice that whenever B ⊆ C, x ∈ R, and n ∈ N, one has αn(x|B) ≤ αn(x|C). By
discarding a set of measure 0 one may presume that

∑∞
n=1

1
2n·αn(x|Z) ≥ K for all x ∈ Z.

Also, since as we have already noted, given any measurable set C and any γ > 0 there
is a compact subset D of C with µ(D) > µ(C) − γ [4, Definition 3.8], one may also
presume that Z is compact.

Now for each j ∈ N choose compact Zj ⊆ [0, 1] such that

µ(Zj) > 1− ε

2j
and for each x ∈ Zj ,

∑∞
n=1

1
2n·αn(x|Zj)

≥ j .

Let E =
⋂∞

j=1 Zj . Then E is clearly as required, except possibly for the assertion that
E is nowhere dense. So suppose E has nonempty interior. Given x in the interior of E

one has some ν > 0 such that αn(x|E) ≥ ν for every n and hence
∑∞

n=1
1

2n·αn(x|E) < ∞,
a contradiction.

We show now that one cannot be guaranteed a translate of some fat set of sums in
a set of positive measure, even quite large measure.

4.10 Theorem. Let ε > 0. There is a compact set E ⊆ [0, 1] with µ(E) > 1 − ε

such that there do not exist any structured sequence 〈tn〉∞n=1 and any a ∈ [0, 1) with
µ
(
AS(〈tn〉∞n=1)

)
> 0 and a + AS(〈tn〉∞n=1) ⊆ E.

Proof. Let E be as guaranteed by Lemma 4.9. Then Lemma 4.8 together with the
observation that whenever B ⊆ C, x ∈ R, and n ∈ N, one has αn(x|B) ≤ αn(x|C),
establish the conclusion. (For this, one only needs that the set D of Lemma 4.8 is
nonempty.)

Notice that since the set E of Theorem 4.10 is compact, one has in fact that there do
not exist any structured sequence 〈tn〉∞n=1 and any a ∈ [0, 1) with µ

(
AS(〈tn〉∞n=1)

)
> 0

and a + FS(〈tn〉∞n=1) ⊆ E. In this respect we can contrast the situation in which
µ(E) = 1.
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4.11 Theorem. Let A ⊆ (0, 1] with µ(A) = 1. Then for each ε > 0 there is a structured
sequence 〈tn〉∞n=1 with µ

(
AS(〈tn〉∞n=1)

)
> 1− ε and FS(〈tn〉∞n=1) ⊆ A.

Proof. Pick γ ∈ N with 1
2γ−2 < ε. Let A1 = A. Now A1 ∩ ( 1

2 −
1
2γ , 1

2 ) 6= ∅ so pick
t1 ∈ A1 ∩ ( 1

2 −
1
2γ , 1

2 ) and let A2 = A1 ∩ (A1 − t1) and observe that µ
(
A2 ∩ (0, 1

2 )
)

= 1
2 .

Inductively, given Ak with µ
(
Ak ∩ (0, 1

2k−1 )
)

= 1
2k−1 and given

tk−1 ∈ (
1

2k−1
− 1

2γ+k−3
+

1
2γ+2k−4

,
1

2k−1
)

observe that Ak∩( tk−1
2 − 1

2γ+2k−2 , tk−1
2 ) 6= ∅ and pick tk ∈ Ak∩( tk−1

2 − 1
2γ+2k−2 , tk−1

2 ). Let
Ak+1 = Ak∩(Ak−tk) and note that, since tk−1 < 1

2k−1 we have µ
(
Ak+1∩(0, 1

2k )
)

= 1
2k .

Observe also that tk < tk−1
2 < 1

2k and

tk > tk−1
2 − 1

2γ+2k−2

> 1
2k − 1

2γ+k−2 + 1
2γ+2k−3 − 1

2γ+2k−2

= 1
2k − 1

2γ+k−2 + 1
2γ+2k−2 .

As in the proof of Theorem 2.6 one sees that FS(〈tn〉∞n=1) ⊆ A. Since for each
k > 1, tk < tk−1

2 , the sequence 〈tn〉∞n=1 is structured. Also

Rn =
∑∞

k=n+1 tk >
∑∞

k=n+1(
1
2k − 1

2γ+k−2 + 1
2γ+2k−2 )

>
∑∞

k=n+1(
1
2k − 1

2γ+k−2 )
= 1

2n − 1
2γ+n−2

so 2nRn > 1− 1
2γ−2 > 1− ε. Consequently, by Lemma 4.4, µ

(
AS(〈tn〉∞n=1)

)
> 1− ε.

The following result shows, however, that one can get a set of measure 1 which does
not contain a translate of a fat all-sums set. Theorem 4.10 leaves open the possibility
that translates of fat sets of sums of structured sequences could be partition regular.
That possibility is also eliminated by the next result.

4.12 Theorem. There exist disjoint measurable (in fact Borel) sets A and B such that
µ(A) = 1, A∪B = [0, 1], and for no structured sequence 〈tn〉∞n=1 with µ

(
AS(〈tn〉∞n=1)

)
>

0 and for no a ∈ [0, 1) is a + AS(〈tn〉∞n=1) ⊆ A (and of course, since µ(B) = 0,
for no structured sequence 〈tn〉∞n=1 with µ

(
AS(〈tn〉∞n=1)

)
> 0 and for no a ∈ [0, 1) is

a + AS(〈tn〉∞n=1) ⊆ B).

Proof. For each n ∈ N pick a set En as guaranteed by Lemma 4.9 for ε = 1
n . Let

A =
⋃∞

n=1 En and let B = [0, 1]\A.
Now suppose one has a sequence 〈tn〉∞n=1 with µ

(
AS(〈tn〉∞n=1)

)
> 0 and a ∈ [0, 1)

with a + AS(〈tn〉∞n=1) ⊆ A. Let C = a + AS(〈tn〉∞n=1) and pick by Lemma 4.8 a dense
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subset D of C such that, for every x ∈ D,
∑∞

n=1
1

2n·αn(x|C) < ∞. We claim that for
each m ∈ N, C\Em is dense in C. Indeed, suppose instead that there is some open
set U ⊆ R such that ∅ 6= U ∩ C ⊆ Em. Pick x ∈ D ∩ U . Since U is open, one either
has some γ > 0 such that for all n ∈ N, αn(x|U ∩ C) ≥ γ, or for sufficiently large
n, αn(x|U ∩ C) = αn(x|C). In either case we have

∑∞
n=1

1
2n·αn(x|U∩C) < ∞. On the

other hand, for each n, αn(x|U ∩ C) ≤ αn(x|Em) so
∑∞

n=1
1

2n·αn(x|U∩C) = ∞. This
contradiction establishes that C\Em is dense as claimed.

Consequently, by the Baire Category Theorem, one has C\A 6= ∅, a contradiction.

4.13 Question. Does Theorem 4.12 remain valid with the word “structured” removed?

5. A fat all-sums set with 0 as a
density point of its complement.

We saw in Theorem 4.1 that whenever µ
(
AS(〈tn〉∞n=1)

)
> 0, one has that

AS(〈tn〉∞n=1) is measurably large (at 0). We will show in Theorem 5.2 that if the
sequence 〈tn〉∞n=1 is structured, much more is true. That is, 0 is a density point of
AS(〈tn〉∞n=1). By way of contrast, we show in Corollary 5.7 that it is possible to have a
(necessarily nonstructured) sequence 〈tn〉∞n=1 such that µ

(
AS(〈tn〉∞n=1)

)
> 0 and 0 is a

density point of the complement of AS(〈tn〉∞n=1).
We start with a preliminary lemma.

5.1 Lemma. Let 〈tn〉∞n=1 be a structured sequence such that µ
(
AS(〈tn〉∞n=1)

)
> 0. Then

for any F ∈ Pf (N),

µ
(
AS(〈tn〉∞n=1) ∩ (0,

∑
n∈F tn)

)
=

∑
m∈F

µ
(
AS(〈tn〉∞n=1)

)
2m .

Proof. We proceed by induction on |F |. If F = {m}, we have AS(〈tn〉∞n=1) ∩ (0, tm) =
AS(〈tn〉∞n=m+1) so the result is simply Lemma 4.4 applied to the sequence 〈sn〉∞n=1,
where sn = tm+n. So assume that |F | > 1, let m = minF and let G = F\{m}. Then
we notice that

AS(〈tn〉∞n=1) ∩ (0,
∑

n∈F tn) =(
AS(〈tn〉∞n=1) ∩ (0, tm]

)
∪

(
tm +

(
AS(〈tn〉∞n=1) ∩ (0,

∑
n∈G tn)

))
.

This suffices, since then we have

µ
(
AS(〈tn〉∞n=1) ∩ (0,

∑
n∈F tn)

)
=

µ
(
AS(〈tn〉∞n=1)

)
2m +

∑
k∈G

µ
(
AS(〈tn〉∞n=1)

)
2k .
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5.2 Theorem. Let 〈tn〉∞n=1 be a structured sequence such that µ
(
AS(〈tn〉∞n=1)

)
> 0.

Then 0 is a density point of AS(〈tn〉∞n=1).

Proof. Let ε > 0 be given and pick ` ∈ N such that 2`−1

2` > 1 − ε. Let γ =
µ
(
AS(〈tn〉∞n=1)

)
. We claim that it suffices to establish

(*) Whenever F ⊆ {0, 1, . . . , `} with 0 ∈ F , k = max{−1, 0, 1, . . . , `}\F , and G =
(F ∩ {0, 1, . . . , k − 1}) ∪ {k}, one has

lim
m→∞

∑
n∈F (γ/2m+n)∑

n∈G tm+n
>

2` − 1
2`

.

Indeed, assume that we have established (*). Since there are only finitely many
subsets of {0, 1, . . . , `}, pick p ∈ N such that whenever m > p and F and G are as in

(*), one has
∑

n∈F (γ/2m+n)∑
n∈G tm+n

> 2`−1
2` . We show that whenever 0 < α < tp we have

µ
(
AS(〈tn〉∞n=1) ∩ (0, α)

)
> (1 − ε) · α. So let α with 0 < α < tp be given, pick m such

that tm ≤ α < tm−1, and note that m > p. Pick F ⊆ {0, 1, . . . , `} with 0 ∈ F and∑
n∈F 2`−n a maximum among all

{
∑

n∈H 2`−n : 0 ∈ H ⊆ {0, 1, . . . , `} and
∑

n∈H tm+n ≤ α} .

(Note that H = {0} satisfies the requirements so the listed set is nonempty.) Now let
G be as in (*), so that

∑
n∈G 2`−n =

∑
n∈F 2`−n + 1. Now if F = {0, 1, . . . , `}, then

G = {−1} so
∑

n∈G tm+n = tm−1 > α; if F 6= {0, 1, . . . , `}, then G ⊆ {0, 1, . . . , `} and∑
n∈G 2`−n >

∑
n∈F 2`−n. That is, we have

∑
n∈F tm+n ≤ α <

∑
n∈G tm+n.

Now we have

µ
(
AS(〈tn〉∞n=1) ∩ (0, α)

)
≥ µ

(
AS(〈tn〉∞n=1) ∩ (0,

∑
n∈F tm+n)

)
=

∑
n∈F

γ
2m+n

by Lemma 5.1. Thus by (*) we have

µ
(
AS(〈tn〉∞n=1) ∩ (0, α)

)
>

2` − 1
2`

·
∑

n∈G tm+n > (1− ε) · α

as required.
Now to establish (*), first observe that∑

n∈F 2`−n∑
n∈G 2`−n

=
∑

n∈F 2`−n∑
n∈F 2`−n + 1

>
2` − 1

2`
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so it suffices to show that

lim
m→∞

∑
n∈F (γ/2m+n)∑

n∈G tm+n
=

∑
n∈F 2`−n∑
n∈G 2`−n

.

Pick a sequence 〈δn〉∞n=1 as guaranteed by Lemma 4.5. Then we have that

lim
m→∞

γ

2m+` ·Rm+`
= lim

m→∞

γ

2m+` · (γ + δm+`) · (1/2m+`)
= 1 .

Further, for any i ∈ N, we have

lim
m→∞

tm
Rm+i

= lim
m→∞

(γ − δm)/2m + δm−1/2m−1

(γ + δm+i)/2m+i
= 2i .

Thus we have

lim
m→∞

∑
n∈G tm+n

Rm+`
=

∑
n∈G lim

m→∞

tm+n

Rm+`
=

∑
n∈G 2`−n

and hence

lim
m→∞

∑
n∈G 2`−n ·Rm+`∑

n∈G tm+n
= 1 .

Putting these limits together, we have

lim
m→∞

∑
n∈F (γ/2m+n)∑

n∈G tm+n
=

∑
n∈F 2`−n∑
n∈G 2`−n

· lim
m→∞

∑
n∈G 2`−n ·Rm+`∑

n∈G tm+n
· lim

m→∞

γ

2m+` ·Rm+`
=∑

n∈F 2`−n∑
n∈G 2`−n

as required.

What happens to the first few terms of a sequence is clearly irrelevant, so if
eventually tn ≥ Rn (so that, in a manner of speaking, 〈tn〉∞n=1 is eventually a struc-
tured sequence) and µ

(
AS(〈tn〉∞n=1)

)
> 0, then 0 is a density point of AS(〈tn〉∞n=1).

Also, as we have previously remarked, (before Lemma 4.4) there is some ε > 0 with
(0, ε) ⊆ AS(〈tn〉∞n=1) if and only if eventually tn ≤ Rn.

We show in this section that one can get sequences 〈tn〉∞n=1 with µ
(
AS(〈tn〉∞n=1)

)
as close to 1 as we desire, in fact with AS(〈tn〉∞n=1) containing an interval of length as
close to 1 as we desire, such that the density of AS(〈tn〉∞n=1) at 0 is 0, i.e. 0 is a density
point of (0, 1]\AS(〈tn〉∞n=1). (Necessarily of course, often tn > Rn and often tn < Rn.)

Given an infinite set B we write AS(B) = {
∑

F : ∅ 6= F ⊆ B} so that if 〈tn〉∞n=1

enumerates B then AS(B) = AS(〈tn〉∞n=1).
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5.3 Definition. Let r ∈ N. Define sequences 〈Tn〉∞n=0, 〈Ln〉∞n=1, and 〈Nn〉∞n=1 by:
T0 = 20, L1 = r, and for each n ∈ N, Nn = 2Tn−1 − 2, Tn = 2Tn−1/4 − 4, and
Ln+1 = Ln + Nn. Let

Br = {2−1, 2−2, . . . , 2−r} ∪
⋃∞

n=1

{
2−Ln + 2−Ln−t : t ∈ {1, 2, . . . , Nn}

}
.

5.4 Theorem. Let r ∈ N and let A = AS(Br). The density of A at 0 is 0. That is

lim
δ↓0

µ
(
A ∩ (0, δ)

)
δ

= 0.

Proof. We first observe that for any n ∈ N,

(*)
∑∞

`=n+1

∑N`

t=1(2
−L` + 2−L`−t) < 2−Ln+1+Tn .

Indeed∑∞
`=n+1

∑N`

t=1(2
−L` + 2−L`−t) =

∑∞
`=n+1(N` · 2−L` + 2−L` − 2−L`+1)

=
∑∞

`=n+1

(
(2T`−1 − 2) · 2−L` + 2−L` − 2−L`+1

)
=

∑∞
`=n+1(2

−L`+T`−1 − 2−L` − 2−L`+1)
< 2−Ln+1+Tn .

Now let ε > 0 be given and pick p ∈ N such that p > 1 and 1/2Tp−1/6 < ε/4. We

will show that for any δ < 1/2Lp−1 ,
µ
(
A∩(0,δ)

)
δ < ε. So let δ < 1/2Lp−1 be given. Pick

n ∈ N with 2−Ln−1 ≥ δ > 2−Ln (so n ≥ p) and pick the largest k ∈ {0, 1, . . . , Tn−1 − 1}
with 2−Ln+k ≤ δ.

Now observe that if x ∈ (0, δ) ∩ A, then x < 2−Ln+k+1. (If k ≤ Tn−1 − 2 this is
because δ < 2−Ln+k+1, so assume that k = Tn−1−1. Then x < δ ≤ 2−Ln−1 so x =

∑
C

for some

C ⊆
⋃∞

`=n

{
2−L` + 2−L`−t : t ∈ {1, 2, . . . , N`}

}
so x ≤

∑∞
`=n

∑N`

t=1(2
−L` + 2−L`−t) < 2−Ln+Tn−1 = 2−Ln+k+1 by (*).)

Now let

H = {m · 2Ln +
∑

t∈F 2−t : m ∈ {0, 1, . . . , 2k+1 − 1},
F ⊆ {Ln + 1, Ln + 2, . . . , Ln+1 − Tn}, and
m− Tn ≤ |F | ≤ m|} .

We claim that it suffices to establish the following two statements:

(**) |H| ≤ 2Nn−Tn+k+1−Tn−1/6 and

(***) (0, δ) ∩A ⊆
⋃

z∈H [z, z + 2−Ln+1+Tn+1].
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Indeed, assume for the moment that we have established (**) and (***). Then

µ
(
(0, δ) ∩A

)
δ

≤ |H| · 2−Ln+1+Tn+1

2−Ln+k

=
|H|

2Nn−Tn+k−1
≤ 22−Tn−1/6

≤ 22−Tp−1/6 < ε

as required.
To establish (**) observe that by Stirling’s formula we have for any even M > 0

and any t ∈ {0, 1, . . . ,M},
(

M
t

)
<

2M

√
M

. Observe also that

(Tn + 1)√
Nn − Tn

=
2Tn−1/4 − 3√

2Tn−1 − 2− 2Tn−1/4 + 4

<
2Tn−1/4

√
2Tn−1 − 2Tn−1/4

<
1

2Tn−1/6
.

Now for each m ∈ {0, 1, . . . , 2k+1 − 1}, let

Hm = {m · 2−Ln +
∑

t∈F 2−t : F ⊆ {Ln + 1, Ln + 2, . . . , Ln+1 − Tn} and
m− Tn ≤ |F | ≤ m} .

Then |H| ≤
∑2k+1−1

m=0 |Hm|. Let M = Nn − Tn = |{Ln + 1, Ln + 2, . . . , Ln+1 − Tn}|.
Now, if m ≤ Tn, then

Hm =
∑m

i=0

(
M
i

)
<

∑m
i=0

2M
√

M
= (m+1)·2M

√
M

≤ (Tn+1)·2M

√
M

.

If m > Tn, then

Hm =
∑m

i=m−Tn

(
M
i

)
<

∑m
i=m−Tn

2M
√

M
= (Tn+1)·2M

√
M

.

Thus

|H| < 2k+1 · (Tn + 1) · 2M

√
M

=
2Nn−Tn+k+1 · (Tn + 1)√

Nn − Tn

< 2Nn−Tn+k+1−Tn−1/6 .

Thus (**) holds.
Finally, we verify (***). Let x ∈ (0, δ) ∩ A be given. For each ` ∈ N with

` ≥ n, pick G(`) ⊆ {1, 2, . . . , N`} such that x =
∑∞

`=n

∑
t∈G(`)(2

−L` + 2−L`−t). Let
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y =
∑

t∈G(n)(2
−Ln + 2−Ln−t) (so that y = 0 if G(n) = ∅). Let m = |G(n)|. Then

y = m · 2−Ln +
∑

t∈G(n) 2−Ln−t. Since y ≤ x < 2−Ln+k+1 we have m ≤ 2k+1 − 1. Let

F = {Ln + t : t ∈ G(n) and t ≤ Nn − Tn}

and let z = m · 2−Ln +
∑

t∈F 2−t. Now m ∈ {0, 1, . . . , 2k+1 − 1},
F ⊆ {Ln + 1, Ln + 2, . . . , Ln + Nn − Tn}, |F | ≤ |G(n)| = m, and |F | ≥ |G(n)| − Tn so
z ∈ H.

Certainly z ≤ x. Let K = {Ln + t : t ∈ G(n) and t > Nn − Tn}. Then y =
z +

∑
t∈K 2−t so

x = z +
∑

t∈K 2−t +
∑∞

`=n+1

∑
t∈G(`)(2

−L` + 2−L`−t)

≤ z +
∑Nn

t=Nn−Tn+1 2−Ln−t +
∑∞

`=n+1

∑N`

t=1(2
−L` + 2−L`−t)

< z + 2−Ln−Nn+Tn + 2−Ln+1+Tn (by (*) )
= z + 2−Ln+1+Tn+1

so (***) holds.

We now set out to show that AS(Br) contains intervals. The following lemma
shows that we can write certain terminating binary expressions as members of AS(Br).

5.5 Lemma. Let r, n ∈ N and let
∑n

`=1

∑N`

t=1(2
−L` + 2−L`−t) ≤ x < 1

such that 2Ln+1 · x ∈ N. Then there exist G0 ⊆ {1, 2, . . . , r} and for each
` ∈ {1, 2, . . . , n} some G` ⊆ {1, 2, . . . , N`} such that

x =
∑

t∈G0
2−t +

∑n
`=1

∑
t∈G`

(2−L` + 2−L`−t) .

Proof. We proceed by induction on n. First let n = 1. We have that

2L2 · x ∈ {1, 2, . . . , 2L2 − 1}

so pick F ⊆ {0, 1, . . . , L2−1} such that 2L2 ·x =
∑

t∈F 2t. Then x =
∑

t∈F 2t−L2 . Let
G1 =

{
N1 − t : t ∈ F ∩ {0, 1, . . . , N1 − 1}

}
and let H = F ∩ {N1, N1 + 1, . . . , L2 − 1}.

Let y = x−
∑

t∈G1
(2−L1 +2−L1−t). Then y =

∑
t∈H 2t−L2 −|G1| · 2−L1 so 2L1 · y is an

integer. Also y ≥ x −
∑N1

t=1(2
−L1 + 2−L1−t) ≥ 0. Finally y ≤ x < 1 so 2L1 · y ∈ {0, 1,

. . . , 2L1 − 1}. Choose K ⊆ {0, 1, . . . , L1 − 1} such that 2L1 · y =
∑

t∈K 2t and let
G0 = {L1 − t : t ∈ K}. Then x =

∑
t∈G0

2−t +
∑

t∈G1
(2−L1 + 2−L1−t) as required.

Now let n > 1 be given and let
∑n

`=1

∑N`

t=1(2
−L` +2−L`−t) ≤ x < 1 with 2Ln+1 ·x ∈

N. Pick F ⊆ {0, 1, . . . , Ln+1 − 1} such that 2Ln+1 · x =
∑

t∈F 2t. Let

Gn =
{
Nn − t : t ∈ F ∩ {0, 1, . . . , Nn − 1}

}
25



and let H = F ∩{Nn, Nn +1, . . . , Ln+1−1}. Let y = x−
∑

t∈Gn
(2−Ln +2−Ln−t). Then

y =
∑

t∈H 2t−Ln+1 − |Gn| · 2−Ln so 2Ln · y is an integer. Also∑n−1
`=1

∑N`

t=1(2
−L` + 2−L`−t) ≤ x−

∑Nn

t=1(2
−Ln + 2−Ln−t)

≤ x−
∑

t∈Gn
(2−Ln + 2−Ln−t)

= y ≤ x < 1 .

Thus y satisfies the induction hypothesis so pick G0 ⊆ {1, 2, . . . , r} and for each
` ∈ {1, 2, . . . , n} some G` ⊆ {1, 2, . . . , N`} such that

y =
∑

t∈G0
2−t +

∑n−1
`=1

∑
t∈G`

(2−L` + 2−L`−t) .

5.6 Theorem. Let r ∈ N and let γ =
∑∞

`=1

∑N`

t=1(2
−L` + 2−L`−t). Then (γ, 1) ⊆

AS(Br).

Proof. Let x ∈ (γ, 1) and pick H ⊆ N with x =
∑

t∈H 2−t. For each n let
Fn = H ∩ {1, 2, . . . , Ln−1} and let xn =

∑
t∈Fn

2−t. Then xn ≤ x < 1. We claim
that also xn ≥

∑n
`=1

∑N`

t=1(2
−L` + 2−L`−t). Indeed, x >

∑∞
`=1

∑N`

t=1(2
−L` + 2−L`−t)

and x− xn ≤
∑∞

t=Ln+1+1 2−t = 2−Ln+1 . Thus

xn >
∑n

`=1

∑N`

t=1(2
−L` + 2−L`−t) +

∑∞
`=n+1

∑N`

t=1(2
−L` + 2−L`−t)− 2−Ln+1

>
∑n

`=1

∑N`

t=1(2
−L` + 2−L`−t) .

Since also 2Ln+1 · xn ∈ N we have xn satisfies the hypotheses of Lemma 5.5 so pick
G0(n) ⊆ {1, 2, . . . , r} and for each ` ∈ {1, 2, . . . , n} pick G`(n) ⊆ {1, 2, . . . , N`} such
that xn =

∑
t∈G0(n) 2−t +

∑n
`=1

∑
t∈G`(n)(2

−L` + 2−L`−t). Then xn ∈ AS(Br). It
suffices to show that {0} ∪ AS(Br) is compact. For then, since lim

n→∞
xn = x, we have

x ∈ AS(Br).
To verify that {0} ∪ AS(Br) is compact, let b ∈ c`AS(Br) and note that b < ∞.

Enumerate Br as 〈tn〉∞n=1. For each m ∈ N choose a sequence 〈α(m,n)〉∞n=1 in {0, 1}
such that |

∑∞
n=1 α(m,n) · tn − b| < 1

m . Choose infinite A1 ⊆ N and σ(1) ∈ {0, 1} such
that for all m ∈ A1, α(m, 1) = σ(1). Inductively, given Ak, choose infinite Ak+1 ⊆ Ak

and σ(k + 1) ∈ {0, 1} such that for all m ∈ Ak+1, α(m, k + 1) = σ(k + 1). We claim
that

∑∞
n=1 σ(n) · tn = b, so suppose instead that ε = |

∑∞
n=1 σ(n) · tn − b| > 0. Pick k

such that
∑∞

n=k+1 tn < ε
3 and pick m ∈ Ak such that 1

m < ε
3 . Then

|
∑∞

n=1 σ(n) · tn − b|
= |

∑k
n=1 σ(n) · tn +

∑∞
n=k+1 σ(n) · tn − b|

= |
∑∞

n=1 α(m,n) · tn −
∑∞

n=k+1 α(m,n) · tn +
∑∞

n=k+1 σ(n) · tn − b|
≤ |

∑∞
n=1 α(m,n) · tn − b|+ |

∑∞
n=k+1 α(m,n) · tn|+ |

∑∞
n=k+1 σ(n) · tn|

< ε
3 + ε

3 + ε
3 .
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5.7 Corollary. Let ε > 0 be given. There is a decreasing sequence 〈tn〉∞n=1 such that∑∞
n=1 tn ≤ 1 and there exist a < b < 1 such that b − a > 1 − ε, (a, b) ⊆ AS(〈tn〉∞n=1),

and 0 is a density point of (0, 1]\AS(〈tn〉∞n=1).

Proof. Given r ∈ N, define sequences 〈Tn〉∞n=0, 〈Ln〉∞n=1, and 〈Nn〉∞n=1 as in Definition

5.3 and let γr =
∑∞

`=1

∑N`

t=1(2
−L` + 2−L`−t). Choose r such that

1− γr

1 + γr
> 1 − ε.

Then AS(Br) ⊆ (0, 1 + γr), and by Theorem 5.6, (γr, 1) ⊆ AS(Br). By Theorem

5.4, 0 is a density point of (0, 1 + γr)\AS(Br). Let C =
1

1 + γr
· Br and let 〈tn〉∞n=1

enumerate C in decreasing order. Then AS(〈tn〉∞n=1) ⊆ (0, 1) and 0 is a density point

of (0, 1)\AS(〈tn〉∞n=1). Let a =
γr

1 + γr
and let b =

1
1 + γr

. Then (a, b) ⊆ AS(〈tn〉∞n=1)

and b− a =
1− γr

1 + γr
> 1− ε.
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