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Abstract

A base for a commutative semigroup (S, +) is an indexed set 〈xt〉t∈A in S such that
each element x ∈ S is uniquely representable as

∑
t∈F xt where F is a finite subset of

A and, if S has an identity 0, then 0 =
∑

n∈∅ xt. We investigate those commutative
semigroups or groups which have a base. We obtain the surprising result that Q has a
base. More generally, we show that an abelian group has a base if and only if it has no
elements of odd finite order.

1. Introduction

In [1] N. G. de Bruijn thoroughly investigated bases for the group Z of integers, that
is sequences 〈xn〉∞n=1 such that every element of Z is uniquely representable in the form∑

n∈F xn for some finite subset of N. He showed that there are many such bases for
Z and presented some sufficient conditions and some necessary conditions for a given
sequence to be a base for Z. We investigate in this paper bases for other commutative
semigroups and groups.

Definition 1·1. Let (S, +) be a commutative semigroup and let 〈xt〉t∈A be an indexed
set in S.

(a) FS(〈xt〉t∈A) = {
∑

t∈F xt : F is a finite nonempty subset of A}.
(b) FS0(〈xt〉t∈A) = FS(〈xt〉t∈A) ∪ {0} = {

∑
t∈F xt : F is a finite subset of A}.

(c) The indexed set 〈xt〉t∈A satisfies uniqueness of finite sums if and only if whenever
F and H are finite subsets of A and F 6= H, one has that

∑
t∈F xt 6=

∑
t∈H xt.

(d) The indexed set 〈xt〉t∈A is a base for S if and only if it satisfies uniqueness of finite
sums and either S = FS(〈xt〉t∈A) or S = FS0(〈xt〉t∈A) (depending, of course, on
whether or not S has an identity 0).

In Section 2 of this paper we shall show that (Q,+) has a base. We found this surprising.
Indeed, we initially believed that (Q,+) could not have a base, and we were not alone in
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this belief. In [2] Budak, Işik, and Pym established that members of Q can be expressed

uniquely in the form
∑

t∈A atxt for at ∈ Dt where A = Z, xt =
(−1)t

(1− t)!
and Dt =

{0, 1, . . . ,−t} if t < 0, and xt = (−1)t(1 + t)! and Dt = {0, 1, . . . , t + 1} if t ≥ 0. After
doing so, they remarked “It does appear unlikely to us that ... Q can be described ... in
such a way that |Dk| = 2 for all k.”

In Section 3 we shall show that a commutative group has a base if and only if it has
no elements of finite odd order.

In Section 4 we shall establish that there are (up to isomorphism) only two countable
subsemigroups of (R+,+) that are closed under positive differences and have a base, and
then only in an essentially unique way. (By R+ we mean the set of positive real numbers.)

We note that there is a literature on the ways that an abelian group can be expressed
as a direct sum of a family of its subsets. For example [4, Chapter XV] is devoted to this
question.

Our own interest in this subject was motivated by the fact that such expressions have
been a useful tool in studying semigroup compactifications. In a subsequent paper [3], the
authors and S. Ferri were able to use expressions of this type to obtain new results about
the Stone-Čech compactification βG and the weakly almost periodic compactification
GWAP of of an infinite discrete abelian group G. It is shown there that the smallest ideal
of βG contains a free group on 22|G|

generators and that GWAP contains a free abelian
semigroup on 22|G|

generators.

2. Q has a base

In this section we establish some lemmas for later use and prove that Q has a base.
(It is a consequence of Lemma 3·5 below that every nontrivial subgroup of Q also has a
base.)

We start with some special notation which we shall use throughout this section.

Definition 2·1. Let n ∈ Z.

(a) Dn = {2n k
l : k, l ∈ 2Z + 1}

(b) If 〈xt〉t∈A is an indexed set in Q, then Mn(〈xt〉t∈A) = Dn ∩ {xt : t ∈ A}.

Notice that if n ∈ Z and n ≥ 0, then Dn∩Z = 2n+2n+1Z, the set of integers congruent
to 2n mod 2n+1, while if n < 0, Dn ∩ Z = ∅.

We omit the routine proof of the following lemma.

Lemma 2·2. Let n, r ∈ Z with n ≤ r, let x ∈ Dn, and let y ∈ Dr.

(a) If n < r, then x + y ∈ Dn.
(b) If n = r, then x + y ∈ Ds for some s > n.

Lemma 2·3. Let 〈xt〉t∈A be an indexed set in Q. If for each n ∈ Z, |Mn(〈xt〉t∈A)| ≤ 1,
then 〈xt〉t∈A satisfies uniqueness of finite sums.

Proof. Suppose we have finite F and H contained in A such that
∑

t∈F xt =
∑

t∈H xt

but F 6= H. By subtracting any terms in F ∩ H, we may presume that F ∩ H = ∅.
Let m = min{n : there is some t ∈ F ∪ H with xt ∈ Dn} and assume without loss of
generality that we have s ∈ F such that Mm(〈xt〉t∈A) = {xs}. For each t ∈ F ∪ H pick
nt ∈ Z and kt and lt in 2Z + 1 such that xt = 2nt kt

lt
and let r =

∏
t∈F∪H lt, noting
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that r is an odd integer. Then ks
r
ls

+
∑

t∈F\{s} 2nt−mkt
r
lt

=
∑

t∈H 2nt−mkt
r
lt

. This is a
contradiction since the number on the left hand side is an odd integer, while the number
on the right hand side is an even integer.

Definition 2·4. Let 〈xt〉t∈A be an indexed set in a semigroup which satisfies uniqueness
of finite sums. If y ∈ FS(〈xt〉t∈A), then supp(y) is the finite subset of A such that
y =

∑
t∈supp (y) xt.

The following simple observation will be very useful.

Lemma 2·5. Let (G, +) be an abelian group and let 〈xt〉t∈A be a base for G. For any
s ∈ A and any w ∈ G,

(a) s ∈ supp(w) if and only if s /∈ supp(w + xs),
(b) if r is an odd integer, then s ∈ supp(w) if and only if s /∈ supp(w + rxs), and
(c) if r is an even integer, then s ∈ supp(w) if and only if s ∈ supp(w + rxs).

Proof. (a) Let F = supp(w) and let H = supp(w + xs). If s /∈ F , then w + xs =∑
t∈F∪{s} xt so H = F ∪ {s}. If s ∈ H, then w =

∑
t∈H\{s} xt so F = H \ {s}.

Conclusions (b) and (c) are immediate consequences of (a).

The following lemma is proved in [1] in the case in which G = Z.

Lemma 2·6. Let (G, +) be an abelian group, let 〈xt〉t∈A and 〈yt〉t∈A be indexed sets in
G, and assume that 〈xt〉t∈A is a base for G. If for each t ∈ A, yt is an odd multiple of
xt and {t ∈ A : yt 6= xt} is finite, then 〈yt〉t∈A is a base for G.

Proof. Let B = {t ∈ A : yt 6= xt}. We proceed by induction on |B|, the case |B| = 0
being trivial. So assume |B| ≥ 1 and the result is true for smaller sizes. Pick s ∈ B and
pick odd m ∈ Z such that yt = mxt. For each t ∈ A, define

zt =
{

yt if t 6= s

xt if t = s .

By the induction hypothesis 〈zt〉t∈A satisfies uniqueness of finite sums and G = FS0(〈zt〉t∈A).
To see that 〈yt〉t∈A satisfies uniqueness of finite sums, let F and H be distinct finite

subsets of A and suppose that
∑

t∈F yt =
∑

t∈H yt. By subtracting common terms, we
may suppose that F ∩H = ∅. If s /∈ F ∪H, we have a contradiction, so we may assume
that s ∈ F . Then mzs +

∑
t∈F\{s} zt =

∑
t∈H zt. Then by Lemma 2·5(b) (with supports

computed in terms of 〈zt〉t∈A), s ∈ H, a contradiction.
To see that G = FS0(〈yt〉t∈A), let w ∈ G and pick finite F ⊆ A such that w =

∑
t∈F zt.

If s /∈ F , then w =
∑

t∈F yt, so assume that s ∈ F . Pick finite H ⊆ A such that
w −mzs =

∑
t∈H zt. By Lemma 2·5(b) we have that s /∈ H so w =

∑
t∈H∪{s} yt.

Notice that the restriction that {t ∈ A : yt 6= xt} be finite cannot be removed
from Lemma 2·6. To see this, consider the sequences 〈(−2)t〉t∈ω and 〈2t〉t∈ω. Then
FS0(〈(−2)t〉t∈ω) = Z while FS0(〈2t〉t∈ω) = ω.

Theorem 2·7. Let G be a subgroup of (Q,+) and assume that 〈xt〉t∈A is a base for
G. Then for each n ∈ Z, |Mn(〈xt〉t∈A)| ≤ 1.

Proof. Let n ∈ Z and suppose that |Mn(〈xt〉t∈A)| has at least two members, say xa
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and xb. Pick odd integers k, l, r, and s such that xa = 2n k
l and xb = 2n r

s . Then
lrxa = 2nkr = ksxb. For t ∈ A, let

yt =


lrxa if t = a

ksxb if t = b

xt otherwise.

By Lemma 2·6, 〈yt〉t∈A satisfies uniqueness of finite sums, while ya = yb, a contradic-
tion.

Lemma 2·8. Let G be a nontrivial subgroup of (Q,+) and let W = {n ∈ Z : G∩Dn 6=
∅}. Assume that H is a finite subset of W and w ∈ G. If for each t ∈ H, xt ∈ G ∩ Dt,
then there are some F ⊆ H and some r ∈ W \H such that w −

∑
t∈F xt ∈ Dr.

Proof. Pick n ∈ W such that w ∈ Dn. If n /∈ H, let F = ∅ and r = n.
Assume that n ∈ H. We proceed by induction on |H|. If H = {n}, we have by Lemma

2·2 that w − xn ∈ Dr for some r > n. Now assume that |H| > 1 and the lemma is valid
for smaller sets. Let m = max H. If m = n, then as above we have that w− xn ∈ Dr for
some r > n, so assume that n ∈ H \{m}. By the induction hypothesis pick F ⊆ H \{m}
and r ∈ W \ (H \ {m}) such that w −

∑
t∈F xt ∈ Dr. If r 6= m, we are done. If r = m,

then w −
∑

t∈F∪{m} xt ∈ Ds for some s > m by Lemma 2·2.

We now see (Q,+) has a base and that one may make arbitrary assignments of xt for
finitely many t, subject only to the restriction imposed by Theorem 2·7.

Theorem 2·9. Q has a base.

Proof. Let H be a finite subset of Z and assume that for all t ∈ H, xt ∈ Dt. We claim
that we may choose xt for t ∈ Z \H such that xt ∈ Dt for each t and 〈xt〉t∈W is a base
for Q.

Enumerate Q \ {0} as 〈at〉∞t=1. Assume that we have finite L with H ⊆ L ⊆ Z, and
that xt has been chosen for t ∈ L. Pick the least s such that as /∈ FS0(〈xt〉t∈L). Pick
n ∈ Z such that as ∈ Dn. If n /∈ L, let xn = as. If n ∈ L, pick by Lemma 2·8, F ⊆ L and
r ∈ W \ L such that as −

∑
t∈F xt ∈ Dr and let xr = as −

∑
t∈F xt.

At the completion of this inductive process, let U = {r ∈ Z : xr has been chosen}. We
have by Lemma 2·3 that 〈xt〉t∈U satisfies uniqueness of finite sums. Clearly, FS(〈xt〉t∈Z) =
Q.

Note that the algorithm implicit in the proofs of Lemma 2·8 and Theorem 2·9 is
effectively computable. That is, if an ordering 〈at〉∞t=1 of Q \ {0} is specified and y = as,
then we know that we will have y ∈ FS0(〈xt〉st=1) and we can compute 〈xt〉st=1 in finite
time. Unfortunately, we have not been able to find an explicit definition of a sequence
〈xn〉∞n=1 which satisfies uniqueness of finite sums such that Q = FS0(〈xn〉∞n=1).

3. Bases for semigroups and groups

We establish in this section that certain semigroups have bases and that an abelian
group has a base if and only if it has no elements of odd finite order.

We omit the obvious proof of the following theorem.

Theorem 3·1. Let I be a set and for each i ∈ I let Gi be either an abelian group or
a commutative semigroup with identity 0. If each Gi has a base, then so does

⊕
i∈I Gi.
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As a consequence of Theorems 3·1 and 2·9 we see that (R,+), being the direct sum of
c copies of Q, has a base and that (N, ·) and (Q+, ·) have bases. (The first is isomorphic
to

⊕
i∈N ω and the second is isomorphic to

⊕
i∈N Z.) Also (Q\{0}, ·) has a base because

it is isomorphic to the direct sum of (Q+, ·) and Z2.

Theorem 3·2. Let G be an abelian group and let K be a subgroup of G. If K and
G/K have bases, then so does G. In fact, if 〈xt〉t∈A is a base for K, then there exist a
set B disjoint from A and an indexed set 〈xt〉t∈B such that 〈xt〉t∈A∪B is a base for G.

Proof. Assume that 〈xt〉t∈A and 〈yt〉t∈B are indexed sets satisfying uniqueness of finite
sums such that K = FS0(〈xt〉t∈A) and G/K = FS0(〈yt〉t∈B). We may assume that
A ∩ B = ∅. For t ∈ B pick xt ∈ G such that xt + K = yt. We claim that 〈xt〉t∈A∪B

satisfies uniqueness of finite sums and G = FS(〈xt〉t∈A∪B).
To verify the former, let F and H be finite subsets of A∪B and assume that

∑
t∈F xt =∑

t∈H xt. Then
∑

t∈F∩A xt −
∑

t∈H∩A xt =
∑

t∈H∩B xt −
∑

t∈F∩B xt so
∑

t∈H∩B xt −∑
t∈F∩B xt ∈ K. Thus∑

t∈H∩B yt =
∑

t∈H∩B (xt + K) =
∑

t∈F∩B (xt + K) =
∑

t∈F∩B yt ,

and so H ∩B = F ∩B. Thus
∑

t∈F∩A xt =
∑

t∈H∩A xt so F = H as required.
Now let w ∈ G. Pick finite F ⊆ B such that w+K =

∑
t∈F yt. Then w−

∑
t∈F xt ∈ K

so pick finite H ⊆ A such that w −
∑

t∈F xt =
∑

t∈H xt.

Theorem 3·3. Let (G, +) be an abelian group which has a base. Then G has no
nonzero elements of odd finite order.

Proof. Pick a base 〈xt〉t∈A for G. Suppose we have w ∈ G \ {0} and odd m ∈ Z such
that mw = 0. Pick finite F ⊆ A such that w =

∑
t∈F xt. Then 0 =

∑
t∈F mxt. But by

Lemma 2·6, the sequence 〈yt〉t∈A defined by

yt =
{

xt if t /∈ F

mxt if t ∈ F

satisfies uniqueness of finite sums, so F = ∅, a contradiction.

By contrast we have the following theorem. In the proof of this theorem, it may be
that Gn or Gn+1 is trivial. In this event note that ∅ is a base for {0}.

Theorem 3·4. Let (G, +) be an abelian group in which every element has finite order
which is some power of 2. Then G has a base.

Proof. For each n ∈ N, let Gn = {a ∈ G : 2na = 0}. Then each Gn is a subgroup of
G. We produce inductively a possibly empty set An and 〈xt〉t∈An

such that An ∩Ak = ∅
for n 6= k and if Bm =

⋃m
n=1 An, then for each m ∈ N, 〈xt〉t∈Bm

satisfies uniqueness of
finite sums and Gm = FS0(〈xt〉t∈Bm

).
We have that G1 is a vector space over Z2, so is isomorphic to a direct sum of copies

of Z2 so by Theorem 3·1, G1 has a base. Pick A1 and 〈xt〉t∈A1 satisfying uniqueness of
finite sums such that G1 = FS0(〈xt〉t∈A1).

Inductively, let m ∈ N and assume that An and 〈xt〉t∈An
have been chosen for n ≤ m.

Now given w ∈ Gm+1, 2w ∈ Gm so Gm+1/Gm is a vector space over Z2 and therefore
has a base. By Theorem 3·2 we may choose a set Am+1 disjoint from Bm =

⋃m
n=1 An

and 〈xt〉t∈Am+1 such that 〈xt〉t∈Bm∪Am+1 satisfies uniqueness of finite sums and Gm+1 =
FS0(〈xt〉t∈Bm∪Am+1).
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The induction being complete, let B =
⋃∞

n=1 An Then 〈xt〉t∈B satisfies uniqueness of
finite sums and G = FS0(〈xt〉t∈B).

Lemma 3·5. Every subgroup of
⊕∞

n=1(Q,+) has a base.

Proof. Let G be a subgroup of
⊕∞

n=1(Q,+). If G = {0}, the conclusion is trivial, so
assume G is infinite and enumerate G \ {0} as 〈at〉∞t=1. For x ∈ G define supp(x) =
{n ∈ N : x(n) 6= 0}. Define f : G \ {0} → N and g : G \ {0} → Z by, for x ∈ G \ {0},
f(x) = max supp(x) and x

(
f(x)

)
∈ Dg(x).

Let x1 = a1. Inductively let n ∈ N and assume that we have chosen 〈xm〉nm=1 such
that if k 6= m, then either f(xk) 6= f(xm) or g(xk) 6= g(xm). Let

s = min{t ∈ N : at /∈ FS(〈xm〉nm=1)} .

Let y1 = as, let l ∈ {1, 2, . . . , n}, and assume that 〈yj〉lj=1 have been chosen. If for
all i ∈ {1, 2, . . . , n}, either f(xi) 6= f(yl) or g(xi) 6= g(yl), let xn+1 = yl. Otherwise
pick the unique α(l) ∈ {1, 2, . . . , n} such that f(xα(l)) = f(yl) and g(xα(l)) = g(yl)
and let yl+1 = yl − xα(l). Notice that either f(yl+1) < f(yl) or (by virtue of Lemma
2·2) both f(yl+1) = f(yl) and g(yl+1) > g(yl). In particular, the function α is injective,
so this process must terminate in n steps or fewer. Notice that either as = xn+1 or
as = xn+1 +

∑l
i=1 xα(i).

The induction being complete, we have directly that G = FS0(〈xn〉∞n=1). We claim
that 〈xn〉∞n=1 satisfies uniqueness of finite sums. To this end assume that we have distinct
finite subsets F and H of N such that

∑
t∈F xt =

∑
t∈H xt. We may presume that

F ∩ H = ∅. Let k = max{f(xt) : t ∈ F ∪ H}, let F ′ = {t ∈ F : f(xt) = k}, and let
H ′ = {t ∈ H : f(xt) = k}. Since F ′ ∪H ′ 6= ∅ and F ∩H = ∅, we have that F ′ 6= H ′.

Then
∑

t∈F ′ xt(k) =
∑

t∈H′ xt(k) so by Lemma 2·3 there must be some n ∈ Z and
some distinct t and s in F ′ ∪ H ′ such that xt(k) ∈ Dn and xs(k) ∈ Dn. But then
f(xt) = f(xs) and g(xt) = g(xs), a contradiction.

Theorem 3·6. Every torsion free abelian group has a base.

Proof. We proceed by induction on the cardinality of the group G. If G is countable,
then as is well known G is isomorphic to a subgroup of

⊕∞
n=1(Q,+). (See for example

[5, Theorems A14 and A15].) Thus by Lemma 3·5, G has a base.
So assume that |G| = κ > ω and enumerate G as 〈aι〉ι<κ. For σ < κ, let Gσ be the

subgroup of G generated by {aι : ι ≤ σ} and let Hσ = {x ∈ G : there is some n ∈ Z \ {0}
such that nx ∈ Gσ}. Note that Hσ is a subgroup of G and |Hσ| < κ.

We shall choose inductively Aσ and 〈xt〉t∈Aσ for σ < κ such that Aσ ∩ Aµ = ∅ when
σ 6= µ and if γ < κ and Bγ =

⋃
σ≤γ Aσ, then 〈xt〉t∈Bγ

satisfies uniqueness of finite sums
and Hγ = FS0(〈xt〉t∈Bγ ). To this end, let γ < κ and assume that we have chosen Aσ and
〈xt〉t∈Aσ

for σ < γ. Let C =
⋃

σ<γ Aσ and let H =
⋃

σ<γ Hσ. (If γ is a successor, say
γ = τ + 1, then C = Bτ and H = Hτ .) Then 〈xt〉t∈C satisfies uniqueness of finite sums
and H = FS0(〈xt〉t∈C). Also if x ∈ Hγ , n ∈ Z\{0}, and nx ∈ H, then x ∈ H. Thus Hγ/H

is torsion free. Since also |Hγ/H| ≤ |Hγ | < κ, we have by the induction hypothesis that
Hγ/H has a base. Thus by Theorem 3·2 we may pick Aγ disjoint from C and 〈xt〉t∈Aγ

such that 〈xt〉t∈C∪Aγ
satisfies uniqueness of finite sums and Hγ = FS0(〈xt〉t∈C∪Aγ

).
The construction being complete, let B =

⋃
γ<κ Aγ . Then 〈xt〉t∈B satisfies uniqueness

of finite sums and G = FS0(〈xt〉t∈B).
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Corollary 3·7. Let G be an abelian group. Then G has a base if and only if G \ {0}
has no elements of odd finite order.

Proof. The necessity is Theorem 3·3. For the sufficiency, let

T = {w ∈ G : o(w) is finite} ,

the torsion group of G. Then as is well known and very easy to show, G/T is torsion
free. Thus, by Theorem 3·6, G/T is has a base. Also by Theorem 3·4, T has a base so by
Theorem 3·2, G has a base.

4. Subsemigroups of (R+,+)

We show in this short section that if S is subsemigroup of (R+,+) with the property
that whenever x, y ∈ S and x < y one has y − x ∈ S and S has a base, then S is
either a copy of N or a copy of the semigroup D+ of positive dyadic rationals. (That is,
D+ = {k2n : k ∈ 2N − 1 and n ∈ Z}.)

Lemma 4·1. Let S be a subsemigroup of (R+,+) with the property that y − x ∈ S

whenever x, y ∈ S and x < y. Assume that 〈xt〉t∈A is a base for S.

(a) If n, m ∈ A and xm < xn, then 2xm ≤ xn.
(b) If n ∈ A, then xn has an immediate successor in {xt : t ∈ A} and either xn =

min{xt : t ∈ A} or xn has an immediate predecessor in {xt : t ∈ A}.

Proof. (a) Since xn−xm ∈ S, pick a finite subset F of A such that xn−xm =
∑

t∈F xt.
Then xn = xm +

∑
t∈F xt, so m ∈ F . (If m /∈ F , then by the uniqueness of finite sums

{n} = {m} ∪ F .) Consequently xn ≥ 2xm as required.
(b) By virtue of (a), for each k ∈ Z there is at most one t ∈ A such that 2kxn ≤ xt <

2k+1xn. Consequently we have immediately that if xn 6= min{xt : t ∈ A}, then xn has
an immediate predecessor in {xt : t ∈ A}. And, if xn 6= max{xt : t ∈ A}, then xn has
an immediate succesor in {xt : t ∈ A}, so suppose that xn = max{xt : t ∈ A}. Then for
k ∈ N, {t ∈ A : 2kxn ≤ xt < 2k+1xn} = ∅ so

∑
t∈A xt <

∑∞
k=0 2−k+1xn = 4xn. This is a

contradiction because, since S is a subsemigroup of R+, S is unbounded above.

Lemma 4·2. Let S be a subsemigroup of (R+,+) with the property that y − x ∈ S

whenever x, y ∈ S and x < y. Assume that 〈xt〉t∈A is a base for S. If n, m ∈ N and xm

is the immediate predecessor of xn in {xt : t ∈ A}, then xn = 2xm.

Proof. By Lemma 4·1(a), 2xm ≤ xn. Now 2xm ∈ S so pick a finite subset F of N such
that 2xm =

∑
t∈F xt. We cannot have m ∈ F or uniqueness of finite sums would yield

the conclusion that {m} = F \ {m}. If we had xt < xm for each t ∈ F , then by Lemma
4·1(a) we would have

∑
t∈F xt ≤ xm. So there is some l ∈ F such that xl > xm and

therefore 2xm ≥ xl ≥ xn.

Theorem 4·3. Let S be a subsemigroup of (R+,+) with the property that y − x ∈ S

whenever x, y ∈ S and x < y. Assume that 〈xt〉t∈A is a base for S. If {xt : t ∈ A} has a
smallest member xk, then S = xkN and {xt : t ∈ A} = {xk2t : t ∈ ω}. If {xt : t ∈ A} does
not have a smallest member and k ∈ A, then S = xkD+ and {xt : t ∈ A} = {xk2t : t ∈ Z}.

Proof. This is an immediate consequence of Lemma 4·2.
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Notice in particular that (Q+,+) and (R+,+) do not have bases.
The requirement that y − x ∈ S whenever x, y ∈ S and x < y is necessary for the

conclusion of Theorem 4·3. We shall now see that there are semigroups of all possible
sizes contained in (R+,+) which have bases, none of which is a copy of N or of D+.

Theorem 4·4. Let κ be a cardinal with ω ≤ κ ≤ c. There is a subsemigroup S of
(R+,+) with |S| = κ which has a base and there exist x, y ∈ S with x < y such that
y − x /∈ S (and in particular S is neither a copy of N nor a copy of D+).

Proof. Pick a subset B of R+ such that |B| = κ and B is linearly independent over Q.
Let S be the semigroup generated by B. Then S is isomorphic to

( ⊕
σ<κ ω

)
\ {0}, so

has a base by Theorem 3·1.
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