This paper was published in *Math. Proc. Cambr. Phil. Soc.* **145** (2008), 579-586. To the best of my knowledge, this is the final version as it was submitted to the publisher.–NH

Bases for Commutative Semigroups and Groups

By NEIL HINDMAN †

Department of Mathematics, Howard University, Washington, DC 20901, USA e-mail: nhindman@aol.com

AND DONA STRAUSS

Department of Pure Mathematics, University of Leeds, Leeds LS2 9J2 e-mail: d.strauss@hull.ac.uk

(Received)

Abstract

A base for a commutative semigroup (S, +) is an indexed set $\langle x_t \rangle_{t \in A}$ in S such that each element $x \in S$ is uniquely representable as $\sum_{t \in F} x_t$ where F is a finite subset of A and, if S has an identity 0, then $0 = \sum_{n \in \emptyset} x_t$. We investigate those commutative semigroups or groups which have a base. We obtain the surprising result that \mathbb{Q} has a base. More generally, we show that an abelian group has a base if and only if it has no elements of odd finite order.

$1. \ Introduction$

In [1] N. G. de Bruijn thoroughly investigated bases for the group \mathbb{Z} of integers, that is sequences $\langle x_n \rangle_{n=1}^{\infty}$ such that every element of \mathbb{Z} is uniquely representable in the form $\sum_{n \in F} x_n$ for some finite subset of N. He showed that there are many such bases for \mathbb{Z} and presented some sufficient conditions and some necessary conditions for a given sequence to be a base for \mathbb{Z} . We investigate in this paper bases for other commutative semigroups and groups.

Definition 1.1. Let (S, +) be a commutative semigroup and let $\langle x_t \rangle_{t \in A}$ be an indexed set in S.

- (a) $FS(\langle x_t \rangle_{t \in A}) = \{ \sum_{t \in F} x_t : F \text{ is a finite nonempty subset of } A \}.$
- (b) $FS_0(\langle x_t \rangle_{t \in A}) = FS(\langle x_t \rangle_{t \in A}) \cup \{0\} = \{\sum_{t \in F} x_t : F \text{ is a finite subset of } A\}.$
- (c) The indexed set $\langle x_t \rangle_{t \in A}$ satisfies uniqueness of finite sums if and only if whenever F and H are finite subsets of A and $F \neq H$, one has that $\sum_{t \in F} x_t \neq \sum_{t \in H} x_t$.
- (d) The indexed set $\langle x_t \rangle_{t \in A}$ is a base for S if and only if it satisfies uniqueness of finite sums and either $S = FS(\langle x_t \rangle_{t \in A})$ or $S = FS_0(\langle x_t \rangle_{t \in A})$ (depending, of course, on whether or not S has an identity 0).

In Section 2 of this paper we shall show that $(\mathbb{Q}, +)$ has a base. We found this surprising. Indeed, we initially believed that $(\mathbb{Q}, +)$ could not have a base, and we were not alone in

 $[\]dagger$ This author acknowledges support received from the National Science Foundation (USA) via Grant DMS-0554803.

Neil Hindman and Dona Strauss

this belief. In [2] Budak, Işik, and Pym established that members of \mathbb{Q} can be expressed uniquely in the form $\sum_{t \in A} a_t x_t$ for $a_t \in D_t$ where $A = \mathbb{Z}, x_t = \frac{(-1)^t}{(1-t)!}$ and $D_t =$ $\{0, 1, \ldots, -t\}$ if t < 0, and $x_t = (-1)^t (1+t)!$ and $D_t = \{0, 1, \ldots, t+1\}$ if $t \ge 0$. After doing so, they remarked "It does appear unlikely to us that $\dots \mathbb{Q}$ can be described \dots in such a way that $|D_k| = 2$ for all k."

In Section 3 we shall show that a commutative group has a base if and only if it has no elements of finite odd order.

In Section 4 we shall establish that there are (up to isomorphism) only two countable subsemigroups of $(\mathbb{R}^+, +)$ that are closed under positive differences and have a base, and then only in an essentially unique way. (By \mathbb{R}^+ we mean the set of positive real numbers.)

We note that there is a literature on the ways that an abelian group can be expressed as a direct sum of a family of its subsets. For example [4, Chapter XV] is devoted to this question.

Our own interest in this subject was motivated by the fact that such expressions have been a useful tool in studying semigroup compactifications. In a subsequent paper [3], the authors and S. Ferri were able to use expressions of this type to obtain new results about the Stone-Cech compactification βG and the weakly almost periodic compactification G^{WAP} of of an infinite discrete abelian group G. It is shown there that the smallest ideal of βG contains a free group on $2^{2^{|G|}}$ generators and that G^{WAP} contains a free abelian semigroup on $2^{2^{|G|}}$ generators.

2. \mathbb{Q} has a base

In this section we establish some lemmas for later use and prove that \mathbb{Q} has a base. (It is a consequence of Lemma 3.5 below that every nontrivial subgroup of \mathbb{Q} also has a base.)

We start with some special notation which we shall use throughout this section.

Definition 2.1. Let $n \in \mathbb{Z}$.

- (a) $D_n = \{2^n \frac{k}{l} : k, l \in 2\mathbb{Z} + 1\}$ (b) If $\langle x_t \rangle_{t \in A}$ is an indexed set in \mathbb{Q} , then $M_n(\langle x_t \rangle_{t \in A}) = D_n \cap \{x_t : t \in A\}$.

Notice that if $n \in \mathbb{Z}$ and $n \geq 0$, then $D_n \cap \mathbb{Z} = 2^n + 2^{n+1}\mathbb{Z}$, the set of integers congruent to $2^n \mod 2^{n+1}$, while if n < 0, $D_n \cap \mathbb{Z} = \emptyset$.

We omit the routine proof of the following lemma.

LEMMA 2.2. Let $n, r \in \mathbb{Z}$ with $n \leq r$, let $x \in D_n$, and let $y \in D_r$.

- (a) If n < r, then $x + y \in D_n$.
- (b) If n = r, then $x + y \in D_s$ for some s > n.

LEMMA 2.3. Let $\langle x_t \rangle_{t \in A}$ be an indexed set in \mathbb{Q} . If for each $n \in \mathbb{Z}$, $|M_n(\langle x_t \rangle_{t \in A})| \leq 1$, then $\langle x_t \rangle_{t \in A}$ satisfies uniqueness of finite sums.

Proof. Suppose we have finite F and H contained in A such that $\sum_{t \in F} x_t = \sum_{t \in H} x_t$ but $F \neq H$. By subtracting any terms in $F \cap H$, we may presume that $F \cap H = \emptyset$. Let $m = \min\{n : \text{there is some } t \in F \cup H \text{ with } x_t \in D_n\}$ and assume without loss of generality that we have $s \in F$ such that $M_m(\langle x_t \rangle_{t \in A}) = \{x_s\}$. For each $t \in F \cup H$ pick $n_t \in \mathbb{Z}$ and k_t and l_t in $2\mathbb{Z} + 1$ such that $x_t = 2^{n_t} \frac{k_t}{l_t}$ and let $r = \prod_{t \in F \cup H} l_t$, noting

2

that r is an odd integer. Then $k_s \frac{r}{l_s} + \sum_{t \in F \setminus \{s\}} 2^{n_t - m} k_t \frac{r}{l_t} = \sum_{t \in H} 2^{n_t - m} k_t \frac{r}{l_t}$. This is a contradiction since the number on the left hand side is an odd integer, while the number on the right hand side is an even integer. \Box

Definition 2.4. Let $\langle x_t \rangle_{t \in A}$ be an indexed set in a semigroup which satisfies uniqueness of finite sums. If $y \in FS(\langle x_t \rangle_{t \in A})$, then $\operatorname{supp}(y)$ is the finite subset of A such that $y = \sum_{t \in \operatorname{supp}(y)} x_t$.

The following simple observation will be very useful.

LEMMA 2.5. Let (G, +) be an abelian group and let $\langle x_t \rangle_{t \in A}$ be a base for G. For any $s \in A$ and any $w \in G$,

- (a) $s \in \text{supp}(w)$ if and only if $s \notin \text{supp}(w + x_s)$,
- (b) if r is an odd integer, then $s \in \text{supp}(w)$ if and only if $s \notin \text{supp}(w + rx_s)$, and
- (c) if r is an even integer, then $s \in \text{supp}(w)$ if and only if $s \in \text{supp}(w + rx_s)$.

Proof. (a) Let F = supp(w) and let $H = \text{supp}(w + x_s)$. If $s \notin F$, then $w + x_s = \sum_{t \in F \cup \{s\}} x_t$ so $H = F \cup \{s\}$. If $s \in H$, then $w = \sum_{t \in H \setminus \{s\}} x_t$ so $F = H \setminus \{s\}$. Conclusions (b) and (c) are immediate consequences of (a). \Box

The following lemma is proved in [1] in the case in which $G = \mathbb{Z}$.

LEMMA 2.6. Let (G, +) be an abelian group, let $\langle x_t \rangle_{t \in A}$ and $\langle y_t \rangle_{t \in A}$ be indexed sets in G, and assume that $\langle x_t \rangle_{t \in A}$ is a base for G. If for each $t \in A$, y_t is an odd multiple of x_t and $\{t \in A : y_t \neq x_t\}$ is finite, then $\langle y_t \rangle_{t \in A}$ is a base for G.

Proof. Let $B = \{t \in A : y_t \neq x_t\}$. We proceed by induction on |B|, the case |B| = 0 being trivial. So assume $|B| \ge 1$ and the result is true for smaller sizes. Pick $s \in B$ and pick odd $m \in \mathbb{Z}$ such that $y_t = mx_t$. For each $t \in A$, define

$$z_t = \begin{cases} y_t & \text{if } t \neq s \\ x_t & \text{if } t = s \end{cases}$$

By the induction hypothesis $\langle z_t \rangle_{t \in A}$ satisfies uniqueness of finite sums and $G = FS_0(\langle z_t \rangle_{t \in A})$.

To see that $\langle y_t \rangle_{t \in A}$ satisfies uniqueness of finite sums, let F and H be distinct finite subsets of A and suppose that $\sum_{t \in F} y_t = \sum_{t \in H} y_t$. By subtracting common terms, we may suppose that $F \cap H = \emptyset$. If $s \notin F \cup H$, we have a contradiction, so we may assume that $s \in F$. Then $mz_s + \sum_{t \in F \setminus \{s\}} z_t = \sum_{t \in H} z_t$. Then by Lemma 2.5(b) (with supports computed in terms of $\langle z_t \rangle_{t \in A}$), $s \in H$, a contradiction.

To see that $G = FS_0(\langle y_t \rangle_{t \in A})$, let $w \in G$ and pick finite $F \subseteq A$ such that $w = \sum_{t \in F} z_t$. If $s \notin F$, then $w = \sum_{t \in F} y_t$, so assume that $s \in F$. Pick finite $H \subseteq A$ such that $w - mz_s = \sum_{t \in H} z_t$. By Lemma 2.5(b) we have that $s \notin H$ so $w = \sum_{t \in H \cup \{s\}} y_t$. \Box

Notice that the restriction that $\{t \in A : y_t \neq x_t\}$ be finite cannot be removed from Lemma 2.6. To see this, consider the sequences $\langle (-2)^t \rangle_{t \in \omega}$ and $\langle 2^t \rangle_{t \in \omega}$. Then $FS_0(\langle (-2)^t \rangle_{t \in \omega}) = \mathbb{Z}$ while $FS_0(\langle 2^t \rangle_{t \in \omega}) = \omega$.

THEOREM 2.7. Let G be a subgroup of $(\mathbb{Q}, +)$ and assume that $\langle x_t \rangle_{t \in A}$ is a base for G. Then for each $n \in \mathbb{Z}$, $|M_n(\langle x_t \rangle_{t \in A})| \leq 1$.

Proof. Let $n \in \mathbb{Z}$ and suppose that $|M_n(\langle x_t \rangle_{t \in A})|$ has at least two members, say x_a

and x_b . Pick odd integers k, l, r, and s such that $x_a = 2^n \frac{k}{l}$ and $x_b = 2^n \frac{r}{s}$. Then $lrx_a = 2^n kr = ksx_b$. For $t \in A$, let

$$y_t = \begin{cases} lrx_a & \text{if } t = a \\ ksx_b & \text{if } t = b \\ x_t & \text{otherwise} \end{cases}$$

By Lemma 2.6, $\langle y_t \rangle_{t \in A}$ satisfies uniqueness of finite sums, while $y_a = y_b$, a contradiction. \Box

LEMMA 2.8. Let G be a nontrivial subgroup of $(\mathbb{Q}, +)$ and let $W = \{n \in \mathbb{Z} : G \cap D_n \neq \emptyset\}$. Assume that H is a finite subset of W and $w \in G$. If for each $t \in H$, $x_t \in G \cap D_t$, then there are some $F \subseteq H$ and some $r \in W \setminus H$ such that $w - \sum_{t \in F} x_t \in D_r$.

Proof. Pick $n \in W$ such that $w \in D_n$. If $n \notin H$, let $F = \emptyset$ and r = n.

Assume that $n \in H$. We proceed by induction on |H|. If $H = \{n\}$, we have by Lemma 2·2 that $w - x_n \in D_r$ for some r > n. Now assume that |H| > 1 and the lemma is valid for smaller sets. Let $m = \max H$. If m = n, then as above we have that $w - x_n \in D_r$ for some r > n, so assume that $n \in H \setminus \{m\}$. By the induction hypothesis pick $F \subseteq H \setminus \{m\}$ and $r \in W \setminus (H \setminus \{m\})$ such that $w - \sum_{t \in F} x_t \in D_r$. If $r \neq m$, we are done. If r = m, then $w - \sum_{t \in F \cup \{m\}} x_t \in D_s$ for some s > m by Lemma 2·2. \Box

We now see $(\mathbb{Q}, +)$ has a base and that one may make arbitrary assignments of x_t for finitely many t, subject only to the restriction imposed by Theorem 2.7.

THEOREM 2.9. \mathbb{Q} has a base.

Proof. Let H be a finite subset of \mathbb{Z} and assume that for all $t \in H$, $x_t \in D_t$. We claim that we may choose x_t for $t \in \mathbb{Z} \setminus H$ such that $x_t \in D_t$ for each t and $\langle x_t \rangle_{t \in W}$ is a base for \mathbb{Q} .

Enumerate $\mathbb{Q} \setminus \{0\}$ as $\langle a_t \rangle_{t=1}^{\infty}$. Assume that we have finite L with $H \subseteq L \subseteq \mathbb{Z}$, and that x_t has been chosen for $t \in L$. Pick the least s such that $a_s \notin FS_0(\langle x_t \rangle_{t \in L})$. Pick $n \in \mathbb{Z}$ such that $a_s \in D_n$. If $n \notin L$, let $x_n = a_s$. If $n \in L$, pick by Lemma 2.8, $F \subseteq L$ and $r \in W \setminus L$ such that $a_s - \sum_{t \in F} x_t \in D_r$ and let $x_r = a_s - \sum_{t \in F} x_t$.

At the completion of this inductive process, let $U = \{r \in \mathbb{Z} : x_r \text{ has been chosen}\}$. We have by Lemma 2.3 that $\langle x_t \rangle_{t \in U}$ satisfies uniqueness of finite sums. Clearly, $FS(\langle x_t \rangle_{t \in \mathbb{Z}}) = \mathbb{Q}$. \Box

Note that the algorithm implicit in the proofs of Lemma 2.8 and Theorem 2.9 is effectively computable. That is, if an ordering $\langle a_t \rangle_{t=1}^{\infty}$ of $\mathbb{Q} \setminus \{0\}$ is specified and $y = a_s$, then we know that we will have $y \in FS_0(\langle x_t \rangle_{t=1}^s)$ and we can compute $\langle x_t \rangle_{t=1}^s$ in finite time. Unfortunately, we have not been able to find an explicit definition of a sequence $\langle x_n \rangle_{n=1}^{\infty}$ which satisfies uniqueness of finite sums such that $\mathbb{Q} = FS_0(\langle x_n \rangle_{n=1}^s)$.

3. Bases for semigroups and groups

We establish in this section that certain semigroups have bases and that an abelian group has a base if and only if it has no elements of odd finite order.

We omit the obvious proof of the following theorem.

THEOREM 3.1. Let I be a set and for each $i \in I$ let G_i be either an abelian group or a commutative semigroup with identity 0. If each G_i has a base, then so does $\bigoplus_{i \in I} G_i$. As a consequence of Theorems 3·1 and 2·9 we see that $(\mathbb{R}, +)$, being the direct sum of \mathfrak{c} copies of \mathbb{Q} , has a base and that (\mathbb{N}, \cdot) and (\mathbb{Q}^+, \cdot) have bases. (The first is isomorphic to $\bigoplus_{i \in \mathbb{N}} \omega$ and the second is isomorphic to $\bigoplus_{i \in \mathbb{N}} \mathbb{Z}$.) Also $(\mathbb{Q} \setminus \{0\}, \cdot)$ has a base because it is isomorphic to the direct sum of (\mathbb{Q}^+, \cdot) and \mathbb{Z}_2 .

THEOREM 3.2. Let G be an abelian group and let K be a subgroup of G. If K and G/K have bases, then so does G. In fact, if $\langle x_t \rangle_{t \in A}$ is a base for K, then there exist a set B disjoint from A and an indexed set $\langle x_t \rangle_{t \in B}$ such that $\langle x_t \rangle_{t \in A \cup B}$ is a base for G.

Proof. Assume that $\langle x_t \rangle_{t \in A}$ and $\langle y_t \rangle_{t \in B}$ are indexed sets satisfying uniqueness of finite sums such that $K = FS_0(\langle x_t \rangle_{t \in A})$ and $G/K = FS_0(\langle y_t \rangle_{t \in B})$. We may assume that $A \cap B = \emptyset$. For $t \in B$ pick $x_t \in G$ such that $x_t + K = y_t$. We claim that $\langle x_t \rangle_{t \in A \cup B}$ satisfies uniqueness of finite sums and $G = FS(\langle x_t \rangle_{t \in A \cup B})$.

To verify the former, let F and H be finite subsets of $A \cup B$ and assume that $\sum_{t \in F} x_t = \sum_{t \in H} x_t$. Then $\sum_{t \in F \cap A} x_t - \sum_{t \in H \cap A} x_t = \sum_{t \in H \cap B} x_t - \sum_{t \in F \cap B} x_t$ so $\sum_{t \in H \cap B} x_t - \sum_{t \in F \cap B} x_t \in K$. Thus

$$\sum_{t \in H \cap B} y_t = \sum_{t \in H \cap B} (x_t + K) = \sum_{t \in F \cap B} (x_t + K) = \sum_{t \in F \cap B} y_t,$$

and so $H \cap B = F \cap B$. Thus $\sum_{t \in F \cap A} x_t = \sum_{t \in H \cap A} x_t$ so F = H as required. Now let $w \in G$. Pick finite $F \subseteq B$ such that $w + K = \sum_{t \in F} y_t$. Then $w - \sum_{t \in F} x_t \in K$

Now let $w \in G$. Pick finite $F \subseteq B$ such that $w + K = \sum_{t \in F} y_t$. Then $w - \sum_{t \in F} x_t \in K$ so pick finite $H \subseteq A$ such that $w - \sum_{t \in F} x_t = \sum_{t \in H} x_t$. \Box

THEOREM 3.3. Let (G, +) be an abelian group which has a base. Then G has no nonzero elements of odd finite order.

Proof. Pick a base $\langle x_t \rangle_{t \in A}$ for G. Suppose we have $w \in G \setminus \{0\}$ and odd $m \in \mathbb{Z}$ such that mw = 0. Pick finite $F \subseteq A$ such that $w = \sum_{t \in F} x_t$. Then $0 = \sum_{t \in F} mx_t$. But by Lemma 2.6, the sequence $\langle y_t \rangle_{t \in A}$ defined by

$$y_t = \begin{cases} x_t & \text{if } t \notin F \\ mx_t & \text{if } t \in F \end{cases}$$

satisfies uniqueness of finite sums, so $F = \emptyset$, a contradiction.

By contrast we have the following theorem. In the proof of this theorem, it may be that G_n or G_{n+1} is trivial. In this event note that \emptyset is a base for $\{0\}$.

THEOREM 3.4. Let (G, +) be an abelian group in which every element has finite order which is some power of 2. Then G has a base.

Proof. For each $n \in \mathbb{N}$, let $G_n = \{a \in G : 2^n a = 0\}$. Then each G_n is a subgroup of G. We produce inductively a possibly empty set A_n and $\langle x_t \rangle_{t \in A_n}$ such that $A_n \cap A_k = \emptyset$ for $n \neq k$ and if $B_m = \bigcup_{n=1}^m A_n$, then for each $m \in \mathbb{N}$, $\langle x_t \rangle_{t \in B_m}$ satisfies uniqueness of finite sums and $G_m = FS_0(\langle x_t \rangle_{t \in B_m})$.

We have that G_1 is a vector space over \mathbb{Z}_2 , so is isomorphic to a direct sum of copies of \mathbb{Z}_2 so by Theorem 3.1, G_1 has a base. Pick A_1 and $\langle x_t \rangle_{t \in A_1}$ satisfying uniqueness of finite sums such that $G_1 = FS_0(\langle x_t \rangle_{t \in A_1})$.

Inductively, let $m \in \mathbb{N}$ and assume that A_n and $\langle x_t \rangle_{t \in A_n}$ have been chosen for $n \leq m$. Now given $w \in G_{m+1}$, $2w \in G_m$ so G_{m+1}/G_m is a vector space over \mathbb{Z}_2 and therefore has a base. By Theorem 3.2 we may choose a set A_{m+1} disjoint from $B_m = \bigcup_{n=1}^m A_n$ and $\langle x_t \rangle_{t \in A_{m+1}}$ such that $\langle x_t \rangle_{t \in B_m \cup A_{m+1}}$ satisfies uniqueness of finite sums and $G_{m+1} = FS_0(\langle x_t \rangle_{t \in B_m \cup A_{m+1}})$. The induction being complete, let $B = \bigcup_{n=1}^{\infty} A_n$ Then $\langle x_t \rangle_{t \in B}$ satisfies uniqueness of finite sums and $G = FS_0(\langle x_t \rangle_{t \in B})$. \Box

LEMMA 3.5. Every subgroup of $\bigoplus_{n=1}^{\infty} (\mathbb{Q}, +)$ has a base.

Proof. Let G be a subgroup of $\bigoplus_{n=1}^{\infty}(\mathbb{Q}, +)$. If $G = \{\overline{0}\}$, the conclusion is trivial, so assume G is infinite and enumerate $G \setminus \{\overline{0}\}$ as $\langle a_t \rangle_{t=1}^{\infty}$. For $x \in G$ define $\operatorname{supp}(x) = \{n \in \mathbb{N} : x(n) \neq 0\}$. Define $f : G \setminus \{\overline{0}\} \to \mathbb{N}$ and $g : G \setminus \{\overline{0}\} \to \mathbb{Z}$ by, for $x \in G \setminus \{\overline{0}\}$, $f(x) = \max \operatorname{supp}(x)$ and $x(f(x)) \in D_{g(x)}$.

Let $x_1 = a_1$. Inductively let $n \in \mathbb{N}$ and assume that we have chosen $\langle x_m \rangle_{m=1}^n$ such that if $k \neq m$, then either $f(x_k) \neq f(x_m)$ or $g(x_k) \neq g(x_m)$. Let

$$s = \min\left\{t \in \mathbb{N} : a_t \notin FS(\langle x_m \rangle_{m=1}^n)\right\}.$$

Let $y_1 = a_s$, let $l \in \{1, 2, ..., n\}$, and assume that $\langle y_j \rangle_{j=1}^l$ have been chosen. If for all $i \in \{1, 2, ..., n\}$, either $f(x_i) \neq f(y_l)$ or $g(x_i) \neq g(y_l)$, let $x_{n+1} = y_l$. Otherwise pick the unique $\alpha(l) \in \{1, 2, ..., n\}$ such that $f(x_{\alpha(l)}) = f(y_l)$ and $g(x_{\alpha(l)}) = g(y_l)$ and let $y_{l+1} = y_l - x_{\alpha(l)}$. Notice that either $f(y_{l+1}) < f(y_l)$ or (by virtue of Lemma 2·2) both $f(y_{l+1}) = f(y_l)$ and $g(y_{l+1}) > g(y_l)$. In particular, the function α is injective, so this process must terminate in n steps or fewer. Notice that either $a_s = x_{n+1}$ or $a_s = x_{n+1} + \sum_{i=1}^l x_{\alpha(i)}$.

The induction being complete, we have directly that $G = FS_0(\langle x_n \rangle_{n=1}^{\infty})$. We claim that $\langle x_n \rangle_{n=1}^{\infty}$ satisfies uniqueness of finite sums. To this end assume that we have distinct finite subsets F and H of \mathbb{N} such that $\sum_{t \in F} x_t = \sum_{t \in H} x_t$. We may presume that $F \cap H = \emptyset$. Let $k = \max\{f(x_t) : t \in F \cup H\}$, let $F' = \{t \in F : f(x_t) = k\}$, and let $H' = \{t \in H : f(x_t) = k\}$. Since $F' \cup H' \neq \emptyset$ and $F \cap H = \emptyset$, we have that $F' \neq H'$.

Then $\sum_{t \in F'} x_t(k) = \sum_{t \in H'} x_t(k)$ so by Lemma 2.3 there must be some $n \in \mathbb{Z}$ and some distinct t and s in $F' \cup H'$ such that $x_t(k) \in D_n$ and $x_s(k) \in D_n$. But then $f(x_t) = f(x_s)$ and $g(x_t) = g(x_s)$, a contradiction. \Box

THEOREM 3.6. Every torsion free abelian group has a base.

Proof. We proceed by induction on the cardinality of the group G. If G is countable, then as is well known G is isomorphic to a subgroup of $\bigoplus_{n=1}^{\infty}(\mathbb{Q}, +)$. (See for example [5, Theorems A14 and A15].) Thus by Lemma 3.5, G has a base.

So assume that $|G| = \kappa > \omega$ and enumerate G as $\langle a_{\iota} \rangle_{\iota < \kappa}$. For $\sigma < \kappa$, let G_{σ} be the subgroup of G generated by $\{a_{\iota} : \iota \leq \sigma\}$ and let $H_{\sigma} = \{x \in G : \text{there is some } n \in \mathbb{Z} \setminus \{0\}$ such that $nx \in G_{\sigma}\}$. Note that H_{σ} is a subgroup of G and $|H_{\sigma}| < \kappa$.

We shall choose inductively A_{σ} and $\langle x_t \rangle_{t \in A_{\sigma}}$ for $\sigma < \kappa$ such that $A_{\sigma} \cap A_{\mu} = \emptyset$ when $\sigma \neq \mu$ and if $\gamma < \kappa$ and $B_{\gamma} = \bigcup_{\sigma \leq \gamma} A_{\sigma}$, then $\langle x_t \rangle_{t \in B_{\gamma}}$ satisfies uniqueness of finite sums and $H_{\gamma} = FS_0(\langle x_t \rangle_{t \in B_{\gamma}})$. To this end, let $\gamma < \kappa$ and assume that we have chosen A_{σ} and $\langle x_t \rangle_{t \in A_{\sigma}}$ for $\sigma < \gamma$. Let $C = \bigcup_{\sigma < \gamma} A_{\sigma}$ and let $H = \bigcup_{\sigma < \gamma} H_{\sigma}$. (If γ is a successor, say $\gamma = \tau + 1$, then $C = B_{\tau}$ and $H = H_{\tau}$.) Then $\langle x_t \rangle_{t \in C}$ satisfies uniqueness of finite sums and $H = FS_0(\langle x_t \rangle_{t \in C})$. Also if $x \in H_{\gamma}$, $n \in \mathbb{Z} \setminus \{0\}$, and $nx \in H$, then $x \in H$. Thus H_{γ}/H is torsion free. Since also $|H_{\gamma}/H| \leq |H_{\gamma}| < \kappa$, we have by the induction hypothesis that H_{γ}/H has a base. Thus by Theorem 3.2 we may pick A_{γ} disjoint from C and $\langle x_t \rangle_{t \in C \cup A_{\gamma}}$.

The construction being complete, let $B = \bigcup_{\gamma < \kappa} A_{\gamma}$. Then $\langle x_t \rangle_{t \in B}$ satisfies uniqueness of finite sums and $G = FS_0(\langle x_t \rangle_{t \in B})$. \Box

6

COROLLARY 3.7. Let G be an abelian group. Then G has a base if and only if $G \setminus \{0\}$ has no elements of odd finite order.

Proof. The necessity is Theorem 3.3. For the sufficiency, let

$$T = \{ w \in G : o(w) \text{ is finite} \}$$

the torsion group of G. Then as is well known and very easy to show, G/T is torsion free. Thus, by Theorem 3.6, G/T is has a base. Also by Theorem 3.4, T has a base so by Theorem 3.2, G has a base. \Box

4. Subsemigroups of $(\mathbb{R}^+, +)$

We show in this short section that if S is subsemigroup of $(\mathbb{R}^+, +)$ with the property that whenever $x, y \in S$ and x < y one has $y - x \in S$ and S has a base, then S is either a copy of N or a copy of the semigroup \mathbb{D}^+ of positive dyadic rationals. (That is, $\mathbb{D}^+ = \{k2^n : k \in 2\mathbb{N} - 1 \text{ and } n \in \mathbb{Z}\}.$)

LEMMA 4.1. Let S be a subsemigroup of $(\mathbb{R}^+, +)$ with the property that $y - x \in S$ whenever $x, y \in S$ and x < y. Assume that $\langle x_t \rangle_{t \in A}$ is a base for S.

- (a) If $n, m \in A$ and $x_m < x_n$, then $2x_m \le x_n$.
- (b) If $n \in A$, then x_n has an immediate successor in $\{x_t : t \in A\}$ and either $x_n = \min\{x_t : t \in A\}$ or x_n has an immediate predecessor in $\{x_t : t \in A\}$.

Proof. (a) Since $x_n - x_m \in S$, pick a finite subset F of A such that $x_n - x_m = \sum_{t \in F} x_t$. Then $x_n = x_m + \sum_{t \in F} x_t$, so $m \in F$. (If $m \notin F$, then by the uniqueness of finite sums $\{n\} = \{m\} \cup F$.) Consequently $x_n \ge 2x_m$ as required.

(b) By virtue of (a), for each $k \in \mathbb{Z}$ there is at most one $t \in A$ such that $2^k x_n \leq x_t < 2^{k+1}x_n$. Consequently we have immediately that if $x_n \neq \min\{x_t : t \in A\}$, then x_n has an immediate predecessor in $\{x_t : t \in A\}$. And, if $x_n \neq \max\{x_t : t \in A\}$, then x_n has an immediate succesor in $\{x_t : t \in A\}$, so suppose that $x_n = \max\{x_t : t \in A\}$. Then for $k \in \mathbb{N}, \{t \in A : 2^k x_n \leq x_t < 2^{k+1} x_n\} = \emptyset$ so $\sum_{t \in A} x_t < \sum_{k=0}^{\infty} 2^{-k+1} x_n = 4x_n$. This is a contradiction because, since S is a subsemigroup of \mathbb{R}^+ , S is unbounded above. \Box

LEMMA 4.2. Let S be a subsemigroup of $(\mathbb{R}^+, +)$ with the property that $y - x \in S$ whenever $x, y \in S$ and x < y. Assume that $\langle x_t \rangle_{t \in A}$ is a base for S. If $n, m \in \mathbb{N}$ and x_m is the immediate predecessor of x_n in $\{x_t : t \in A\}$, then $x_n = 2x_m$.

Proof. By Lemma 4.1(a), $2x_m \leq x_n$. Now $2x_m \in S$ so pick a finite subset F of \mathbb{N} such that $2x_m = \sum_{t \in F} x_t$. We cannot have $m \in F$ or uniqueness of finite sums would yield the conclusion that $\{m\} = F \setminus \{m\}$. If we had $x_t < x_m$ for each $t \in F$, then by Lemma 4.1(a) we would have $\sum_{t \in F} x_t \leq x_m$. So there is some $l \in F$ such that $x_l > x_m$ and therefore $2x_m \geq x_l \geq x_n$. \Box

THEOREM 4.3. Let S be a subsemigroup of $(\mathbb{R}^+, +)$ with the property that $y - x \in S$ whenever $x, y \in S$ and x < y. Assume that $\langle x_t \rangle_{t \in A}$ is a base for S. If $\{x_t : t \in A\}$ has a smallest member x_k , then $S = x_k \mathbb{N}$ and $\{x_t : t \in A\} = \{x_k 2^t : t \in \omega\}$. If $\{x_t : t \in A\}$ does not have a smallest member and $k \in A$, then $S = x_k \mathbb{D}^+$ and $\{x_t : t \in A\} = \{x_k 2^t : t \in \mathbb{Z}\}$.

Proof. This is an immediate consequence of Lemma 4.2. \Box

NEIL HINDMAN AND DONA STRAUSS

Notice in particular that $(\mathbb{Q}^+, +)$ and $(\mathbb{R}^+, +)$ do not have bases.

The requirement that $y - x \in S$ whenever $x, y \in S$ and x < y is necessary for the conclusion of Theorem 4.3. We shall now see that there are semigroups of all possible sizes contained in $(\mathbb{R}^+, +)$ which have bases, none of which is a copy of \mathbb{N} or of \mathbb{D}^+ .

THEOREM 4.4. Let κ be a cardinal with $\omega \leq \kappa \leq \mathfrak{c}$. There is a subsemigroup S of $(\mathbb{R}^+, +)$ with $|S| = \kappa$ which has a base and there exist $x, y \in S$ with x < y such that $y - x \notin S$ (and in particular S is neither a copy of \mathbb{N} nor a copy of \mathbb{D}^+).

Proof. Pick a subset B of \mathbb{R}^+ such that $|B| = \kappa$ and B is linearly independent over \mathbb{Q} . Let S be the semigroup generated by B. Then S is isomorphic to $(\bigoplus_{\sigma < \kappa} \omega) \setminus \{\overline{0}\}$, so has a base by Theorem 3.1. \Box

REFERENCES

- [1] N. DE BRUIJN. On bases for the set of integers. Publ. Math. Debrecen. 1 (1950) 232–242.
- [2] T. BUDAK, N. IŞIK and J. PYM. Subsemigroups of Stone-Čech compactifications. Math. Proc. Cambr. Phil. Soc. 116 (1994) 99–118.
- [3] S. FERRI, N. HINDMAN and D. STRAUSS. Digital representation of semigroups and groups. manuscript. (Currently available at http://members.aol.com/nhindman/.)
- [4] L. FUCHS. Abelian groups. Pergamon, 1960.
- [5] E. HEWITT and K. Ross. Abstract Harmonic Analysis, I. Springer-Verlag, Berlin, 1963.

8