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Abstract

A base for a commutative semigroup (5,4) is an indexed set (z:)tca in S such that
each element = € S is uniquely representable as ), ¢ where F' is a finite subset of
A and, if S has an identity 0, then 0 = » _, ;. We investigate those commutative
semigroups or groups which have a base. We obtain the surprising result that Q has a
base. More generally, we show that an abelian group has a base if and only if it has no
elements of odd finite order.

1. Introduction

In [1] N. G. de Bruijn thoroughly investigated bases for the group Z of integers, that
is sequences (z,,)22 ; such that every element of Z is uniquely representable in the form
> ner Tn for some finite subset of N. He showed that there are many such bases for
Z and presented some sufficient conditions and some necessary conditions for a given
sequence to be a base for Z. We investigate in this paper bases for other commutative
semigroups and groups.

Definition 1-1. Let (S,4) be a commutative semigroup and let (x;);c 4 be an indexed
set in S.

(a) FS((xt)tea) = {> scp ot : F' is a finite nonempty subset of A}.

(b) FSo({xt)tea) = FS((wi)ea) U{0} ={D ,cp m¢ : F is a finite subset of A}.

(¢) The indexed set (x;)ica satisfies uniqueness of finite sums if and only if whenever
F and H are finite subsets of A and F' # H, one has that ), x¢ # >, oy 71

(d) The indexed set (z¢)1ca is a base for S if and only if it satisfies uniqueness of finite
sums and either S = FS({z;)tca) or S = FSo((xt)tea) (depending, of course, on
whether or not S has an identity 0).

In Section 2 of this paper we shall show that (Q, +) has a base. We found this surprising.
Indeed, we initially believed that (Q, +) could not have a base, and we were not alone in

1 This author acknowledges support received from the National Science Foundation (USA)
via Grant DMS-0554803.



2 NEIL HINDMAN AND DONA STRAUSS
this belief. In [2] Budak, Isik, and Pym established that members of Q can be expressed
(=1)°
d D; =

(1 —yp M
{0,1,...,—t}if t <0, and z; = (=1)*(1 +¢)! and D; = {0,1,...,t + 1} if ¢ > 0. After
doing so, they remarked “It does appear unlikely to us that ... Q can be described ... in
such a way that |Dy| = 2 for all k.

In Section 3 we shall show that a commutative group has a base if and only if it has
no elements of finite odd order.

In Section 4 we shall establish that there are (up to isomorphism) only two countable

uniquely in the form . a;zy for a; € Dy where A = Z, 2y =

subsemigroups of (R*, +) that are closed under positive differences and have a base, and
then only in an essentially unique way. (By R™ we mean the set of positive real numbers.)

We note that there is a literature on the ways that an abelian group can be expressed
as a direct sum of a family of its subsets. For example [4, Chapter XV] is devoted to this
question.

Our own interest in this subject was motivated by the fact that such expressions have
been a useful tool in studying semigroup compactifications. In a subsequent paper [3], the
authors and S. Ferri were able to use expressions of this type to obtain new results about
the Stone-Cech compactification 3G and the weakly almost periodic compactification
GWAP of of an infinite discrete abelian group G. It is shown there that the smallest ideal

GWAP

of G contains a free group on 22! generators and that contains a free abelian

. =]
semigroup on 22 generators.

2. Q has a base

In this section we establish some lemmas for later use and prove that Q has a base.
(It is a consequence of Lemma 3-5 below that every nontrivial subgroup of @ also has a
base.)

We start with some special notation which we shall use throughout this section.

Definition 2-1. Let n € Z.

(a) D, = {2k k,le2Z+1}
(b) If (x1)tca is an indexed set in Q, then M,,({x)tca) = Dp N{x: : t € A}.

Notice that if n € Z and n > 0, then D,,NZ = 2" 42"*17Z, the set of integers congruent
to 2" mod 2"*1, while if n < 0, D,, NZ = ().
We omit the routine proof of the following lemma.

LEMMA 2-2. Let n,r € Z withn <r, let x € Dy, and let y € D,.

(a) If n<r, thenx+y € D,.
(b) If n=r, then x +y € Dy for some s > n.

LEMMA 2-3. Let (x¢)tca be an indexed set in Q. If for eachn € Z, | My, ({xt)tca)| < 1,
then (T¢)tca satisfies uniqueness of finite sums.

Proof. Suppose we have finite ' and H contained in A such that } ,.p o¢ = >,y o4
but F' # H. By subtracting any terms in F' N H, we may presume that F N H = {.
Let m = min{n : there is some t € FFU H with x; € D, } and assume without loss of
generality that we have s € F such that M,,((z;)tca) = {xs}. For each t € F'U H pick
ny; € Z and k; and [l; in 2Z + 1 such that z; = 2"*'% and let r = HteFUH l¢, noting
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that r is an odd integer. Then ksi + ZtGF\{s} 2’“""}@% = ZtGH 27“_7”/{,5%. This is a
contradiction since the number on the left hand side is an odd integer, while the number
on the right hand side is an even integer. []

Definition 2-4. Let (x¢)ica be an indexed set in a semigroup which satisfies uniqueness
of finite sums. If y € FS((x¢)teca), then supp(y) is the finite subset of A such that

Y= Liresupp (y) Tt

The following simple observation will be very useful.

LEMMA 2-5. Let (G,4) be an abelian group and let (xi)ica be a base for G. For any
s €A and any w € G,

(a) s € supp(w) if and only if s ¢ supp (w + x5),
(b) if r is an odd integer, then s € supp (w) if and only if s ¢ supp (w + rzs), and
(¢c) if r is an even integer, then s € supp (w) if and only if s € supp (w + rz).

Proof. (a) Let F = supp(w) and let H = supp(w + z5). If s ¢ F, then w + z, =
Dterugsy Tt 50 H=FU{s}. If s € H, then w =3, 4 (53 © s0 F = H \ {s}.
Conclusions (b) and (c¢) are immediate consequences of (a). [

The following lemma is proved in [1] in the case in which G = Z.

LEMMA 2-6. Let (G, +) be an abelian group, let (xt)tca and (yi)iea be indexed sets in
G, and assume that {(x¢)ica is a base for G. If for each t € A, y; is an odd multiple of
xe and {t € Ay # x4} is finite, then (yi)iea is a base for G.

Proof. Let B ={t € A : y; # x:}. We proceed by induction on |B|, the case |B| =0
being trivial. So assume |B| > 1 and the result is true for smaller sizes. Pick s € B and
pick odd m € Z such that y; = mx;. For each t € A, define

Zt{yt lft?éS

z, ift=s.

By the induction hypothesis (z;).c 4 satisfies uniqueness of finite sums and G = F'So((z¢)tca)-
To see that (y;)tca satisfies uniqueness of finite sums, let F' and H be distinct finite
subsets of A and suppose that >, . y1 = >,y ¥ By subtracting common terms, we
may suppose that FNH = (. If s ¢ F U H, we have a contradiction, so we may assume
that s € F'. Then mz, +3 7, p\ 15y 2t = D_sep #- Then by Lemma 2-5(b) (with supports
computed in terms of (z;)ica), s € H, a contradiction.
To see that G = F'So((yt)te), let w € G and pick finite ' C A such that w =", 5 2.
If s ¢ F, then w = ) ,.p ¥, so assume that s € F. Pick finite H C A such that
w—mzs =3,y #. By Lemma 2:5(b) we have that s ¢ H sow = ey % O

Notice that the restriction that {¢t € A : y; # x;} be finite cannot be removed
from Lemma 2-6. To see this, consider the sequences ((—2)%);c., and (2%);c,. Then
FSo(((—2)")tew) = Z while FSo((2)tew) = w.

THEOREM 2-7. Let G be a subgroup of (Q,+) and assume that (x¢)ica is a base for
G. Then for eachn € Z, |M,({x1)tca)| < 1.

Proof. Let n € Z and suppose that |M, ({z;)tc4)| has at least two members, say z,
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and xp. Pick odd integers k, I, r, and s such that z, = 2”% and r, = 2"Z. Then
lra, = 2"kr = ksxy. For t € A, let

lreg, ift=a
Yy =< ksx, ift=0>
Ty otherwise.

By Lemma 2-6, (y:)tca satisfies uniqueness of finite sums, while y, = y», a contradic-
tion. [

LEMMA 2-8. Let G be a nontrivial subgroup of (Q,+) and let W ={n € Z:GND,, #
0}. Assume that H is a finite subset of W and w € G. If for each t € H, xy € GN Dy,
then there are some F C H and some v € W\ H such that w — ), p x4 € D,.

Proof. Pick n € W such that w € D,,. If n ¢ H, let F = and r = n.

Assume that n € H. We proceed by induction on |H|. If H = {n}, we have by Lemma
2-2 that w — z,, € D, for some r > n. Now assume that |H| > 1 and the lemma is valid
for smaller sets. Let m = max H. If m = n, then as above we have that w — z,, € D, for
some r > n, so assume that n € H\ {m}. By the induction hypothesis pick F C H\ {m}
and 7 € W\ (H \ {m}) such that w — 3, p 2; € D,.. If r # m, we are done. If r = m,
then w — ZtEFu{m} x; € Dy for some s > m by Lemma 2-2. [

We now see (Q, +) has a base and that one may make arbitrary assignments of z; for
finitely many ¢, subject only to the restriction imposed by Theorem 2-7.

THEOREM 2-9. Q has a base.

Proof. Let H be a finite subset of Z and assume that for all t € H, x; € D;. We claim
that we may choose z; for t € Z \ H such that z; € D, for each ¢t and (z:)tcw is a base
for Q.

Enumerate Q \ {0} as (a;)$2,. Assume that we have finite L with H C L C Z, and
that x; has been chosen for ¢t € L. Pick the least s such that a, ¢ FSo({zt)tcr). Pick
n € Z such that a; € D,,. If n ¢ L, let x,, = as. If n € L, pick by Lemma 2-8, F C L and
r € W\ L such that as — Y ,cp 24 € Dy and let @, = as — > ,cp Tt

At the completion of this inductive process, let U = {r € Z : x,, has been chosen}. We
have by Lemma 2-3 that (z;).cp satisfies uniqueness of finite sums. Clearly, F'S((z¢);cz) =

Q O

Note that the algorithm implicit in the proofs of Lemma 2-8 and Theorem 2.9 is
effectively computable. That is, if an ordering (a:)$2; of Q\ {0} is specified and y = as,
then we know that we will have y € FSy({x¢);_;) and we can compute (z;){_; in finite
time. Unfortunately, we have not been able to find an explicit definition of a sequence

()2 1 which satisfies uniqueness of finite sums such that Q = F\So((z,,)22,).

3. Bases for semigroups and groups

We establish in this section that certain semigroups have bases and that an abelian
group has a base if and only if it has no elements of odd finite order.
We omit the obvious proof of the following theorem.

THEOREM 3-1. Let I be a set and for each © € I let G; be either an abelian group or
a commutative semigroup with identity 0. If each G; has a base, then so does @, Gi.
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As a consequence of Theorems 3-1 and 2-9 we see that (R, +), being the direct sum of
¢ copies of @, has a base and that (N,-) and (Q",-) have bases. (The first is isomorphic
to P,y w and the second is isomorphic to @, Z.) Also (Q\ {0}, ) has a base because
it is isomorphic to the direct sum of (Q",-) and Z,.

THEOREM 3-2. Let G be an abelian group and let K be a subgroup of G. If K and
G/K have bases, then so does G. In fact, if (xi)tca s a base for K, then there exist a
set B disjoint from A and an indexed set {x1)icp such that (xi)icaup is a base for G.

Proof. Assume that (x:)tc4 and (y:)rep are indexed sets satisfying uniqueness of finite
sums such that K = FSy((z1)tca) and G/K = FSo({y¢)tep). We may assume that
AN B = 0. For t € B pick z; € G such that z; + K = y;. We claim that (x);caun
satisfies uniqueness of finite sums and G = F'S({x¢)icauB)-

To verify the former, let /" and H be finite subsets of AUB and assume that ), . z¢ =

ZtEH z¢. Then ZteFﬂA Tt — ZteHﬁA Ty = ZteHﬂB Tt — ZteFﬂB Tt SO ZteHﬂB Tt —
> ternp Tt € K. Thus

Doerns Y = 2penns (@ + K) =3 cpnp (@ + K) =3 cpnp Yt

andso HNB =FNB. Thus ), cpna Tt = Y 1cpna Tt 50 F'= H as required.
Now let w € G. Pick finite ' C B such that w+K =3, p y. Thenw -3, p 2y € K
so pick finite H C A such that w — >, cp ¢ =), cpp ©. O

THEOREM 3-3. Let (G,+) be an abelian group which has a base. Then G has no
nonzero elements of odd finite order.

Proof. Pick a base (xt)tea for G. Suppose we have w € G\ {0} and odd m € Z such
that mw = 0. Pick finite ' C A such that w = ), #;. Then 0 = >, _, mx;. But by
Lemma 2-6, the sequence (y;):c4 defined by

Y= mx; ifteF

satisfies uniqueness of finite sums, so F' = (), a contradiction. [J

By contrast we have the following theorem. In the proof of this theorem, it may be
that G, or G4 is trivial. In this event note that () is a base for {0}.

THEOREM 3-4. Let (G,+) be an abelian group in which every element has finite order
which is some power of 2. Then G has a base.

Proof. For each n € N, let G,, = {a € G : 2"a = 0}. Then each G,, is a subgroup of
G. We produce inductively a possibly empty set A,, and (z;)tca, such that A, N Ax =0
for n # k and if B, = (U, An, then for each m € N, (2;),ep,, satisfies uniqueness of
finite sums and G.,,, = FSo({zt)teB,,)-

We have that G is a vector space over Zs, so is isomorphic to a direct sum of copies
of Zs so by Theorem 3-1, G has a base. Pick Ay and (xt):c4, satisfying uniqueness of
finite sums such that G; = F'So((Z¢)tea, )

Inductively, let m € N and assume that A, and (x¢):ca, have been chosen for n < m.
Now given w € Gyui1, 2w € Gy 80 Gig1/Gh is a vector space over Zo and therefore
has a base. By Theorem 3-2 we may choose a set A,,41 disjoint from B,, = U:anl A,

and (x4):ea,,,, such that (z¢)ep,,ua satisfies uniqueness of finite sums and G,,11 =

FSo((zt)teBrnUAm1)-

m+1
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The induction being complete, let B = [J,_; A, Then (x;);cp satisfies uniqueness of
finite sums and G = FSo({(x¢)tep). [

LEMMA 3-5. Ewvery subgroup of .- ,(Q,+) has a base.

Proof. Let G be a subgroup of @, ,(Q,+). If G = {0}, the conclusion is trivial, so
assume G is infinite and enumerate G \ {0} as (a;){2,. For # € G define supp (z) =
{n € N: z(n) # 0}. Define f : G\ {0} - Nand g: G\ {0} — Z by, for z € G\ {0},
f(z) = max supp (z) and z(f(z)) € Dy(z).-

Let 21 = a1. Inductively let n € N and assume that we have chosen (z,,)7 _; such
that if k # m, then either f(xg) # f(xm) or g(zx) # g(Tm). Let

s=min{t e N:a, ¢ FS((z)m—1)}-

Let y1 = as, let I € {1,2,...,n}, and assume that <yj>§-:1 have been chosen. If for
all © € {1,2,...,n}, either f(x;) # f(y) or g(x;) # g(w), let 11 = y;. Otherwise
pick the unique a(l) € {1,2,...,n} such that f(z.u) = f(y) and g(za@)) = g(m)
and let y;411 = Y1 — To(). Notice that either f(yi11) < f(y) or (by virtue of Lemma
2-2) both f(yi+1) = f(y) and g(yi+1) > g(y;). In particular, the function « is injective,
so this process must terminate in n steps or fewer. Notice that either as = z,41 or
Qs = Tn+1 + Zi:l Ta(i)-

The induction being complete, we have directly that G = FSy({x,)5% ). We claim
that (x, )52 ; satisfies uniqueness of finite sums. To this end assume that we have distinct
finite subsets F' and H of N such that > ,.p x; = > ,c ;. We may presume that
FNH=0.Let k =max{f(x;) : t € FUH}, let F/ = {t € F: f(z;) = k}, and let
H ={te H: f(z;) =k}. Since " UH' # () and F'N H = (), we have that F’' # H'.

Then ), x¢(k) = > ,cpr ©¢(k) so by Lemma 2-3 there must be some n € Z and
some distinct ¢ and s in F' U H' such that z:(k) € D,, and zs(k) € D,. But then
f(zy) = f(zs) and g(x:) = g(s), a contradiction. [

THEOREM 3-6. FEvery torsion free abelian group has a base.

Proof. We proceed by induction on the cardinality of the group G. If G is countable,
then as is well known G is isomorphic to a subgroup of @, ,(Q,+). (See for example
[5, Theorems Al4 and A15].) Thus by Lemma 3-5, G has a base.

So assume that |G| = £ > w and enumerate G as (a,),<,. For ¢ < &, let G, be the
subgroup of G generated by {a, : ¢ < o} and let H, = {x € G : there is some n € Z\ {0}
such that nx € G, }. Note that H, is a subgroup of G and |H,| < k.

We shall choose inductively A, and (@;)ica, for o < k such that A, N A, = 0 when
o#pandify <rkand B, =J, <y Ag, then (z4)1ep, satisfies uniqueness of finite sums
and H., = FSy((7¢)¢en, ). To this end, let v < x and assume that we have chosen A, and
(Tt)tea, for o <. Let C =, A, and let H = |J,_., Ho. (If v is a successor, say
v =741, then C = B, and H = H;.) Then (x;);cc satisfies uniqueness of finite sums
and H = FSo((z¢)iec). Alsoifx € H,,n € Z\{0}, and nz € H, thenz € H. Thus H,/H
is torsion free. Since also |H,/H| < |H,| < k, we have by the induction hypothesis that
H.,/H has a base. Thus by Theorem 3-2 we may pick A, disjoint from C" and (x¢)ea,
such that (x¢)iccua, satisfies uniqueness of finite sums and H, = FSy((z¢)tccua, )-

The construction being complete, let B = A,. Then (z).cp satisfies uniqueness
of finite sums and G = FSo((z¢)tep). [

Y<K
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COROLLARY 3-7. Let G be an abelian group. Then G has a base if and only if G\ {0}
has no elements of odd finite order.

Proof. The necessity is Theorem 3-3. For the sufficiency, let
T ={w € G : o(w) is finite},

the torsion group of G. Then as is well known and very easy to show, G/T is torsion
free. Thus, by Theorem 3-6, G/T is has a base. Also by Theorem 3-4, T' has a base so by
Theorem 3-2, G has a base. []

4. Subsemigroups of (RT, +)

We show in this short section that if S is subsemigroup of (R, 4) with the property
that whenever x,y € S and * < y one has y — x € S and S has a base, then S is
either a copy of N or a copy of the semigroup D" of positive dyadic rationals. (That is,
Dt = {k2": k€ 2N —1 and n € Z}.)

LEMMA 4-1. Let S be a subsemigroup of (RT,4) with the property that y —x € S
whenever x,y € S and x < y. Assume that (x;)ica is a base for S.

(a) If n,m € A and x,, < x,, then 22, < x,.
(b) If n € A, then x,, has an immediate successor in {x; : t € A} and either x, =
min{xz; : t € A} or x, has an immediate predecessor in {z; :t € A}.

Proof. (a) Since x, —x,, € S, pick a finite subset I of A such that x, —x, = >, p 4.
Then @y, = Ty + D _ycp 71, 50 m € F. (If m ¢ F, then by the uniqueness of finite sums
{n} = {m}UF.) Consequently x,, > 2z,, as required.

(b) By virtue of (a), for each k € Z there is at most one ¢t € A such that 2Fz, < x; <
2k +1g,,. Consequently we have immediately that if z,, # min{z; : t € A}, then x,, has
an immediate predecessor in {z; : t € A}. And, if z, # max{z; : t € A}, then x, has
an immediate succesor in {z; : t € A}, so suppose that =, = max{z; : t € A}. Then for
keN,{teA:2Fz, <wy <2} =0s0 >, 04 20 < Y02 *a, =4, Thisis a
contradiction because, since S is a subsemigroup of R, S is unbounded above. [J

LEMMA 4-2. Let S be a subsemigroup of (RT,+) with the property that y —x € S
whenever x,y € S and x < y. Assume that (xi)tca is a base for S. If n,m € N and z,
is the immediate predecessor of x,, in {xs : t € A}, then x, = 2xp,.

Proof. By Lemma 4-1(a), 22, < z,. Now 2x,, € S so pick a finite subset F' of N such
that 2x,, = Zte r ®;. We cannot have m € F' or uniqueness of finite sums would yield
the conclusion that {m} = F'\ {m}. If we had z; < , for each ¢ € F, then by Lemma
4-1(a) we would have }, . oy < o, So there is some [ € F such that z; > x,, and
therefore 2x,, > x; > x,. [

THEOREM 4-3. Let S be a subsemigroup of (R™,+) with the property that y —x € S
whenever x,y € S and x < y. Assume that (x;)ica is a base for S. If {x; : t € A} has a
smallest member zy, then S = x;N and {z; : t € A} = {x2" : t € w}. If {z; : t € A} does
not have a smallest member and k € A, then S = 23D and {x; : t € A} = {22 : t € Z}.

Proof. This is an immediate consequence of Lemma 4-2. []
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Notice in particular that (Q",+) and (R™, +) do not have bases.

The requirement that y — 2 € S whenever x,y € S and x < y is necessary for the
conclusion of Theorem 4-3. We shall now see that there are semigroups of all possible
sizes contained in (R™, 4) which have bases, none of which is a copy of N or of D*.

THEOREM 4-4. Let k be a cardinal with w < k < ¢. There is a subsemigroup S of
(RT,+) with |S| = & which has a base and there exist x,y € S with x < y such that
y—x &S (and in particular S is neither a copy of N nor a copy of DT).

Proof. Pick a subset B of R" such that |B| = x and B is linearly independent over Q.
Let S be the semigroup generated by B. Then S is isomorphic to (€, ., w) \ {0}, so
has a base by Theorem 3-1. []
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