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Abstract. We determine precisely when the Stone-Čech compactification βS of a
discrete semigroup S is simple and when it is left cancellative or right cancellative. As
a consequence we see that βS is cancellative only when it is trivially so. That is, βS is
cancellative if and only if S is a finite group.

Given a discrete semigroup S, the operation can be extended to the Stone-Čech com-
pactification βS of S so that βS is a right topological semigroup with S contained in its
topological center. (That is, given any p ∈ βS, the function ρp : βS → βS defined by
ρp(q) = qp is continuous and, given any x ∈ S, the function λx : βS → βS defined by
λx(q) = xq is continuous.) This implies that, for any x, y ∈ βS, xy = lim

s→x
lim
t→y

st where

s and t denote elements of S.

It has been known for a long time that left or right cancellativity is rare in βS for
a typical semigroup S and several papers have been published on the subject. See [3,
Chapter 8] and the notes to that chapter for a summary of what was known in 1998.
To the best of our knowledge, there have not been more recent results.

A subset T of a semigroup S is called a left ideal if it is non-empty and if ST ⊆ T ;
it is called a right ideal if it is non-empty and if TS ⊆ T . It is called an ideal if it is
both a left ideal and a right ideal. S is said to be simple if it has no proper subsets
which are ideals.

In this note we characterize discrete semigroups S for which βS is simple and those
for which βS is left cancellative or right cancellative. We regard βS as being the set
of ultrafilters on S, with the points of S identified with the principal ultrafilters. The
topology of βS is defined by choosing the sets of the form A = {p ∈ βS : A ∈ p} as a
base, where A denotes a subset of S. With this topology, A = c`βS(A) and is clopen in
βS.

Our characterizations of cancellativity heavily involve the smallest ideal of βS. If
a semigroup S has a minimal left ideal or a minimal right ideal which contains an
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idempotent, then it has a smallest two sided ideal K(S). K(S) is the union of all
minimal left ideals of S and is the union of all minimal right ideals of S. Given any
minimal left ideal L and any minimal right ideal R of S, L∩R is a group and all groups
of this form are isomorphic. The group L ∩R is called the structure group of S. Thus
K(S) is the disjoint union of groups, each isomorphic to the structure group.

Every compact right topological semigroup does have a minimal left ideal which
contains an indempotent. Thus, if S is an arbitrary discrete semigroup, the preceding
remarks hold for βS. See [1] or [3] for a derivation of these facts.

If V is a subset of a semigroup S, E(V ) will denote the set of idempotents in V .
We shall use the fact that, for any semigroup S, E(L) is a left zero semigroup if L is
a minimal left ideal of S which contains an idempotent [3, Lemma 1.30(b)]. Dually,
E(R) is a right zero semigroup if R is a minimal right ideal of S which contains an
idempotent.

We need the following simple lemmas. When we say that two semigroups with
topologies are topologically isomorphic we mean that there is a bijection between them
which is simultaneously an isomorphism and a homeomorphism.

1 Lemma. Let S and T be discrete semigroups with S being finite. Then β(S × T ) is
topologically isomorphic to S × βT . If T is a right zero semigroup, so is βT ; if T is a
left zero semigroup, so is βT .

Proof. Let π1 and π2 denote the projection maps of S×T , and let π̃1 : β(S×T ) → S and
π̃2 : β(S × T ) → βT denote their continuous extensions. Define θ : β(S × T ) → S × βT

by θ(x) =
(
π̃1(x), π̃2(x)

)
.

Since θ is the continuous extension of the inclusion map of S×T in S× βT , which
is a homomorphism, θ is a homomorphism [3, Corollary 4.22]. Since S × T is dense in
S×βT , θ is surjective. To see that θ is injective, note that, for each s ∈ S, π2 is injective
on {s} × T . So π̃2 is injective on c`β(S×T )({s} × T ) [3, Exercise 3.4.1]. Let x and y be
distinct elements of β(S × T ). If π̃1(x) = π̃1(y) = s, then x, y ∈ c`β(S×T )({s} × T ) and
so π̃2(x) 6= π̃2(y). Thus θ(x) 6= θ(y).

If T is a right zero semigroup then, for every x1, x2 ∈ βT ,

x1x2 = lim
t1→x1

lim
t2→x2

t1t2 = lim
t2→x2

t2 = x2.

Thus βT is a right zero semigroup. Similarly, if T is a left zero semigroup, βT is also a
left zero semigroup.
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2 Lemma. Let S be a discrete semigroup and let G be a compact subgroup of βS. Then
G is finite.

Proof. By [2, Theorem 14.25], βS is an F -space, and therefore G is an F -space. Let e

be the identity of G. Given any g, h ∈ G, ρh−1g is a homeomorphism from G to G taking
h to g. That is, G is homogeneous. But by [4, Corollary 3.4.2], no infinite compact
F -space is homogeneous.

3 Lemma. Let S be a discrete semigroup. If K(βS)∩S 6= ∅, then there is an idempotent
e ∈ K(βS) ∩ S, G = (eβS) ∩ (βSe) is a finite group, and G ⊆ S. Furthermore, Se is a
minimal left ideal of S.

Proof. Pick x ∈ K(βS) ∩ S and pick a minimal left ideal L of βS and a minimal right
ideal R of βS such that x ∈ L∩R. Then G = L∩R is a group. Since L = βSx = ρx[βS]
and R = xβS = λx[βS] we have that G is compact, hence finite by Lemma 2. The
powers of x are then a finite group, so the identity e of G is in S. To see that G ⊆ S, let
g ∈ G. Let g−1 be the inverse of g in G. Then e = ρg−1(g) and {e} is a neighborhood
of e so pick a neighborhood V of g such that ρg−1 [V ] ⊆ {e}. Since S is dense in βS,
pick y ∈ V ∩ S. Then yg−1 = e so ye = eg = g. Since y ∈ S and e ∈ S, g ∈ S.

To see that Se is a minimal left ideal of S, suppose that T is a left ideal of S for
which T ⊆ Se. Then c`βS(T ) is a left ideal of βS contained in the minimal left ideal
βSe of βS [3, Theorem 2.17]. So c`βS(T ) = βSe ⊇ Se. Since the points of S are isolated
in βS, it follows that T ⊇ Se.

We can now characterize the semigroups S for which βS is simple.

4 Theorem. Let S be any semigroup. The following statements are equivalent:

(a) βS is simple.

(b) S is a simple semigroup with a minimal left ideal containing an idempotent. Fur-
thermore, the structure group of S is finite and S has only a finite number of
minimal left ideals or only a finite number of minimal right ideals.

(c) S contains a finite group G, a left zero semigroup X and a right zero semigroup Y

such that S is isomorphic to the semigroup X×G×Y with the semigroup operation
defined by (x, g, y)(x′, g′, y′) = (x, gyx′g′, y′) for every x, x′ ∈ X, g, g′ ∈ G, y, y′ ∈ Y .
Furthermore, either X or Y is finite.

Proof. (a) ⇒ (b). By Lemma 3, S has a minimal left ideal which contains an idempotent
e. By [3, Theorem 1.65], K(S) = S ∩K(βS) = S ∩ βS = S and so S is simple. Also,
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by Lemma 3, G = (eβS) ∩ (βSe) = eβSe is a finite group. Given x ∈ G, x ∈ S so
x = exe ∈ eSe so G = eSe. Since e is a minimal idempotent, G = eSe is the structure
group of S.

Now suppose that S has an infinite number of minimal left ideals and an infinite
number of minimal right ideals and choose sequences 〈Ln〉∞n=1 and 〈Rn〉∞n=1 of distinct
minimal left and right ideals respectively. For each n, let xn be the identity of Se∩Rn

and let yn be the identity of eS ∩ Ln. Notice that for each n, xnyn ∈ Rn ∩ Ln. In
particular, D = {xnyn : n ∈ N} is infinite. Pick q ∈ D \ D. Pick a minimal left ideal
I of βS such that q ∈ I. Then I = βSq so q ∈ βSq = c`(Sq) so pick s ∈ S such that
D ∈ sq. Then {t ∈ S : st ∈ D} ∈ q, so pick t 6= v in D such that st ∈ D and sv ∈ D.
Pick k, l,m, n ∈ N such that t = xkyk, v = xlyl, st = xmym, and sv = xnyn. Now
st ∈ xmS = Rm so s ∈ Rm. Also sv ∈ xnS = Rn so s ∈ Rn. Consequently n = m and
thus st = sv ∈ Ln ∩Rn. But t ∈ Lk so st ∈ Lk and v ∈ Ll so sv ∈ Ll so k = l = n and
thus t = v, a contradiction.

(b) ⇒ (c). By [3, Theorem 1.64], there exist a group G, a left zero semigroup X

and a right zero semigroup Y such that K(S) is isomorphic to the semigroup X×G×Y

with the semigroup operation as in the statement of (c). Since S is simple, S = K(S).
Since the structure group of X ×G× Y is G, G is finite. For each x ∈ X, {x} ×G× Y

is a minimal right ideal of X × G × Y and for each y ∈ Y , X × G × {y} is a minimal
left ideal of X ×G× Y , so either X or Y is finite.

(c) ⇒ (a). Assume that X is finite. Notice that X × G × βY endowed with the
semigroup operation (x, g, η)(x′, g′, η′) = (x, gηx′g′, η′) is a compact right topological
semigroup with X ×G× Y contained in its topological center. For this first note that
given x′ ∈ X, g, g′ ∈ G, and η ∈ βY , one has

gηx′g′ = λg ◦ ρx′g′(η) ∈ λg ◦ ρx′g′ [c`βS(Y )] = c`βS(gY x′g′) ⊆ c`βS(G) = G .

It is then routine to verify that the operation on X × G × βY is associative and that
X×G×βY is a right topological semigroup with X×G×Y contained in its topological
center.

We claim that βS is isomorphic to X×G×βY . By Lemma 1, βS can be identified
as a topological space with X × G × βY . (We cannot invoke the algebraic portion of
Lemma 1 because the operation on X×G×Y is not the direct product.) The semigroup
operation of βS is characterized by

(x, g, η)(x′, g′, η′) = lim
y→η

lim
y′→η′

(x, g, y)(x′, g′, y′) = (x, gηx′g′, η′)
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where the last equality holds because X ×G×βY is a right topological semigroup with
X ×G× Y contained in its topological center.

We now claim that X × G × βY is simple. To see this, for each x ∈ X, let
Rx = {(x, g, η) : g ∈ G and η ∈ βY }. We will show that each Rx is a minimal right
ideal of X×G×βY . Since X×G×βY =

⋃
x∈X Rx, this will suffice. So let x ∈ X and

pick a minimal right ideal R ⊆ Rx. Pick g ∈ G and η ∈ βY such that (x, g, η) ∈ R. To
see that Rx ⊆ R, let g′ ∈ G and η′ ∈ βY be given. Now gηxe ∈ G so pick h ∈ G such
that gηxh = gηxeh = g′. Then (x, g′, η′) = (x, g, η)(x, h, η′) ∈ R.

An analogous argument shows that βS is simple if Y is finite.

We now characterize the semigroups S for which βS is left or right cancellative.

5 Theorem. Let S be a discrete semigroup. The following statements are equivalent.

(a) βS is left cancellative.

(b) K(βS) contains an element which is left cancelable in βS.

(c) βS has a left cancelable element and K(βS) = βS.

(d) Every idempotent in βS is a left identity for βS.

(e) There exist a finite group G ⊆ S and a compact Hausdorff right zero semigroup
T ⊆ βS such that βS = GT and the function ϕ : G× T → βS defined by ϕ(g, η) =
gη is both an isomorphism and a homeomorphism.

(f) There exist a finite group G and a right zero semigroup R such that S is isomorphic
to G×R.

(g) There exist a finite group G and a discrete right zero semigroup R such that βS is
topologically isomorphic to G× βR.

(h) S has a left cancelable element and βS is simple.

Proof. (a) ⇒ (b). This is obvious.

(b) ⇒ (c). Suppose one has p ∈ βS \K(βS). Pick a left cancelable q ∈ K(βS) and
pick a minimal right ideal R of βS such that q ∈ R. Then R = qβS = qṘ. So qp = qr

for some r ∈ R ⊆ K(βS), a contradiction.

(c) ⇒ (d). Suppose that x ∈ K(βS) is left cancelable in βS. We can choose an
idempotent p ∈ K(βS) for which xp = x. Then xpy = xy and so py = y for every
y ∈ βS. This shows that βS = pβS and hence that βS is a minimal right ideal of βS.
It follows that βS = qβS for every idempotent q ∈ βS. So, if y ∈ βS, y = qz for some
z ∈ βS and qy = qqz = qz = y.
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(d) ⇒ (e). We have that βS is simple, because βS = pβS ⊆ K(βS) for any minimal
idempotent p in βS. It follows from Lemma 3 that S contains a minimal idempotent e

of βS for which G = (eβS) ∩ (βSe) = eβSe is a finite subgroup of S. Let T = E(βS).
Then each η ∈ T is a left identity for βS so T =

⋂
y∈βS ρy

−1[{y}] so T is compact.

It is routine to verify that ϕ is a continuous homomorphism. To see that ϕ is
surjective let q ∈ βS and pick p ∈ T such that q ∈ βSp. Then qp = p and eqe ∈ G

so q = ϕ(eqe, p). To see that ϕ is injective, suppose that gy = hz, where g, h ∈ G and
y, z ∈ T . Then g = ge = gye = hze = he = h so gy = gz. Then y = ey = g−1gy =
g−1gz = ez = z.

(e) ⇒ (f). The assumption that βS = GT implies that e is a left identity for βS.
Let R = T ∩ S. Then ϕ[G× R] ⊆ S. To see that ϕ[G× R] = S let x ∈ S. Pick g ∈ G

and y ∈ T such that x = gy. Then g−1x = ey = y because e is a left identity for βS.

(f) ⇒ (g). This follows from Lemma 1.

(g) ⇒ (a). Since βR is a right zero semigroup, this is immediate.

At this stage we have shown that statements (a) through (g) are equivalent. By [3,
Lemma 8.1] we have that (h) implies (c). Statements (a) and (c) trivially imply (h).

6 Theorem. Let S be a discrete semigroup. The following statements are equivalent.

(a) βS is right cancellative.

(b) K(βS) contains an element which is right cancelable in βS.

(c) βS has a right cancelable element and K(βS) = βS.

(d) Every idempotent in βS is a right identity for βS.

(e) There exist a finite group G ⊆ S and a compact Hausdorff left zero semigroup X

such that βS = XG and the function ϕ : X × G → βS defined by ϕ(x, g) = xg is
both an isomorphism and a homeomorphism.

(f) There exist a finite group G and a left zero semigroup L such that S is isomorphic
to L×G.

(g) There exist a finite group G and a discrete left zero semigroup L such that βS is
isomorphic to βL×G.

(h) S has a right cancelable element and K(βS) = βS.

Proof. With one exception the proof proceeds by exact left-right switches of the proof
of Theorem 5. That exception is the portion of the proof that (d) implies (e) wherein
we concluded that T was compact. (It is true that X =

⋂
y∈βS λy

−1[{y}], but we only
know that λy is continuous for y ∈ S.) Fortunately, (d) states that X = E(βS) is the
set of right identities of βS. We claim that X is precisely the set of right identities
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of S. Indeed, given f ∈ βS such that yf = y for all y ∈ S, one has that ρf and the
identity agree on S and therefore on βS. Consequently X =

⋂
y∈S λy

−1[{y}], and so X

is compact.

7 Corollary. If S is a discrete semigroup and if K(βS) contains an element left can-
celable in βS and an element right cancelable in βS, then S is a finite group.

Proof. By either of the above theorems we have that K(βS) = βS and each idempotent
of βS is a two sided identity for βS. Thus by Lemma 3 we have an idempotent e ∈ S

such that G = eβS ∩ βSe is a finite group. Since e is both a left identity and a right
identity for S we have that G = βS.
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