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THE GRAHAM-ROTHSCHILD THEOREM
AND THE ALGEBRA OF pW

TIMOTHY J. CARLSON, NEIL HINDMAN, AND DONA STRAUSS

ABSTRACT. In a previous paper we established an infinitary
extension of the Graham-Rothschild Theorem by producing
an infinite decreasing chain of idempotents in the Stone-Cech
compactification of the set of variable words over a nonempty
alphabet. In this paper we investigate further the algebraic
structure of that compactification and determine which finite
chains of idempotents are extendable to an infinite chain as
above.

1. INTRODUCTION

Throught this paper A will denote a nonempty set (the alphabet).
We write w for the set {0, 1,2, ...} of finite ordinals and N = w\ {0}.
We choose a set V = {v,, : n € w} (of variables) such that ANV = ()
and define W to be the semigroup of words over the alphabet AUV,
including the empty word, with concatenation as the semigroup
operation. (Formally a word w is a function from an initial segment
{0,1,...,k — 1} of w to the alphabet and the length ¢(w) of w is
k. We shall occasionally need to resort to this formal meaning, so
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that if i € {0,1,...,¢(w) — 1}, then w(i) denotes the (i + 1) letter
of w.)

For each n € N, we define W,, to be the set of words over the
alphabet A U {vg,v1,...,v,-1}) and we define Wy to be the set of
words over A. We note that each W, is a subsemigroup of W.

Definition 1.1. Let n € N, let k¥ € w with & < n, and let () #
B C A. Then [B](}) is the set of all words w over the alphabet
BU{vp,v1,...,v5_1} of length n such that
(1) for each i € {0,1,...,k — 1}, if any, v; occurs in w and
(2) for each i € {0,1,...,k — 2}, if any, the first occurrence of
v; in w precedes the first occurrence of v;41.

Definition 1.2. Let £k € N. Then the set of k-variable words is
Sk = Uoo [A] (Z) Also S() = W().

n=k
Given w € S,, and v € W with £(u) = n, we define w(u) to be
the word with length ¢(w) such that for i € {0,1,...,¢(w) — 1}

. w(t) fw()eA
ww)(i) = { u((j; if szg =vj.
That is, w(u) is the result of substituting u(j) for each occurrence
of v; in w.
The following theorem is commonly known as the Graham-Roth-
schild Theorem. The original theorem [4] (or see [7]) is stated in
a significantly stronger fashion. However this stronger version is

derivable from Theorem 1.3 in a reasonably straightforward man-
ner. (See [3, Theorem 5.1].)

Theorem 1.3 (Graham-Rothschild). Assume that the alphabet A
is finite, let m,n € w with m < n, and let Sy, be finitely colored.
There exists w € Sy, such that {w(u) : u € [A](%%)} is monochrome.

In [3] we established a strong infinitary extension of the Graham-
Rothschild Theorem by producing an infinite sequence of idem-
potents in BW, the Stone-Cech compactification of W. In order
to discuss this, let us briefly review some facts about the Stone-
Cech compactification 3T of a (discrete) semigroup (7, -). We take
the points of ST to be the ultrafilters on 7', the principal ultra-
filters being identified with the points of T. Given a set A C T,
A={pepT:Acp}. Theset {A: A C T} is a basis for the open
sets (as well as a basis for the closed sets) of ST. If R C T we shall
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identify an ultrafilter p on R with the ultrafilter {A C T : ANR € p}
and thereby pretend that SR C ST. We let T* = T\ T.

There is a natural extension of the operation - of T' to 81 making
BT a compact right topological semigroup with 71" contained in its
topological center. This says that for each p € BT the function
pp + BT — BT is continuous and for each z € T, the function
Az : BT — BT is continuous, where p,(q) = ¢-p and A\;(q) =z - q.
Given BCTandz € T,let 7 'B={y €T :2-y € B}. Then
for any p,q € BT and any B C T, one has that B € p - ¢ if and
only if {x € T : 27 !B € ¢} € p. In particular, if B € p and C € g,
then B-C € p-q. See [6] for an elementary introduction to the
semigroup G71 and for any unfamiliar algebraic facts encountered
in this paper.

A subset U of a semigroup T is called a left ideal if it is nonempty
and TU C U. It is called a right ideal if it is nonempty and UT C U.
It is called a two-sided ideal, or simply an ideal, if it is both a left
ideal and a right ideal. Any compact Hausdorff right topological
semigroup 7" has a smallest two sided ideal K (7) which is the union
of all of the minimal left ideals of T" and is also the union of all
of the minimal right ideals of 7. If z € K(T'), then 2T is the
minimal right ideal with = as a member and Tz is the minimal
left ideal with x as a member. The intersection of any minimal
left ideal and any minimal right ideal is a group. Thus if p is a
minimal idempotent in 7', then p is the unique idempotent of T
in pT'NTp. There is a partial ordering of the idempotents of T’
determined by p < ¢ if and only if p =p-q = q-p. An idempotent
p is minimal with respect to this order if and only if p € K(T)
[6, Theorem 1.59]. Such an idempotent is called simply “minimal”.
The intersection of any right ideal and any left ideal of T' contains a
minimal idempotent. We shall also frequently use the following fact
[6, Theorem 1.65]: If T"is a compact right topological semigroup, D
is a compact subsemigroup of 7', and D N K (T) # (), then K (D) =
DNK(T).

If (T,-) is a discrete semigroup, there is also a natural extension
« of the operation - to T, for which (8T, %) is a compact left
topological semigroup. This means that, for each x € 8T, A, is
continuous. The algebraic facts stated in the preceding paragraph
are valid for compact left topological semigroups as well as compact
right topological semigroups. For this reason, many of the results
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obtained in [3], as well as the present paper, are valid for (W, %),
as well as (BW,-). This remark applies to [3, Theorem 2.12] and to
Theorem 1.5, Theorem 1.14 and Theorem 2.3 in the present paper.

Definition 1.4. Let v € W with length n. Then h, : W — W is
the homomorphism such that, for all w e AUV,

w fweA
hy(w) =< wu(j) ifw=wvjandj<n
w fw=wvjand j>n.

Notice that if w € S, u € W, and the length of u is n, then
hy(w) = w(u). Given u € W, the function h, has a continuous
extension from SW to SW. We shall also denote this extension by
hy, and observe that h, : SW — W is a homomorphism. (See [6,
Corollary 4.22].) We shall refer to the mappings h,, as reductions.
If u,w € W, we may call hy(w) a reduction of w.

The following theorem is a special case of the main algebraic
result of [3]. It is this result that we used to establish infinitary
extensions of Theorem 1.3.

Theorem 1.5. Let p be a minimal idempotent in 3Sy. There is a
sequence (pn)o2, such that

(1) po=p;

(2) for each n € N, p, is a minimal idempotent of 3Sy,;

(3) fO’F each n € N; Pn < Dn—1;

(4) for each n € N and each u € [A](,"1), hu(Pn) = Pn-1-

Further, p1 can be any minimal idempotent of 3S1 such that p1 <
po and pa can be any minimal idempotent of BWso such that ps €

P1hy, (p1)BWa N BWahy, (p1)p1-

Proof. This is [3, Theorem 2.12] in the case where D = {e} and
T. is the identity. (The conclusion about py is proved there, but
not stated.) Or see the appendix to this paper for the proof of a
stronger result. O

The results of [3] suggest the importance of the relation < which
we now define.

Definition 1.6. The binary relation < on (J, ., 85, is defined by
q < p if and only if there exist m < n < w such that ¢ € 8S,,,
p € BSp, and hy(p) = ¢ for all u € [A] (" )

m
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One fairly easily establishes (using Lemma 1.11 below) that < is
transitive. In fact, ones sees (using Lemma 1.12) that < is a tree
(i.e., the set of predecessors of any element is linearly ordered). In
[3], strong combinatorial consequences are drawn from the existence
of certain kinds of infinite branches through <. In Section 3 of this
paper we will characterize which ultrafilters lie on such branches
and do the same for other kinds of branches. In addition we will
consider other structural properties of < such as the existence of
maximal elements and branching degree.

Recall that the ordinal sum 1+ w = w.

Definition 1.7. Let a € w U {w}. Then (p;)i<q is a reductive
sequence of length o if and only if p; € 35; for each i < a and
whenever i < j < a and u € [A](!), hu(p;) = p;. If in addition
p; is a minimal idempotent in 3S; for each ¢ < a and p;11 < p;
whenever i + 1 < «, then (p;)i<q is a special reductive sequence.
Ifn <w,q€ BSy, p€ BSnt1, and hy(p) = g for all u € [4] (";rl),

then g is the unique reduction of p in (.5,.

Theorem 1.5 tells us that any minimal idempotent in (5.5) is a
term of an infinite special reductive sequence, and that any minimal
idempotent in (357 which is less than some minimal idempotent in
(3Sy is also a term of an infinite special reductive sequence. It was
shown in [3, Theorem 3.6] that there exist minimal idempotents in
(51 that are not part of any reductive sequence of length greater
than 2. As we have remarked above, we shall be concerned in
Section 3 of this paper with the order relation <. In particular, we
shall be concerned with determining which idempotents are terms
of special infinite reductive sequences. The characterizations that
we obtain are in terms of certain special subsemigroups of 5.5,. We
study those semigroups in Section 2.

We are working in this paper in a more restrictive setting than
in [3]. (In the terminology of that paper, D = E = {e}, T, is the
identity, and for each n < w, v, = (e,vy).) We do this primarily
because the maps h,, as defined here are much easier to comprehend
than their more general version as defined in [3].

We conclude this introduction with some preliminary results
which will be used later.

Theorem 1.8. Assume that the alphabet A is finite, let m,n € w
with m < n, and let r € N. There exists k € N such that k > n
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and whenever [A](¥,) is r-colored, there exists w € [A](K) such that

{w(u) : u € [4] (%ﬁ is monochrome.

Proof. This is a consequence of Theorem 1.3 by a standard com-
pactness argument. (See [5, Section 1.5] or [6, Section 5.5].) O

Lemma 1.9. Letm < n < w and let u € [A](). Then h,[K(BSy)]
C K(BSm).

Proof. By Theorem 1.5, hy,[3Sy] N K(8Sm) # 0 and thus

K (ha[BSn]) € ha[BSa] N K(BSm) -
By [6, Exercise 1.7.3] K (hy[3Sn]) = hu[K(8Sh)]- O

We remark that if m > 0, the inclusion of Lemma 1.9 may be
proper. To see this, pick a € A and let u = avguy - - - vm_100a - - - a.
Then h,[3S,] misses the right ideal vo3S,, of 5S,.

Lemma 1.10. Let r,s € W, let k = {(r), and let m = {(s). If k <
m, letw = hy(s). Ifk > m, letu= hy(s)"r(m)r(m+1)---r(k—1).
Then hy, = h, o hs.

Proof. 1t suffices to verify that h, (hs(w)) = hy(w) for every w €
AUV. Assume first that &k < m. If w € AU {vj : j > m}, then
hu(w) = w = hy(w) = hy (hs(w)). If w = v; for some j < m, then
hu(w) = u(j) = he(s(4)) = hr (hs(w)).

Now assume that k£ > m. If w e AU{v; : j > k}, then hy,(w) =
w = hy(w) = hy(hs(w)). If w = v; for somej with m < j < k,

then hy(w) = u(j) = r(j) = hr(w ) by (hs(w)). If w = v; for
some j < m, then hy(w) = u(j) = hy(s(j)) = hr (hs(w)). O
Lemma 1.11. Let k < m < n < w, let r € [A](}"), s € [A](%),

and u € [A] (Z) Then hy o hy = hy, if and only if u = s(r).

Proof. The sufficiency is a special case of Lemma 1.10. For the
necessity, let * = vovy -+ vp—1. Then u = hy(z) = hr(hs(:p)) =
hy(s) = s(r). O

Lemma 1.12. Let k <m <n <w and let u € [A](}). Then there
exist v € [A](%) and s € [A](7") such that u = r(s).

m

Proof. If m = k or m = n, the result is trivial, so we assume that
k < m < n. We note that it suffices to establish the result under
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the additional assumption that m = n—1. (For then, using Lemma
1.11, one establishes the general result by induction on n —m.)
Either u(j) € A for some j € {0,1,...,n—1} or else there exists
t € {0,1,...,k — 1} such that v; occurs more than once in u. In
the second case, let t be the smallest index for which this happens.
Then u(t) = v and one may choose j > t such that u(j) = v;. In

either case, we define r and s as follows for i € {0,1,...,n—1} and
l1e{0,1,...,n—2}:
U; ifi <y . .
. N e u(l) ifl<y
r(i) =< wu(j) ifi=7 ands(l)= { P
vy i< u(l+1) ifj<I.
It is routine to verify that u = r(s). O

Lemma 1.13. Let 0 < m < n < w and let u,u’ € [A](,”,). There
exist w,w' € [A](%) such that w(u) = w'(u').

m

Proof. There exist 4,5 € {0,1,...,m—1},t € AU{vs : § < i}, and
s€ AU{vs: 0 < j} such that for I € {0,1,...,m — 1},

v il <1 v ifl<y
u(l) = t ifl=14 andd/(l)= s ifl=j
vi—1 ifi <l vy ifj<l.

We may assume that j < i. Picka € A and forl € {0,1,...,n—1},

let

Ul ifl <y

w(l) = s =y and
o v fj<l<m

a ifm<li<n

v ifl<iq
t ifl=i4+landte AU{vs:0<j}
w'(l) = vsr1 fl=i+4+1,t=vs,and j <0 <1

v fi+l<li<m
a ifm<l<n.

It is routine to verify that w and w’ are as required. O

We now state a theorem which is a significant extension of [3,
Theorem 2.12]. The proof of this theorem, which we give in an
appendix, is valid under the hypotheses used in [3], without the
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restrictions that D = {e} or that T, is the identity, which we intro-
duced in the present paper.

Theorem 1.14. Let X be a subsemigroup of BW such that h,[X] C
X for everyu € W, XNBW, is compact and X N3S, is non-empty
for every n € w. Let pg be a minimal idempotent of X N Wy
and p1 < po @& minimal idempotent of X N BW1. Then there is
an infinite reductive sequence (po,p1,p2,Ps,-..) such that p, is a
minimal idempotent of X N S, and pn+1 < pp for everyn € w.

Proof. The proof of [3, Theorem 2.12] provides a proof of this the-
orem, provided that W is replaced by X, W, by X N BW,, and
8S, by XN B35S, for every n € w. This includes defining x <p y and
x <g y for z,y € X to mean that x € yX and x € Xy respectively,
rather than x € yBW and x € SWy. See the appendix to this
paper for the details. O

We observe that the algebraic results of the present paper have
Ramsey theoretic applications, which will be the subject of a sub-
sequent paper.

We should mention that Lemma 2.10 and Theorem 3.1 were
proved in [2]. (See Lemma 7.1 and Claim 6 in §7 of [2].) We provide
the proofs, however, because the terminology of [2] is significantly
different from the terminology used in this paper.

2. SOME SUBSEMIGROUPS OF (35,

Definition 2.1. Let n € w.

Cn = {2€pBS:: hy(x)=hy(z) whenever m <n
and u,u’ € [A](%)}
GRn = (N {nlC]:ue [AG))

T, = {z€pBS,: (Vr>n)(3y < BSy)(Vue [4](}))
(hu(y) =)} .
We shall see in Theorem 2.3 that the objects defined in Definition
2.1 are all subsemigroups of 35,.

Lemma 2.2. Let m < n < w and let u € [A](). Then hy[Cp] C
Cp, and hy|GR,] € GRy,.
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Proof. The first assertion is an immediate consequence of Lemma
1.11. To verify the second assertion, let y € GR,, and let z = hy(y).
Let £ € N with £ > m be given. We need to show that for each
w € [A](F), © € hy[Cyl.

Assume first that k& > n. Choose any ¢ € [A](¥) and pick z € Cj,
such that y = hy(z). Then @ = hy(hg(2)) = hg(z) by Lemma
1.11. Given w € [A](E)), huw(2) = hygu(2) because z € C.

Now assume that k& < n. Pick by Lemma 1.12, r € [A](}) and
s € [A](k) such that h, = hs o h,. Then z = hs(hr(y)) and

m
hr(y) € Ck by the first assertion in the current lemma, so for any

w e [A] (%)7 hw(hr(y)) = hs(hr(y)) =Z. U

Theorem 2.3. Let n € w. Then GR,,, Ty, and C, are subsemi-
groups of (S, that meet the smallest ideal K(3S,) and GR, C
T, C C,.

Proof. Pick by Theorem 1.5 an infinite special reductive sequence
(Pm)m<w. For each m < w, pp, € GRy, NT, N Cry N K(BSp,), so in
particular each is nonempty. Also, for each m < r < w, and each
w € [A](5,), hulSr] C Sm, so GR, C 3S,. Using the fact that h, is
a homomorphism for each u € W, it is routine to verify that each
of GR,, T, and C}, is algebraically closed.

To see that GR, C T}, let x € GR, and let r > n. Pick any
w € [A](%) and any y € C, such that = hy(y). Let u € [A](}).
Since y € C, hu(y) = hw(y) = =.

Finally assume that x € T, and suppose that x ¢ C,. Pick
m < n and u,u’ € [A](%) such that hy(z) # hy(z). Pick disjoint
subsets Y and Y’ of S,,, such that Y € hy(z) and Y’ € hy(z). Let
X = hy Y] N hy HY']. Then X € .

Pick z € hy[Sp]Nhy [Sn]. (We know this intersection is nonempty
because it is a member of any member of T,,.) Pick w and w’ in
Sy, such that z = hy(w) = hy(w'). That is, z = wlu) = w' ().
This implies that w and w’ have the same length, say k. Then
w,w' € [A](F). Since x € T,,, pick y € Sy such that z = hy(y) =
R (y). Then by H[X]Nhy " HX]NS, € y so pick t € S such that
hy(t) € X and h,(t) € X. Then by Lemma 1.11,

hy (hw(t)) = hw(u) (t) = hw/<u/>(t) = hy (hw/ (t))
so Y NY’' # (), a contradiction. O
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The fact that GR,, meets K ((3S,,) shows, surprisingly, that every
element q of 35, is a factor of an element in GR,,. More precisely,
for every p € K(GR,,), p is a member of a minimal right ideal R
and a minimal left ideal L of 8.5,. Then R = pgBS5, and L = 8S5,qp
S0 p = pqx = yqp for some x,y € 5S,.

We shall see in Corollary 2.5 that the semigroups C,, have a
simpler description than that given by their definition.

Theorem 2.4. Let m < n < w, let p € BS,, and let ¢ € BSy,. If
{hu(p) : uw € [A](1%)} = {a}, then q € Cp,. In particular, if k < m,
then {hy(p) : u € [A](})} is also a singleton.

Proof. We show by induction on m — k that if k < m and u,u’ €
[A](7), then hy(q) = hw(q). So assume first that k = m—1 and let
u,u’ € [A](,/*). By Lemma 1.13 we may choose w,w’ € [A](%%)
such that w(u) = w'(u'). Then, using Lemma 1.11,

ha(q) = P (heo (D)) = Py (D) = P (ury (P) = her (B (P)) = hur () -

Now assume that k¥ < m — 1 and for all u,u’ € [A] (le)’ hy(q) =
hw(q). Let u,u’ € [A](J"). Pick by Lemma 1.12 some s,s" €
[A] (7)) and 7,7 € [A](K) such that u = s(r) and ' = /().
By Lemma 1.13 choose w,w’ € [A](,7) such that w(r) = w'(r').
Then, using Lemma 1.11, we have

hu(Q) = hr(hs(Q)) = hy (hw(Q)) - hw(r (Q)
= hw’(r’)(‘]) = hy (hw’<Q)) = hy &Ls’(Q)) = hy (Q) :

The “in particular” conclusion now follows by Lemma 1.12. O

Corollary 2.5. Let n € N. Then

Cn, = {q€pBS,: there exists a reductive sequence

(Pm)m<n+1 with p, = q}
= {q€BSn: hulq) = hy(q) whenever u,v’ € [A](,",)}.

Proof. 1t is an immediate consequence of Theorem 2.4 that C,, =
{qg € BSn : hulg) = h,(q) whenever u,v’ € [A](,",)}. It is

n—1
also immediate that {q € 3S,, : there exists a reductive sequence
(Pm)m<n+1 With p, = ¢} C C,. To establish the reverse inclu-
sion, let ¢ € C,. For each m < n choose any ., € [A](%). Let

pn = q and for m < n, let p,, = hy,,(q). To see that (Pm)m<nt1
is a reductive sequence, assume that n > 1, let £k < m < n, and
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let w € [A](}"). Then by Lemma 1.11 hy(pm) = huw(ha, () =
hum(w> (Q) = huk (Q) = Pk- U]

We saw in Theorem 2.4 that if {hy(p) : u € [A](})} is a singleton
and k < m, then {hy(p) : u € [A](})} is also a singleton. In terms
of the relation < of Definition 1.6, if p has a predecessor in 3.5,,,
then it has a predecessor in 35S} for all £ < m. We see now that
this conclusion need not hold if m < k < n.

Theorem 2.6. There exists an idempotent p € [3S3 such that
{hu(p) : p € [A](})} is a singleton but {h,(p) : p € [A](3)} is
not a singleton. So p has a predecessor with respect to the relation
=< in 351, but not in B.Ss.

Proof. Let py be a minimal idempotent in 8.5y and pick a minimal
idempotent p; in 3S7 such that p; < pg. Let g2 = hy, (p1) and let
g3 = hy,(p1). Let B be the set of words over AU {v1} and let C be
the set of words over AU {v2} and note that B € g2 and C € gs.
Then S1BC € pigaqs and S1BC C S3 so pi1geq3BSs is a right
ideal of 8S55. Similarly vov1C'BS1 € vouigsgep1 and vouiCBS; C
S3 so BS1vgv1CBSy is a left ideal of 3S7. Pick an idempotent
p3 € p1goq3PBSs N BS1vov1CBS1. Pick r,s € (3S3 such that p3 =
P1G2493T = SUoV14392P1-

Pick a letter a € A. Then vyvia, voavy € [A] (%) We show first
that hyguya(P3) # hugav, (P3), using the fact that ps = svov1g3gaps.
Now hvovla[SS] C Sy, hvgma('UO) = o, hvovla(vl) = V1, hvovla[C] c
S(), hvovla[B] - B, and hvovla[Sl] - Sl. Thus SQU()UlSQBSl S
hvovla(pfi)- Also hvoavl [53] C Sy, hvoavl(UO) = Yo, hvoavl (Ul) =
a, hvoavl[c] C B, hvoavl[B] C S(), and hvo(wl [Sl] C Si. Thus
SzvoaBS(]Sl S hvolwl (pg). Since SQ'U(]'UlSOBSl N SQUQGBSOSl = (D
we have that hyyp,a(P3) # huegav, (P3). (The displayed vg is the
rightmost vy which has a later v;. In one of these sets it is followed
by v; while in the other it is followed by a.)

Now let u € [4](}). If u = vow for some w € Sy U Sy, then
h,, is the identity on S so hy(p1) = p1 and therefore h,(ps3) =
hy(sv0v1q3G2)p1 = P1hu(qeqsr) so hy(ps) < p1 and thus hy(p3) =
p1.

Next assume that u = byt where b € A and t € AU {vg}.
Then hy(p1) < hu(po) = po s h (p1) = po. Also, using Lemma
111, hy(g2) = hbvot(hvl( )) bv0t>(p1) = hvo(p1> = p1- Thus
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hu(p3) = hu(svovigs)pipo = popihu(qsr) = hu(svovigs)pr
p1hu(gsr) so hy(p3) = p1.

Finally assume that u = bcvg where b,c € A. Then hy(p1)
hu(Po) = po 80 hy(p1) = po. Also hy(qz) = Riesy (ho, (p1))
Py, (beve) (P1) = he(P1) < he(po) = po 50 hu(g2) = po. And hy(g3)
thUO(hUZ(pl)) = hvg(bcv()}(pl) = h?)o(pl) = p1 Thus hu(p3)
hu(svovi)pipopo = popopihu(r) = hu(svovi)pr = pihy(r) so
hu(p3) =DP1. U

We now introduce a family which will help us establish that
GR, =T, for all n € w. Given a set X, we write Py(X) = {B C
X : B is finite and nonempty}.

Il IA

Definition 2.7. Let n € w. Then
Rp={XCS,: (Vr>n)(VB e PsA)(FweS,)
(v € [B(3)) (hu(w) € X)}
Lemma 2.8. Letn € w and let p € 8S,,. Then p € T,, if and only
if p C Ry.

Proof. Assume p € T,,. To see that p C R, let X € p. Let
r > n and let B € Pg(A). Pick y € (S, such that h,(y) = p
for all u € [A](%). Then N{h, *[X] : u € [B]()} € y so pick
w e N{h ' [X]:ue [B](5)}

Conversely, suppose that p C R, and let r > n. Let Q =
{(P,B) : P € pand B € Ps(A)} and direct Q by agreeing that
(P,B) < (P',B’) if and only if P’ C P and B C B’. Pick for each
(P,B) € Q some wpp € S, such that {hy(wpp) :u e [B](})} C
P. Let y be a limit point of the net (wpp)ppjcg in BS,. Let
u € [A](},). We claim that h,(y) = p. Suppose instead that we have
some P € p\ hy(y) and pick B € Py(A) such that u € [B](},). Then
h.~'[Sn \ P] € y so pick (P', B') € Q such that (P, B') > (P, B)
and wpr g € hy '[Sp \ P]. Then u € [B'](%) and hy(wp g) € P' C
P, a contradiction. So p € T,,. O

Lemma 2.9. Let n € w and let X € P(S,) \ Ry. Then

(3k > n) (3B € Pr(A))(Vr > k)

(Vw € S)(Fu € [B](;,)) (hu(w) ¢ X).
Proof. By the definition of R,,, pick B € P¢(A) and k > n such that
(Vw € S)(Fu € [B](%))(hu(w) ¢ X). Let r > k and let w € S,.

n
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Pick a € B and define s € [B] (};) by s = vgv1 - - - vg_1aa - - -a. Then
w(s) € Sy so pick u € [B](¥) such that hy(w(s)) ¢ X. Then s(u) €
[B](},) and, by Lemma 1.11, hyy(w) = hy(hs(w)) = hy(w(s)) ¢
X. (|
Lemma 2.10. Let X,Y € P(S,). If X ¢ R, andY ¢ R,,, then
XUY ¢ R.

Proof. Pick by Lemma 2.9 some B € Pf(A) and some 7 > n such
that

(1) (Vw € $,)(3u € [B](3)) (hu(w) ¢ X) and

(2) (Vw € S;)(Fu € [B](5)) (hu(w) ¢ Y).
Pick by Theorem 1.8 some k£ € N such that k£ > r and whenever
[B](F) is 2-colored, there exists w € [B](F) such that {w(u) : u €
[B]() } is monochrome.

Suppose that X UY € R,, and pick s € S such that

(v € [B)(S)) (hu(s) € X UY).

That is, {s(t) : t € [B](¥)} € XUY. Then the members t of [B](F)
are 2-colored according to whether s(t) is in X or not, and if not,
s(t) € Y. Pick w € [B](¥) such that either

{s(w{u)) :ue[B](})} C X or
{s{w(u)) :ue[B]()} CY.
We may assume without loss of generality that the former holds.
Now s(w) € S, so pick u € [B](},) such that hy(s{w)) ¢ X. But
by Lemma 1.11,

hy(s(w)) = hy, (hw(s)) = hw<u>(s) = s(w(u)) ,
a contradiction. O

Lemma 2.11. Let n < r < w and let u € [A](}). Then T, C
ho[T7].

Proof. Let p € T, and let F be the filter generated by {h, '[P] N
S, : P € p}. We claim that F C R,. To see this, let P € p, let
k> r, and let B € Py(A). We need to produce z € Sj, such that
{ho(z) :we [B)(¥)} € h,'[P).
Since p € Ty, pick z € 35y such that for all 1 € [A](%), hy(2) = p.
Then
Nl (P w e (BI(E)} € 2
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so pick z € SN ﬂ{hw<u>_1[P] : w € [B](¥)}. Then given w €
[B] (f)v hu(hw(aj)) = hw(u)(x) € Pp.

Let A={H CP(S;): FCHCR, and H is a filter}. Pick a
maximal member g of A. We claim that ¢ is an ultrafilter. Suppose
instead that we have some X C S, such that X ¢ g and S, \ X ¢ q.
Then the filter generated by ¢ U {X} is not contained in R, and
the filter generated by ¢ U {S,\X} is not contained in R,. So pick
Q,R € gsuch that X NQ ¢ R, and R\ X ¢ R,. Then by Lemma
210 (XNQ)U(R\X)¢R,. Bt QN R C (X NQ)U(R\ X) and
QN R e R,, acontradiction.

Since F C ¢ we have that h,(q) = p. By Lemma 2.8, ¢ € T,,. O

Theorem 2.12. Let n € w. Then GR, = T,,.

Proof. By Theorem 2.3 we have that GR,, C T;,. To establish the
other inclusion, let p € T,,. Let r > n and let u € [A](,). By

n

Lemma 2.11 p € hy[T}], so by Theorem 2.3, p € hy[C,]. O

In light of Theorems 2.3 and 2.12 it is natural to ask about the
relationship between the semigroups C,, and 7T;,. Since Cy = (5)
it is not hard to show that Ty # Cy. And we shall see in Corollary
3.17 and Theorem 3.18 that for each n > 1, T, # C,,.

We see now that T,, has a rich algebraic structure.

Theorem 2.13. Let k = |Sy|. (So k = max{w,|A|}.) For each
n € w, T, has 22" minimal left ideals and 22" minimal right ideals.
Each minimal right ideal has 22" idempotents and each minimal left
ideal has 22" idempotents.

Proof. We have that 3Sy has 22" minimal left ideals and at least 2°
minimal right ideals by [6, Theorem 6.42 and Corollary 6.41]. We
claim that in fact 3Sp has 22" minimal right ideals. If |A| < w, then
¢ = 2", so we may assume that |A] > w. Pick a € A and let S’ be
the set of words over A\ {a}. Then as is well known, |35’| = 22".
(See, for example, [6, Theorem 3.58].) Given = # y in S’, one
has that xa(Sy and yaBSy are disjoint right ideals, each of which
contains a minimal right ideal. (If X € 2, Y € y, and X NY =0,
then zaf3Sy C XaSy, yaBSy C YaSy, and XaSyNYaSy=0.)

Note that if p is a minimal idempotent in 3Sy and n € w, then
T,NBSpp # 0 and T, NpBS, # 0. To see this, pick by Theorem 1.5
an infinite special reductive sequence (pp,)m<, With pg = p. Then
pn € T N pBS, N BSnp.
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Now let p and ¢ be members of distinct minimal left ideals of
BSo. We claim that 5S,p N 3S,q = 0 (so that T,, N BS,p and
T, N 3Spq are disjoint left ideals of T},). Suppose instead one has
some x € (3S,p N [BSpq. Pick any u € [A] (6‘) Then h, is the
identity on 35Sy so hy(z) € hy[BSnp] N hy[BSnq] € BSop N BSuq, a
contradiction.

Since each left ideal contains a minimal left ideal, the first as-
sertion is thus established. A similar argument establishes the as-
sertion about the number of minimal right ideals. The conclusions
about idempotents follow from the fact that the intersection of
any minimal left ideal and any minimal right ideal has an idempo-
tent. U

We now develop a method for establishing inequalities in W by
considering patterns of segments within words. This will be used
in this section to establish the existence of large free groups in W
and in the next section to establish large branching degree in the
< tree.

Definition 2.14. Assume B is an alphabet and ¢ € B. Let S be
the semigroup of words in B. For w € S, a segment s of w is a
c-gap of w if ¢ does not occur in s and w = wicscws for some
wy,ws € S. Suppose G is a group and let S’ be the collection of
words in which ¢ does not occur. For any function p : S — G,
define p* : S — G so that p™(w) = p(s1) + -+ + p(s,) where
S1,- .-, 8y, enumerates the c-gaps of w in the order they occur and
+ denotes the group operation of G (if there are no c-gaps of w in
X, pu(w) is the identity of G).

In the case where G is the set of integers mod n and p is the
characteristic function of some subset X of S’, u™(w) counts the
number of c-gaps of w which are in X mod n.

As usual, u and pt extend naturally to a function mapping 35’
and (S respectively into 8G. In the cases that will interest us, G
will be finite so that SG is the same as G. Notice that u™ will
not generally be a homormorphism since multiplying two words
together often creates a new c-gap which isn’t in either of the indi-
vidual words.

Definition 2.15. Assume B is some alphabet, ¢ € B and S is the
semigroup of words over B. For w € S, define 7.(w), the tail of w
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with respect to ¢, to be the longest end segment of w which does
not contain ¢ and define n.(w), the head of w with respect to ¢, to
be the longest initial segment of w which does not contain c¢. For
p € S, ¢ persists in p if the set of words containing c is in p.

Notice that for p,q € 35S, if ¢ persists in ¢ then n.(qgp) = n.(q)
and 7.(pq) = 7c(q). On the other hand, if ¢ does not persist in ¢

then n.(qp) = qne(p) and 7.(pq) = 7c(p)q.

Lemma 2.16. Assume B is an alphabet, c € B and S is the semi-
group of words over B. Also suppose G is a finite group with iden-
tity 0 and p : S" — G where S’ is the set of words in which ¢ does
not occur. If p,p’,q,q' € BS and c persists in p, p', q and ¢’ then

(@) 1t (pg) = 1t () + u(re(p)ne(a)) + u*(0),
(b) if p is an idempotent then pu*(p) = —M(TC( )ne(p)),
(c) if ¢ does not persist in x € B3S then p*(px) = ut(p) =
pF(zp).
(d) if n(q) =n(¢) then p* (pa) = w(pd') iff 1 (q) = p(q).
(e) if T(p) = 7(p) then p*(pq) = p*(p'q) iff u*(p) = u*(v').
(

ngq
TP
Proof. Parts (a) and (c) are straightforward. Part (b) follows from
part (a) and parts (d) and (e) can each be derived using (a) and
(c). O

Theorem 2.17. Assume B is a nonempty alphabet and S is the
semigroup of words over B. If p,q € 3S then p8Sq contains a free
group on 22" generators where k = max{w, | B|}.

Proof. Without loss of generality, p is a minimal idempotent and
p = q. Note that c¢ persists in p. If B has only one element, S
is isomorphic to N and the lemma follows from Corollary 7.37 of
[6]. Suppose B has more than one element and fix an element ¢ of
B. Let S’ be the elements of S which have no occurence of c. S’
has size k, so there are 22° elements of 35’. We will show that the
collection of pcxep where z is an element of 35’ and not equal to
either 7.(p)n.(p), 7e(p) or n.(p) generates a free group. For this, it
suffices to show that any finite subcollection generates a free group.

Suppose x1, . .., x, are distinct elements of 35’ which are distinct
from 7.(p)nc(p), e(p) and n.(p). Let F' denote the free group on
generators ai, as, ..., a,. Suppose that x € p3Sp can be written as

x = 7172 - - - Ty, Where for each i, r; is either pcxjcp or the inverse of
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pcxjep in pBSp for some j. Define b € F' by b = b1ba - - - by, where
b = a; if r; = pcxjcp and b; = a;l if 7; is the inverse of pcz;p in
pBSp. We shall show that = # p if b is not the identity of F. In
this case, there is a homorphism f mapping F' to a finite group G
for which f(b) is not equal to the identity by [6, Theorem 1.23].
Define p : 8" — G by p(s) = f(a;) if s € X; and p(s) is
the identity if s ¢ (J;_; X;. Then pT is a homomorphism on
pBSp by Lemma 2.16(a). Since u™(pcx;cp) = f(a;) for each i €
{1,2,--- ,n}, u™(z) = f(b). So x # p. O
Theorem 2.18. For each n € w, every mazimal group in K(T,)
contains a free group on 22" generators where k = max{|A|,w}.

Proof. Let py be a minimal idempotent in SWj. By Theorem 2.17
we may let {poz,po : ¢t < 22"} be a set of elements in poBWopo
which generate a free group in pgBWoypg. We can choose by Theo-
rem 1.5 a minimal idempotent p, in T, satisfying pg < p,. Then
{pnxpn : t < 22"} C T, generates a free group in p,T,,p,, be-
cause any reduction h,, for which u € [A](f}) is a homomorphism
mapping each p,z,p, to poz,po. It follows from [6, Theorem 2.11]
that every maximal group in K (8T},) contains a free group on 22"

generators. O

We now set out to characterize the members of T;,, in terms of
their members.

Definition 2.19. Let m < n < w, let ¢ be a finite coloring of S,
and let B € Pf(A). Then

ErmneB = {s € Sy (37:[B] (”) Sn) (90 o T is constant and

(v € B (o) ~ )}

Theorem 2.20. Let m € w and let p € BS,,. Given n > m,
there exists ¢ € (3S,, such that h,(q) = p for all u € [4] (%) if
and only if for every finite coloring ¢ of Sp and every B € Ps(A),
Erne B €p. In particular, p € Ty, if and only if for every n > m,
every finite coloring ¢ of Sp and every B € Ps(A), Epne B € D-
Proof. Tt suffices to establish the first conclusion. So let n > m.

Necessity. Let ¢ be a finite coloring of S, and let B € Ps(A).
Pick ¢ € (S, such that h,(q) = p for all u € [A] (%) Pick Q € ¢
on which ¢ is constant Then ({h.[Q] : v € [B](%)} € p and

N{7lQ]:u € [BI(7)} € Emmne.s-
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Sufficiency. For each B € P(A), let D = {BS, Nhy ' [{p}] :
u € [B](})}. We claim that each D 4+ B # (). So suppose instead
that we have B € Py(A) such that Dp = (). For each z € 35,
choose u, € [B](}) such that h,,(z) # p and pick X, € z such
that hy,[X,] ¢ p. Then {X, : z € 8S,} is an open cover of 35S,
so pick finite F' C 85, such that 35, = J,cp X,. Foreachy € S,
choose ¢(y) € F such that y € X(,). Then ¢ is a finite coloring
of Sy 80 Epnp B €p. Pick s € EnnpB \ Uger u, [Xe] and pick
7 : [B](%%) — Sy such that ¢ o7 is constant and for all u € [B](%,),

hu(T(u)) = s. Let € F be the constant value of ¢ o 7. Then
B, (T(ux)) = s and 7(uy) = X ) = Xz, 50 § € hy, [Xz], a

contradiction.

If B C C, then Do C Dp so {Dp : B € Ps(A)} is a set of
closed subsets of 3.5, with the finite intersection property so choose
qe mBePf(A) Dp. Then for each u € [A](}}), hu(q) = p. O

m

o ()

The reductions h, are also continuous homomorphisms from
(BW, %) to itself, where * denotes the natural extension of the semi-
group operation from W to SW for which SW is left topological.
The subsets C),, GR,, and T;, of W do not depend on which semi-
group operation on GW is being used. These sets are compact
subsemigroups of (8W, x) as well as (SW, ).

As we remarked in the introduction, Theorem 1.14 is valid for
(BW, %) as well as (BW,-), because it depends only on algebraic
propties which hold in compact left topological semigroups as well
as compact right topological semigroups. Thus infinite special re-
ductive sequences also exist in (W, *). These are reductive se-
quences in (W, -) as well, but are are far from being special reduc-
tive sequences in (W, -). It was shown in the proof of [1, Theorem
3.13] that, if S denotes the free semigroup over an alphabet with two
letters and if p is a minimal idempotent in (55, *), then p ¢ 85 - p.
This statement can be extended to the free semigroup over any al-
phabet with more than one letter, by applying a homomorphism
which reduces the number of letters to two. So, if n € N, a minimal
idempotent in (GW,,, ) is not an idempotent in (W), ) and is not
in K(BW,,-). In fact, it can be shown that it is right cancelable in
(6Why,-) if A is countable.
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3. EXTENDING REDUCTIVE SEQUENCES

Our first objective is to determine those elements of (35, which
are part of infinite reductive sequences.

Lemma 3.1. Let 0 < n < w, let p, be an idempotent in T, and
let pn—1 be the unique reduction of py in BSn—_1. If pn < pn—1, then
there is an tdempotent ppy1 € Th11 such that ppy1 < pn and py, is
the unique reduction of pn+1 in BSy.

Proof. We show first that

if s is an idempotent in 7)1 such that h,(s) = p, for
all w € [A]("F!), then hy(spn) = pn = hu(pps) for all

(%) u € [A]("%1) and for every k > n + 1 there exist g, yi, €
BSk such that h,(zy) = spn, and hy,(yx) = pns for all
u e [A](5):

To establish the first assertion, let u € [A]("/!) and let w =
Uy, Then hy(pn) = hw(pn). If w € [A] (Z), then hy(prn) = pn so
hy(8pn) = papn = Pn = hu(pns). If w € [4] (nnfl)7 then hy (pn) =
Pn—1 50 hy(8pn) = PuPn—1 = Pn = Pn—1Pn = hu(Pns).

We establish the second assertion by induction on k. If £ = n+1,
let xp = sp, and let yp = pps. If u € [A] (Zﬂ), then h,, is the
identity on (35,11 so hy(zx) = spn and hy(yx) = pps.

Now assume that & > n + 1 and the statement is true for
k — 1. Since s € T,41 pick z € Sy such that h,(z) = s for all
u € [A] (n’fH) By the induction hypothesis pick zx_1,yx_1 € 8Sk_1
such that hy(zx_1) = spn and hy(yg—1) = pps for all u € [A] (ﬁjrll)
Let u € [A](,*) and let w = ujg—1- Then hy(zp_1) = hy(Tr-1)-

If w e [A](fljj), then hy(zk—1) = spp and hy(ys—1) = pps so

hy(zk) = sspn, = spn and hy(yr) = pPpSS = pns. So assume
that w € [A](*!). Pick by Lemma 1.12 some u; € [A] (f;ll)

and up € [A]("!) such that w = wui(ug). Then hy(zk_1) =

P, (hm(xk—l)) = Ny (8Pn) = pn and hy (Yr—1) = hu, (hm (ykz—l)) =
huy(Pns) = pn. Thus hy(zk) = spn, and hy(yg) = pps. Thus (%) is
established.

Now by Lemma 2.11 we have that

{s€Thi1: (Vue [A(%)(hu(s) =pn)} #0.



20 TIMOTHY J. CARLSON, NEIL HINDMAN, AND DONA STRAUSS

(If s € T),41, then s € C,41.) So this set is a compact subsemigroup
of 3S,,+1 so we may pick an idempotent s € T}, such that hy(s) =
pn for all u € [A]("%!). Then by (%), spn € Tn41. So

Spn € Tn+1 N ﬂ {hu_l[{pn}] U € [A] (nfz‘_l)} N 6Sn+1pn

and thus this set is a compact subsemigroup of 3S,4+1. Pick an
idempotent

q € Tosr NN {ha ™ Hpn}] s w € [A](5) } N BSniapn

and note that gp, = ¢ because ¢ € 3S,+1Pn.

Then by (%), pnq € Tpt1 and hy(prg) = py for all u € [A]("%).
Let pny1 = png. Then pypi1pPny1 = PnqpPnq = Pnqq = Pnq = Pni1,
Pr+1Pn = PndPn = Pnd = Pn+1, and PpPpi1 = PaPnq = pnq =
DPn+1- U

Theorem 3.2. Let n < w and let p, be an idempotent in BS,.
Then p, is a term of an infinite reductive sequence consisting of
idempotents for which pri1 < pi for each k < w if and only if
on € Ty and either n = 0 or p, < pn—1, where p,—1 is the unique
reduction of pp in BSnp_1.

Proof. The necessity is trivial. For the sufficiency, assume first
that n > 0, p, € T, and p, < pp_1. Pick a € A. Inductively,
for k € {0,1,...,n— 2}, if any, assume that pxy; is an idempotent
in Tyyq with prio < pry1. Let u = avgvy - - vp—q1 € [A] (k]jl) and
let pr = hy(pr+1). Then pg is an idempotent which is the unique
reduction of pgy1 in 8Sk. To see that py € Ty, let r > k+ 1 and
choose q € 35, such that hy(q) = prs1 for all w € [A](,,,). Let
z € [A](}) and pick by Lemma 1.12 w € [A] () and s € [A] (")
such that = w(s). Then by Lemma 1.11 hy(q) = hs(hw(q)) =
hs(Pkt1) = Pr-

Let w = avgv; - - - v, and note that hy (pr+1) = hu(Pr+1) SO pr =
hu(Pr+1) = how(Pr41) > how(Prt2) = Prt1- Thus we have (pi)}_ is
a reductive sequence consisting of idempotents such that pp € Ty
for all £ < n and pp < praq for all k < n.

Now let m > n and assume that (pg)}", is a reductive sequence
consisting of idempotents such that pp € Ty for all £ < n and
pr < prpy1 for all K < m. By Lemma 3.1, pick an idempotent
Pm+1 € Tim+1 such that pp, 1 < pmy and py, is the unique reduction
of pry1 in BSy,.
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Now assume that n = 0 and py € Tg. We claim that Typy C T7.
Certainly 8S1pg C 8S1. Let ¢ € 17 and let » > 1. Pick y € 35S,
such that for all u € [A](]), hu(y) = ¢. Then for all u € [A](]),
hy(po) = po and so hy(ypo) = qpo as required.

Pick a € A and pick by Lemma 2.11 ¢ € T such that hy(q) = po.
Then g € C; by Theorem 2.3, so h.(q) = pp for all ¢ € A and thus

qpo € Tipo NNeea he [{po}] -

Pick an idempotent r € T1po N[ \.cq hc_l[{po}] and let p; = por.
Then p; is an idempotent in 77 and p; < pg so the already estab-
lished case where n = 1 applies. O

We now see that the requirement of Theorem 3.2 that p, be a
member of T;, can be weakened in the case in which n = 1.

Theorem 3.3. Let p1 be an idempotent in Ci. If py < po, where
po denotes the unique reduction of p1 in Wy, then there is an infi-
nite reductive sequence (pg, p1, p2, P3, - ..y consisting of idempotents,
such that ppy+1 < pp for everyn € w.

Proof. By Theorem 3.2 it is enough to show that p; € T;. Given
n > 1, put ¢, = hy(p1)ho,(P1) - hy, ,(p1). Then ¢, € BS,.
Let u € [A](}). We claim that h,(gn) = p1. To see this note
that if @ € A and m € {0,1,...,n — 1}, then hy(hy,(a)) = a
while hy (A, (v0)) = w(m). Thus if m € {0,1,...,n — 1} and
w € Sq, then hu(hvm(w)) = hy(m)(w). Therefore, if u(m) € A,
then h,, (hvm (pl)) = po, while if u(m) = v, then h,, (hvm (pl)) = p1.
Since there is at least one m € {0,1,...,n—1} for which u(m) = v,
we have hy(gn) = p1. So p1 € T1. O

Theorem 3.4. Let n < w and let p, be a minimal idempotent in
GSn. Then py, is a term of an infinite special reductive sequence if
and only if either n =0 or p, € Ty, and p, < pn_1, where p,_1 18
the unique reduction of p, in 3S,_1.

Proof. Again the necessity is trivial. If n = 0, Theorem 1.5 applies,
so assume that n > 0. Pick a € A. For k € {0,1,...,n — 2},
if any, let uw = avovy - --vp_1 € [4] (k]jl) and let pr = hy(pr+1)-
Exactly as in the proof of Theorem 3.2 we have that pi € T} and
Pr+1 < pr. By Lemma 1.9, py is minimal in 8S;. Thus we have
that (pr)}_, is a special reductive sequence. Let m > n and assume
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that (pr)}", is a special reductive sequence. By Lemma 3.1 we can
choose an idempotent ¢, 1 € T4+1 such that ¢,+1 < pn and p, is
the unique reduction of g,4+1 in 3S,. Pick by [6, Theorem 1.60] a
minimal idempotent p,y1 of T,4+1 such that pp,+1 < gpy1. Given
(NS [A] (nT—LI—I)’ hu(pn-‘,—l) < hu(Qn—i—l) = Pn SO hu(pn-‘,—l) = Pn- 0

It is natural to ask whether the requirement that p, < pp—1,
where p,_1 is the unique reduction of p, in 8S,_1, is needed. We
see that it is.

Theorem 3.5. Let n € N. There is a minimal idempotent q of T,
such that there is no minimal idempotent r of 8S,_1 with ¢ < r.
In particular, if v is the unique reduction of q in 3S,_1, then it is
not the case that ¢ < r.

Proof. The length function ¢ : W — N is a surjective homomor-
phism, hence so is its continuous extension from SW to SN which
we also denote by £. Notice that for any u € W, £o h, = £. Pick
any nonminimal idempotent z of 3N and let X = ¢~![{x}]. Notice
that for each k < w, £[Sy] = {t e N: ¢t > k} and so X N Sy # 0.
Pick a minimal idempotent py of X N.Sy. We claim that py € Tp.
So let k£ > 0 be given and pick an idempotent y of X N 3Si such
that y < po. Then for all u € [A](§), hu(y) < hu(po) = po. Since
((hu(y)) = £(y) = = we have hy(y) € X N B3Sy and so hy(y) = po.
By Theorem 3.2 we may pick p1,pg,... such that (px)p<w is a
reductive sequence and for each k € w, pryr1 < pr and pg € Tj.
Recall that we have fixed n € N. Given any u € [A](f}), hu(pn) =
po and so £(py,) = £(hy(pn)) = €(po) = x and thus p, € X. Pick
a minimal idempotent ¢ of T;, such that ¢ < p,. Suppose that we
have a minimal idempotent r of 3S,,_1 such that ¢ < r.
Pick a € A and let G be the free group over {a} U V. Define a
homomorphism f: W — G by agreeing for W € AUV, that

w fweV

f(w):{ a ifweA.
Denote also by f its continuous extension from W to SG.
Now f(q) < f(pn) and f(q) < f(r) so BGf(pn) N BGf(r) # 0.
Since G is countable we have by [6, Corollary 6.20] that either
flpon) € BGf(r) or f(r) € BGf(pn). Since f(r) and f(py) are

idempotents, this says that f(p,) = f(pn)f(r) = f(par) or f(r) =
f(r)f(pn) = f(rpn). Let B ={w € W : v,_1 occurs in w}. Then
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B € rpy 50 f[B] € f(rp). Since fSu1] € f(r) and f[Sn 1] N
J1B] =, we have that f(r) # f(rpn) and 50 f(pn) = f(pur).

Let ¢/ : G — N be the length function on G and denote also
by ¢ its continuous extension from BG to BN. Then ¢ (f(pn)) =
O (f(pnr)) and for w € W, '(f(w)) = £(w) so {(pn) = L(par) =
U(pp)+L(r). Since £[Sy_1] ={t e N:t >n—1} and r € K(8Sp-1),
¢(r) € K(pN) and so z = {(p,) € K(SN), a contradiction. O

We observed in the introduction that the relation < defined in
Definition 1.6 has the property that the set of predecessors (if any)
of an element of 35, is linearly ordered. We shall show in Theorem
3.7 that elements of (35, may have many successors.

We begin with a lemma which allows us to propagate branching
upwards along special reductive sequences in the < tree.

Lemma 3.6. Assume (po, . ..,pn+1) is a special reductive sequence.
If (po,...,pn—1,) is a reductive sequence (equivalently, either n =
0 or pp—1 < x) then (po,...,pn,T) is a special reductive sequence

where, letting & be the inverse of ppxp, in the group pnBSnpn,
T = IPp4+12Pn-

Proof. Noting that T = Zp,+1pnTpn, a straightforward calculation
shows that T is an idempotent. Since p,y1 € K(8Sn+1) and ppi1
is a factor of T, T is a minimal idempotent. Clearly, T < p,.
Suppose u € [A]("}!). We wish to show hy(Z) = p,. Of course,
hy(Z) is an idempotent since h, is a homomorphism. So, show-
ing that h,(Z) < p, will suffice. This is immediate if the restric-
tion of u to n is in [A](%) ie. is vg...vn—1. So suppose other-
wise. Notice that this implies that n # 0. We have hy(ppzp,) =
Pn—1Pn—1Pn—1 = Pn—1. Since i'(pnl'pn) = DPn, hu(j)pn—l = Pn—1-
Since hy(Z) is in the group pp,—18Sn—1Pn—1, this implies that
hy(Z) = pn—1. A simple calculation now shows that h,(Z) = p,. O

Theorem 3.7. Let k = max{w, |A|}. If (po,...,pn) is a special
reductive sequence which can be extended to a special reductive se-
quence (po, . .., Pni1) then there are 22" elements x of 3Sn11 such
that (po,...,pn,x) is a special reductive sequence. Moreover, if
Pn+1 € Thy1 then there are as many such x in Tphyq.

Proof. For convenience, whenever z € 35,1 and vy persists in z,
we will write 7(z) and 7n(z) for 7, () and n,, () respectively.
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By Theorem 2.17, there is a subset U of Wy of size 22" such
that 7(p1)zn(p1) are distinct as = ranges over U. By shrinking U if
necessary, we may also assume all are distinct from 7(p1)n(p1). Let
Z be the inverse of pgrpy in pgBWopo for x € U. By shrinking U
again, we may assume that whenever x and y are distinct elements
of U, 7(p1)an(p1) # 7(p1)yn(p1). (If the collection of 7(p1)yn(p1)
has size less than 22" this is clear, otherwise the desired subcollec-
tion can be constructed inductively.)

For x € U define z, € 8Sg for kK = 0,...,n + 1 by induction
according to Lemma 3.6 so that g = x and whenever k < n,
Tkl = TpPr+12kPr Where Ty is the inverse of pyxipy in the group
P OSkpr. Lemma 3.6 implies that if x € U and 0 < k£ < n + 1 then
(po, - - -, Pk—1,Tk) is a special reductive sequence.

We first show that if  and y are distinct elements of U then
Tnt1 # Ynt1. Fix such x and y. Let P(k) denote the following:
T(Pr+1)zKn(Pr+1) is not equal to

T(Pk+1) Yk (Pr+1),

T(Pk+1)Jkn(Prt1) or

T(Pk+1)1(Ph+1)-
We will show by induction on k& = 0,...,n that P(k) holds, but
first notice that this will imply that z,11 # yn+1 as follows. Since

T(Pn+1)9€n"7(pn+1) ?é T(pn+1)yn77(pn+1)

and 1(pn+1) = pun(Pn+1), we must also have
T(Pns1)TnPn # T(Pra1)YnPn -

Since T(pn+1)TnPn = T(Tn+1) and 7(Pnt1)YnPn = T(Ynt1), We con-
clude &y 41 # Yn+1-

To begin the proof by induction that P(k) holds for k = 0,...,n,
notice that P(0) is true by choice of U.

Assume k£ < n and P(k) holds. 7(pr+1)xxn(pr+1) contains an
element X which is not in 7(pxt1)yen(Pk+1), T(Pk+1)Tkn(Pr41) Or
T(pr+1)n(pr+1)- Let p be the characteristic function of X as a
subset of S modulo 3 so that u* counts the number of vj-gaps
from X modulo 3 in elments of Sg11. We see that

1 (7 (Pr+1) Yk (Pr11)) = O,
1 (7 (1)K (Pr41)) = 0,
(7 (P41)1(pry1)) = 0 and
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(T (Pr1)zen(prg1)) = 1.
We will show that p (7(pri2)zr1n(prs2)) is not equal to

M+ (T(pk+2)yk+177(17k+2)) )
1 (T (Prt2)Ge41m (Prt2)) or
1t (T (Prs2)n(Pre2))
thus completing the inductive argument.
Using parts (a), (d) and (e) of Lemma 2.16 and the fact that

T(Prt2) = T(Prt2)Prr1 and N(prr2) = Pry1m(Prr2), it will suffice
to show that u" (pri12kr1prs1) is not equal to

1 (Pr 1Yk r1D841),5

1 (Pry 1Tkt 1Pk41) OF

1t (Pre1)-
Part (b) of Lemma 2.16 implies that u* (pg+1) = 0. Using the defi-
nitions of yx11 and zp 1 we can use Lemma 2.16 again to compute
that put (Prg1Yr+1Pk41) = 0 and ¥ (Ppg1Tr41Pk41) is either 1 or 2
depending on whether X is in 7(pgy1)Zkn(pr+1) or not. Using the
fact that (Pr-1Tk+1Pk+1) Pr1Yk-+1Pk+1) = Tkt (Ph1Yk+1Pk4+1) =
pr+1 and Lemma 2.16 yet again, we see that u® (pgi1Jks1prr1) 1S
also 0.

Now assume that p,+1 € Tp4+1. In order to complete the proof of
the theorem, it will suffice to show that x,+1 € T),41 for all x € U.

Since pp+1 € Tht1, pr € Ty, for k < n by Lemma 2.2 and Theorem
2.12. By the definition of 7,11, for r > n + 1 choose p, such that
Pnt1 < pr (implying pp < p, for k& < n also). Notice that by
Theorem 3.4 we could have chosen the p, so that < p; >;~,, would
be a special reductive sequence, but we won’t need that assumption.

Fix x € U. We will show by induction on k = 1,...,n 4+ 1 that
z € Tk.

Since (po, x1) is a special reductive sequence, x1 € T} by Theorem
3.3.

Assume 1 < k <n+1 and a3 € T. By Theorem 2.3, ppxippr €
Ti. Moreover, T € T} since ppTipr is a subgroup of prpBSkp.
We will now show by induction on r > k + 1 that there is some
k1 € BS, such that 2,1 < 2¥+1, thus verifying that x5, € Thp1.

For r = k + 1, simply take z¥+1 = ;..
Suppose k + 1 < r and x4y < 25+ where 25+ € 3S,.. Choose
k o~k k41

Ty, Ty -

€ (S, such that zj < acff and & < ZF. Let x;[1 be an
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idempotent in 35,41 such that xfill € BW (zkp, 12k p,xk1) and
E+1 k+1~k k

ZTpy1 € (xr+ $rpT+1wrpT)6W‘

In order to show zj11 < xffi%, suppose u € [A] (Zfl) Notice that

hu(xffill) is an idempotent in (3Sk.1, so to complete our proof it
will suffice to show that hu(xffﬂ) < 2g41. This is immediate when
considering the two possible cases: ulr € [A](,%,) or ulr € [A](}).
In the first case, use the fact that h,(z**1) = 2;,,. In the second

case, notice that h, (zF*1) = py since pp < zpy1 < zFFL. O

We have seen that there are finite special reductive sequences
which have 22 continuations, where x = max(w, |4|), and shall see
that there are others which cannot be continued.

By Theorem 1.5, if pg is any minimal idempotent in 8.5y and p;
is any minimal idempotent in 357 such that p; < pg, then in fact
po < p1- We see now that such a statement cannot be extended to
n = 2.

Theorem 3.8. Let pg be a minimal idempotent in 35Sy and let py
be a minimal idempotent in BS1 such that p1 < pg. There exists a
minimal idempotent pa in S such that ps < p1 but it is not the
case that p1 < pa.

Proof. Pick a minimal idempotent g of W7 such that ¢ € p; W1 N
BWipo and g # p1. (Let a € A. Then the left ideals SWivgvopo
and BWiavgpy are disjoint subsets of BWipy. The intersection of
each of them with p; W) contains an idempotent minimal in SW}.)
Notice that the minimal left ideals GWip; and SWiq are disjoint,
since pp is the unique idempotent in p; Wi N FWip1. (We know
that p; is minimal in W) because S is an ideal of W7.)

Pick a minimal idempotent po of 3S2 such that ps € p;3Ss N
BSahy, (q¢)p1. Pick r € (3Ss such that po = rhy, (¢)p1 and pick
a € A. Then

hcwo (p2) = havo (r)hvl {avo) (Q)havo (pl)
= havo (T)hvo (Q)ha (pl)
= havo (T)QPO = havo (T)q and
huga(P2) = huga grhm (Q)ghvoa(pl)
= huea(rho, (@)1

and so hgy, (p2) and hyye(p2) are in disjoint left ideals of SWsy. O
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It is natural to ask whether every finite special reductive sequence
(pi)i, can be extended to a special reductive sequence with n + 2
terms. The answer is “yes” if n = 0 or n = 1, by Theorem 1.5. We
shall show in Theorem 3.16 that the answer is “no” if n > 1. We
shall use some special notation.

Definition 3.9. Let n € w. Then [A]*(§) = [A](}) and if 0 <
m < n, then [A]*(%) = {u € [A](}) : uw(n — 1) = vy and
1 € (A7) }-

Also D,, = {z € W, : (Ym < n)(Vu,u’ € [A]*(%)) (hu(z) =

Lemma 3.10. Let m < n < w and let u € [A]*(%). Then

Proof. We know that h,[SW,,] C fW,,. If m = 0, then D,,, = fW,,,
so assume that m > 0, let k¥ < m, let x € D,, and let w,w’ €
[A]* (7). Then u(w) and u(w') are in [A]*(}) and so hy (hu(z)) =
Pty () = gy () = Bt (B (). O
Lemma 3.11. Let n € N and let py be a minimal idempotent in
06Sy. Let x, € D, and for each m < n let x,, be the unique value
of hu(zy) for u € [A]*(%). There is a special reductive sequence

m

(qo,q1,---,qn) such that qo = po and for each i € {1,2,...,n},
¢ € ¢i—1xiBW; N pWixigi—1 -

Proof. We can assume that x,, € K(D,,) because we can pick y,, €
K(D,) N z,D,, N Dyx, and, given m < n, if y,, is the unique
value of hy(y,) for u € [A]*(%), then 4,,Wi C 2 W,, and

Assume first that n = 1, let g9 = pg, and let ¢; be a minimal
idempotent of SWy with ¢1 € qor18W1 N BWix1q9. Then ¢1 < qo
and so for any u € [A]({), hu(q1) < hu(go) = go and thus hy(q1) =
qo- Also 1 € K(BW1) = K(S51) because S is an ideal of Wj.

Now assume that n > 1 and the lemma is valid for n — 1. Note
that by Theorem 1.5 D,, N K(W,,) # ( and thus z,, € K(D,) =
D, NK(fW,). By Lemma 3.10 z,,_1 € D,,_1. We also observe that
Tn—1 € K(BWy—-1). To see this, let u = vgvgvy - - - vp—2. Then u €
[A]*(nn_l) 80 hy(zpn) = xp—1. Also hy[W,] = Wy,_1 so hy,[W,] =
BW,,—1 and thus by [6, Exercise 1.7.3], hy[K(8W,)] = K(8Wp-1).
Thus zy,—1 = hy(zy) € K(6W,—1).



28 TIMOTHY J. CARLSON, NEIL HINDMAN, AND DONA STRAUSS

By the induction hypothesis we may pick a special reductive
sequence (qo, q1, - - - ,qn—1) such that go = pp and for each i € {1, 2,
coo,n—1} ¢ € g2 BW; N BW;xiqi—1. Pick a minimal idempotent
gn of BW,, such that ¢, € gn_12,8W,, N W,x,qn—1. Then g, <
Gn—1. Also, since S,—1 € gp—1 and {w € W, : v,_1 occurs in
w} € zp, we have that g, € 55, and so ¢, is minimal in §S,,.

Let u € [A](,™ ;). It remains to show that hy(gn) = gn-1. If u =
VU1 - - - Up—ot for some t € AU {vg,v1,...,v—2}, then hy(gn—1) =
gn—1 SO hu(Qn) < gn-1 and thus hu(Qn) = dn—1-

So assume that u = w'v,_o for some v’ € [A](7Z}). Then u €

n—2
[A]*(nn_l) and so hy(x,) = xp—1. Also hy(gn-1) = hy(gn-1) =
qn—2. Thus hu(Qn—lxn) = Gn—2Tpn—1 and hu(anTL—l) = Tp—1qn—2-
Since z,,—1 € K(SW,_1), we may pick a minimal right ideal R of
BW,,_1 and a minimal left ideal L of BW_1 such that q,_ox,_1 €
R and z,_1gn_2 € L. Then g,_1 € RN L so q,_22,1 € R =
n-1BWyn—1 and x,_1gn—2 € L = W)y, _1G,—1 S0 hu(Qn) < gn—1 and
thus hy(qn) = ¢n-1- O

Notice that if in Lemma 3.11, x; is a minimal idempotent in .57
and x1 < pg, then q1 € quz18W1NEW1x190 = 21 8W1 N BW1x1 and
S0 q1 = X71.

Definition 3.12. We choose any ¢ € A and define E to be the set
of words in Wy in which ¢ does not occur.
We now give an inductive definition of a subset R, of W, for
each n > 2.
Ry = lelEU()Wg and if n > 2,

R, = Wn—lhvn_l [Wl}vn—an—IWn .

We observe that, for every n > 2, R, is a right ideal of W, and
Wn—an g Rn

Lemma 3.13. If py is any minimal idempotent in 3Sy, there is a
special reductive sequence (pg,p1,p2) for which Ry € po.

Proof. Let ¢ be the element of A used to define Ry and let B = A\
{c}. We first deal with the case in which B = (). Then E = () and so
Ry = WivivgWs. Let ¢ be a minimal idempotent of SW5 satisfying
q € pov1veBWo N BWapg. Then Wy € pg so WivivgWs € ¢ and thus
Ry € q. Note also that hec(q) < hee(po) = po and so hee(q) = po.
Let p1 = heyy(q). Now ¢ is minimal in the subsemigroup ¢SWs of
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BWs by [6, Theorem 1.65] and so p; is minimal in Ay, [cGWa] =
c¢BfW1, hence in BWj. Since also p; € 357 we have that p; €
BS1 N K(BW1) = K(351).

Now choose ps to be a minimal idempotent in 35Sy such that
p2 € p1gBS2 N BS2gp1. Then WiRyWsy € po and W1 RoWy C Ry
so R € po. Now let u € [A](%) If uw = cvg, then hy(cvy) =
cc so by Lemma 1.10 hy(p1) = hee(q) = po and thus hy(p2) €
pop1hu[BS2] N hy[BS2lpipe € p18S1 N BS1p1 so hy(p2) = p1. If
u = vot for some t € {c, v}, then hy(cvy) = cvg so by Lemma 1.10
hu(p1) = hewy(q) = p1 and thus hy(p2) € prhy[gBS2) N hy[BS2q]p1
s0 hy(p2) = p1. So (po, p1,p2) is a special reductive sequence.

We now assume that B # (). Recall that E is the semigroup of
words over B. Let W] be the semigroup of words over A U {wv}.
Pick a minimal idempotent gy of SE and a minimal idempotent ¢;
of BW] such that ¢1 < go. Note that for any b € B, hy(q1) = qo-

Let y = he(q1). Then y < he(qo) = qo- Let 2 = viqiyqry. Note
that EvgWi € q1 so viEvgW1Ws € z and thus Ry € z.

Let H = {xz € Wy : for all a,b € A, hg,(z) = hpy,(z)}. Note
that by Theorem 1.5, H N K(SW3) # (. In particular, H is a
compact subsemigroup of Wy and K(H) = HNK (W,). If b € B,
then hyyy(q1) = hy(q1) = qo and so hpy,(2) = voqoyqoy = voy and
iy (Po) = po. Also heyy(2) = voyyyy = voy and hewy(Po) = po-
Thus pgz € H and zpg € H. We can choose a minimal idempotent
x of H with x € pozH N Hzpg. Then x € K(6Ws), x < pg, and
Ry € x.

Let p1 = hey(z) and note that, given any a € A, hgy(z) =
hevy () = p1. Let I be the ideal of W7 consisting of words in which
c occurs. Then K (BW;) C T C hey[BW2] and so

JURS hcvo [K(BW2)] = K(hcvo [5W2]) = hcvo [/BWQ] N K(BWI)

and so p1 € K(BW1) = K(B8S1). Also p1 < heyy(po) = po and
therefore h,(p1) = po for all a € A.

Now choose ps to be a minimal idempotent of 3Sy with py €
p1xBS2NBSaxpr. Then po < p; and since Re € x, Ry € po. Finally,
let u € [A](}). We show that hyu(p2) = p1. If u = avy for some
a € A, then hy(p2) € pop1hu[BS2] N hy[BS2]p1po € p18S1 N BS1p1.
If uw = vt for some t € AU {vg}, then hy(p2) € pirhy[zBS2] N
hy[BS22)p1 € p18S1NBS1p1. Thus, in either case, hy(p1) = p2. O
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Lemma 3.14. Let n > 1, let pg be a minimal idempotent in 3.Sy
and let p1 < pg be a minimal idempotent in 3S1. Then there exists
a special reductive sequence (qo,qi, - ..,qn) such that qo = po and
R, € qn. Furthermore, if n > 2, then q1 = p1 and if n > 3, then
q2 € Ts.

Proof. By Lemma 3.13, this holds if n = 2. So assume that n > 3
and that the statement of the lemma is true for n—1. Pick a special
reductive sequence (rg,r1,...,7,—1) with ro = pg, Rp—1 € Th—1,
and with 1 = py if n > 3. Let x, = hy, , (p1)Tn—1. Then R, € z,,
because WivgWy = S1 € p1 so hy,  [Wilvn—1WoR,—1 € z, and
WoR,—1 C Ry—1.

We claim that @, € Dy,. Solet m < n and let u € [A]*(7%). Then
hu(rn—l) = hum,l (rn—l) = Tm—1 and hy (hvnfl(pl)) = hvn_1(u) (pl)
= hy,, ,(p1). Thus hy(zn) = hy,, ,(P1)Tm—1, which is independent
of the choice of u.

Pick by Lemma 3.11 a special reductive sequence (qo, q1,- - -, qn)
such that go = po and, for each m € {1,2,...,n},

Im € qm-1TmBWu N Wi Zmm—1 ,

where for each m € {1,2,...,n — 1}, xy, = hy,,, , (p1)"m—1. Notice
in particular that 1 = hy,(p1)ro = pipo = p1 and thus, since
q1 € qor1 W N W w190, we have 1 = py.

Now ¢, € ¢gn_12,06W,, and R,, € x,,. Since W,_1R,W,, C R,,, it
follows that R, € g,.

Finally assume that n > 3. Then r; = p; so x2 = hy, (p1)p1-
Therefore

q2 € p1z2Wa N fWazapr C prhy, (p1)BWa N BWahy, (p1)p1 -
By Theorem 2.9, g2 € T5. ]

Lemma 3.15. Let n > 2 and let ¢ € A be the letter used in
the definition of E and Ry. Define u, and wy in [A]("F") by
Up = VUL -+ Vp_1 and w, = vocv1Vs - Vp_1. Then hy, [R,] N
P, HRn] = 0.

Proof. Notice that hy, "' [W,] € W1 and hy, L [Wh] € Wiyt
Assume first that n = 2 and suppose we have x € W3 such that
hu, () € Ry and hy,(x) € Ro. Then hy, (z) € WivizugWy for some
z € E so x € Wovgzv1 W3 and thus the first variable after the first
occurrence of vg in x is vy. Similarly Ay, (x) € WiviyvyWa for some
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y € E so x € WoveyvgW3 and thus the first variable after the first
occurrence of vy in x is vy, a contradiction.

Now assume that n > 2 and hy, ' [Ru_1]Nhw, , [Rn_1] = 0.
For each k € w and = € W, define a vy block in = as a segment
of x in which all the letters are in A U {v;} with the first and
last letters being v and which is maximal with respect to this
condition. Also, if & > 0, let Wi = {& € W, : vy opccurs in z}.
Define ¢, : W — Wi, as follows. Let x € Wy. If there is only one
vg—1 block in z, let @i (x) be the word which begins after the vg_q
block and continues to the end of z. Otherwise let ¢x(x) be the
word which begins after the first vx_1 block and ends immediately
before the next occurrence of v_1. For example, if a € A, then
e3(vovaave) = 0 and @3(vovaavy) = p3(voveaveavivevy) = av.

We claim that if z € R,, then ¢,(x) € R,—1. Indeed, from
the definition of R,, we have that x = yv,_1za for some y €
Wyp—1hy, [W1], z € Ry—1, and o € W,,. If @« € W, _1, then
on(z) = za. Otherwise, a = dv,_17y where § € W,,_; and v € W,
so that ¢, (x) = z0. In either case, p,(z) € Ryp_1Wyp_1 C Ry,—1.

Next observe that if z € W, | has the property that h,, (z) € R,
and hy, (z) € Ry, then h,, and h,, map the first v,-block of = to
the first v,_1-block of h,, () and hy, (x) respectively. Indeed, if
this statement does not hold for h,,,, vp must occur in & between
the first v,-block of z and the next occurrence of v, in =, and vgy
must be the only variable which does. However, vy is then the
only variable which occurs in h,,, () between the first v,_1-block
of hy, () and the next occurrence of v,—1 in hy,, (x). Since n > 2,
this contradicts the assumption that hy, () € R,. The assumption
that h,,, does not map the first v,-block of x to the first v,_1-block
of hy, (z), leads to a contradiction in a similar way.

It follows that

hup 1 (Pnt1(2)) = ¢n(hu, (2)) and
hwn_1(¢n+1(x)) = ‘Pn(hwn@))

because, for y € W, hy, (y) = by, ,(v) and hy, (y) = b, (Y).
Now suppose we have some 2 € hy,, ' [R,]Nhy, ' [Rp]. Then z €
W, 1 because v,_1 occurs in any member of R, and ¢, (hun (x)) €

Ry—1 and ¢y (he, (2)) € Rnp—1 so

Ont1(2) € Py, HRu1] O b, M [Rua],
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a contradiction. OJ

Theorem 3.16. Letn > 1, let pg be a minimal idempotent in 35y,
and let p1 be a minimal idempotent in 3S1 such that p1 < py. Then
there exists a special reductive sequence (qo,q1,--.,qn) Such that
qo = po and there is no r € Wy for which ¢, < r. If n > 2,
then q1 = p1.

Proof. Pick (qo,q1,---,qn) as guaranteed by Lemma 3.14 and sup-
pose we have some r € [SWpyy1 for which ¢, < r. Let u, and

wy, be as in Lemma 3.15. Then hy, (1) = hy,(r) = ¢, and so
hu, '[R,] € r and hy,, '[R,] € 7, a contradiction. O
Corollary 3.17. Let n > 1. There is a minimal idempotent of 3Sy,
in Cp \ Ty.

Proof. Let {qo,q1,---,qn) be as guaranteed by Theorem 3.16. Then
qn € Cp \ T, O

We need a different argument to show that Cy # T7.
Theorem 3.18. There is a minimal idempotent of 351 in Cy \ T}.

Proof. Choose any ¢ € A. Let X denote the set of elements of S
in which there is no occurrence of ¢ before the first occurrence of
vg. We observe that clgg, (X) NT1 = 0, because X N hey, [S2] = 0.
We shall show that clgg, (X) N Cy # 0.

If A= {c}, then 5S; = Cy and so clgs, (X) N Cy # 0.

Assume that |[A| > 1. Let S) = {w € Sy : ¢ does not oc-
cur in w} and let Let S} = {w € S : ¢ does not occur in w}.
Let go be a minimal idempotent in 3S( and let ¢; be a minimal
idempotent in 357 such that ¢1 < go. Then h.(q1) = qo for all
a € A\ {c}. Let 1 = qoqihc(q1). Then, for any a € A\ {c},
ha(21) = he(21) = qohe(qr). So 1 € Cy. Since x1 € clgg, (X), we
again have clgg, (X) N Cy # 0.

Now X is a right ideal of S7 and so clgg, (X) is a right ideal of
B35St by [6, Theorem 2.15]. Thus clgg, (X) N C; contains a minimal
idempotent of C7, and any minimal idempotent of C is also a
minimal idempotent of 35]. g

4. APPENDIX — PROOF OF THEOREM 1.14

We provide here the necessary adaptations of the proof of [3,
Theorem 2.12] to establish Theorem 1.14. As we have previously
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remarked, this theorem holds in the more general setting of [3], in
which it is not assumed that D = {e} or that T, is the identity.
The reader is referred to [3] for the definition of the more general
parameter system used there.

Definition 4.1. Let n € N with n > 2.

(a) For i € {0,1,...,n — 1}, wy; is the word obtained from
Vo1 - - - Up—1 by deleting v;.
(b) Fori e {0,1,...,n — 1},

Upi={weW: lw)=n,w(i)e AU{v 1 <i},
and for all j € {0,1,...,n— 1}, if j <4, then
w(j) = v; and if j > 4, then w(j) =v;_1}.

Thus if 0 < i <n — 1, a member of U, ; is of the form
Vo -+ Vi—1tv; - -+ Vo where t € AU {vg,v1,...,0i-1}.
Notice that for any n € N with n > 2, [A](,",) = U:-L;Ol Un,i-

n—1

Theorem 1.14. Let X be a subsemigroup of BW such that h,[X] C
X for everyu € W, XNBW,, is compact and X N3S, is non-empty
for every n € w. Let pg be a minimal idempotent of X N Wy and
let p1 be a minimal idempotent of X NBW7 such that p1 < pg. Then
there is an infinite reductive sequence (po,p1,p2,ps3,...) such that
Dn 18 a minimal idempotent of X N BS,, and ppy1 < pp for every
n e w.

Proof. Note that hy(p1) = po for all u € [A] (é) We first show how
p2 can be defined. Let o = hy, (p1). Then o € X N W5 so we may
pick an idempotent ps € p1a(X N W) N (X N FWa)ap; which is
minimal in X N Wy, Since pia € BSs, p2 € 552 so pa is minimal
in X NGSs.

Now let u € [A] (%) Then hy[S2] € S1 so hy(p2) € X NES;. Tt
thus suffices to show that hy(p2) < p1. If u € Ua, then h, is the
identity on Si, so hy(p2) < hy(p1) = p1. Now assume that u € Uz
and pick t € A such that u = tvg. For w € S, hy(w) = hy(w), and
80 hy(p1) = he(p1) = po. Also, by Lemma 1.10, hyy, © hy, is the
identity on Wi. So hy(a) = hiy, (hv1 (pl)) = p1. Therefore h,(p2) €
Pop1ha[X N W] N Ay [ X N BWalpipo € pr(X NEWL) N (X NBWL)py
s0 hy(p2) < p1.

We now proceed to an inductive construction. Let n € N with
n > 2.
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We shall introduce elements, (such as 7; or ;) which depend on
n as well as on i. However, in an effort to reduce the number of
subscripts used, we shall not indicate the dependence on n in the
notation.

We make the inductive assumption that we have chosen p; for
i€{0,1,2,...n}, n;, 1}, &, and &, for i € {1,2,3,...,n — 1}, and
v and 4, for i € {2,3,...,n — 2}, if any, so that the following
hypotheses are satisfied.

(a) For each i € {0,1,...,n}, p; is a minimal idempotent of
X NgGS;.

(b) For each i € {1,2,...,n}, p; < pi—1 and hy(p;) = pi—1 for
every u € [A](;;).

(c) For every i € {1,2,...,n— 1}, n; and 7, are minimal idem-
potents in X N GW,,_1.

(d) Forevery i € {1,2,...,n—1},m; € Xp,—1 and 1} € pp_1X.

(e) Forie {1,2,...,n—1}, 0; = hu, ,_,_, (M),
6£ = hwn,n—i—l(”é)’

Dn € Pp—101 - 0p—1X, and
Pn € X6, 1+ 01pp—1.

(f) For every i € {1,2,...,n — 2}, if any,

M € Vi Yn—2Nn—1X and
m € X 1o i

(g) For every choice of u,; € Uy,; for i € {0,1,...,n — 1}, the
entry in the row labeled by u and the column labeled by x
in the following tables is hy(x).

U T: Pnoi1| 01] 02| 03| ... |0n_2 | dn_1
Un,n—1 Pn—1
Un,n—2 Pn—2| T
Un,n—3 Pn—2| 71| N2
Un,n—4 Pn—2| 71| 72| "3
Un, 1 Pn—2| 71| 72| V3| -+ |TIn—2
Un,0 Pn—2| 71| Y2 | 73] -+ | In—2 | n—1

Table 1
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u z: 0, 4| O o .| 05| 65| 8 | pn1
Unp,n—1 Pn—1
Unp,n—2 77I1 Pn—2
Unp,n—3 77,2 ’Yi Pn—2
Unp,n—4 77:/’) Vé '}/i Pn—2
Un,1 Mnea| < | V3| Y| M |Pr—2

/ / ! / /
Un,0 Mh—1| Tn—2| -+ 73| 72| 71 | Pn—2
Table 2

We observe that these assumptions do hold if n = 2, with n; =
ny = p1. For hypothesis (e), note that 1 = 0] = a. Hypothesis
(f) is vacuous, and we have already verified the table entries of
hypothesis (g).

Notice that since Ay, ,,_;_,[Wn—1] € W, one has that each ¢; €
X N BW,. Also, since h,[W,] C W,_1 for each u € [A](,",), we
have that each v; € X N GW,,_1.

By assumption (e), p, € pp—101---0,—1X. So there is some
r € X such that p,_161 - 0p_12 = pn = pPupn € PpX. Such x is
necessarily in SW,, because p, € SW,. So

{$ EXNPWy:pp101---0p_1x € an}

is nonempty and is therefore a right ideal of X N GW,,. So we can
choose a minimal idempotent u,, of X N BW,, which is in this right
ideal and in the left ideal (X N BW,,)p, of X N BW,.

Now let i € {2,3,...,n — 1}. Note that ;- -0p_1pn =
0i -+ Op—1fnfn, SO

{.CL‘ eXNPW, :pp_10162---0;_1x € p,X and x € J; - - - (5n_1,unX}

is nonempty, because it contains ¢; - - - ,,_1 4. It is therefore a right
ideal of X N BW,,, and we can choose a minimal idempotent u; of
X N W, which is in this right ideal and is also in the left ideal
(X N BW,)py of X N LW,.

Similarly, {x € XNAW,, : pp_1x € pp X and z € §1 -+ 1 n X }
is nonempty because 01 - -+ 0,1/, is & member, and thus we may
choose a minimal idempotent 1 of X N GW,, which is in this right
ideal of SW,, and also in the left ideal (X N GW,,)py,.
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Thus we have chosen minimal idempotents p1, po, . . ., i, in Wy,
which satisfy the following conditions:

w; € Xpy, foralli e {1,2,...,n};

Prn—101 - 0i—1p4; € ppX for all i € {2,3,...,n};
(*) Pn—1H1 € ppX; and

Wi € 6+ Op_1pupX foralli € {1,2,3,...,n—1}.

By a left-right switch of these arguments, we can chose mini-
mal idempotents p}, b, ..., pl, in SW,, which satisfy the following
conditions:

W, € ppX for alli e {1,2,...,n};

- Wil - 0ipn—1 € Xpy for all i € {2,3,...,n};
:ullpn—l € Xpy; and
e Xuldl -8 forallie{1,2,3,...,n—1}.

(While SW is right topological and not left topological, all of the
algebraic facts that we are using in this proof are valid from both
sides.)

Fori e {1,2,...,n},let € = huw, 1, (1), let € = o,y (115),
and note that ¢;, ¢, € X N BW,41. Then pper -, (X N BWhy1)
and (X N AWy 41)€, - - - €pn are respectively right and left ideals of
(X N BWy41). Pick a minimal idempotent py,1 of (X N BW,41)
such that

Dn+1 € Pp€1 -+ Gn(X N 5Wn+1) N (X N ﬂWnJrl)e:z T 6,1pn .

Since {w € W41 : vy, occurs in w} € €1, ppt1 € BSp+1. Conse-
quently, pnp41 is minimal in X N BS,41.

We now claim that the induction hypotheses are satisfied for
n+ 1 with n;, n}, d;, 9}, vi, and 7, replaced by pu;, 1, €, €, §;, and
d; respectively. That is, we claim that

(a) Foreachi € {0,1,...,n+1}, p; is a minimal idempotent of
X NgS;.

(b) For each i € {1,2,...,n+ 1}, p; < pi—1 and hy(p;) = pi—1
for every u € [A](;2,).

(c) For every i € {1,2,...,n}, u; and p; are minimal idempo-
tents in X N GW,.

(d) For every i € {1,2,...,n}, p; € Xp,, and p; € p, X.
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(e) For /L € {17 27 tee 7n}7 € = hwn+1,n7i (M'L)7 E{L = hwnﬁ»l,nfi (u;)’
Dn+t1 € Prel - €, X, and
Pnt1 € Xe€,, - €pn .
(f) For every i € {1,2,...,n — 1},
Wi € TR 5nfl:unX and
€ Xpldy -0l

(g) For every choice of wyy1,; € Upq1, for i € {0,1,...,n}, the
entry in the row labeled by u and the column labeled by x
in the following tables is hy(x).

u X . Pn €1 €9 €3 -..| €Ep—1 €n
Un+1,n Pn
Un+1,n—1 Pn—1| M1
Un+1,n—2 Pn—1| 01| p2
Un+1,n—3 Pn—1| 01| 02 M3
Up 1,1 Pn-1| 01| 02| 03| ... | Hn—1
Un+1,0 Pn—1| 01| 02| 03| ... | Op—1| pn
Table 3
. / / / /
U x: €, |le 4 €3 | €5 | € | pn
Un+1,n Dn
/
Un+1,n—1 K1 | Pn—1
/ !
Un+1,n—2 Ha | 01 | Pn—1
/ ! !
Un+1,n—3 M3 | 03 | 01 |Pn-1
/ ! ! !
Up+1,1 Pp—1 | -+- | O3 | 09 1 | Pn-1
/ ! ! ! !
Un+1,0 Hp |Op—1 | --+ |03 |92 |01 |Pn-1
Table 4

All of these conclusions can be easily verified except (g) and the
assertion in (b) that hy(pn+1) = hu(pn) for all u € [A](,",). We
show first that this latter assertion follows from statement (g).

For any i € {0,1,...,n}, hy, 1 i(pnt1) € X N BS, and p, is
minimal in X N Sy, so it suffices to show that Ay, ., ,(Pni1) < Dn.
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Since pp+1 < pp and hy,, ., is the identity on W, we have that
hun+1,n (pn+1> S hun+1,n (pn) = pn

Now let i € {0,1,...,n— 1} and let © = up41,;. We have p,41 €
Pr€l - €n—iX and so hy(ppt1) € hy(pper - €,—i)X and by (x)
and Table 3, hy(pner - €n—i) € ppX. Also ppy1 € Xe,_,---€\pn
50 hy(Pn+t1) € Xhy(€e,_; -+ €pn) and by (xx) and Table 4,

hu(€ i+~ €1Pn) € Xpp .

It thus suffices to verify the entries of Table 3 and Table 4. We
shall write out the verification for Table 3. The verification for
Table 4 follows by a left-right switch of the arguments. To this
end, let a choice of w,41,; € Upy1, for i € {0,1,...,n} be given.

We have that hy,,,, is the identity on Sy, s0 hy, ., (Pn) = Pn-
For i € {0,1,...,n — 1}, hy,,,; = hu,, o0 Sy 80 hy, ., (Pn) =
hu, ;(Pn) = Pn—1 by hypothesis (b).

The diagonal entries are correct because ¢; = hy,,,,,,_,(1;) for
i€{1,2,...,n} and hy, ,_; © hw,,,,_; is the identity on W,,.

Let k € {1,2,...,n—1},let i € {0,1,...,n—k—1}, and let u €
Up+1,i- To finish the proof we need to show that h,(e;) = dx. Now
€k = P,y (k) 5O we are showing that Ay (hu,, ., (1)) = Ok
Since i < n — k, we have that

hu (hwn+1,n—k (Nk)) = hwn,n—k—l (hu(lu’k)) *
So it suffices to show that

hwn,n—k—l (hu(lu’k)) = 5k .

Now hu,, (k) = dx by hypothesis (e), so it suffices to show
that hy(pur) = nk. And since hy () and 7 are idempotents in
XNEW,_1 and n; is minimal in X NGW,,_1 it suffices to show that
ha(pr) < M.

Now g € Xp, by (%) so that hy(ur) € Xhy(pn) = Xpp—1, the
equality holding by hypothesis (b). Since n; € Xp,—1 by hypothesis
(d)7 Nk = NkPn—1 € (X N ﬂWn—l)pn—l- Since (X N /BWn—l)pn—l
is a minimal left ideal of X N W, _1, (X N W) = (X N
BWy—1)pn—1. Thus we have that h,(ug) = hy(pug)pn—1 € (X N
BWh—1)pn—1 = (X N Wyp_1)0.

It remains to show that h,(ux) € npX. We have by (%) that ug €
Ok -+ Op—1pnX. If i = n—k—1, we have that hy(ux) € hy(0r)X =
nkX by hypothesis (g), so assume that i < n—k—1. Then h,(ux) €



ALGEBRA OF pwW 39

ho(6k) - hu(On—i—1)X = Y& - Yn—i—2Mn—i—1X, the equality hold-
ing by hypothesis (g). If i = 0, we have directly that h,(ux) €
Ve Yn—2Mm—1X. Otherwise 7, ;1 € Yn—i—1---Yn—2M-1X by
hypothesis (f) so again hy(ur) € Yk Yn—2mm—1X. Also n; €
Vi * Yn—2Mn—1X by hypothesis (f). Now 7,1 € K(X N ﬂWn,l)
and Yk Yn—2 € XN 6Wn—1 SO Vg * " Yn—2"n—1 € K(X N ﬁWn—l)
and thus as in the previous paragraph, h,(ux) € npX. O
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