Topology Proceedings

This article was published in Topology Proceedings 28 (2004), 361-399. To the best of my knowledge this is the final version as it was submitted to the publisher-NH.

THE GRAHAM-ROTHSCHILD THEOREM AND THE ALGEBRA OF βW

TIMOTHY J. CARLSON, NEIL HINDMAN, AND DONA STRAUSS

Abstract

In a previous paper we established an infinitary extension of the Graham-Rothschild Theorem by producing an infinite decreasing chain of idempotents in the Stone-Čech compactification of the set of variable words over a nonempty alphabet. In this paper we investigate further the algebraic structure of that compactification and determine which finite chains of idempotents are extendable to an infinite chain as above.

1. Introduction

Throught this paper A will denote a nonempty set (the alphabet). We write ω for the set $\{0,1,2, \ldots\}$ of finite ordinals and $\mathbb{N}=\omega \backslash\{0\}$. We choose a set $V=\left\{v_{n}: n \in \omega\right\}$ (of variables) such that $A \cap V=\emptyset$ and define W to be the semigroup of words over the alphabet $A \cup V$, including the empty word, with concatenation as the semigroup operation. (Formally a word w is a function from an initial segment $\{0,1, \ldots, k-1\}$ of ω to the alphabet and the length $\ell(w)$ of w is k. We shall occasionally need to resort to this formal meaning, so

2000 Mathematics Subject Classification. Primary 54D35; Secondary 54H15, 05D10.

Key words and phrases. Graham-Rothschild Theorem, variable words, free semigroup, Stone-C̈ech compactification.

The second author acknowledges support received from the National Science Foundation via grant DMS 0243586.
that if $i \in\{0,1, \ldots, \ell(w)-1\}$, then $w(i)$ denotes the $(i+1)^{\text {st }}$ letter of w.)

For each $n \in \mathbb{N}$, we define W_{n} to be the set of words over the alphabet $\left.A \cup\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}\right)$ and we define W_{0} to be the set of words over A. We note that each W_{n} is a subsemigroup of W.
Definition 1.1. Let $n \in \mathbb{N}$, let $k \in \omega$ with $k \leq n$, and let $\emptyset \neq$ $B \subseteq A$. Then $[B]\binom{n}{k}$ is the set of all words w over the alphabet $B \cup\left\{v_{0}, v_{1}, \ldots, v_{k-1}\right\}$ of length n such that
(1) for each $i \in\{0,1, \ldots, k-1\}$, if any, v_{i} occurs in w and
(2) for each $i \in\{0,1, \ldots, k-2\}$, if any, the first occurrence of v_{i} in w precedes the first occurrence of v_{i+1}.
Definition 1.2. Let $k \in \mathbb{N}$. Then the set of k-variable words is $S_{k}=\bigcup_{n=k}^{\infty}[A]\binom{n}{k}$. Also $S_{0}=W_{0}$.

Given $w \in S_{n}$ and $u \in W$ with $\ell(u)=n$, we define $w\langle u\rangle$ to be the word with length $\ell(w)$ such that for $i \in\{0,1, \ldots, \ell(w)-1\}$

$$
w\langle u\rangle(i)= \begin{cases}w(i) & \text { if } w(i) \in A \\ u(j) & \text { if } w(i)=v_{j}\end{cases}
$$

That is, $w\langle u\rangle$ is the result of substituting $u(j)$ for each occurrence of v_{j} in w.

The following theorem is commonly known as the Graham-Rothschild Theorem. The original theorem [4] (or see [7]) is stated in a significantly stronger fashion. However this stronger version is derivable from Theorem 1.3 in a reasonably straightforward manner. (See [3, Theorem 5.1].)

Theorem 1.3 (Graham-Rothschild). Assume that the alphabet A is finite, let $m, n \in \omega$ with $m<n$, and let S_{m} be finitely colored. There exists $w \in S_{n}$ such that $\left\{w\langle u\rangle: u \in[A]\binom{n}{m}\right\}$ is monochrome.

In [3] we established a strong infinitary extension of the GrahamRothschild Theorem by producing an infinite sequence of idempotents in βW, the Stone-Cech compactification of W. In order to discuss this, let us briefly review some facts about the StoneČech compactification βT of a (discrete) semigroup (T, \cdot). We take the points of βT to be the ultrafilters on T, the principal ultrafilters being identified with the points of T. Given a set $A \subseteq T$, $\bar{A}=\{p \in \beta T: A \in p\}$. The set $\{\bar{A}: A \subseteq T\}$ is a basis for the open sets (as well as a basis for the closed sets) of βT. If $R \subseteq T$ we shall
identify an ultrafilter p on R with the ultrafilter $\{A \subseteq T: A \cap R \in p\}$ and thereby pretend that $\beta R \subseteq \beta T$. We let $T^{*}=\beta T \backslash T$.

There is a natural extension of the operation \cdot of T to βT making βT a compact right topological semigroup with T contained in its topological center. This says that for each $p \in \beta T$ the function $\rho_{p}: \beta T \rightarrow \beta T$ is continuous and for each $x \in T$, the function $\lambda_{x}: \beta T \rightarrow \beta T$ is continuous, where $\rho_{p}(q)=q \cdot p$ and $\lambda_{x}(q)=x \cdot q$. Given $B \subseteq T$ and $x \in T$, let $x^{-1} B=\{y \in T: x \cdot y \in B\}$. Then for any $p, q \in \beta T$ and any $B \subseteq T$, one has that $B \in p \cdot q$ if and only if $\left\{x \in T: x^{-1} B \in q\right\} \in p$. In particular, if $B \in p$ and $C \in q$, then $B \cdot C \in p \cdot q$. See [6] for an elementary introduction to the semigroup βT and for any unfamiliar algebraic facts encountered in this paper.

A subset U of a semigroup T is called a left ideal if it is nonempty and $T U \subseteq U$. It is called a right ideal if it is nonempty and $U T \subseteq U$. It is called a two-sided ideal, or simply an ideal, if it is both a left ideal and a right ideal. Any compact Hausdorff right topological semigroup T has a smallest two sided ideal $K(T)$ which is the union of all of the minimal left ideals of T and is also the union of all of the minimal right ideals of T. If $x \in K(T)$, then $x T$ is the minimal right ideal with x as a member and $T x$ is the minimal left ideal with x as a member. The intersection of any minimal left ideal and any minimal right ideal is a group. Thus if p is a minimal idempotent in T, then p is the unique idempotent of T in $p T \cap T p$. There is a partial ordering of the idempotents of T determined by $p \leq q$ if and only if $p=p \cdot q=q \cdot p$. An idempotent p is minimal with respect to this order if and only if $p \in K(T)$ [6 , Theorem 1.59]. Such an idempotent is called simply "minimal". The intersection of any right ideal and any left ideal of T contains a minimal idempotent. We shall also frequently use the following fact [6, Theorem 1.65]: If T is a compact right topological semigroup, D is a compact subsemigroup of T, and $D \cap K(T) \neq \emptyset$, then $K(D)=$ $D \cap K(T)$.

If (T, \cdot) is a discrete semigroup, there is also a natural extension * of the operation - to βT, for which $(\beta T, *)$ is a compact left topological semigroup. This means that, for each $x \in \beta T, \lambda_{x}$ is continuous. The algebraic facts stated in the preceding paragraph are valid for compact left topological semigroups as well as compact right topological semigroups. For this reason, many of the results
obtained in [3], as well as the present paper, are valid for $(\beta W, *)$, as well as $(\beta W, \cdot)$. This remark applies to [3, Theorem 2.12] and to Theorem 1.5, Theorem 1.14 and Theorem 2.3 in the present paper.

Definition 1.4. Let $u \in W$ with length n. Then $h_{u}: W \rightarrow W$ is the homomorphism such that, for all $w \in A \cup V$,

$$
h_{u}(w)=\left\{\begin{array}{cl}
w & \text { if } w \in A \\
u(j) & \text { if } w=v_{j} \\
w & \text { if } w=v_{j} \text { and } j<n \\
j \geq n
\end{array}\right.
$$

Notice that if $w \in S_{n}, u \in W$, and the length of u is n, then $h_{u}(w)=w\langle u\rangle$. Given $u \in W$, the function h_{u} has a continuous extension from βW to βW. We shall also denote this extension by h_{u}, and observe that $h_{u}: \beta W \rightarrow \beta W$ is a homomorphism. (See [6, Corollary 4.22].) We shall refer to the mappings h_{u} as reductions. If $u, w \in W$, we may call $h_{u}(w)$ a reduction of w.

The following theorem is a special case of the main algebraic result of [3]. It is this result that we used to establish infinitary extensions of Theorem 1.3.

Theorem 1.5. Let p be a minimal idempotent in βS_{0}. There is a sequence $\left\langle p_{n}\right\rangle_{n=0}^{\infty}$ such that
(1) $p_{0}=p$;
(2) for each $n \in \mathbb{N}$, p_{n} is a minimal idempotent of βS_{n};
(3) for each $n \in \mathbb{N}$, $p_{n} \leq p_{n-1}$;
(4) for each $n \in \mathbb{N}$ and each $u \in[A]\binom{n}{n-1}$, $h_{u}\left(p_{n}\right)=p_{n-1}$.

Further, p_{1} can be any minimal idempotent of βS_{1} such that $p_{1} \leq$ p_{0} and p_{2} can be any minimal idempotent of βW_{2} such that $p_{2} \in$ $p_{1} h_{v_{1}}\left(p_{1}\right) \beta W_{2} \cap \beta W_{2} h_{v_{1}}\left(p_{1}\right) p_{1}$.
Proof. This is [3, Theorem 2.12] in the case where $D=\{e\}$ and T_{e} is the identity. (The conclusion about p_{2} is proved there, but not stated.) Or see the appendix to this paper for the proof of a stronger result.

The results of [3] suggest the importance of the relation \prec which we now define.

Definition 1.6. The binary relation \prec on $\bigcup_{n<\omega} \beta S_{n}$ is defined by $q \prec p$ if and only if there exist $m<n<\omega$ such that $q \in \beta S_{m}$, $p \in \beta S_{n}$, and $h_{u}(p)=q$ for all $u \in[A]\binom{n}{m}$.

One fairly easily establishes (using Lemma 1.11 below) that \prec is transitive. In fact, ones sees (using Lemma 1.12) that \prec is a tree (i.e., the set of predecessors of any element is linearly ordered). In [3], strong combinatorial consequences are drawn from the existence of certain kinds of infinite branches through \prec. In Section 3 of this paper we will characterize which ultrafilters lie on such branches and do the same for other kinds of branches. In addition we will consider other structural properties of \prec such as the existence of maximal elements and branching degree.

Recall that the ordinal sum $1+\omega=\omega$.
Definition 1.7. Let $\alpha \in \omega \cup\{\omega\}$. Then $\left\langle p_{i}\right\rangle_{i<\alpha}$ is a reductive sequence of length α if and only if $p_{i} \in \beta S_{i}$ for each $i<\alpha$ and whenever $i<j<\alpha$ and $u \in[A]\binom{j}{i}, h_{u}\left(p_{j}\right)=p_{i}$. If in addition p_{i} is a minimal idempotent in βS_{i} for each $i<\alpha$ and $p_{i+1}<p_{i}$ whenever $i+1<\alpha$, then $\left\langle p_{i}\right\rangle_{i<\alpha}$ is a special reductive sequence.

If $n<\omega, q \in \beta S_{n}, p \in \beta S_{n+1}$, and $h_{u}(p)=q$ for all $u \in[A]\binom{n+1}{n}$, then q is the unique reduction of p in βS_{n}.

Theorem 1.5 tells us that any minimal idempotent in βS_{0} is a term of an infinite special reductive sequence, and that any minimal idempotent in βS_{1} which is less than some minimal idempotent in βS_{0} is also a term of an infinite special reductive sequence. It was shown in [3, Theorem 3.6] that there exist minimal idempotents in βS_{1} that are not part of any reductive sequence of length greater than 2. As we have remarked above, we shall be concerned in Section 3 of this paper with the order relation \prec. In particular, we shall be concerned with determining which idempotents are terms of special infinite reductive sequences. The characterizations that we obtain are in terms of certain special subsemigroups of βS_{n}. We study those semigroups in Section 2.

We are working in this paper in a more restrictive setting than in [3]. (In the terminology of that paper, $D=E=\{e\}, T_{e}$ is the identity, and for each $n<\omega, v_{n}=\left(e, \nu_{n}\right)$.) We do this primarily because the maps h_{u} as defined here are much easier to comprehend than their more general version as defined in [3].

We conclude this introduction with some preliminary results which will be used later.
Theorem 1.8. Assume that the alphabet A is finite, let $m, n \in \omega$ with $m<n$, and let $r \in \mathbb{N}$. There exists $k \in \mathbb{N}$ such that $k>n$
and whenever $[A]\binom{k}{m}$ is r-colored, there exists $w \in[A]\binom{k}{n}$ such that $\left\{w\langle u\rangle: u \in[A]\binom{n}{m}\right\}$ is monochrome.

Proof. This is a consequence of Theorem 1.3 by a standard compactness argument. (See [5, Section 1.5] or [6, Section 5.5].)

Lemma 1.9. Let $m<n<\omega$ and let $u \in[A]\binom{n}{m}$. Then $h_{u}\left[K\left(\beta S_{n}\right)\right]$ $\subseteq K\left(\beta S_{m}\right)$.

Proof. By Theorem 1.5, $h_{u}\left[\beta S_{n}\right] \cap K\left(\beta S_{m}\right) \neq \emptyset$ and thus

$$
K\left(h_{u}\left[\beta S_{n}\right]\right) \subseteq h_{u}\left[\beta S_{n}\right] \cap K\left(\beta S_{m}\right)
$$

By [6, Exercise 1.7.3] $K\left(h_{u}\left[\beta S_{n}\right]\right)=h_{u}\left[K\left(\beta S_{n}\right)\right]$.
We remark that if $m>0$, the inclusion of Lemma 1.9 may be proper. To see this, pick $a \in A$ and let $u=a v_{0} v_{1} \cdots v_{m-1} a a \cdots a$. Then $h_{u}\left[\beta S_{n}\right]$ misses the right ideal $v_{0} \beta S_{m}$ of βS_{m}.

Lemma 1.10. Let $r, s \in W$, let $k=\ell(r)$, and let $m=\ell(s)$. If $k \leq$ m, let $u=h_{r}(s)$. If $k>m$, let $u=h_{r}(s) \frown r(m) r(m+1) \cdots r(k-1)$. Then $h_{u}=h_{r} \circ h_{s}$.

Proof. It suffices to verify that $h_{r}\left(h_{s}(w)\right)=h_{u}(w)$ for every $w \in$ $A \cup V$. Assume first that $k \leq m$. If $w \in A \cup\left\{v_{j}: j \geq m\right\}$, then $h_{u}(w)=w=h_{r}(w)=h_{r}\left(h_{s}(w)\right)$. If $w=v_{j}$ for some $j<m$, then $h_{u}(w)=u(j)=h_{r}(s(j))=h_{r}\left(h_{s}(w)\right)$.

Now assume that $k>m$. If $w \in A \cup\left\{v_{j}: j \geq k\right\}$, then $h_{u}(w)=$ $w=h_{r}(w)=h_{r}\left(h_{s}(w)\right)$. If $w=v_{j}$ for some j with $m \leq j<k$, then $h_{u}(w)=u(j)=r(j)=h_{r}(w)=h_{r}\left(h_{s}(w)\right)$. If $w=v_{j}$ for some $j<m$, then $h_{u}(w)=u(j)=h_{r}(s(j))=h_{r}\left(h_{s}(w)\right)$.

Lemma 1.11. Let $k<m<n<\omega$, let $r \in[A]\binom{m}{k}, s \in[A]\binom{n}{m}$, and $u \in[A]\binom{n}{k}$. Then $h_{r} \circ h_{s}=h_{u}$ if and only if $u=s\langle r\rangle$.

Proof. The sufficiency is a special case of Lemma 1.10. For the necessity, let $x=v_{0} v_{1} \cdots v_{n-1}$. Then $u=h_{u}(x)=h_{r}\left(h_{s}(x)\right)=$ $h_{r}(s)=s\langle r\rangle$.

Lemma 1.12. Let $k \leq m \leq n<\omega$ and let $u \in[A]\binom{n}{k}$. Then there exist $r \in[A]\binom{n}{m}$ and $s \in[A]\binom{m}{k}$ such that $u=r\langle s\rangle$.

Proof. If $m=k$ or $m=n$, the result is trivial, so we assume that $k<m<n$. We note that it suffices to establish the result under
the additional assumption that $m=n-1$. (For then, using Lemma 1.11, one establishes the general result by induction on $n-m$.)

Either $u(j) \in A$ for some $j \in\{0,1, \ldots, n-1\}$ or else there exists $t \in\{0,1, \ldots, k-1\}$ such that v_{t} occurs more than once in u. In the second case, let t be the smallest index for which this happens. Then $u(t)=v_{t}$ and one may choose $j>t$ such that $u(j)=v_{t}$. In either case, we define r and s as follows for $i \in\{0,1, \ldots, n-1\}$ and $l \in\{0,1, \ldots, n-2\}$:

$$
r(i)=\left\{\begin{array}{cl}
v_{i} & \text { if } i<j \\
u(j) & \text { if } i=j \\
v_{i-1} & \text { if } j<i
\end{array} \text { and } s(l)=\left\{\begin{array}{cl}
u(l) & \text { if } l<j \\
u(l+1) & \text { if } j \leq l
\end{array}\right.\right.
$$

It is routine to verify that $u=r\langle s\rangle$.
Lemma 1.13. Let $0<m<n<\omega$ and let $u, u^{\prime} \in[A]\binom{m}{m-1}$. There exist $w, w^{\prime} \in[A]\binom{n}{m}$ such that $w\langle u\rangle=w^{\prime}\left\langle u^{\prime}\right\rangle$.
Proof. There exist $i, j \in\{0,1, \ldots, m-1\}, t \in A \cup\left\{v_{\delta}: \delta<i\right\}$, and $s \in A \cup\left\{v_{\delta}: \delta<j\right\}$ such that for $l \in\{0,1, \ldots, m-1\}$,

$$
u(l)=\left\{\begin{array}{cc}
v_{l} & \text { if } l<i \\
t & \text { if } l=i \\
v_{l-1} & \text { if } i<l
\end{array} \text { and } u^{\prime}(l)=\left\{\begin{array}{cl}
v_{l} & \text { if } l<j \\
s & \text { if } l=j \\
v_{l-1} & \text { if } j<l
\end{array}\right.\right.
$$

We may assume that $j \leq i$. Pick $a \in A$ and for $l \in\{0,1, \ldots, n-1\}$, let

$$
\begin{aligned}
& w(l)=\left\{\begin{array}{cl}
v_{l} & \text { if } l<j \\
s & \text { if } l=j \\
v_{l-1} & \text { if } j<l<m \\
a & \text { if } m \leq l<n
\end{array}\right. \text { and } \\
& w^{\prime}(l)=\left\{\begin{array}{cl}
v_{l} & \text { if } l \leq i \\
t & \text { if } l=i+1 \text { and } t \in A \cup\left\{v_{\delta}: \delta<j\right\} \\
v_{\delta+1} & \text { if } l=i+1, t=v_{\delta}, \text { and } j \leq \delta<i \\
v_{l-1} & \text { if } i+1<l<m \\
a & \text { if } m \leq l<n
\end{array}\right.
\end{aligned}
$$

It is routine to verify that w and w^{\prime} are as required.
We now state a theorem which is a significant extension of $[3$, Theorem 2.12]. The proof of this theorem, which we give in an appendix, is valid under the hypotheses used in [3], without the
restrictions that $D=\{e\}$ or that T_{e} is the identity, which we introduced in the present paper.

Theorem 1.14. Let X be a subsemigroup of βW such that $h_{u}[X] \subseteq$ X for every $u \in W, X \cap \beta W_{n}$ is compact and $X \cap \beta S_{n}$ is non-empty for every $n \in \omega$. Let p_{0} be a minimal idempotent of $X \cap \beta W_{0}$ and $p_{1}<p_{0}$ a minimal idempotent of $X \cap \beta W_{1}$. Then there is an infinite reductive sequence $\left(p_{0}, p_{1}, p_{2}, p_{3}, \ldots\right)$ such that p_{n} is a minimal idempotent of $X \cap \beta S_{n}$ and $p_{n+1}<p_{n}$ for every $n \in \omega$.

Proof. The proof of [3, Theorem 2.12] provides a proof of this theorem, provided that βW is replaced by $X, \beta W_{n}$ by $X \cap \beta W_{n}$ and βS_{n} by $X \cap \beta S_{n}$ for every $n \in \omega$. This includes defining $x \leq_{R} y$ and $x \leq_{L} y$ for $x, y \in X$ to mean that $x \in y X$ and $x \in X y$ respectively, rather than $x \in y \beta W$ and $x \in \beta W y$. See the appendix to this paper for the details.

We observe that the algebraic results of the present paper have Ramsey theoretic applications, which will be the subject of a subsequent paper.

We should mention that Lemma 2.10 and Theorem 3.1 were proved in [2]. (See Lemma 7.1 and Claim 6 in $\S 7$ of [2].) We provide the proofs, however, because the terminology of [2] is significantly different from the terminology used in this paper.
2. Some subsemigroups of βS_{n}

Definition 2.1. Let $n \in \omega$.

$$
\left.\begin{array}{rl}
C_{n}=\left\{x \in \beta S_{n}: \quad h_{u}(x)=h_{u^{\prime}}(x) \text { whenever } m<n\right. \\
& \text { and } \left.u, u^{\prime} \in[A]\binom{n}{m}\right\} \\
G R_{n}= & \bigcap_{r>n}\left\{h_{u}\left[C_{r}\right]: u \in[A]\binom{r}{n}\right\}
\end{array}\right\} \begin{array}{ll}
& (\forall r>n)\left(\exists y \in \beta S_{r}\right)\left(\forall u \in[A]\binom{r}{n}\right) \\
T_{n} & =\left\{x \in \beta S_{n}: \begin{array}{l}
\left.\left(h_{u}(y)=x\right)\right\} .
\end{array}\right.
\end{array}
$$

We shall see in Theorem 2.3 that the objects defined in Definition 2.1 are all subsemigroups of βS_{n}.

Lemma 2.2. Let $m<n<\omega$ and let $u \in[A]\binom{n}{m}$. Then $h_{u}\left[C_{n}\right] \subseteq$ C_{m} and $h_{u}\left[G R_{n}\right] \subseteq G R_{m}$.

Proof. The first assertion is an immediate consequence of Lemma 1.11. To verify the second assertion, let $y \in G R_{n}$ and let $x=h_{u}(y)$. Let $k \in \mathbb{N}$ with $k>m$ be given. We need to show that for each $w \in[A]\binom{k}{m}, x \in h_{w}\left[C_{k}\right]$.

Assume first that $k>n$. Choose any $q \in[A]\binom{k}{n}$ and pick $z \in C_{k}$ such that $y=h_{q}(z)$. Then $x=h_{u}\left(h_{q}(z)\right)=h_{q\langle u\rangle}(z)$ by Lemma 1.11. Given $w \in[A]\binom{k}{m}, h_{w}(z)=h_{q\langle u\rangle}(z)$ because $z \in C_{k}$.

Now assume that $k \leq n$. Pick by Lemma 1.12, $r \in[A]\binom{n}{k}$ and $s \in[A]\binom{k}{m}$ such that $h_{u}=h_{s} \circ h_{r}$. Then $x=h_{s}\left(h_{r}(y)\right)$ and $h_{r}(y) \in C_{k}$ by the first assertion in the current lemma, so for any $w \in[A]\binom{k}{m}, h_{w}\left(h_{r}(y)\right)=h_{s}\left(h_{r}(y)\right)=x$.

Theorem 2.3. Let $n \in \omega$. Then $G R_{n}, T_{n}$, and C_{n} are subsemigroups of βS_{n} that meet the smallest ideal $K\left(\beta S_{n}\right)$ and $G R_{n} \subseteq$ $T_{n} \subseteq C_{n}$.

Proof. Pick by Theorem 1.5 an infinite special reductive sequence $\left\langle p_{m}\right\rangle_{m<\omega}$. For each $m<\omega, p_{m} \in G R_{m} \cap T_{m} \cap C_{m} \cap K\left(\beta S_{m}\right)$, so in particular each is nonempty. Also, for each $m<r<\omega$, and each $u \in[A]\binom{r}{m}, h_{u}\left[S_{r}\right] \subseteq S_{m}$, so $G R_{n} \subseteq \beta S_{n}$. Using the fact that h_{u} is a homomorphism for each $u \in W$, it is routine to verify that each of $G R_{n}, T_{n}$, and C_{n} is algebraically closed.

To see that $G R_{n} \subseteq T_{n}$, let $x \in G R_{n}$ and let $r>n$. Pick any $w \in[A]\binom{r}{n}$ and any $y \in C_{r}$ such that $x=h_{w}(y)$. Let $u \in[A]\binom{r}{n}$. Since $y \in C_{r}, h_{u}(y)=h_{w}(y)=x$.

Finally assume that $x \in T_{n}$ and suppose that $x \notin C_{n}$. Pick $m<n$ and $u, u^{\prime} \in[A]\binom{n}{m}$ such that $h_{u}(x) \neq h_{u^{\prime}}(x)$. Pick disjoint subsets Y and Y^{\prime} of S_{m} such that $Y \in h_{u}(x)$ and $Y^{\prime} \in h_{u^{\prime}}(x)$. Let $X=h_{u}{ }^{-1}[Y] \cap{h_{u^{\prime}}}^{-1}\left[Y^{\prime}\right]$. Then $X \in x$.

Pick $z \in h_{u}\left[S_{n}\right] \cap h_{u^{\prime}}\left[S_{n}\right]$. (We know this intersection is nonempty because it is a member of any member of T_{m}.) Pick w and w^{\prime} in S_{n} such that $z=h_{u}(w)=h_{u^{\prime}}\left(w^{\prime}\right)$. That is, $z=w\langle u\rangle=w^{\prime}\left\langle u^{\prime}\right\rangle$. This implies that w and w^{\prime} have the same length, say k. Then $w, w^{\prime} \in[A]\binom{k}{n}$. Since $x \in T_{n}$, pick $y \in \beta S_{k}$ such that $x=h_{w}(y)=$ $h_{w^{\prime}}(y)$. Then $h_{w}{ }^{-1}[X] \cap h_{w^{\prime}}{ }^{-1}[X] \cap S_{k} \in y$ so pick $t \in S_{k}$ such that $h_{w}(t) \in X$ and $h_{w^{\prime}}(t) \in X$. Then by Lemma 1.11,

$$
h_{u}\left(h_{w}(t)\right)=h_{w\langle u\rangle}(t)=h_{w^{\prime}\left\langle u^{\prime}\right\rangle}(t)=h_{u^{\prime}}\left(h_{w^{\prime}}(t)\right)
$$

so $Y \cap Y^{\prime} \neq \emptyset$, a contradiction.

The fact that $G R_{n}$ meets $K\left(\beta S_{n}\right)$ shows, surprisingly, that every element q of βS_{n} is a factor of an element in $G R_{n}$. More precisely, for every $p \in K\left(G R_{n}\right), p$ is a member of a minimal right ideal R and a minimal left ideal L of βS_{n}. Then $R=p q \beta S_{n}$ and $L=\beta S_{n} q p$ so $p=p q x=y q p$ for some $x, y \in \beta S_{n}$.

We shall see in Corollary 2.5 that the semigroups C_{n} have a simpler description than that given by their definition.

Theorem 2.4. Let $m<n<\omega$, let $p \in \beta S_{n}$, and let $q \in \beta S_{m}$. If $\left\{h_{u}(p): u \in[A]\binom{n}{m}\right\}=\{q\}$, then $q \in C_{m}$. In particular, if $k<m$, then $\left\{h_{u}(p): u \in[A]\binom{n}{k}\right\}$ is also a singleton.

Proof. We show by induction on $m-k$ that if $k<m$ and $u, u^{\prime} \in$ $[A]\binom{m}{k}$, then $h_{u}(q)=h_{u^{\prime}}(q)$. So assume first that $k=m-1$ and let $u, u^{\prime} \in[A]\binom{m}{m-1}$. By Lemma 1.13 we may choose $w, w^{\prime} \in[A]\binom{n}{m}$ such that $w\langle u\rangle=w^{\prime}\left\langle u^{\prime}\right\rangle$. Then, using Lemma 1.11,
$h_{u}(q)=h_{u}\left(h_{w}(p)\right)=h_{w\langle u\rangle}(p)=h_{w^{\prime}\left\langle u^{\prime}\right\rangle}(p)=h_{u^{\prime}}\left(h_{w}^{\prime}(p)\right)=h_{u^{\prime}}(q)$.
Now assume that $k<m-1$ and for all $u, u^{\prime} \in[A]\binom{m}{k+1}, h_{u}(q)=$ $h_{u^{\prime}}(q)$. Let $u, u^{\prime} \in[A]\binom{m}{k}$. Pick by Lemma 1.12 some $s, s^{\prime} \in$ $[A]\binom{m}{k+1}$ and $r, r^{\prime} \in[A]\binom{k+1}{k}$ such that $u=s\langle r\rangle$ and $u^{\prime}=s^{\prime}\left\langle r^{\prime}\right\rangle$. By Lemma 1.13 choose $w, w^{\prime} \in[A]\binom{m}{k+1}$ such that $w\langle r\rangle=w^{\prime}\left\langle r^{\prime}\right\rangle$. Then, using Lemma 1.11, we have

$$
\begin{aligned}
h_{u}(q) & =h_{r}\left(h_{s}(q)\right)=h_{r}\left(h_{w}(q)\right)=h_{w\langle r\rangle}(q) \\
& =h_{w^{\prime}\left\langle r^{\prime}\right\rangle}(q)=h_{r^{\prime}}\left(h_{w^{\prime}}(q)\right)=h_{r^{\prime}}\left(h_{s^{\prime}}(q)\right)=h_{u^{\prime}}(q)
\end{aligned}
$$

The "in particular" conclusion now follows by Lemma 1.12.
Corollary 2.5. Let $n \in \mathbb{N}$. Then

$$
\left.\begin{array}{rl}
C_{n} & =\left\{q \in \beta S_{n}: \quad\right. \text { there exists a reductive sequence } \\
& \left.=\left\{p_{m}\right\rangle_{m<n+1} \text { with } p_{n}=q\right\}
\end{array}\right] .\left\{q \in \beta S_{n}: \quad h_{u}(q)=h_{u^{\prime}}(q) \text { whenever } u, u^{\prime} \in[A]\binom{n}{n-1}\right\} .
$$

Proof. It is an immediate consequence of Theorem 2.4 that $C_{n}=$ $\left\{q \in \beta S_{n}: h_{u}(q)=h_{u}^{\prime}(q)\right.$ whenever $\left.u, u^{\prime} \in[A]\binom{n}{n-1}\right\}$. It is also immediate that $\left\{q \in \beta S_{n}\right.$: there exists a reductive sequence $\left\langle p_{m}\right\rangle_{m<n+1}$ with $\left.p_{n}=q\right\} \subseteq C_{n}$. To establish the reverse inclusion, let $q \in C_{n}$. For each $m<n$ choose any $u_{m} \in[A]\binom{n}{m}$. Let $p_{n}=q$ and for $m<n$, let $p_{m}=h_{u_{m}}(q)$. To see that $\left\langle p_{m}\right\rangle_{m<n+1}$ is a reductive sequence, assume that $n>1$, let $k<m<n$, and
let $w \in[A]\binom{m}{k}$. Then by Lemma $1.11 h_{w}\left(p_{m}\right)=h_{w}\left(h_{u_{m}}(q)\right)=$ $h_{u_{m}\langle w\rangle}(q)=h_{u_{k}}(q)=p_{k}$.

We saw in Theorem 2.4 that if $\left\{h_{u}(p): u \in[A]\binom{n}{m}\right\}$ is a singleton and $k<m$, then $\left\{h_{u}(p): u \in[A]\binom{n}{k}\right\}$ is also a singleton. In terms of the relation \prec of Definition 1.6, if p has a predecessor in βS_{m}, then it has a predecessor in βS_{k} for all $k<m$. We see now that this conclusion need not hold if $m<k<n$.

Theorem 2.6. There exists an idempotent $p \in \beta S_{3}$ such that $\left\{h_{u}(p): p \in[A]\binom{3}{1}\right\}$ is a singleton but $\left\{h_{u}(p): p \in[A]\binom{3}{2}\right\}$ is not a singleton. So p has a predecessor with respect to the relation \prec in βS_{1}, but not in βS_{2}.

Proof. Let p_{0} be a minimal idempotent in βS_{0} and pick a minimal idempotent p_{1} in βS_{1} such that $p_{1} \leq p_{0}$. Let $q_{2}=h_{v_{1}}\left(p_{1}\right)$ and let $q_{3}=h_{v_{2}}\left(p_{1}\right)$. Let B be the set of words over $A \cup\left\{v_{1}\right\}$ and let C be the set of words over $A \cup\left\{v_{2}\right\}$ and note that $B \in q_{2}$ and $C \in q_{3}$. Then $S_{1} B C \in p_{1} q_{2} q_{3}$ and $S_{1} B C \subseteq S_{3}$ so $p_{1} q_{2} q_{3} \beta S_{3}$ is a right ideal of βS_{3}. Similarly $v_{0} v_{1} C B S_{1} \in v_{0} v_{1} q_{3} q_{2} p_{1}$ and $v_{0} v_{1} C B S_{1} \subseteq$ S_{3} so $\beta S_{1} v_{0} v_{1} C B S_{1}$ is a left ideal of βS_{1}. Pick an idempotent $p_{3} \in p_{1} q_{2} q_{3} \beta S_{3} \cap \beta S_{1} v_{0} v_{1} C B S_{1}$. Pick $r, s \in \beta S_{3}$ such that $p_{3}=$ $p_{1} q_{2} q_{3} r=s v_{0} v_{1} q_{3} q_{2} p_{1}$.

Pick a letter $a \in A$. Then $v_{0} v_{1} a, v_{0} a v_{1} \in[A]\binom{3}{2}$. We show first that $h_{v_{0} v_{1} a}\left(p_{3}\right) \neq h_{v_{0} a v_{1}}\left(p_{3}\right)$, using the fact that $p_{3}=s v_{0} v_{1} q_{3} q_{2} p_{1}$. Now $h_{v_{0} v_{1} a}\left[S_{3}\right] \subseteq S_{2}, h_{v_{0} v_{1} a}\left(v_{0}\right)=v_{0}, h_{v_{0} v_{1} a}\left(v_{1}\right)=v_{1}, h_{v_{0} v_{1} a}[C] \subseteq$ $S_{0}, h_{v_{0} v_{1} a}[B] \subseteq B$, and $h_{v_{0} v_{1} a}\left[S_{1}\right] \subseteq S_{1}$. Thus $S_{2} v_{0} v_{1} S_{0} B S_{1} \in$ $h_{v_{0} v_{1} a}\left(p_{3}\right)$. Also $h_{v_{0} a v_{1}}\left[S_{3}\right] \subseteq S_{2}, h_{v_{0} a v_{1}}\left(v_{0}\right)=v_{0}, h_{v_{0} a v_{1}}\left(v_{1}\right)=$ $a, h_{v_{0} a v_{1}}[C] \subseteq B, h_{v_{0} a v_{1}}[B] \subseteq S_{0}$, and $h_{v_{0} a v_{1}}\left[S_{1}\right] \subseteq S_{1}$. Thus $S_{2} v_{0} a B S_{0} S_{1} \in h_{v_{0} a v_{1}}\left(p_{3}\right)$. Since $S_{2} v_{0} v_{1} S_{0} B S_{1} \cap S_{2} v_{0} a B S_{0} S_{1}=\emptyset$ we have that $h_{v_{0} v_{1} a}\left(p_{3}\right) \neq h_{v_{0} a v_{1}}\left(p_{3}\right)$. (The displayed v_{0} is the rightmost v_{0} which has a later v_{1}. In one of these sets it is followed by v_{1} while in the other it is followed by a.)

Now let $u \in[A]\binom{3}{1}$. If $u=v_{0} w$ for some $w \in S_{0} \cup S_{1}$, then h_{u} is the identity on S_{1} so $h_{u}\left(p_{1}\right)=p_{1}$ and therefore $h_{u}\left(p_{3}\right)=$ $h_{u}\left(s v_{0} v_{1} q_{3} q_{2}\right) p_{1}=p_{1} h_{u}\left(q_{2} q_{3} r\right)$ so $h_{u}\left(p_{3}\right) \leq p_{1}$ and thus $h_{u}\left(p_{3}\right)=$ p_{1}.

Next assume that $u=b v_{0} t$ where $b \in A$ and $t \in A \cup\left\{v_{0}\right\}$. Then $h_{u}\left(p_{1}\right) \leq h_{u}\left(p_{0}\right)=p_{0}$ so $h_{u}\left(p_{1}\right)=p_{0}$. Also, using Lemma 1.11, $h_{u}\left(q_{2}\right)=h_{b v_{0} t}\left(h_{v_{1}}\left(p_{1}\right)\right)=h_{v_{1}\left\langle b v_{0} t\right\rangle}\left(p_{1}\right)=h_{v_{0}}\left(p_{1}\right)=p_{1}$. Thus
$h_{u}\left(p_{3}\right)=h_{u}\left(s v_{0} v_{1} q_{3}\right) p_{1} p_{0}=p_{0} p_{1} h_{u}\left(q_{3} r\right)=h_{u}\left(s v_{0} v_{1} q_{3}\right) p_{1}=$ $p_{1} h_{u}\left(q_{3} r\right)$ so $h_{u}\left(p_{3}\right)=p_{1}$.

Finally assume that $u=b c v_{0}$ where $b, c \in A$. Then $h_{u}\left(p_{1}\right) \leq$ $h_{u}\left(p_{0}\right)=p_{0}$ so $h_{u}\left(p_{1}\right)=p_{0}$. Also $h_{u}\left(q_{2}\right)=h_{b c v_{0}}\left(h_{v_{1}}\left(p_{1}\right)\right)=$ $h_{v_{1}\left\langle b c v_{0}\right\rangle}\left(p_{1}\right)=h_{c}\left(p_{1}\right) \leq h_{c}\left(p_{0}\right)=p_{0}$ so $h_{u}\left(q_{2}\right)=p_{0}$. And $h_{u}\left(q_{3}\right)=$ $h_{b c v_{0}}\left(h_{v_{2}}\left(p_{1}\right)\right)=h_{v_{2}\left\langle b c v_{0}\right\rangle}\left(p_{1}\right)=h_{v_{0}}\left(p_{1}\right)=p_{1}$ Thus $h_{u}\left(p_{3}\right)=$ $h_{u}\left(s v_{0} v_{1}\right) p_{1} p_{0} p_{0}=p_{0} p_{0} p_{1} h_{u}(r)=h_{u}\left(s v_{0} v_{1}\right) p_{1}=p_{1} h_{u}(r)$ so $h_{u}\left(p_{3}\right)=p_{1}$.

We now introduce a family which will help us establish that $G R_{n}=T_{n}$ for all $n \in \omega$. Given a set X, we write $\mathcal{P}_{f}(X)=\{B \subseteq$ $X: B$ is finite and nonempty $\}$.
Definition 2.7. Let $n \in \omega$. Then

$$
\begin{aligned}
\mathcal{R}_{n}=\left\{X \subseteq S_{n}:\right. & (\forall r>n)\left(\forall B \in \mathcal{P}_{f}(A)\right)\left(\exists w \in S_{r}\right) \\
& \left.\left(\forall u \in[B]\binom{r}{n}\right)\left(h_{u}(w) \in X\right)\right\}
\end{aligned}
$$

Lemma 2.8. Let $n \in \omega$ and let $p \in \beta S_{n}$. Then $p \in T_{n}$ if and only if $p \subseteq \mathcal{R}_{n}$.

Proof. Assume $p \in T_{n}$. To see that $p \subseteq \mathcal{R}_{n}$, let $X \in p$. Let $r>n$ and let $B \in \mathcal{P}_{f}(A)$. Pick $y \in \beta S_{r}$ such that $h_{u}(y)=p$ for all $u \in[A]\binom{r}{n}$. Then $\bigcap\left\{h_{u}{ }^{-1}[X]: u \in[B]\binom{r}{n}\right\} \in y$ so pick $w \in \bigcap\left\{h_{u}{ }^{-1}[X]: u \in[B]\binom{r}{n}\right\}$.

Conversely, suppose that $p \subseteq \mathcal{R}_{n}$ and let $r>n$. Let $\mathcal{Q}=$ $\left\{(P, B): P \in p\right.$ and $\left.B \in \mathcal{P}_{f}(A)\right\}$ and direct \mathcal{Q} by agreeing that $(P, B) \leq\left(P^{\prime}, B^{\prime}\right)$ if and only if $P^{\prime} \subseteq P$ and $B \subseteq B^{\prime}$. Pick for each $(P, B) \in \mathcal{Q}$ some $w_{P, B} \in S_{r}$ such that $\left\{h_{u}\left(w_{P, B}\right): u \in[B]\binom{r}{n}\right\} \subseteq$ P. Let y be a limit point of the net $\left\langle w_{P, B}\right\rangle_{(P, B) \in \mathcal{Q}}$ in βS_{r}. Let $u \in[A]\binom{r}{n}$. We claim that $h_{u}(y)=p$. Suppose instead that we have some $P \in p \backslash h_{u}(y)$ and pick $B \in \mathcal{P}_{f}(A)$ such that $u \in[B]\binom{r}{n}$. Then $h_{u}{ }^{-1}\left[S_{n} \backslash P\right] \in y$ so pick $\left(P^{\prime}, B^{\prime}\right) \in \mathcal{Q}$ such that $\left(P^{\prime}, B^{\prime}\right) \geq(P, B)$ and $w_{P^{\prime}, B^{\prime}} \in h_{u}{ }^{-1}\left[S_{n} \backslash P\right]$. Then $u \in\left[B^{\prime}\right]\binom{r}{n}$ and $h_{u}\left(w_{P^{\prime}, B}\right) \in P^{\prime} \subseteq$ P, a contradiction. So $p \in T_{n}$.

Lemma 2.9. Let $n \in \omega$ and let $X \in \mathcal{P}\left(S_{n}\right) \backslash \mathcal{R}_{n}$. Then

$$
\begin{aligned}
& (\exists k>n)\left(\exists B \in \mathcal{P}_{f}(A)\right)(\forall r \geq k) \\
& \left(\forall w \in S_{r}\right)\left(\exists u \in[B]\binom{r}{n}\right)\left(h_{u}(w) \notin X\right) .
\end{aligned}
$$

Proof. By the definition of \mathcal{R}_{n}, pick $B \in \mathcal{P}_{f}(A)$ and $k>n$ such that $\left(\forall w \in S_{k}\right)\left(\exists u \in[B]\binom{k}{n}\right)\left(h_{u}(w) \notin X\right)$. Let $r \geq k$ and let $w \in S_{r}$.

Pick $a \in B$ and define $s \in[B]\binom{r}{k}$ by $s=v_{0} v_{1} \cdots v_{k-1} a a \cdots a$. Then $w\langle s\rangle \in S_{k}$ so pick $u \in[B]\binom{k}{n}$ such that $h_{u}(w\langle s\rangle) \notin X$. Then $s\langle u\rangle \in$ $[B]\binom{r}{n}$ and, by Lemma 1.11, $h_{s\langle u\rangle}(w)=h_{u}\left(h_{s}(w)\right)=h_{u}(w\langle s\rangle) \notin$ X.

Lemma 2.10. Let $X, Y \in \mathcal{P}\left(S_{n}\right)$. If $X \notin \mathcal{R}_{n}$ and $Y \notin \mathcal{R}_{n}$, then $X \cup Y \notin \mathcal{R}_{n}$.

Proof. Pick by Lemma 2.9 some $B \in \mathcal{P}_{f}(A)$ and some $r>n$ such that
(1) $\left(\forall w \in S_{r}\right)\left(\exists u \in[B]\binom{r}{n}\right)\left(h_{u}(w) \notin X\right)$ and
(2) $\left(\forall w \in S_{r}\right)\left(\exists u \in[B]\binom{r}{n}\right)\left(h_{u}(w) \notin Y\right)$.

Pick by Theorem 1.8 some $k \in \mathbb{N}$ such that $k>r$ and whenever $[B]\binom{k}{n}$ is 2-colored, there exists $w \in[B]\binom{k}{r}$ such that $\{w\langle u\rangle: u \in$ $\left.[B]\binom{r}{n}\right\}$ is monochrome.

Suppose that $X \cup Y \in \mathcal{R}_{n}$ and pick $s \in S_{k}$ such that

$$
\left(\forall t \in[B]\binom{k}{n}\right)\left(h_{t}(s) \in X \cup Y\right)
$$

That is, $\left\{s\langle t\rangle: t \in[B]\binom{k}{n}\right\} \subseteq X \cup Y$. Then the members t of $[B]\binom{k}{n}$ are 2-colored according to whether $s\langle t\rangle$ is in X or not, and if not, $s\langle t\rangle \in Y$. Pick $w \in[B]\binom{k}{r}$ such that either

$$
\begin{aligned}
& \left\{s\langle w\langle u\rangle\rangle: u \in[B]\binom{r}{n}\right\} \subseteq X \text { or } \\
& \left\{s\langle w\langle u\rangle\rangle: u \in[B]\binom{r}{n}\right\} \subseteq Y .
\end{aligned}
$$

We may assume without loss of generality that the former holds.
Now $s\langle w\rangle \in S_{r}$ so pick $u \in[B]\binom{r}{n}$ such that $h_{u}(s\langle w\rangle) \notin X$. But by Lemma 1.11,

$$
h_{u}(s\langle w\rangle)=h_{u}\left(h_{w}(s)\right)=h_{w\langle u\rangle}(s)=s\langle w\langle u\rangle\rangle,
$$

a contradiction.
Lemma 2.11. Let $n<r<\omega$ and let $u \in[A]\binom{r}{n}$. Then $T_{n} \subseteq$ $h_{u}\left[T_{r}\right]$.
Proof. Let $p \in T_{n}$ and let \mathcal{F} be the filter generated by $\left\{h_{u}{ }^{-1}[P] \cap\right.$ $\left.S_{r}: P \in p\right\}$. We claim that $\mathcal{F} \subseteq \mathcal{R}_{r}$. To see this, let $P \in p$, let $k>r$, and let $B \in \mathcal{P}_{f}(A)$. We need to produce $x \in S_{k}$ such that $\left\{h_{w}(x): w \in[B]\binom{k}{r}\right\} \subseteq h_{u}{ }^{-1}[P]$.

Since $p \in T_{n}$, pick $z \in \beta S_{k}$ such that for all $l \in[A]\binom{k}{n}, h_{l}(z)=p$. Then

$$
\bigcap\left\{h_{w\langle u\rangle}{ }^{-1}[P]: w \in[B]\binom{k}{r}\right\} \in z
$$

so pick $x \in S_{k} \cap \bigcap\left\{h_{w\langle u\rangle}{ }^{-1}[P]: w \in[B]\binom{k}{r}\right\}$. Then given $w \in$ $[B]\binom{k}{r}, h_{u}\left(h_{w}(x)\right)=h_{w\langle u\rangle}(x) \in P$.

Let $\mathcal{A}=\left\{\mathcal{H} \subseteq \mathcal{P}\left(S_{r}\right): \mathcal{F} \subseteq \mathcal{H} \subseteq \mathcal{R}_{r}\right.$ and \mathcal{H} is a filter $\}$. Pick a maximal member q of \mathcal{A}. We claim that q is an ultrafilter. Suppose instead that we have some $X \subseteq S_{r}$ such that $X \notin q$ and $S_{r} \backslash X \notin q$. Then the filter generated by $q \cup\{X\}$ is not contained in \mathcal{R}_{r} and the filter generated by $q \cup\left\{S_{r} \backslash X\right\}$ is not contained in \mathcal{R}_{r}. So pick $Q, R \in q$ such that $X \cap Q \notin \mathcal{R}_{r}$ and $R \backslash X \notin \mathcal{R}_{r}$. Then by Lemma $2.10(X \cap Q) \cup(R \backslash X) \notin \mathcal{R}_{r}$. But $Q \cap R \subseteq(X \cap Q) \cup(R \backslash X)$ and $Q \cap R \in \mathcal{R}_{r}$, a contradiction.

Since $\mathcal{F} \subseteq q$ we have that $h_{u}(q)=p$. By Lemma $2.8, q \in T_{r}$.
Theorem 2.12. Let $n \in \omega$. Then $G R_{n}=T_{n}$.
Proof. By Theorem 2.3 we have that $G R_{n} \subseteq T_{n}$. To establish the other inclusion, let $p \in T_{n}$. Let $r>n$ and let $u \in[A]\binom{r}{n}$. By Lemma $2.11 p \in h_{u}\left[T_{r}\right]$, so by Theorem 2.3, $p \in h_{u}\left[C_{r}\right]$.

In light of Theorems 2.3 and 2.12 it is natural to ask about the relationship between the semigroups C_{n} and T_{n}. Since $C_{0}=\beta S_{0}$ it is not hard to show that $T_{0} \neq C_{0}$. And we shall see in Corollary 3.17 and Theorem 3.18 that for each $n \geq 1, T_{n} \neq C_{n}$.

We see now that T_{n} has a rich algebraic structure.
Theorem 2.13. Let $\kappa=\left|S_{0}\right|$. (So $\kappa=\max \{\omega,|A|\}$.) For each $n \in \omega, T_{n}$ has $2^{2^{\kappa}}$ minimal left ideals and $2^{2^{\kappa}}$ minimal right ideals. Each minimal right ideal has $2^{2^{\kappa}}$ idempotents and each minimal left ideal has $2^{2^{\kappa}}$ idempotents.
Proof. We have that βS_{0} has $2^{2^{\kappa}}$ minimal left ideals and at least $2^{\text {c }}$ minimal right ideals by [6, Theorem 6.42 and Corollary 6.41]. We claim that in fact βS_{0} has $2^{2^{\kappa}}$ minimal right ideals. If $|A| \leq \omega$, then $\mathfrak{c}=2^{\kappa}$, so we may assume that $|A|>\omega$. Pick $a \in A$ and let S^{\prime} be the set of words over $A \backslash\{a\}$. Then as is well known, $\left|\beta S^{\prime}\right|=2^{2^{\kappa}}$. (See, for example, [6, Theorem 3.58].) Given $x \neq y$ in βS^{\prime}, one has that $x a \beta S_{0}$ and $y a \beta S_{0}$ are disjoint right ideals, each of which contains a minimal right ideal. (If $X \in x, Y \in y$, and $X \cap Y=\emptyset$, then $x a \beta S_{0} \subseteq \overline{X a S_{0}}, y a \beta S_{0} \subseteq \overline{Y a S_{0}}$, and $X a S_{0} \cap Y a S_{0}=\emptyset$.)

Note that if p is a minimal idempotent in βS_{0} and $n \in \omega$, then $T_{n} \cap \beta S_{n} p \neq \emptyset$ and $T_{n} \cap p \beta S_{n} \neq \emptyset$. To see this, pick by Theorem 1.5 an infinite special reductive sequence $\left\langle p_{m}\right\rangle_{m<\omega}$ with $p_{0}=p$. Then $p_{n} \in T_{n} \cap p \beta S_{n} \cap \beta S_{n} p$.

Now let p and q be members of distinct minimal left ideals of βS_{0}. We claim that $\beta S_{n} p \cap \beta S_{n} q=\emptyset$ (so that $T_{n} \cap \beta S_{n} p$ and $T_{n} \cap \beta S_{n} q$ are disjoint left ideals of T_{n}). Suppose instead one has some $x \in \beta S_{n} p \cap \beta S_{n} q$. Pick any $u \in[A]\binom{n}{0}$. Then h_{u} is the identity on βS_{0} so $h_{u}(x) \in h_{u}\left[\beta S_{n} p\right] \cap h_{u}\left[\beta S_{n} q\right] \subseteq \beta S_{0} p \cap \beta S_{0} q$, a contradiction.

Since each left ideal contains a minimal left ideal, the first assertion is thus established. A similar argument establishes the assertion about the number of minimal right ideals. The conclusions about idempotents follow from the fact that the intersection of any minimal left ideal and any minimal right ideal has an idempotent.

We now develop a method for establishing inequalities in βW by considering patterns of segments within words. This will be used in this section to establish the existence of large free groups in βW and in the next section to establish large branching degree in the \prec tree.

Definition 2.14. Assume B is an alphabet and $c \in B$. Let S be the semigroup of words in B. For $w \in S$, a segment s of w is a c-gap of w if c does not occur in s and $w=w_{1} c s c w_{2}$ for some $w_{1}, w_{2} \in S$. Suppose G is a group and let S^{\prime} be the collection of words in which c does not occur. For any function $\mu: S^{\prime} \rightarrow G$, define $\mu^{+}: S \rightarrow G$ so that $\mu^{+}(w)=\mu\left(s_{1}\right)+\cdots+\mu\left(s_{n}\right)$ where s_{1}, \ldots, s_{n} enumerates the c-gaps of w in the order they occur and + denotes the group operation of G (if there are no c-gaps of w in $X, \mu^{+}(w)$ is the identity of $\left.G\right)$.

In the case where G is the set of integers $\bmod n$ and μ is the characteristic function of some subset X of $S^{\prime}, \mu^{+}(w)$ counts the number of c-gaps of w which are in $X \bmod n$.

As usual, μ and μ^{+}extend naturally to a function mapping βS^{\prime} and βS respectively into βG. In the cases that will interest us, G will be finite so that βG is the same as G. Notice that μ^{+}will not generally be a homormorphism since multiplying two words together often creates a new c-gap which isn't in either of the individual words.

Definition 2.15. Assume B is some alphabet, $c \in B$ and S is the semigroup of words over B. For $w \in S$, define $\tau_{c}(w)$, the tail of w
with respect to c, to be the longest end segment of w which does not contain c and define $\eta_{c}(w)$, the head of w with respect to c, to be the longest initial segment of w which does not contain c. For $p \in \beta S, c$ persists in p if the set of words containing c is in p.

Notice that for $p, q \in \beta S$, if c persists in q then $\eta_{c}(q p)=\eta_{c}(q)$ and $\tau_{c}(p q)=\tau_{c}(q)$. On the other hand, if c does not persist in q then $\eta_{c}(q p)=q \eta_{c}(p)$ and $\tau_{c}(p q)=\tau_{c}(p) q$.

Lemma 2.16. Assume B is an alphabet, $c \in B$ and S is the semigroup of words over B. Also suppose G is a finite group with identity 0 and $\mu: S^{\prime} \rightarrow G$ where S^{\prime} is the set of words in which c does not occur. If $p, p^{\prime}, q, q^{\prime} \in \beta S$ and c persists in p, p^{\prime}, q and q^{\prime} then
(a) $\mu^{+}(p q)=\mu^{+}(p)+\mu\left(\tau_{c}(p) \eta_{c}(q)\right)+\mu^{+}(q)$,
(b) if p is an idempotent then $\mu^{+}(p)=-\mu\left(\tau_{c}(p) \eta_{c}(p)\right)$,
(c) if c does not persist in $x \in \beta S$ then $\mu^{+}(p x)=\mu^{+}(p)=$ $\mu^{+}(x p)$.
(d) if $\eta(q)=\eta\left(q^{\prime}\right)$ then $\mu^{+}(p q)=\mu^{+}\left(p q^{\prime}\right)$ iff $\mu^{+}(q)=\mu^{+}\left(q^{\prime}\right)$.
(e) if $\tau(p)=\tau\left(p^{\prime}\right)$ then $\mu^{+}(p q)=\mu^{+}\left(p^{\prime} q\right)$ iff $\mu^{+}(p)=\mu^{+}\left(p^{\prime}\right)$.

Proof. Parts (a) and (c) are straightforward. Part (b) follows from part (a) and parts (d) and (e) can each be derived using (a) and (c).

Theorem 2.17. Assume B is a nonempty alphabet and S is the semigroup of words over B. If $p, q \in \beta S$ then $p \beta S q$ contains a free group on $2^{2^{\kappa}}$ generators where $\kappa=\max \{\omega,|B|\}$.

Proof. Without loss of generality, p is a minimal idempotent and $p=q$. Note that c persists in p. If B has only one element, S is isomorphic to \mathbb{N} and the lemma follows from Corollary 7.37 of [6]. Suppose B has more than one element and fix an element c of B. Let S^{\prime} be the elements of S which have no occurence of $c . S^{\prime}$ has size κ, so there are $2^{2^{\kappa}}$ elements of βS^{\prime}. We will show that the collection of $p c x c p$ where x is an element of βS^{\prime} and not equal to either $\tau_{c}(p) \eta_{c}(p), \tau_{c}(p)$ or $\eta_{c}(p)$ generates a free group. For this, it suffices to show that any finite subcollection generates a free group.

Suppose x_{1}, \ldots, x_{n} are distinct elements of βS^{\prime} which are distinct from $\tau_{c}(p) \eta_{c}(p), \tau_{c}(p)$ and $\eta_{c}(p)$. Let F denote the free group on generators $a_{1}, a_{2}, \ldots, a_{n}$. Suppose that $x \in p \beta S p$ can be written as $x=r_{1} r_{2} \cdots r_{m}$, where for each i, r_{i} is either $p c x_{j} c p$ or the inverse of
$p c x_{j} c p$ in $p \beta S p$ for some j. Define $b \in F$ by $b=b_{1} b_{2} \cdots b_{m}$, where $b_{i}=a_{j}$ if $r_{i}=p c x_{j} c p$ and $b_{i}=a_{j}^{-1}$ if r_{i} is the inverse of $p c x_{j} p$ in $p \beta S p$. We shall show that $x \neq p$ if b is not the identity of F. In this case, there is a homorphism f mapping F to a finite group G for which $f(b)$ is not equal to the identity by [6, Theorem 1.23].

Define $\mu: S^{\prime} \rightarrow G$ by $\mu(s)=f\left(a_{i}\right)$ if $s \in X_{i}$ and $\mu(s)$ is the identity if $s \notin \bigcup_{i=1}^{n} X_{i}$. Then μ^{+}is a homomorphism on $p \beta S p$ by Lemma 2.16(a). Since $\mu^{+}\left(p c x_{i} c p\right)=f\left(a_{i}\right)$ for each $i \in$ $\{1,2, \cdots, n\}, \mu^{+}(x)=f(b)$. So $x \neq p$.
Theorem 2.18. For each $n \in \omega$, every maximal group in $K\left(T_{n}\right)$ contains a free group on $2^{2^{\kappa}}$ generators where $\kappa=\max \{|A|, \omega\}$.
Proof. Let p_{0} be a minimal idempotent in βW_{0}. By Theorem 2.17 we may let $\left\{p_{0} x_{\iota} p_{0}: \iota<2^{2^{\kappa}}\right\}$ be a set of elements in $p_{0} \beta W_{0} p_{0}$ which generate a free group in $p_{0} \beta W_{0} p_{0}$. We can choose by Theorem 1.5 a minimal idempotent p_{n} in T_{n} satisfying $p_{0} \prec p_{n}$. Then $\left\{p_{n} x_{\iota} p_{n}: \iota<2^{2^{\kappa}}\right\} \subseteq T_{n}$ generates a free group in $p_{n} T_{n} p_{n}$, because any reduction h_{u} for which $u \in[A]\binom{n}{0}$ is a homomorphism mapping each $p_{n} x_{\iota} p_{n}$ to $p_{0} x_{\iota} p_{0}$. It follows from [6, Theorem 2.11] that every maximal group in $K\left(\beta T_{n}\right)$ contains a free group on $2^{2^{\kappa}}$ generators.

We now set out to characterize the members of T_{m} in terms of their members.

Definition 2.19. Let $m<n<\omega$, let φ be a finite coloring of S_{n}, and let $B \in \mathcal{P}_{f}(A)$. Then

$$
\begin{aligned}
E_{m, n, \varphi, B}=\left\{s \in S_{m}:\right. & \left(\exists \tau:[B]\binom{n}{m} \rightarrow S_{n}\right)(\varphi \circ \tau \text { is constant and } \\
& \left.\left.\left(\forall u \in[B]\binom{n}{m}\right)\left(h_{u}(\tau(u))=s\right)\right)\right\} .
\end{aligned}
$$

Theorem 2.20. Let $m \in \omega$ and let $p \in \beta S_{m}$. Given $n>m$, there exists $q \in \beta S_{n}$ such that $h_{u}(q)=p$ for all $u \in[A]\binom{n}{m}$ if and only if for every finite coloring φ of S_{n} and every $B \in \mathcal{P}_{f}(A)$, $E_{m, n, \varphi, B} \in p$. In particular, $p \in T_{m}$ if and only if for every $n>m$, every finite coloring φ of S_{n} and every $B \in \mathcal{P}_{f}(A), E_{m, n, \varphi, B} \in p$.
Proof. It suffices to establish the first conclusion. So let $n>m$.
Necessity. Let φ be a finite coloring of S_{n} and let $B \in \mathcal{P}_{f}(A)$.
Pick $q \in \beta S_{n}$ such that $h_{u}(q)=p$ for all $u \in[A]\binom{n}{m}$. Pick $Q \in q$ on which φ is constant. Then $\bigcap\left\{h_{u}[Q]: u \in[B]\binom{n}{m}\right\} \in p$ and $\bigcap\left\{h_{u}[Q]: u \in[B]\binom{n}{m}\right\} \subseteq E_{m, n, \varphi, B}$.

Sufficiency. For each $B \in \mathcal{P}_{f}(A)$, let $D_{B}=\bigcap\left\{\beta S_{n} \cap h_{u}{ }^{-1}[\{p\}]:\right.$ $\left.u \in[B]\binom{n}{m}\right\}$. We claim that each $D+B \neq \emptyset$. So suppose instead that we have $B \in \mathcal{P}_{f}(A)$ such that $D_{B}=\emptyset$. For each $x \in \beta S_{n}$ choose $u_{x} \in[B]\binom{n}{m}$ such that $h_{u_{x}}(x) \neq p$ and pick $X_{x} \in x$ such that $h_{u_{x}}\left[X_{x}\right] \notin p$. Then $\left\{\overline{X_{x}}: x \in \beta S_{n}\right\}$ is an open cover of βS_{n} so pick finite $F \subseteq \beta S_{n}$ such that $\beta S_{n}=\bigcup_{x \in F} \overline{X_{x}}$. For each $y \in S_{n}$ choose $\varphi(y) \in F$ such that $y \in X_{\varphi(y)}$. Then φ is a finite coloring of S_{n} so $E_{m, n, \varphi, B} \in p$. Pick $s \in E_{m, n, \varphi, B} \backslash \bigcup_{x \in F} h_{u_{x}}\left[X_{x}\right]$ and pick $\tau:[B]\binom{n}{m} \rightarrow S_{n}$ such that $\varphi \circ \tau$ is constant and for all $u \in[B]\binom{n}{m}$, $h_{u}(\tau(u))=s$. Let $x \in F$ be the constant value of $\varphi \circ \tau$. Then $h_{u_{x}}\left(\tau\left(u_{x}\right)\right)=s$ and $\tau\left(u_{x}\right)=X_{\varphi\left(\tau\left(u_{x}\right)\right)}=X_{x}$, so $s \in h_{u_{x}}\left[X_{x}\right]$, a contradiction.

If $B \subseteq C$, then $D_{C} \subseteq D_{B}$ so $\left\{D_{B}: B \in \mathcal{P}_{f}(A)\right\}$ is a set of closed subsets of βS_{n} with the finite intersection property so choose $q \in \bigcap_{B \in \mathcal{P}_{f}(A)} D_{B}$. Then for each $u \in[A]\binom{n}{m}, h_{u}(q)=p$.

The reductions h_{u} are also continuous homomorphisms from $(\beta W, *)$ to itself, where $*$ denotes the natural extension of the semigroup operation from W to βW for which βW is left topological. The subsets $C_{n}, G R_{n}$ and T_{n} of βW do not depend on which semigroup operation on βW is being used. These sets are compact subsemigroups of $(\beta W, *)$ as well as $(\beta W, \cdot)$.

As we remarked in the introduction, Theorem 1.14 is valid for $(\beta W, *)$ as well as $(\beta W, \cdot)$, because it depends only on algebraic propties which hold in compact left topological semigroups as well as compact right topological semigroups. Thus infinite special reductive sequences also exist in $(\beta W, *)$. These are reductive sequences in $(\beta W, \cdot)$ as well, but are are far from being special reductive sequences in $(\beta W, \cdot)$. It was shown in the proof of [1, Theorem 3.13] that, if S denotes the free semigroup over an alphabet with two letters and if p is a minimal idempotent in $(\beta S, *)$, then $p \notin \beta S \cdot p$. This statement can be extended to the free semigroup over any alphabet with more than one letter, by applying a homomorphism which reduces the number of letters to two. So, if $n \in \mathbb{N}$, a minimal idempotent in $\left(\beta W_{n}, *\right)$ is not an idempotent in $\left(\beta W_{n}, \cdot\right)$ and is not in $K\left(\beta W_{n}, \cdot\right)$. In fact, it can be shown that it is right cancelable in $\left(\beta W_{n}, \cdot\right)$ if A is countable.

3. Extending Reductive sequences

Our first objective is to determine those elements of βS_{n} which are part of infinite reductive sequences.

Lemma 3.1. Let $0<n<\omega$, let p_{n} be an idempotent in T_{n}, and let p_{n-1} be the unique reduction of p_{n} in βS_{n-1}. If $p_{n}<p_{n-1}$, then there is an idempotent $p_{n+1} \in T_{n+1}$ such that $p_{n+1}<p_{n}$ and p_{n} is the unique reduction of p_{n+1} in βS_{n}.

Proof. We show first that
if s is an idempotent in T_{n+1} such that $h_{u}(s)=p_{n}$ for all $u \in[A]\binom{n+1}{n}$, then $h_{u}\left(s p_{n}\right)=p_{n}=h_{u}\left(p_{n} s\right)$ for all $u \in[A]\binom{n+1}{n}$ and for every $k \geq n+1$ there exist $x_{k}, y_{k} \in$ βS_{k} such that $h_{u}\left(x_{k}\right)=s p_{n}$ and $h_{u}\left(y_{k}\right)=p_{n} s$ for all $u \in[A]\binom{k}{n+1}$.

To establish the first assertion, let $u \in[A]\binom{n+1}{n}$ and let $w=$ $u_{\mid n}$. Then $h_{u}\left(p_{n}\right)=h_{w}\left(p_{n}\right)$. If $w \in[A]\binom{n}{n}$, then $h_{w}\left(p_{n}\right)=p_{n}$ so $h_{u}\left(s p_{n}\right)=p_{n} p_{n}=p_{n}=h_{u}\left(p_{n} s\right)$. If $w \in[A]\binom{n}{n-1}$, then $h_{w}\left(p_{n}\right)=$ p_{n-1} so $h_{u}\left(s p_{n}\right)=p_{n} p_{n-1}=p_{n}=p_{n-1} p_{n}=h_{u}\left(p_{n} s\right)$.

We establish the second assertion by induction on k. If $k=n+1$, let $x_{k}=s p_{n}$ and let $y_{k}=p_{n} s$. If $u \in[A]\binom{n+1}{n+1}$, then h_{u} is the identity on βS_{n+1} so $h_{u}\left(x_{k}\right)=s p_{n}$ and $h_{u}\left(y_{k}\right)=p_{n} s$.

Now assume that $k>n+1$ and the statement is true for $k-1$. Since $s \in T_{n+1}$ pick $z \in \beta S_{k}$ such that $h_{u}(z)=s$ for all $u \in[A]\binom{k}{n+1}$. By the induction hypothesis pick $x_{k-1}, y_{k-1} \in \beta S_{k-1}$ such that $h_{u}\left(x_{k-1}\right)=s p_{n}$ and $h_{u}\left(y_{k-1}\right)=p_{n} s$ for all $u \in[A]\binom{k-1}{n+1}$. Let $u \in[A]\binom{k}{n+1}$ and let $w=u_{\mid k-1}$. Then $h_{u}\left(x_{k-1}\right)=h_{w}\left(x_{k-1}\right)$. If $w \in[A]\binom{k-1}{n+1}$, then $h_{w}\left(x_{k-1}\right)=s p_{n}$ and $h_{w}\left(y_{k-1}\right)=p_{n} s$ so $h_{u}\left(x_{k}\right)=s s p_{n}=s p_{n}$ and $h_{u}\left(y_{k}\right)=p_{n} s s=p_{n} s$. So assume that $w \in[A]\binom{k-1}{n}$. Pick by Lemma 1.12 some $u_{1} \in[A]\binom{k-1}{n+1}$ and $u_{2} \in[A]\binom{n+1}{n}$ such that $w=u_{1}\left\langle u_{2}\right\rangle$. Then $h_{w}\left(x_{k-1}\right)=$ $h_{u_{2}}\left(h_{u_{1}}\left(x_{k-1}\right)\right)=h_{u_{2}}\left(s p_{n}\right)=p_{n}$ and $h_{w}\left(y_{k-1}\right)=h_{u_{2}}\left(h_{u_{1}}\left(y_{k-1}\right)\right)=$ $h_{u_{2}}\left(p_{n} s\right)=p_{n}$. Thus $h_{u}\left(x_{k}\right)=s p_{n}$ and $h_{u}\left(y_{k}\right)=p_{n} s$. Thus $(*)$ is established.

Now by Lemma 2.11 we have that

$$
\left\{s \in T_{n+1}:\left(\forall u \in[A]\binom{n+1}{n}\right)\left(h_{u}(s)=p_{n}\right)\right\} \neq \emptyset
$$

(If $s \in T_{n+1}$, then $s \in C_{n+1}$.) So this set is a compact subsemigroup of βS_{n+1} so we may pick an idempotent $s \in T_{n+1}$ such that $h_{u}(s)=$ p_{n} for all $u \in[A]\binom{n+1}{n}$. Then by $(*), s p_{n} \in T_{n+1}$. So

$$
s p_{n} \in T_{n+1} \cap \bigcap\left\{h_{u}{ }^{-1}\left[\left\{p_{n}\right\}\right]: u \in[A]\binom{n+1}{n}\right\} \cap \beta S_{n+1} p_{n}
$$

and thus this set is a compact subsemigroup of βS_{n+1}. Pick an idempotent

$$
q \in T_{n+1} \cap \bigcap\left\{h_{u}{ }^{-1}\left[\left\{p_{n}\right\}\right]: u \in[A]\binom{n+1}{n}\right\} \cap \beta S_{n+1} p_{n}
$$

and note that $q p_{n}=q$ because $q \in \beta S_{n+1} p_{n}$.
Then by $(*), p_{n} q \in T_{n+1}$ and $h_{u}\left(p_{n} q\right)=p_{n}$ for all $u \in[A]\binom{n+1}{n}$. Let $p_{n+1}=p_{n} q$. Then $p_{n+1} p_{n+1}=p_{n} q p_{n} q=p_{n} q q=p_{n} q=p_{n+1}$, $p_{n+1} p_{n}=p_{n} q p_{n}=p_{n} q=p_{n+1}$, and $p_{n} p_{n+1}=p_{n} p_{n} q=p_{n} q=$ p_{n+1}.

Theorem 3.2. Let $n<\omega$ and let p_{n} be an idempotent in βS_{n}. Then p_{n} is a term of an infinite reductive sequence consisting of idempotents for which $p_{k+1}<p_{k}$ for each $k<\omega$ if and only if $p_{n} \in T_{n}$ and either $n=0$ or $p_{n}<p_{n-1}$, where p_{n-1} is the unique reduction of p_{n} in βS_{n-1}.
Proof. The necessity is trivial. For the sufficiency, assume first that $n>0, p_{n} \in T_{n}$, and $p_{n}<p_{n-1}$. Pick $a \in A$. Inductively, for $k \in\{0,1, \ldots, n-2\}$, if any, assume that p_{k+1} is an idempotent in T_{k+1} with $p_{k+2}<p_{k+1}$. Let $u=a v_{0} v_{1} \cdots v_{k-1} \in[A]\binom{k+1}{k}$ and let $p_{k}=h_{u}\left(p_{k+1}\right)$. Then p_{k} is an idempotent which is the unique reduction of p_{k+1} in βS_{k}. To see that $p_{k} \in T_{k}$, let $r>k+1$ and choose $q \in \beta S_{r}$ such that $h_{w}(q)=p_{k+1}$ for all $w \in[A]\binom{r}{k+1}$. Let $x \in[A]\binom{r}{k}$ and pick by Lemma $1.12 w \in[A]\binom{r}{k+1}$ and $s \in[A]\binom{k+1}{k}$ such that $x=w\langle s\rangle$. Then by Lemma $1.11 h_{x}(q)=h_{s}\left(h_{w}(q)\right)=$ $h_{s}\left(p_{k+1}\right)=p_{k}$.

Let $w=a v_{0} v_{1} \cdots v_{k}$ and note that $h_{w}\left(p_{k+1}\right)=h_{u}\left(p_{k+1}\right)$ so $p_{k}=$ $h_{u}\left(p_{k+1}\right)=h_{w}\left(p_{k+1}\right)>h_{w}\left(p_{k+2}\right)=p_{k+1}$. Thus we have $\left\langle p_{k}\right\rangle_{k=0}^{n}$ is a reductive sequence consisting of idempotents such that $p_{k} \in T_{k}$ for all $k \leq n$ and $p_{k}<p_{k+1}$ for all $k<n$.

Now let $m \geq n$ and assume that $\left\langle p_{k}\right\rangle_{k=0}^{m}$ is a reductive sequence consisting of idempotents such that $p_{k} \in T_{k}$ for all $k \leq n$ and $p_{k}<p_{k+1}$ for all $k<m$. By Lemma 3.1, pick an idempotent $p_{m+1} \in T_{m+1}$ such that $p_{m+1}<p_{m}$ and p_{m} is the unique reduction of p_{m+1} in βS_{m}.

Now assume that $n=0$ and $p_{0} \in T_{0}$. We claim that $T_{1} p_{0} \subseteq T_{1}$. Certainly $\beta S_{1} p_{0} \subseteq \beta S_{1}$. Let $q \in T_{1}$ and let $r>1$. Pick $y \in \beta S_{r}$ such that for all $u \in[A]\binom{r}{1}, h_{u}(y)=q$. Then for all $u \in[A]\binom{r}{1}$, $h_{u}\left(p_{0}\right)=p_{0}$ and so $h_{u}\left(y p_{0}\right)=q p_{0}$ as required.

Pick $a \in A$ and pick by Lemma $2.11 q \in T_{1}$ such that $h_{a}(q)=p_{0}$. Then $q \in C_{1}$ by Theorem 2.3, so $h_{c}(q)=p_{0}$ for all $c \in A$ and thus

$$
q p_{0} \in T_{1} p_{0} \cap \bigcap_{c \in A} h_{c}^{-1}\left[\left\{p_{0}\right\}\right] .
$$

Pick an idempotent $r \in T_{1} p_{0} \cap \bigcap_{c \in A} h_{c}{ }^{-1}\left[\left\{p_{0}\right\}\right]$ and let $p_{1}=p_{0} r$. Then p_{1} is an idempotent in T_{1} and $p_{1}<p_{0}$ so the already established case where $n=1$ applies.

We now see that the requirement of Theorem 3.2 that p_{n} be a member of T_{n} can be weakened in the case in which $n=1$.

Theorem 3.3. Let p_{1} be an idempotent in C_{1}. If $p_{1}<p_{0}$, where p_{0} denotes the unique reduction of p_{1} in βW_{0}, then there is an infinite reductive sequence $\left\langle p_{0}, p_{1}, p_{2}, p_{3}, \ldots\right\rangle$ consisting of idempotents, such that $p_{n+1}<p_{n}$ for every $n \in \omega$.

Proof. By Theorem 3.2 it is enough to show that $p_{1} \in T_{1}$. Given $n>1$, put $q_{n}=h_{v_{0}}\left(p_{1}\right) h_{v_{1}}\left(p_{1}\right) \cdots h_{v_{n-1}}\left(p_{1}\right)$. Then $q_{n} \in \beta S_{n}$. Let $u \in[A]\binom{n}{1}$. We claim that $h_{u}\left(q_{n}\right)=p_{1}$. To see this note that if $a \in A$ and $m \in\{0,1, \ldots, n-1\}$, then $h_{u}\left(h_{v_{m}}(a)\right)=a$ while $h_{u}\left(h_{v_{m}}\left(v_{0}\right)\right)=u(m)$. Thus if $m \in\{0,1, \ldots, n-1\}$ and $w \in S_{1}$, then $h_{u}\left(h_{v_{m}}(w)\right)=h_{u(m)}(w)$. Therefore, if $u(m) \in A$, then $h_{u}\left(h_{v_{m}}\left(p_{1}\right)\right)=p_{0}$, while if $u(m)=v_{0}$, then $h_{u}\left(h_{v_{m}}\left(p_{1}\right)\right)=p_{1}$. Since there is at least one $m \in\{0,1, \ldots, n-1\}$ for which $u(m)=v_{0}$, we have $h_{u}\left(q_{n}\right)=p_{1}$. So $p_{1} \in T_{1}$.
Theorem 3.4. Let $n<\omega$ and let p_{n} be a minimal idempotent in βS_{n}. Then p_{n} is a term of an infinite special reductive sequence if and only if either $n=0$ or $p_{n} \in T_{n}$ and $p_{n}<p_{n-1}$, where p_{n-1} is the unique reduction of p_{n} in βS_{n-1}.

Proof. Again the necessity is trivial. If $n=0$, Theorem 1.5 applies, so assume that $n>0$. Pick $a \in A$. For $k \in\{0,1, \ldots, n-2\}$, if any, let $u=a v_{0} v_{1} \cdots v_{k-1} \in[A]\binom{c+1}{k}$ and let $p_{k}=h_{u}\left(p_{k+1}\right)$. Exactly as in the proof of Theorem 3.2 we have that $p_{k} \in T_{k}$ and $p_{k+1}<p_{k}$. By Lemma 1.9, p_{k} is minimal in βS_{k}. Thus we have that $\left\langle p_{k}\right\rangle_{k=0}^{n}$ is a special reductive sequence. Let $m \geq n$ and assume
that $\left\langle p_{k}\right\rangle_{k=0}^{m}$ is a special reductive sequence. By Lemma 3.1 we can choose an idempotent $q_{n+1} \in T_{n+1}$ such that $q_{n+1}<p_{n}$ and p_{n} is the unique reduction of q_{n+1} in βS_{n}. Pick by [6 , Theorem 1.60] a minimal idempotent p_{n+1} of T_{n+1} such that $p_{n+1} \leq q_{n+1}$. Given $u \in[A]\binom{n+1}{n}, h_{u}\left(p_{n+1}\right) \leq h_{u}\left(q_{n+1}\right)=p_{n}$ so $h_{u}\left(p_{n+1}\right)=p_{n}$.

It is natural to ask whether the requirement that $p_{n}<p_{n-1}$, where p_{n-1} is the unique reduction of p_{n} in βS_{n-1}, is needed. We see that it is.

Theorem 3.5. Let $n \in \mathbb{N}$. There is a minimal idempotent q of T_{n} such that there is no minimal idempotent r of βS_{n-1} with $q<r$. In particular, if r is the unique reduction of q in βS_{n-1}, then it is not the case that $q<r$.

Proof. The length function $\ell: W \rightarrow \mathbb{N}$ is a surjective homomorphism, hence so is its continuous extension from βW to $\beta \mathbb{N}$ which we also denote by ℓ. Notice that for any $u \in W, \ell \circ h_{u}=\ell$. Pick any nonminimal idempotent x of $\beta \mathbb{N}$ and let $X=\ell^{-1}[\{x\}]$. Notice that for each $k<\omega, \ell\left[S_{k}\right]=\{t \in \mathbb{N}: t \geq k\}$ and so $X \cap \beta S_{k} \neq \emptyset$.

Pick a minimal idempotent p_{0} of $X \cap S_{0}$. We claim that $p_{0} \in T_{0}$. So let $k>0$ be given and pick an idempotent y of $X \cap \beta S_{k}$ such that $y<p_{0}$. Then for all $u \in[A]\binom{k}{0}, h_{u}(y) \leq h_{u}\left(p_{0}\right)=p_{0}$. Since $\ell\left(h_{u}(y)\right)=\ell(y)=x$ we have $h_{u}(y) \in X \cap \beta S_{0}$ and so $h_{u}(y)=p_{0}$.

By Theorem 3.2 we may pick p_{1}, p_{2}, \ldots such that $\left\langle p_{k}\right\rangle_{k<\omega}$ is a reductive sequence and for each $k \in \omega, p_{k+1}<p_{k}$ and $p_{k} \in T_{k}$.

Recall that we have fixed $n \in \mathbb{N}$. Given any $u \in[A]\binom{n}{0}, h_{u}\left(p_{n}\right)=$ p_{0} and so $\ell\left(p_{n}\right)=\ell\left(h_{u}\left(p_{n}\right)\right)=\ell\left(p_{0}\right)=x$ and thus $p_{n} \in X$. Pick a minimal idempotent q of T_{n} such that $q \leq p_{n}$. Suppose that we have a minimal idempotent r of βS_{n-1} such that $q<r$.

Pick $a \in A$ and let G be the free group over $\{a\} \cup V$. Define a homomorphism $f: W \rightarrow G$ by agreeing for $W \in A \cup V$, that

$$
f(w)= \begin{cases}w & \text { if } w \in V \\ a & \text { if } w \in A\end{cases}
$$

Denote also by f its continuous extension from βW to βG.
Now $f(q) \leq f\left(p_{n}\right)$ and $f(q) \leq f(r)$ so $\beta G f\left(p_{n}\right) \cap \beta G f(r) \neq \emptyset$. Since G is countable we have by [6, Corollary 6.20] that either $f\left(p_{n}\right) \in \beta G f(r)$ or $f(r) \in \beta G f\left(p_{n}\right)$. Since $f(r)$ and $f\left(p_{n}\right)$ are idempotents, this says that $f\left(p_{n}\right)=f\left(p_{n}\right) f(r)=f\left(p_{n} r\right)$ or $f(r)=$ $f(r) f\left(p_{n}\right)=f\left(r p_{n}\right)$. Let $B=\left\{w \in W: v_{n-1}\right.$ occurs in $\left.w\right\}$. Then
$B \in r p_{n}$ so $f[B] \in f\left(r p_{n}\right)$. Since $f\left[S_{n-1}\right] \in f(r)$ and $f\left[S_{n-1}\right] \cap$ $f[B]=\emptyset$, we have that $f(r) \neq f\left(r p_{n}\right)$ and so $f\left(p_{n}\right)=f\left(p_{n} r\right)$.

Let $\ell^{\prime}: G \rightarrow \mathbb{N}$ be the length function on G and denote also by ℓ^{\prime} its continuous extension from βG to $\beta \mathbb{N}$. Then $\ell^{\prime}\left(f\left(p_{n}\right)\right)=$ $\ell^{\prime}\left(f\left(p_{n} r\right)\right)$ and for $w \in W, \ell^{\prime}(f(w))=\ell(w)$ so $\ell\left(p_{n}\right)=\ell\left(p_{n} r\right)=$ $\ell\left(p_{n}\right)+\ell(r)$. Since $\ell\left[S_{n-1}\right]=\{t \in \mathbb{N}: t \geq n-1\}$ and $r \in K\left(\beta S_{n-1}\right)$, $\ell(r) \in K(\beta \mathbb{N})$ and so $x=\ell\left(p_{n}\right) \in K(\beta \mathbb{N})$, a contradiction.

We observed in the introduction that the relation \prec defined in Definition 1.6 has the property that the set of predecessors (if any) of an element of βS_{n} is linearly ordered. We shall show in Theorem 3.7 that elements of βS_{n} may have many successors.

We begin with a lemma which allows us to propagate branching upwards along special reductive sequences in the \prec tree.

Lemma 3.6. Assume $\left(p_{0}, \ldots, p_{n+1}\right)$ is a special reductive sequence. If $\left(p_{0}, \ldots, p_{n-1}, x\right)$ is a reductive sequence (equivalently, either $n=$ 0 or $\left.p_{n-1} \prec x\right)$ then $\left(p_{0}, \ldots, p_{n}, \bar{x}\right)$ is a special reductive sequence where, letting \tilde{x} be the inverse of $p_{n} x p_{n}$ in the group $p_{n} \beta S_{n} p_{n}$, $\bar{x}=\tilde{x} p_{n+1} x p_{n}$.
Proof. Noting that $\bar{x}=\tilde{x} p_{n+1} p_{n} x p_{n}$, a straightforward calculation shows that \bar{x} is an idempotent. Since $p_{n+1} \in K\left(\beta S_{n+1}\right)$ and p_{n+1} is a factor of \bar{x}, \bar{x} is a minimal idempotent. Clearly, $\bar{x}<p_{n}$.

Suppose $u \in[A]\binom{n+1}{n}$. We wish to show $h_{u}(\bar{x})=p_{n}$. Of course, $h_{u}(\bar{x})$ is an idempotent since h_{u} is a homomorphism. So, showing that $h_{u}(\bar{x}) \leq p_{n}$ will suffice. This is immediate if the restriction of u to n is in $[A]\binom{n}{n}$ i.e. is $v_{0} \ldots v_{n-1}$. So suppose otherwise. Notice that this implies that $n \neq 0$. We have $h_{u}\left(p_{n} x p_{n}\right)=$ $p_{n-1} p_{n-1} p_{n-1}=p_{n-1}$. Since $\tilde{x}\left(p_{n} x p_{n}\right)=p_{n}, h_{u}(\tilde{x}) p_{n-1}=p_{n-1}$. Since $h_{u}(\tilde{x})$ is in the group $p_{n-1} \beta S_{n-1} p_{n-1}$, this implies that $h_{u}(\tilde{x})=p_{n-1}$. A simple calculation now shows that $h_{u}(\bar{x})=p_{n}$.

Theorem 3.7. Let $\kappa=\max \{\omega,|A|\}$. If $\left(p_{0}, \ldots, p_{n}\right)$ is a special reductive sequence which can be extended to a special reductive sequence $\left(p_{0}, \ldots, p_{n+1}\right)$ then there are $2^{2^{\kappa}}$ elements x of βS_{n+1} such that $\left(p_{0}, \ldots, p_{n}, x\right)$ is a special reductive sequence. Moreover, if $p_{n+1} \in T_{n+1}$ then there are as many such x in T_{n+1}.

Proof. For convenience, whenever $z \in \beta S_{k+1}$ and v_{k} persists in z, we will write $\tau(z)$ and $\eta(z)$ for $\tau_{v_{k}}(z)$ and $\eta_{v_{k}}(z)$ respectively.

By Theorem 2.17, there is a subset U of βW_{0} of size $2^{2^{\kappa}}$ such that $\tau\left(p_{1}\right) x \eta\left(p_{1}\right)$ are distinct as x ranges over U. By shrinking U if necessary, we may also assume all are distinct from $\tau\left(p_{1}\right) \eta\left(p_{1}\right)$. Let \tilde{x} be the inverse of $p_{0} x p_{0}$ in $p_{0} \beta W_{0} p_{0}$ for $x \in U$. By shrinking U again, we may assume that whenever x and y are distinct elements of $U, \tau\left(p_{1}\right) x \eta\left(p_{1}\right) \neq \tau\left(p_{1}\right) \tilde{y} \eta\left(p_{1}\right)$. (If the collection of $\tau\left(p_{1}\right) \tilde{y} \eta\left(p_{1}\right)$ has size less than $2^{2^{\kappa}}$ this is clear, otherwise the desired subcollection can be constructed inductively.)

For $x \in U$ define $x_{k} \in \beta S_{k}$ for $k=0, \ldots, n+1$ by induction according to Lemma 3.6 so that $x_{0}=x$ and whenever $k \leq n$, $x_{k+1}=\tilde{x}_{k} p_{k+1} x_{k} p_{k}$ where \tilde{x}_{k} is the inverse of $p_{k} x_{k} p_{k}$ in the group $p_{k} \beta S_{k} p_{k}$. Lemma 3.6 implies that if $x \in U$ and $0<k \leq n+1$ then $\left(p_{0}, \ldots, p_{k-1}, x_{k}\right)$ is a special reductive sequence.

We first show that if x and y are distinct elements of U then $x_{n+1} \neq y_{n+1}$. Fix such x and y. Let $P(k)$ denote the following: $\tau\left(p_{k+1}\right) x_{k} \eta\left(p_{k+1}\right)$ is not equal to
$\tau\left(p_{k+1}\right) y_{k} \eta\left(p_{k+1}\right)$,
$\tau\left(p_{k+1}\right) \tilde{y}_{k} \eta\left(p_{k+1}\right)$ or
$\tau\left(p_{k+1}\right) \eta\left(p_{k+1}\right)$.
We will show by induction on $k=0, \ldots, n$ that $P(k)$ holds, but first notice that this will imply that $x_{n+1} \neq y_{n+1}$ as follows. Since

$$
\tau\left(p_{n+1}\right) x_{n} \eta\left(p_{n+1}\right) \neq \tau\left(p_{n+1}\right) y_{n} \eta\left(p_{n+1}\right)
$$

and $\eta\left(p_{n+1}\right)=p_{n} \eta\left(p_{n+1}\right)$, we must also have

$$
\tau\left(p_{n+1}\right) x_{n} p_{n} \neq \tau\left(p_{n+1}\right) y_{n} p_{n} .
$$

Since $\tau\left(p_{n+1}\right) x_{n} p_{n}=\tau\left(x_{n+1}\right)$ and $\tau\left(p_{n+1}\right) y_{n} p_{n}=\tau\left(y_{n+1}\right)$, we conclude $x_{n+1} \neq y_{n+1}$.

To begin the proof by induction that $P(k)$ holds for $k=0, \ldots, n$, notice that $P(0)$ is true by choice of U.

Assume $k<n$ and $P(k)$ holds. $\tau\left(p_{k+1}\right) x_{k} \eta\left(p_{k+1}\right)$ contains an element X which is not in $\tau\left(p_{k+1}\right) y_{k} \eta\left(p_{k+1}\right), \tau\left(p_{k+1}\right) \tilde{y}_{k} \eta\left(p_{k+1}\right)$ or $\tau\left(p_{k+1}\right) \eta\left(p_{k+1}\right)$. Let μ be the characteristic function of X as a subset of S_{k} modulo 3 so that μ^{+}counts the number of v_{k}-gaps from X modulo 3 in elments of S_{k+1}. We see that

$$
\begin{aligned}
& \mu\left(\tau\left(p_{k+1}\right) y_{k} \eta\left(p_{k+1}\right)\right)=0, \\
& \mu\left(\tau\left(p_{k+1}\right) \tilde{y}_{k} \eta\left(p_{k+1}\right)\right)=0, \\
& \mu\left(\tau\left(p_{k+1}\right) \eta\left(p_{k+1}\right)\right)=0 \text { and }
\end{aligned}
$$

$$
\mu\left(\tau\left(p_{k+1}\right) x_{k} \eta\left(p_{k+1}\right)\right)=1
$$

We will show that $\mu^{+}\left(\tau\left(p_{k+2}\right) x_{k+1} \eta\left(p_{k+2}\right)\right)$ is not equal to

$$
\begin{aligned}
& \mu^{+}\left(\tau\left(p_{k+2}\right) y_{k+1} \eta\left(p_{k+2}\right)\right) \\
& \mu^{+}\left(\tau\left(p_{k+2}\right) \tilde{y}_{k+1} \eta\left(p_{k+2}\right)\right) \text { or } \\
& \mu^{+}\left(\tau\left(p_{k+2}\right) \eta\left(p_{k+2}\right)\right)
\end{aligned}
$$

thus completing the inductive argument.
Using parts (a), (d) and (e) of Lemma 2.16 and the fact that $\tau\left(p_{k+2}\right)=\tau\left(p_{k+2}\right) p_{k+1}$ and $\eta\left(p_{k+2}\right)=p_{k+1} \eta\left(p_{k+2}\right)$, it will suffice to show that $\mu^{+}\left(p_{k+1} x_{k+1} p_{k+1}\right)$ is not equal to

$$
\begin{aligned}
& \mu^{+}\left(p_{k+1} y_{k+1} p_{k+1}\right) \\
& \mu^{+}\left(p_{k+1} \tilde{y}_{k+1} p_{k+1}\right) \text { or } \\
& \mu^{+}\left(p_{k+1}\right) .
\end{aligned}
$$

Part (b) of Lemma 2.16 implies that $\mu^{+}\left(p_{k+1}\right)=0$. Using the definitions of y_{k+1} and x_{k+1} we can use Lemma 2.16 again to compute that $\mu^{+}\left(p_{k+1} y_{k+1} p_{k+1}\right)=0$ and $\mu^{+}\left(p_{k+1} x_{k+1} p_{k+1}\right)$ is either 1 or 2 depending on whether X is in $\tau\left(p_{k+1}\right) \tilde{x}_{k} \eta\left(p_{k+1}\right)$ or not. Using the fact that $\left(p_{k+1} \tilde{y}_{k+1} p_{k+1}\right)\left(p_{k+1} y_{k+1} p_{k+1}\right)=\tilde{y}_{k+1}\left(p_{k+1} y_{k+1} p_{k+1}\right)=$ p_{k+1} and Lemma 2.16 yet again, we see that $\mu^{+}\left(p_{k+1} \tilde{y}_{k+1} p_{k+1}\right)$ is also 0 .

Now assume that $p_{n+1} \in T_{n+1}$. In order to complete the proof of the theorem, it will suffice to show that $x_{n+1} \in T_{n+1}$ for all $x \in U$.

Since $p_{n+1} \in T_{n+1}, p_{k} \in T_{k}$ for $k \leq n$ by Lemma 2.2 and Theorem 2.12. By the definition of T_{n+1}, for $r>n+1$ choose p_{r} such that $p_{n+1} \prec p_{r}$ (implying $p_{k} \prec p_{r}$ for $k \leq n$ also). Notice that by Theorem 3.4 we could have chosen the p_{r} so that $<p_{i}>_{i<\omega}$ would be a special reductive sequence, but we won't need that assumption.

Fix $x \in U$. We will show by induction on $k=1, \ldots, n+1$ that $x_{k} \in T_{k}$.

Since $\left(p_{0}, x_{1}\right)$ is a special reductive sequence, $x_{1} \in T_{1}$ by Theorem 3.3.

Assume $1 \leq k<n+1$ and $x_{k} \in T_{k}$. By Theorem 2.3, $p_{k} x_{k} p_{k} \in$ T_{k}. Moreover, $\tilde{x}_{k} \in T_{k}$ since $p_{k} T_{k} p_{k}$ is a subgroup of $p_{k} \beta S_{k} p_{k}$. We will now show by induction on $r \geq k+1$ that there is some $x_{r}^{k+1} \in \beta S_{r}$ such that $x_{k+1} \preceq x_{r}^{k+1}$, thus verifying that $x_{k+1} \in T_{k+1}$.

For $r=k+1$, simply take $x_{r}^{k+1}=x_{k+1}$.
Suppose $k+1 \leq r$ and $x_{k+1} \preceq x_{r}^{k+1}$ where $x_{r}^{k+1} \in \beta S_{r}$. Choose $x_{r}^{k}, \tilde{x}_{r}^{k} \in \beta S_{r}$ such that $x_{k} \prec x_{r}^{k}$ and $\tilde{x}_{k} \prec \tilde{x}_{r}^{k}$. Let x_{r+1}^{k+1} be an
idempotent in βS_{r+1} such that $x_{r+1}^{k+1} \in \beta W\left(\tilde{x}_{r}^{k} p_{r+1} x_{r}^{k} p_{r} x_{r}^{k+1}\right)$ and $x_{r+1}^{k+1} \in\left(x_{r}^{k+1} \tilde{x}_{r}^{k} p_{r+1} x_{r}^{k} p_{r}\right) \beta W$.

In order to show $x_{k+1} \prec x_{r+1}^{k+1}$, suppose $u \in[A]\binom{r+1}{k+1}$. Notice that $h_{u}\left(x_{r+1}^{k+1}\right)$ is an idempotent in βS_{k+1}, so to complete our proof it will suffice to show that $h_{u}\left(x_{r+1}^{k+1}\right) \leq x_{k+1}$. This is immediate when considering the two possible cases: $u \left\lvert\, r \in[A]\binom{r}{k+1}\right.$ or $u \left\lvert\, r \in[A]\binom{r}{k}\right.$. In the first case, use the fact that $h_{u}\left(x_{r}^{k+1}\right)=x_{k+1}$. In the second case, notice that $h_{u}\left(x_{r}^{k+1}\right)=p_{k}$ since $p_{k} \prec x_{k+1} \prec x_{r}^{k+1}$.

We have seen that there are finite special reductive sequences which have $2^{2^{\kappa}}$ continuations, where $\kappa=\max (\omega,|A|)$, and shall see that there are others which cannot be continued.

By Theorem 1.5, if p_{0} is any minimal idempotent in βS_{0} and p_{1} is any minimal idempotent in βS_{1} such that $p_{1}<p_{0}$, then in fact $p_{0} \prec p_{1}$. We see now that such a statement cannot be extended to $n=2$.

Theorem 3.8. Let p_{0} be a minimal idempotent in βS_{0} and let p_{1} be a minimal idempotent in βS_{1} such that $p_{1}<p_{0}$. There exists a minimal idempotent p_{2} in βS_{2} such that $p_{2}<p_{1}$ but it is not the case that $p_{1} \prec p_{2}$.

Proof. Pick a minimal idempotent q of βW_{1} such that $q \in p_{1} \beta W_{1} \cap$ $\beta W_{1} p_{0}$ and $q \neq p_{1}$. (Let $a \in A$. Then the left ideals $\beta W_{1} v_{0} v_{0} p_{0}$ and $\beta W_{1} a v_{0} p_{0}$ are disjoint subsets of $\beta W_{1} p_{0}$. The intersection of each of them with $p_{1} \beta W_{1}$ contains an idempotent minimal in βW_{1}.) Notice that the minimal left ideals $\beta W_{1} p_{1}$ and $\beta W_{1} q$ are disjoint, since p_{1} is the unique idempotent in $p_{1} \beta W_{1} \cap \beta W_{1} p_{1}$. (We know that p_{1} is minimal in βW_{1} because S_{1} is an ideal of W_{1}.)

Pick a minimal idempotent p_{2} of βS_{2} such that $p_{2} \in p_{1} \beta S_{2} \cap$ $\beta S_{2} h_{v_{1}}(q) p_{1}$. Pick $r \in \beta S_{2}$ such that $p_{2}=r h_{v_{1}}(q) p_{1}$ and pick $a \in A$. Then

$$
\begin{aligned}
h_{a v_{0}}\left(p_{2}\right) & =h_{a v_{0}}(r) h_{v_{1}}\left\langle a v_{0}\right\rangle \\
& =h_{a v_{0}}(r) h_{v_{0}}(q) h_{a v_{0}}\left(p_{1}\right) \\
& \left.=p_{1}\right) \\
& =h_{a v_{0}}(r) q p_{0}=h_{a v_{0}}(r) q \text { and } \\
h_{v_{0} a}\left(p_{2}\right) & =h_{v_{0} a}\left(r h_{v_{1}}(q)\right) h_{v_{0} a}\left(p_{1}\right) \\
& =h_{v_{0} a}\left(r h_{v_{1}}(q)\right) p_{1}
\end{aligned}
$$

and so $h_{a v_{0}}\left(p_{2}\right)$ and $h_{v_{0} a}\left(p_{2}\right)$ are in disjoint left ideals of βW_{2}.

It is natural to ask whether every finite special reductive sequence $\left\langle p_{i}\right\rangle_{i=0}^{n}$ can be extended to a special reductive sequence with $n+2$ terms. The answer is "yes" if $n=0$ or $n=1$, by Theorem 1.5. We shall show in Theorem 3.16 that the answer is "no" if $n>1$. We shall use some special notation.
Definition 3.9. Let $n \in \omega$. Then $[A]^{*}\binom{n}{0}=[A]\binom{n}{0}$ and if $0<$ $m \leq n$, then $[A]^{*}\binom{n}{m}=\left\{u \in[A]\binom{n}{m}: u(n-1)=v_{m-1}\right.$ and $\left.u_{\mid n-1} \in[A]\binom{n-1}{m-1}\right\}$.

Also $D_{n}=\left\{x \in \beta W_{n}:(\forall m<n)\left(\forall u, u^{\prime} \in[A]^{*}\binom{n}{m}\right)\left(h_{u}(x)=\right.\right.$ $\left.\left.h_{u^{\prime}}(x)\right)\right\}$.
Lemma 3.10. Let $m<n<\omega$ and let $u \in[A]^{*}\binom{n}{m}$. Then $h_{u}\left[D_{n}\right] \subseteq D_{m}$.

Proof. We know that $h_{u}\left[\beta W_{n}\right] \subseteq \beta W_{m}$. If $m=0$, then $D_{m}=\beta W_{m}$, so assume that $m>0$, let $k<m$, let $x \in D_{n}$, and let $w, w^{\prime} \in$ $[A]^{*}\binom{m}{k}$. Then $u\langle w\rangle$ and $u\left\langle w^{\prime}\right\rangle$ are in $[A]^{*}\binom{n}{k}$ and so $h_{w}\left(h_{u}(x)\right)=$ $h_{u\langle w\rangle}(x)=h_{u\left\langle w^{\prime}\right\rangle}(x)=h_{w^{\prime}}\left(h_{u}(x)\right)$.
Lemma 3.11. Let $n \in \mathbb{N}$ and let p_{0} be a minimal idempotent in βS_{0}. Let $x_{n} \in D_{n}$ and for each $m<n$ let x_{m} be the unique value of $h_{u}\left(x_{n}\right)$ for $u \in[A]^{*}\binom{n}{m}$. There is a special reductive sequence $\left\langle q_{0}, q_{1}, \ldots, q_{n}\right\rangle$ such that $q_{0}=p_{0}$ and for each $i \in\{1,2, \ldots, n\}$,

$$
q_{i} \in q_{i-1} x_{i} \beta W_{i} \cap \beta W_{i} x_{i} q_{i-1} .
$$

Proof. We can assume that $x_{n} \in K\left(D_{n}\right)$ because we can pick $y_{n} \in$ $K\left(D_{n}\right) \cap x_{n} D_{n} \cap D_{n} x_{n}$ and, given $m<n$, if y_{m} is the unique value of $h_{u}\left(y_{n}\right)$ for $u \in[A]^{*}\binom{n}{m}$, then $y_{m} \beta W_{m} \subseteq x_{m} \beta W_{m}$ and $\beta W_{m} y_{m} \subseteq \beta W_{m} x_{m}$.

Assume first that $n=1$, let $q_{0}=p_{0}$, and let q_{1} be a minimal idempotent of βW_{1} with $q_{1} \in q_{0} x_{1} \beta W_{1} \cap \beta W_{1} x_{1} q_{0}$. Then $q_{1}<q_{0}$ and so for any $u \in[A]\binom{1}{0}, h_{u}\left(q_{1}\right)<h_{u}\left(q_{0}\right)=q_{0}$ and thus $h_{u}\left(q_{1}\right)=$ q_{0}. Also $q_{1} \in K\left(\beta W_{1}\right)=K\left(\beta S_{1}\right)$ because S_{1} is an ideal of W_{1}.

Now assume that $n>1$ and the lemma is valid for $n-1$. Note that by Theorem $1.5 D_{n} \cap K\left(\beta W_{n}\right) \neq \emptyset$ and thus $x_{n} \in K\left(D_{n}\right)=$ $D_{n} \cap K\left(\beta W_{n}\right)$. By Lemma $3.10 x_{n-1} \in D_{n-1}$. We also observe that $x_{n-1} \in K\left(\beta W_{n-1}\right)$. To see this, let $u=v_{0} v_{0} v_{1} \cdots v_{n-2}$. Then $u \in$ $[A]^{*}\binom{n}{n-1}$ so $h_{u}\left(x_{n}\right)=x_{n-1}$. Also $h_{u}\left[W_{n}\right]=W_{n-1}$ so $h_{u}\left[\beta W_{n}\right]=$ βW_{n-1} and thus by [6, Exercise 1.7.3], $h_{u}\left[K\left(\beta W_{n}\right)\right]=K\left(\beta W_{n-1}\right)$. Thus $x_{n-1}=h_{u}\left(x_{n}\right) \in K\left(\beta W_{n-1}\right)$.

By the induction hypothesis we may pick a special reductive sequence $\left\langle q_{0}, q_{1}, \ldots, q_{n-1}\right\rangle$ such that $q_{0}=p_{0}$ and for each $i \in\{1,2$, $\ldots, n-1\} q_{i} \in q_{i-1} x_{i} \beta W_{i} \cap \beta W_{i} x_{i} q_{i-1}$. Pick a minimal idempotent q_{n} of βW_{n} such that $q_{n} \in q_{n-1} x_{n} \beta W_{n} \cap \beta W_{n} x_{n} q_{n-1}$. Then $q_{n}<$ q_{n-1}. Also, since $S_{n-1} \in q_{n-1}$ and $\left\{w \in W_{n}: v_{n-1}\right.$ occurs in $w\} \in x_{n}$, we have that $q_{n} \in \beta S_{n}$ and so q_{n} is minimal in βS_{n}.

Let $u \in[A]\binom{n}{n-1}$. It remains to show that $h_{u}\left(q_{n}\right)=q_{n-1}$. If $u=$ $v_{0} v_{1} \cdots v_{n-2} t$ for some $t \in A \cup\left\{v_{0}, v_{1}, \ldots, v_{n-2}\right\}$, then $h_{u}\left(q_{n-1}\right)=$ q_{n-1} so $h_{u}\left(q_{n}\right) \leq q_{n-1}$ and thus $h_{u}\left(q_{n}\right)=q_{n-1}$.

So assume that $u=u^{\prime} v_{n-2}$ for some $u^{\prime} \in[A]\binom{n-1}{n-2}$. Then $u \in$ $[A]^{*}\binom{n}{n-1}$ and so $h_{u}\left(x_{n}\right)=x_{n-1}$. Also $h_{u}\left(q_{n-1}\right)=h_{u^{\prime}}\left(q_{n-1}\right)=$ q_{n-2}. Thus $h_{u}\left(q_{n-1} x_{n}\right)=q_{n-2} x_{n-1}$ and $h_{u}\left(x_{n} q_{n-1}\right)=x_{n-1} q_{n-2}$. Since $x_{n-1} \in K\left(\beta W_{n-1}\right)$, we may pick a minimal right ideal R of βW_{n-1} and a minimal left ideal L of βW_{N-1} such that $q_{n-2} x_{n-1} \in$ R and $x_{n-1} q_{n-2} \in L$. Then $q_{n-1} \in R \cap L$ so $q_{n-2} x_{n-1} \in R=$ $q_{n-1} \beta W_{n-1}$ and $x_{n-1} q_{n-2} \in L=\beta W_{n-1} q_{n-1}$ so $h_{u}\left(q_{n}\right) \leq q_{n-1}$ and thus $h_{u}\left(q_{n}\right)=q_{n-1}$.

Notice that if in Lemma 3.11, x_{1} is a minimal idempotent in βS_{1} and $x_{1}<p_{0}$, then $q_{1} \in q_{0} x_{1} \beta W_{1} \cap \beta W_{1} x_{1} q_{0}=x_{1} \beta W_{1} \cap \beta W_{1} x_{1}$ and so $q_{1}=x_{1}$.
Definition 3.12. We choose any $c \in A$ and define E to be the set of words in W_{0} in which c does not occur.

We now give an inductive definition of a subset R_{n} of W_{n} for each $n \geq 2$.

$$
\begin{gathered}
R_{2}=W_{1} v_{1} E v_{0} W_{2} \text { and if } n>2, \\
R_{n}=W_{n-1} h_{v_{n-1}}\left[W_{1}\right] v_{n-1} R_{n-1} W_{n} .
\end{gathered}
$$

We observe that, for every $n \geq 2, R_{n}$ is a right ideal of W_{n} and $W_{n-1} R_{n} \subseteq R_{n}$.

Lemma 3.13. If p_{0} is any minimal idempotent in βS_{0}, there is a special reductive sequence $\left\langle p_{0}, p_{1}, p_{2}\right\rangle$ for which $R_{2} \in p_{2}$.

Proof. Let c be the element of A used to define R_{2} and let $B=A \backslash$ $\{c\}$. We first deal with the case in which $B=\emptyset$. Then $E=\emptyset$ and so $R_{2}=W_{1} v_{1} v_{0} W_{2}$. Let q be a minimal idempotent of βW_{2} satisfying $q \in p_{0} v_{1} v_{0} \beta W_{2} \cap \beta W_{2} p_{0}$. Then $W_{1} \in p_{0}$ so $W_{1} v_{1} v_{0} W_{2} \in q$ and thus $R_{2} \in q$. Note also that $h_{c c}(q) \leq h_{c c}\left(p_{0}\right)=p_{0}$ and so $h_{c c}(q)=p_{0}$. Let $p_{1}=h_{c v_{0}}(q)$. Now q is minimal in the subsemigroup $c \beta W_{2}$ of
βW_{2} by [6, Theorem 1.65] and so p_{1} is minimal in $h_{c v_{0}}\left[c \beta W_{2}\right]=$ $c \beta W_{1}$, hence in βW_{1}. Since also $p_{1} \in \beta S_{1}$ we have that $p_{1} \in$ $\beta S_{1} \cap K\left(\beta W_{1}\right)=K\left(\beta S_{1}\right)$.

Now choose p_{2} to be a minimal idempotent in βS_{2} such that $p_{2} \in p_{1} q \beta S_{2} \cap \beta S_{2} q p_{1}$. Then $W_{1} R_{2} W_{2} \in p_{2}$ and $W_{1} R_{2} W_{2} \subseteq R_{2}$ so $R_{2} \in p_{2}$. Now let $u \in[A]\binom{2}{1}$. If $u=c v_{0}$, then $h_{u}\left(c v_{0}\right)=$ $c c$ so by Lemma $1.10 h_{u}\left(p_{1}\right)=h_{c c}(q)=p_{0}$ and thus $h_{u}\left(p_{2}\right) \in$ $p_{0} p_{1} h_{u}\left[\beta S_{2}\right] \cap h_{u}\left[\beta S_{2}\right] p_{1} p_{0} \subseteq p_{1} \beta S_{1} \cap \beta S_{1} p_{1}$ so $h_{u}\left(p_{2}\right)=p_{1}$. If $u=v_{0} t$ for some $t \in\left\{c, v_{0}\right\}$, then $h_{u}\left(c v_{0}\right)=c v_{0}$ so by Lemma 1.10 $h_{u}\left(p_{1}\right)=h_{c v_{0}}(q)=p_{1}$ and thus $h_{u}\left(p_{2}\right) \in p_{1} h_{u}\left[q \beta S_{2}\right] \cap h_{u}\left[\beta S_{2} q\right] p_{1}$ so $h_{u}\left(p_{2}\right)=p_{1}$. So $\left\langle p_{0}, p_{1}, p_{2}\right\rangle$ is a special reductive sequence.

We now assume that $B \neq \emptyset$. Recall that E is the semigroup of words over B. Let W_{1}^{\prime} be the semigroup of words over $A \cup\left\{v_{0}\right\}$. Pick a minimal idempotent q_{0} of βE and a minimal idempotent q_{1} of βW_{1}^{\prime} such that $q_{1}<q_{0}$. Note that for any $b \in B, h_{b}\left(q_{1}\right)=q_{0}$.

Let $y=h_{c}\left(q_{1}\right)$. Then $y \leq h_{c}\left(q_{0}\right)=q_{0}$. Let $z=v_{1} q_{1} y q_{1} y$. Note that $E v_{0} W_{1} \in q_{1}$ so $v_{1} E v_{0} W_{1} W_{2} \in z$ and thus $R_{2} \in z$.

Let $H=\left\{x \in \beta W_{2}\right.$: for all $\left.a, b \in A, h_{a v_{o}}(x)=h_{b v_{0}}(x)\right\}$. Note that by Theorem 1.5, $H \cap K\left(\beta W_{2}\right) \neq \emptyset$. In particular, H is a compact subsemigroup of βW_{2} and $K(H)=H \cap K\left(\beta W_{2}\right)$. If $b \in B$, then $h_{b v_{0}}\left(q_{1}\right)=h_{b}\left(q_{1}\right)=q_{0}$ and so $h_{b v_{0}}(z)=v_{0} q_{0} y q_{0} y=v_{0} y$ and $h_{b v_{0}}\left(p_{0}\right)=p_{0}$. Also $h_{c v_{0}}(z)=v_{0} y y y y=v_{0} y$ and $h_{c v_{0}}\left(p_{0}\right)=p_{0}$. Thus $p_{0} z \in H$ and $z p_{0} \in H$. We can choose a minimal idempotent x of H with $x \in p_{0} z H \cap H z p_{0}$. Then $x \in K\left(\beta W_{2}\right), x \leq p_{0}$, and $R_{2} \in x$.

Let $p_{1}=h_{c v_{0}}(x)$ and note that, given any $a \in A, h_{a v_{0}}(x)=$ $h_{c v_{0}}(x)=p_{1}$. Let I be the ideal of W_{1} consisting of words in which c occurs. Then $K\left(\beta W_{1}\right) \subseteq \bar{I} \subseteq h_{c v_{0}}\left[\beta W_{2}\right]$ and so

$$
p_{1} \in h_{c v_{0}}\left[K\left(\beta W_{2}\right)\right]=K\left(h_{c v_{0}}\left[\beta W_{2}\right]\right)=h_{c v_{0}}\left[\beta W_{2}\right] \cap K\left(\beta W_{1}\right)
$$

and so $p_{1} \in K\left(\beta W_{1}\right)=K\left(\beta S_{1}\right)$. Also $p_{1} \leq h_{c v_{0}}\left(p_{0}\right)=p_{0}$ and therefore $h_{a}\left(p_{1}\right)=p_{0}$ for all $a \in A$.

Now choose p_{2} to be a minimal idempotent of βS_{2} with $p_{2} \in$ $p_{1} x \beta S_{2} \cap \beta S_{2} x p_{1}$. Then $p_{2}<p_{1}$ and since $R_{2} \in x, R_{2} \in p_{2}$. Finally, let $u \in[A]\binom{2}{1}$. We show that $h_{u}\left(p_{2}\right)=p_{1}$. If $u=a v_{0}$ for some $a \in A$, then $h_{u}\left(p_{2}\right) \in p_{0} p_{1} h_{u}\left[\beta S_{2}\right] \cap h_{u}\left[\beta S_{2}\right] p_{1} p_{0} \subseteq p_{1} \beta S_{1} \cap \beta S_{1} p_{1}$. If $u=v_{0} t$ for some $t \in A \cup\left\{v_{0}\right\}$, then $h_{u}\left(p_{2}\right) \in p_{1} h_{u}\left[x \beta S_{2}\right] \cap$ $h_{u}\left[\beta S_{2} x\right] p_{1} \subseteq p_{1} \beta S_{1} \cap \beta S_{1} p_{1}$. Thus, in either case, $h_{u}\left(p_{1}\right)=p_{2}$.

Lemma 3.14. Let $n>1$, let p_{0} be a minimal idempotent in βS_{0} and let $p_{1}<p_{0}$ be a minimal idempotent in βS_{1}. Then there exists a special reductive sequence $\left\langle q_{0}, q_{1}, \ldots, q_{n}\right\rangle$ such that $q_{0}=p_{0}$ and $R_{n} \in q_{n}$. Furthermore, if $n>2$, then $q_{1}=p_{1}$ and if $n>3$, then $q_{2} \in T_{2}$.

Proof. By Lemma 3.13, this holds if $n=2$. So assume that $n \geq 3$ and that the statement of the lemma is true for $n-1$. Pick a special reductive sequence $\left\langle r_{0}, r_{1}, \ldots, r_{n-1}\right\rangle$ with $r_{0}=p_{0}, R_{n-1} \in r_{n-1}$, and with $r_{1}=p_{1}$ if $n>3$. Let $x_{n}=h_{v_{n-1}}\left(p_{1}\right) r_{n-1}$. Then $R_{n} \in x_{n}$, because $W_{1} v_{0} W_{0}=S_{1} \in p_{1}$ so $h_{v_{n-1}}\left[W_{1}\right] v_{n-1} W_{0} R_{n-1} \in x_{n}$ and $W_{0} R_{n-1} \subseteq R_{n-1}$.

We claim that $x_{n} \in D_{n}$. So let $m<n$ and let $u \in[A]^{*}\binom{n}{m}$. Then $h_{u}\left(r_{n-1}\right)=h_{u_{\mid n-1}}\left(r_{n-1}\right)=r_{m-1}$ and $h_{u}\left(h_{v_{n-1}}\left(p_{1}\right)\right)=h_{v_{n-1}\langle u\rangle}\left(p_{1}\right)$ $=h_{v_{m-1}}\left(p_{1}\right)$. Thus $h_{u}\left(x_{n}\right)=h_{v_{m-1}}\left(p_{1}\right) r_{m-1}$, which is independent of the choice of u.

Pick by Lemma 3.11 a special reductive sequence $\left\langle q_{0}, q_{1}, \ldots, q_{n}\right\rangle$ such that $q_{0}=p_{0}$ and, for each $m \in\{1,2, \ldots, n\}$,

$$
q_{m} \in q_{m-1} x_{m} \beta W_{m} \cap \beta W_{m} x_{m} q_{m-1},
$$

where for each $m \in\{1,2, \ldots, n-1\}, x_{m}=h_{v_{m-1}}\left(p_{1}\right) r_{m-1}$. Notice in particular that $x_{1}=h_{v_{0}}\left(p_{1}\right) r_{0}=p_{1} p_{0}=p_{1}$ and thus, since $q_{1} \in q_{0} x_{1} \beta W \cap \beta W x_{1} q_{0}$, we have $q_{1}=p_{1}$.

Now $q_{n} \in q_{n-1} x_{n} \beta W_{n}$ and $R_{n} \in x_{n}$. Since $W_{n-1} R_{n} W_{n} \subseteq R_{n}$, it follows that $R_{n} \in q_{n}$.

Finally assume that $n>3$. Then $r_{1}=p_{1}$ so $x_{2}=h_{v_{1}}\left(p_{1}\right) p_{1}$. Therefore

$$
q_{2} \in p_{1} x_{2} \beta W_{2} \cap \beta W_{2} x_{2} p_{1} \subseteq p_{1} h_{v_{1}}\left(p_{1}\right) \beta W_{2} \cap \beta W_{2} h_{v_{1}}\left(p_{1}\right) p_{1} .
$$

By Theorem 2.9, $q_{2} \in T_{2}$.
Lemma 3.15. Let $n \geq 2$ and let $c \in A$ be the letter used in the definition of E and R_{2}. Define u_{n} and w_{n} in $[A]\binom{n+1}{n}$ by $u_{n}=c v_{0} v_{1} \cdots v_{n-1}$ and $w_{n}=v_{0} c v_{1} v_{2} \cdots v_{n-1}$. Then ${h_{u_{n}}}^{-1}\left[R_{n}\right] \cap$ $h_{w_{n}}{ }^{-1}\left[R_{n}\right]=\emptyset$.
Proof. Notice that ${h_{u_{n}}}^{-1}\left[W_{n}\right] \subseteq W_{n+1}$ and ${h_{w_{n}}}^{-1}\left[W_{n}\right] \subseteq W_{n+1}$.
Assume first that $n=2$ and suppose we have $x \in W_{3}$ such that $h_{u_{2}}(x) \in R_{2}$ and $h_{w_{2}}(x) \in R_{2}$. Then $h_{u_{2}}(x) \in W_{1} v_{1} z v_{0} W_{2}$ for some $z \in E$ so $x \in W_{2} v_{2} z v_{1} W_{3}$ and thus the first variable after the first occurrence of v_{2} in x is v_{1}. Similarly $h_{w_{2}}(x) \in W_{1} v_{1} y v_{0} W_{2}$ for some
$y \in E$ so $x \in W_{2} v_{2} y v_{0} W_{3}$ and thus the first variable after the first occurrence of v_{2} in x is v_{0}, a contradiction.

Now assume that $n>2$ and $h_{u_{n-1}}{ }^{-1}\left[R_{n-1}\right] \cap h_{w_{n-1}}{ }^{-1}\left[R_{n-1}\right]=\emptyset$. For each $k \in \omega$ and $x \in W$, define a v_{k} block in x as a segment of x in which all the letters are in $A \cup\left\{v_{k}\right\}$ with the first and last letters being v_{k} and which is maximal with respect to this condition. Also, if $k>0$, let $W_{k}^{\triangleleft}=\left\{x \in W_{k}: v_{k-1}\right.$ opccurs in $\left.x\right\}$. Define $\varphi_{k}: W_{k}^{\triangleleft} \rightarrow W_{k-1}$ as follows. Let $x \in W_{k}^{\triangleleft}$. If there is only one v_{k-1} block in x, let $\varphi_{k}(x)$ be the word which begins after the v_{k-1} block and continues to the end of x. Otherwise let $\varphi_{k}(x)$ be the word which begins after the first v_{k-1} block and ends immediately before the next occurrence of v_{k-1}. For example, if $a \in A$, then $\varphi_{3}\left(v_{0} v_{2} a v_{2}\right)=\emptyset$ and $\varphi_{3}\left(v_{0} v_{2} a v_{1}\right)=\varphi_{3}\left(v_{0} v_{2} a v_{2} a v_{1} v_{2} v_{1}\right)=a v_{1}$.

We claim that if $x \in R_{n}$, then $\varphi_{n}(x) \in R_{n-1}$. Indeed, from the definition of R_{n}, we have that $x=y v_{n-1} z \alpha$ for some $y \in$ $W_{n-1} h_{v_{n-1}}\left[W_{1}\right], z \in R_{n-1}$, and $\alpha \in W_{n}$. If $\alpha \in W_{n-1}$, then $\varphi_{n}(x)=z \alpha$. Otherwise, $\alpha=\delta v_{n-1} \gamma$ where $\delta \in W_{n-1}$ and $\gamma \in W_{n}$ so that $\varphi_{n}(x)=z \delta$. In either case, $\varphi_{n}(x) \in R_{n-1} W_{n-1} \subseteq R_{n-1}$.

Next observe that if $x \in W_{n+1}^{\triangleleft}$ has the property that $h_{u_{n}}(x) \in R_{n}$ and $h_{w_{n}}(x) \in R_{n}$, then $h_{u_{n}}$ and $h_{w_{n}}$ map the first v_{n}-block of x to the first v_{n-1}-block of $h_{u_{n}}(x)$ and $h_{w_{n}}(x)$ respectively. Indeed, if this statement does not hold for $h_{u_{n}}, v_{0}$ must occur in x between the first v_{n}-block of x and the next occurrence of v_{n} in x, and v_{0} must be the only variable which does. However, v_{0} is then the only variable which occurs in $h_{w_{n}}(x)$ between the first v_{n-1}-block of $h_{w_{n}}(x)$ and the next occurrence of v_{n-1} in $h_{w_{n}}(x)$. Since $n>2$, this contradicts the assumption that $h_{w_{n}}(x) \in R_{n}$. The assumption that $h_{w_{n}}$ does not map the first v_{n}-block of x to the first v_{n-1}-block of $h_{w_{n}}(x)$, leads to a contradiction in a similar way.

It follows that

$$
\begin{aligned}
h_{u_{n-1}}\left(\varphi_{n+1}(x)\right) & =\varphi_{n}\left(h_{u_{n}}(x)\right) \text { and } \\
h_{w_{n-1}}\left(\varphi_{n+1}(x)\right) & =\varphi_{n}\left(h_{w_{n}}(x)\right)
\end{aligned}
$$

because, for $y \in W_{n}, h_{u_{n}}(y)=h_{u_{n-1}}(y)$ and $h_{w_{n}}(y)=h_{w_{n-1}}(y)$.
Now suppose we have some $x \in h_{u_{n}}{ }^{-1}\left[R_{n}\right] \cap h_{w_{n}}{ }^{-1}\left[R_{n}\right]$. Then $x \in$ W_{n+1}^{\triangleleft} because v_{n-1} occurs in any member of R_{n} and $\varphi_{n}\left(h_{u_{n}}(x)\right) \in$ R_{n-1} and $\varphi_{n}\left(h_{w_{n}}(x)\right) \in R_{n-1}$ so

$$
\varphi_{n+1}(x) \in h_{u_{n-1}}^{-1}\left[R_{n-1}\right] \cap h_{w_{n-1}}^{-1}\left[R_{n-1}\right]
$$

a contradiction.
Theorem 3.16. Let $n>1$, let p_{0} be a minimal idempotent in βS_{0}, and let p_{1} be a minimal idempotent in βS_{1} such that $p_{1}<p_{0}$. Then there exists a special reductive sequence $\left\langle q_{0}, q_{1}, \ldots, q_{n}\right\rangle$ such that $q_{0}=p_{0}$ and there is no $r \in \beta W_{n+1}$ for which $q_{n} \prec r$. If $n>2$, then $q_{1}=p_{1}$.
Proof. Pick $\left\langle q_{0}, q_{1}, \ldots, q_{n}\right\rangle$ as guaranteed by Lemma 3.14 and suppose we have some $r \in \beta W_{n+1}$ for which $q_{n} \prec r$. Let u_{n} and w_{n} be as in Lemma 3.15. Then $h_{u_{n}}(r)=h_{w_{n}}(r)=q_{n}$ and so $h_{u_{n}}{ }^{-1}\left[R_{n}\right] \in r$ and ${h_{w_{n}}}^{-1}\left[R_{n}\right] \in r$, a contradiction.
Corollary 3.17. Let $n>1$. There is a minimal idempotent of βS_{n} in $C_{n} \backslash T_{n}$.
Proof. Let $\left\langle q_{0}, q_{1}, \ldots, q_{n}\right\rangle$ be as guaranteed by Theorem 3.16. Then $q_{n} \in C_{n} \backslash T_{n}$.

We need a different argument to show that $C_{1} \neq T_{1}$.
Theorem 3.18. There is a minimal idempotent of βS_{1} in $C_{1} \backslash T_{1}$.
Proof. Choose any $c \in A$. Let X denote the set of elements of S_{1} in which there is no occurrence of c before the first occurrence of v_{0}. We observe that $c l_{\beta S_{1}}(X) \cap T_{1}=\emptyset$, because $X \cap h_{c v_{0}}\left[S_{2}\right]=\emptyset$. We shall show that $c l_{\beta S_{1}}(X) \cap C_{1} \neq \emptyset$.

If $A=\{c\}$, then $\beta S_{1}=C_{1}$ and so $c l_{\beta S_{1}}(X) \cap C_{1} \neq \emptyset$.
Assume that $|A|>1$. Let $S_{0}^{\prime}=\left\{w \in S_{0}: c\right.$ does not occur in $w\}$ and let Let $S_{1}^{\prime}=\left\{w \in S_{1}: c\right.$ does not occur in $\left.w\right\}$. Let q_{0} be a minimal idempotent in βS_{0}^{\prime} and let q_{1} be a minimal idempotent in βS_{1}^{\prime} such that $q_{1} \leq q_{0}$. Then $h_{a}\left(q_{1}\right)=q_{0}$ for all $a \in A \backslash\{c\}$. Let $x_{1}=q_{0} q_{1} h_{c}\left(q_{1}\right)$. Then, for any $a \in A \backslash\{c\}$, $h_{a}\left(x_{1}\right)=h_{c}\left(x_{1}\right)=q_{0} h_{c}\left(q_{1}\right)$. So $x_{1} \in C_{1}$. Since $x_{1} \in c \ell_{\beta S_{1}}(X)$, we again have $c l_{\beta S_{1}}(X) \cap C_{1} \neq \emptyset$.

Now X is a right ideal of S_{1} and so $c l_{\beta S_{1}}(X)$ is a right ideal of βS_{1} by [6, Theorem 2.15]. Thus $c l_{\beta S_{1}}(X) \cap C_{1}$ contains a minimal idempotent of C_{1}, and any minimal idempotent of C_{1} is also a minimal idempotent of βS_{1}.

4. Appendix - Proof of Theorem 1.14

We provide here the necessary adaptations of the proof of [3, Theorem 2.12] to establish Theorem 1.14. As we have previously
remarked, this theorem holds in the more general setting of [3], in which it is not assumed that $D=\{e\}$ or that T_{e} is the identity. The reader is referred to [3] for the definition of the more general parameter system used there.
Definition 4.1. Let $n \in \mathbb{N}$ with $n \geq 2$.
(a) For $i \in\{0,1, \ldots, n-1\}, w_{n, i}$ is the word obtained from $v_{0} v_{1} \cdots v_{n-1}$ by deleting v_{i}.
(b) For $i \in\{0,1, \ldots, n-1\}$,
$U_{n, i}=\left\{w \in W: \quad \ell(w)=n, w(i) \in A \cup\left\{v_{l}: l<i\right\}\right.$, and for all $j \in\{0,1, \ldots, n-1\}$, if $j<i$, then $w(j)=v_{j}$ and if $j>i$, then $\left.w(j)=v_{j-1}\right\}$.
Thus if $0<i<n-1$, a member of $U_{n, i}$ is of the form $v_{0} \cdots v_{i-1} t v_{i} \cdots v_{n-2}$ where $t \in A \cup\left\{v_{0}, v_{1}, \ldots, v_{i-1}\right\}$.

Notice that for any $n \in \mathbb{N}$ with $n \geq 2,[A]\binom{n}{n-1}=\bigcup_{i=0}^{n-1} U_{n, i}$.
Theorem 1.14. Let X be a subsemigroup of βW such that $h_{u}[X] \subseteq$ X for every $u \in W, X \cap \beta W_{n}$ is compact and $X \cap \beta S_{n}$ is non-empty for every $n \in \omega$. Let p_{0} be a minimal idempotent of $X \cap \beta W_{0}$ and let p_{1} be a minimal idempotent of $X \cap \beta W_{1}$ such that $p_{1}<p_{0}$. Then there is an infinite reductive sequence ($p_{0}, p_{1}, p_{2}, p_{3}, \ldots$) such that p_{n} is a minimal idempotent of $X \cap \beta S_{n}$ and $p_{n+1}<p_{n}$ for every $n \in \omega$.

Proof. Note that $h_{u}\left(p_{1}\right)=p_{0}$ for all $u \in[A]\binom{1}{0}$. We first show how p_{2} can be defined. Let $\alpha=h_{v_{1}}\left(p_{1}\right)$. Then $\alpha \in X \cap \beta W_{2}$ so we may pick an idempotent $p_{2} \in p_{1} \alpha\left(X \cap \beta W_{2}\right) \cap\left(X \cap \beta W_{2}\right) \alpha p_{1}$ which is minimal in $X \cap \beta W_{2}$. Since $p_{1} \alpha \in \beta S_{2}, p_{2} \in \beta S_{2}$ so p_{2} is minimal in $X \cap \beta S_{2}$.

Now let $u \in[A]\binom{2}{1}$. Then $h_{u}\left[S_{2}\right] \subseteq S_{1}$ so $h_{u}\left(p_{2}\right) \in X \cap \beta S_{1}$. It thus suffices to show that $h_{u}\left(p_{2}\right) \leq p_{1}$. If $u \in U_{2,1}$, then h_{u} is the identity on S_{1}, so $h_{u}\left(p_{2}\right) \leq h_{u}\left(p_{1}\right)=p_{1}$. Now assume that $u \in U_{2,0}$ and pick $t \in A$ such that $u=t v_{0}$. For $w \in S_{1}, h_{u}(w)=h_{t}(w)$, and so $h_{u}\left(p_{1}\right)=h_{t}\left(p_{1}\right)=p_{0}$. Also, by Lemma 1.10, $h_{t v_{0}} \circ h_{v_{1}}$ is the identity on W_{1}. So $h_{u}(\alpha)=h_{t v_{0}}\left(h_{v_{1}}\left(p_{1}\right)\right)=p_{1}$. Therefore $h_{u}\left(p_{2}\right) \in$ $p_{0} p_{1} h_{u}\left[X \cap \beta W_{2}\right] \cap h_{u}\left[X \cap \beta W_{2}\right] p_{1} p_{0} \subseteq p_{1}\left(X \cap \beta W_{1}\right) \cap\left(X \cap \beta W_{1}\right) p_{1}$ so $h_{u}\left(p_{2}\right) \leq p_{1}$.

We now proceed to an inductive construction. Let $n \in \mathbb{N}$ with $n \geq 2$.

We shall introduce elements, (such as η_{i} or γ_{i}) which depend on n as well as on i. However, in an effort to reduce the number of subscripts used, we shall not indicate the dependence on n in the notation.

We make the inductive assumption that we have chosen p_{i} for $i \in\{0,1,2, \ldots n\}, \eta_{i}, \eta_{i}^{\prime}, \delta_{i}$, and δ_{i}^{\prime} for $i \in\{1,2,3, \ldots, n-1\}$, and γ_{i} and γ_{i}^{\prime} for $i \in\{2,3, \ldots, n-2\}$, if any, so that the following hypotheses are satisfied.
(a) For each $i \in\{0,1, \ldots, n\}, p_{i}$ is a minimal idempotent of $X \cap \beta S_{i}$.
(b) For each $i \in\{1,2, \ldots, n\}, p_{i} \leq p_{i-1}$ and $h_{u}\left(p_{i}\right)=p_{i-1}$ for every $u \in[A]\binom{i}{i-1}$.
(c) For every $i \in\{1,2, \ldots, n-1\}, \eta_{i}$ and η_{i}^{\prime} are minimal idempotents in $X \cap \beta W_{n-1}$.
(d) For every $i \in\{1,2, \ldots, n-1\}, \eta_{i} \in X p_{n-1}$ and $\eta_{i}^{\prime} \in p_{n-1} X$.
(e) For $i \in\{1,2, \ldots, n-1\}, \delta_{i}=h_{w_{n, n-i-1}}\left(\eta_{i}\right)$, $\delta_{i}^{\prime}=h_{w_{n, n-i-1}}\left(\eta_{i}^{\prime}\right)$,

$$
\begin{aligned}
& p_{n} \in p_{n-1} \delta_{1} \cdots \delta_{n-1} X, \text { and } \\
& p_{n} \in X \delta_{n-1}^{\prime} \cdots \delta_{1}^{\prime} p_{n-1} .
\end{aligned}
$$

(f) For every $i \in\{1,2, \ldots, n-2\}$, if any,

$$
\begin{aligned}
& \eta_{i} \in \gamma_{i} \cdots \gamma_{n-2} \eta_{n-1} X \text { and } \\
& \eta_{i}^{\prime} \in X \eta_{n-1}^{\prime} \gamma_{n-2}^{\prime} \cdots \gamma_{i}^{\prime} .
\end{aligned}
$$

(g) For every choice of $u_{n, i} \in U_{n, i}$ for $i \in\{0,1, \ldots, n-1\}$, the entry in the row labeled by u and the column labeled by x in the following tables is $h_{u}(x)$.

u	$x:$	p_{n-1}	δ_{1}	δ_{2}	δ_{3}	\ldots	δ_{n-2}	δ_{n-1}
$u_{n, n-1}$		p_{n-1}						
$u_{n, n-2}$		p_{n-2}	η_{1}					
$u_{n, n-3}$		p_{n-2}	γ_{1}	η_{2}				
$u_{n, n-4}$	p_{n-2}	γ_{1}	γ_{2}	η_{3}				
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots			
$u_{n, 1}$		p_{n-2}	γ_{1}	γ_{2}	γ_{3}	\ldots	η_{n-2}	
$u_{n, 0}$		p_{n-2}	γ_{1}	γ_{2}	γ_{3}	\ldots	γ_{n-2}	η_{n-1}

Table 1

u	$x:$	δ_{n-1}^{\prime}	δ_{n-2}^{\prime}	\ldots	δ_{3}^{\prime}	δ_{2}^{\prime}	δ_{1}^{\prime}	p_{n-1}
$u_{n, n-1}$								p_{n-1}
$u_{n, n-2}$							η_{1}^{\prime}	p_{n-2}^{\prime}
$u_{n, n-3}$					η_{2}^{\prime}	γ_{1}^{\prime}	p_{n-2}	
$u_{n, n-4}^{\prime}$					η_{3}^{\prime}	γ_{2}^{\prime}	γ_{1}^{\prime}	p_{n-2}
\vdots				.\cdot	\vdots	\vdots	\vdots	\vdots
$u_{n, 1}$			η_{n-2}^{\prime}	\ldots	γ_{3}^{\prime}	γ_{2}^{\prime}	γ_{1}^{\prime}	p_{n-2}
$u_{n, 0}$		η_{n-1}^{\prime}	γ_{n-2}^{\prime}	\ldots	γ_{3}^{\prime}	γ_{2}^{\prime}	γ_{1}^{\prime}	p_{n-2}

Table 2
We observe that these assumptions do hold if $n=2$, with $\eta_{1}=$ $\eta_{1}^{\prime}=p_{1}$. For hypothesis (e), note that $\delta_{1}=\delta_{1}^{\prime}=\alpha$. Hypothesis (f) is vacuous, and we have already verified the table entries of hypothesis (g).

Notice that since $h_{w_{n, n-i-1}}\left[W_{n-1}\right] \subseteq W_{n}$ one has that each $\delta_{i} \in$ $X \cap \beta W_{n}$. Also, since $h_{u}\left[W_{n}\right] \subseteq W_{n-1}$ for each $u \in[A]\left({ }_{n-1}^{n}\right)$, we have that each $\gamma_{i} \in X \cap \beta W_{n-1}$.

By assumption (e), $p_{n} \in p_{n-1} \delta_{1} \cdots \delta_{n-1} X$. So there is some $x \in X$ such that $p_{n-1} \delta_{1} \cdots \delta_{n-1} x=p_{n}=p_{n} p_{n} \in p_{n} X$. Such x is necessarily in βW_{n} because $p_{n} \in \beta W_{n}$. So

$$
\left\{x \in X \cap \beta W_{n}: p_{n-1} \delta_{1} \cdots \delta_{n-1} x \in p_{n} X\right\}
$$

is nonempty and is therefore a right ideal of $X \cap \beta W_{n}$. So we can choose a minimal idempotent μ_{n} of $X \cap \beta W_{n}$ which is in this right ideal and in the left ideal $\left(X \cap \beta W_{n}\right) p_{n}$ of $X \cap \beta W_{n}$.

Now let $i \in\{2,3, \ldots, n-1\}$. Note that $\delta_{i} \cdots \delta_{n-1} \mu_{n}=$ $\delta_{i} \cdots \delta_{n-1} \mu_{n} \mu_{n}$, so

$$
\left\{x \in X \cap \beta W_{n}: p_{n-1} \delta_{1} \delta_{2} \cdots \delta_{i-1} x \in p_{n} X \text { and } x \in \delta_{i} \cdots \delta_{n-1} \mu_{n} X\right\}
$$

is nonempty, because it contains $\delta_{i} \cdots \delta_{n-1} \mu_{n}$. It is therefore a right ideal of $X \cap \beta W_{n}$, and we can choose a minimal idempotent μ_{i} of $X \cap \beta W_{n}$ which is in this right ideal and is also in the left ideal $\left(X \cap \beta W_{n}\right) p_{n}$ of $X \cap \beta W_{n}$.

Similarly, $\left\{x \in X \cap \beta W_{n}: p_{n-1} x \in p_{n} X\right.$ and $\left.x \in \delta_{1} \cdots \delta_{n-1} \mu_{n} X\right\}$ is nonempty because $\delta_{1} \cdots \delta_{n-1} \mu_{n}$ is a member, and thus we may choose a minimal idempotent μ_{1} of $X \cap \beta W_{n}$ which is in this right ideal of βW_{n} and also in the left ideal $\left(X \cap \beta W_{n}\right) p_{n}$.

Thus we have chosen minimal idempotents $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ in βW_{n} which satisfy the following conditions:

$$
\begin{align*}
& \mu_{i} \in X p_{n} \text { for all } i \in\{1,2, \ldots, n\} ; \\
& p_{n-1} \delta_{1} \cdots \delta_{i-1} \mu_{i} \in p_{n} X \text { for all } i \in\{2,3, \ldots, n\} ; \\
& p_{n-1} \mu_{1} \in p_{n} X ; \text { and } \tag{*}\\
& \mu_{i} \in \delta_{i} \cdots \delta_{n-1} \mu_{n} X \text { for all } i \in\{1,2,3, \ldots, n-1\} .
\end{align*}
$$

By a left-right switch of these arguments, we can chose minimal idempotents $\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{n}^{\prime}$ in βW_{n} which satisfy the following conditions:

$$
\begin{align*}
& \mu_{i}^{\prime} \in p_{n} X \text { for all } i \in\{1,2, \ldots, n\} \\
& \mu_{i}^{\prime} \delta_{i-1}^{\prime} \cdots \delta_{1}^{\prime} p_{n-1} \in X p_{n} \text { for all } i \in\{2,3, \ldots, n\} \\
& \mu_{1}^{\prime} p_{n-1} \in X p_{n} ; \text { and } \tag{**}\\
& \mu_{i}^{\prime} \in X \mu_{n}^{\prime} \delta_{n-1}^{\prime} \cdots \delta_{i}^{\prime} \text { for all } i \in\{1,2,3, \ldots, n-1\} .
\end{align*}
$$

(While βW is right topological and not left topological, all of the algebraic facts that we are using in this proof are valid from both sides.)

For $i \in\{1,2, \ldots, n\}$, let $\epsilon_{i}=h_{w_{n+1, n-i}}\left(\mu_{i}\right)$, let $\epsilon_{i}^{\prime}=h_{w_{n+1, n-i}}\left(\mu_{i}^{\prime}\right)$, and note that $\epsilon_{i}, \epsilon_{i}^{\prime} \in X \cap \beta W_{n+1}$. Then $p_{n} \epsilon_{1} \cdots \epsilon_{n}\left(X \cap \beta W_{n+1}\right)$ and $\left(X \cap \beta W_{n+1}\right) \epsilon_{n}^{\prime} \cdots \epsilon_{1}^{\prime} p_{n}$ are respectively right and left ideals of $\left(X \cap \beta W_{n+1}\right)$. Pick a minimal idempotent p_{n+1} of $\left(X \cap \beta W_{n+1}\right)$ such that

$$
p_{n+1} \in p_{n} \epsilon_{1} \cdots \epsilon_{n}\left(X \cap \beta W_{n+1}\right) \cap\left(X \cap \beta W_{n+1}\right) \epsilon_{n}^{\prime} \cdots \epsilon_{1}^{\prime} p_{n}
$$

Since $\left\{w \in W_{n+1}: v_{n}\right.$ occurs in $\left.w\right\} \in \epsilon_{1}, p_{n+1} \in \beta S_{n+1}$. Consequently, p_{n+1} is minimal in $X \cap \beta S_{n+1}$.

We now claim that the induction hypotheses are satisfied for $n+1$ with $\eta_{i}, \eta_{i}^{\prime}, \delta_{i}, \delta_{i}^{\prime}, \gamma_{i}$, and γ_{i}^{\prime} replaced by $\mu_{i}, \mu_{i}^{\prime}, \epsilon_{i}, \epsilon_{i}^{\prime}, \delta_{i}$, and δ_{i}^{\prime} respectively. That is, we claim that
(a) For each $i \in\{0,1, \ldots, n+1\}, p_{i}$ is a minimal idempotent of $X \cap \beta S_{i}$.
(b) For each $i \in\{1,2, \ldots, n+1\}, p_{i} \leq p_{i-1}$ and $h_{u}\left(p_{i}\right)=p_{i-1}$ for every $u \in[A]\binom{i}{i-1}$.
(c) For every $i \in\{1,2, \ldots, n\}, \mu_{i}$ and μ_{i}^{\prime} are minimal idempotents in $X \cap \beta W_{n}$.
(d) For every $i \in\{1,2, \ldots, n\}, \mu_{i} \in X p_{n}$ and $\mu_{i}^{\prime} \in p_{n} X$.
(e) For $i \in\{1,2, \ldots, n\}, \epsilon_{i}=h_{w_{n+1, n-i}}\left(\mu_{i}\right), \epsilon_{i}^{\prime}=h_{w_{n+1, n-i}}\left(\mu_{i}^{\prime}\right)$,

$$
\begin{aligned}
& p_{n+1} \in p_{n} \epsilon_{1} \cdots \epsilon_{n} X, \text { and } \\
& p_{n+1} \in X \epsilon_{n}^{\prime} \cdots \epsilon_{1}^{\prime} p_{n}
\end{aligned}
$$

(f) For every $i \in\{1,2, \ldots, n-1\}$,

$$
\begin{aligned}
& \mu_{i} \in \delta_{i} \cdots \delta_{n-1} \mu_{n} X \text { and } \\
& \mu_{i}^{\prime} \in X \mu_{n}^{\prime} \delta_{n-1}^{\prime} \cdots \delta_{i}^{\prime}
\end{aligned}
$$

(g) For every choice of $u_{n+1, i} \in U_{n+1, i}$ for $i \in\{0,1, \ldots, n\}$, the entry in the row labeled by u and the column labeled by x in the following tables is $h_{u}(x)$.

u	$x:$	p_{n}	ϵ_{1}	ϵ_{2}	ϵ_{3}	\cdots	ϵ_{n-1}	ϵ_{n}
$u_{n+1, n}$		p_{n}						
$u_{n+1, n-1}$		p_{n-1}	μ_{1}					
$u_{n+1, n-2}$		p_{n-1}	δ_{1}	μ_{2}				
$u_{n+1, n-3}$		p_{n-1}	δ_{1}	δ_{2}	μ_{3}			
\vdots		\vdots	\vdots	\vdots	\vdots	\ddots		
$u_{n+1,1}$		p_{n-1}	δ_{1}	δ_{2}	δ_{3}	\cdots	μ_{n-1}	
$u_{n+1,0}$		p_{n-1}	δ_{1}	δ_{2}	δ_{3}	\cdots	δ_{n-1}	μ_{n}

Table 3

u	$\backslash x:$	ϵ_{n}^{\prime}	ϵ_{n-1}^{\prime}		ϵ_{3}^{\prime}	ϵ_{2}^{\prime}	ϵ_{1}^{\prime}	p_{n}
$u_{n+1, n}$								p_{n}
$u_{n+1, n-1}$							μ_{1}^{\prime}	p_{n-1}
$u_{n+1, n-2}$						μ_{2}^{\prime}	δ_{1}^{\prime}	p_{n-1}
$u_{n+1, n-3}$					μ_{3}^{\prime}	δ_{2}^{\prime}	δ_{1}^{\prime}	p_{n-1}
交				. ${ }^{-}$:	:	:	:
$u_{n+1,1}$			μ_{n-1}^{\prime}	\cdots	δ_{3}^{\prime}	δ_{2}^{\prime}	δ_{1}^{\prime}	p_{n-1}
$u_{n+1,0}$		μ_{n}^{\prime}	δ_{n-1}^{\prime}	. .	δ_{3}^{\prime}	δ_{2}^{\prime}	δ_{1}^{\prime}	p_{n-1}

Table 4

All of these conclusions can be easily verified except (g) and the assertion in (b) that $h_{u}\left(p_{n+1}\right)=h_{u}\left(p_{n}\right)$ for all $u \in[A]\binom{n}{n-1}$. We show first that this latter assertion follows from statement (g).

For any $i \in\{0,1, \ldots, n\}, h_{u_{n+1}, i}\left(p_{n+1}\right) \in X \cap \beta S_{n}$ and p_{n} is minimal in $X \cap \beta S_{n}$, so it suffices to show that $h_{u_{n+1, i}}\left(p_{n+1}\right) \leq p_{n}$.

Since $p_{n+1} \leq p_{n}$ and $h_{u_{n+1, n}}$ is the identity on W_{n}, we have that $h_{u_{n+1, n}}\left(p_{n+1}\right) \leq h_{u_{n+1, n}}\left(p_{n}\right)=p_{n}$.

Now let $i \in\{0,1, \ldots, n-1\}$ and let $u=u_{n+1, i}$. We have $p_{n+1} \in$ $p_{n} \epsilon_{1} \cdots \epsilon_{n-i} X$ and so $h_{u}\left(p_{n+1}\right) \in h_{u}\left(p_{n} \epsilon_{1} \cdots \epsilon_{n-i}\right) X$ and by (*) and Table 3, $h_{u}\left(p_{n} \epsilon_{1} \cdots \epsilon_{n-i}\right) \in p_{n} X$. Also $p_{n+1} \in X \epsilon_{n-i}^{\prime} \cdots \epsilon_{1}^{\prime} p_{n}$ so $h_{u}\left(p_{n+1}\right) \in X h_{u}\left(\epsilon_{n-i}^{\prime} \cdots \epsilon_{1}^{\prime} p_{n}\right)$ and by (**) and Table 4,

$$
h_{u}\left(\epsilon_{n-i}^{\prime} \cdots \epsilon_{1}^{\prime} p_{n}\right) \in X p_{n} .
$$

It thus suffices to verify the entries of Table 3 and Table 4. We shall write out the verification for Table 3. The verification for Table 4 follows by a left-right switch of the arguments. To this end, let a choice of $u_{n+1, i} \in U_{n+1, i}$ for $i \in\{0,1, \ldots, n\}$ be given.

We have that $h_{u_{n+1, n}}$ is the identity on S_{n} so $h_{u_{n+1, n}}\left(p_{n}\right)=p_{n}$. For $i \in\{0,1, \ldots, n-1\}, h_{u_{n+1, i}}=h_{u_{n, i}}$ on S_{n} so $h_{u_{n+1, i}}\left(p_{n}\right)=$ $h_{u_{n, i}}\left(p_{n}\right)=p_{n-1}$ by hypothesis (b).

The diagonal entries are correct because $\epsilon_{i}=h_{w_{n+1, n-i}}\left(\mu_{i}\right)$ for $i \in\{1,2, \ldots, n\}$ and $h_{u_{n+1, n-i}} \circ h_{w_{n+1, n-i}}$ is the identity on W_{n}.

Let $k \in\{1,2, \ldots, n-1\}$, let $i \in\{0,1, \ldots, n-k-1\}$, and let $u \in$ $U_{n+1, i}$. To finish the proof we need to show that $h_{u}\left(\epsilon_{k}\right)=\delta_{k}$. Now $\epsilon_{k}=h_{w_{n+1, n-k}}\left(\mu_{k}\right)$ so we are showing that $h_{u}\left(h_{w_{n+1, n-k}}\left(\mu_{k}\right)\right)=\delta_{k}$. Since $i<n-k$, we have that

$$
h_{u}\left(h_{w_{n+1, n-k}}\left(\mu_{k}\right)\right)=h_{w_{n, n-k-1}}\left(h_{u}\left(\mu_{k}\right)\right) .
$$

So it suffices to show that

$$
h_{w_{n, n-k-1}}\left(h_{u}\left(\mu_{k}\right)\right)=\delta_{k} .
$$

Now $h_{w_{n, n-k-1}}\left(\eta_{k}\right)=\delta_{k}$ by hypothesis (e), so it suffices to show that $h_{u}\left(\mu_{k}\right)=\eta_{k}$. And since $h_{u}\left(\mu_{k}\right)$ and η_{k} are idempotents in $X \cap \beta W_{n-1}$ and η_{k} is minimal in $X \cap \beta W_{n-1}$ it suffices to show that $h_{u}\left(\mu_{k}\right) \leq \eta_{k}$.

Now $\mu_{k} \in X p_{n}$ by (*) so that $h_{u}\left(\mu_{k}\right) \in X h_{u}\left(p_{n}\right)=X p_{n-1}$, the equality holding by hypothesis (b). Since $\eta_{k} \in X p_{n-1}$ by hypothesis (d), $\eta_{k}=\eta_{k} p_{n-1} \in\left(X \cap \beta W_{n-1}\right) p_{n-1}$. Since $\left(X \cap \beta W_{n-1}\right) p_{n-1}$ is a minimal left ideal of $X \cap \beta W_{n-1},\left(X \cap \beta W_{n-1}\right) \eta_{k}=(X \cap$ $\left.\beta W_{n-1}\right) p_{n-1}$. Thus we have that $h_{u}\left(\mu_{k}\right)=h_{u}\left(\mu_{k}\right) p_{n-1} \in(X \cap$ $\left.\beta W_{n-1}\right) p_{n-1}=\left(X \cap \beta W_{n-1}\right) \eta_{k}$.

It remains to show that $h_{u}\left(\mu_{k}\right) \in \eta_{k} X$. We have by $(*)$ that $\mu_{k} \in$ $\delta_{k} \cdots \delta_{n-1} \mu_{n} X$. If $i=n-k-1$, we have that $h_{u}\left(\mu_{k}\right) \in h_{u}\left(\delta_{k}\right) X=$ $\eta_{k} X$ by hypothesis (g), so assume that $i<n-k-1$. Then $h_{u}\left(\mu_{k}\right) \in$
$h_{u}\left(\delta_{k}\right) \cdots h_{u}\left(\delta_{n-i-1}\right) X=\gamma_{k} \cdots \gamma_{n-i-2} \eta_{n-i-1} X$, the equality holding by hypothesis (g). If $i=0$, we have directly that $h_{u}\left(\mu_{k}\right) \in$ $\gamma_{k} \cdots \gamma_{n-2} \eta_{n-1} X$. Otherwise $\eta_{n-i-1} \in \gamma_{n-i-1} \cdots \gamma_{n-2} \eta_{n-1} X$ by hypothesis (f) so again $h_{u}\left(\mu_{k}\right) \in \gamma_{k} \cdots \gamma_{n-2} \eta_{n-1} X$. Also $\eta_{k} \in$ $\gamma_{k} \cdots \gamma_{n-2} \eta_{n-1} X$ by hypothesis (f). Now $\eta_{n-1} \in K\left(X \cap \beta W_{n-1}\right)$ and $\gamma_{k} \cdots \gamma_{n-2} \in X \cap \beta W_{n-1}$ so $\gamma_{k} \cdots \gamma_{n-2} \eta_{n-1} \in K\left(X \cap \beta W_{n-1}\right)$ and thus as in the previous paragraph, $h_{u}\left(\mu_{k}\right) \in \eta_{k} X$.

References

1. S. Burns, The existence of disjoint smallest ideals in the two natural products on βS, Semigroup Forum 63 (2001), 191-201.
2. T. Carlson, Some unifying principles in Ramsey Theory, Discrete Math. 68 (1988), 117-169.
3. T. Carlson, N. Hindman, and D. Strauss An infinitary extension of the Graham-Rothschild Theorem, manuscript. (Currently available at http://members.aol.com/nhindman/.)
4. R. Graham and B. Rothschild, Ramsey's Theorem for n-parameter sets, Trans. Amer. Math. Soc. 159 (1971), 257-292.
5. R. Graham, B. Rothschild, and J. Spencer, Ramsey Theory, Wiley, New York, 1990.
6. N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter, Berlin, 1998.
7. H. Prömel and B. Voigt, Graham-Rothschild parameter sets, in Mathematics of Ramsey Theory, J. Nešetřil and V. Rödl, eds., Springer-Verlag, Berlin, 1990, 113-149.

Department of Mathematics, Ohio State University, Columbus, OH 43210

E-mail address: carlson@math.ohio-state.edu
Department of Mathematics, Howard University, Washington, DC 20059

E-mail address: nhindman@aol.com, nhindman@howard.edu
Department of Pure Mathematics, University of Hull, Hull HU6 7RX, UK

E-mail address: d.strauss@maths.hull.ac.uk

