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ABSTRACT. Central sets in semigroups are known to have very rich combinato-
rial structure, described by the “Central Sets Theorem”. It has been unknown whether
the Central Sets Theorem in fact characterizes central sets, and if not whether some
other combinatorial characterization could be found. We derive here a combinatorial
characterization of central sets and of the weaker notion of quasi-central sets. We show
further that in (N,+) these notions are different and strictly stronger than the charac-
terization provided by the Central Sets Theorem. In addition, we derive an algebraic
characterization of sets satisfying the conclusion of the Central Sets Theorem and use
this characterization to show that the conclusion of the Central Sets Theorem is a
partition regular property in any commutative semigroup.

1. Introduction. The notion of central subsets of the set N of positive integers
was introduced by Furstenberg in [7] where he proved the “Central Sets Theorem” [7,
Proposition 8.21]. This theorem is mildly complicated but has several easily derivable
consequences. For example, any central set has solutions to any partition regular system
of homogeneous linear equations with rational coefficients. Also, given any sequence
〈xn〉∞n=1 and any central set A, there exist arbitrarily long arithmetic progressions in A

whose increment comes from FS(〈xn〉∞n=1) = {Σn∈F xn : F is a finite nonempty subset
of N} . (See [7, pp. 169-174] for both of these consequences.)

The definition of “central” in [7] was in terms of dynamical systems, and the def-
inition makes sense in any semigroup. In [3] (with the assistance of B. Weiss) that
definition was shown to be equivalent to a much simpler algebraic characterization if
the semigroup is countable. It is this algebraic characterization which we take as the
definition for all semigroups.
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1



The algebraic characterization of a central set in (S, ·) is in the setting of (βS, ·)
where βS is the Stone-Čech compactification of the discrete space S and · is the
extension of the operation on S to βS making βS a right topological semigroup with
S contained in its topological center. (By “right topological” we mean that for each
p ∈ βS, the function ρp : βS → βS is continuous where ρp(q) = q·p. By the “topological
center” we mean the set of points p such that λp is continuous, where λp(q) = p · q.)

As a compact right topological semigroup, βS has a smallest two sided ideal denoted
K(βS). Further K(βS) is the union of all minimal right ideals of βS and is also the union
of all minimal left ideals. (See [5, Chapter 1] for these and any other unfamiliar facts
about compact right topological semigroups.) Any compact right topological semigroup
has an idempotent and one can define a partial ordering of the idempotents by p ≤ q if
and only if p = p · q = q · p. An idempotent p is “minimal” if and only if p is minimal
with respect to the order ≤. Equivalently an idempotent p is minimal if and only if
p ∈ K(βS).

1.1 Definition. Let (S, ·) be a semigroup and let A ⊆ S. Then A is central if and
only if there is some minimal idempotent p ∈ βS with p ∈ c`A.

We take the points of βS to be the ultrafilters on S, identifying the principal
ultrafilters with the points of S. Then given A ⊆ S one has c`A = {p ∈ βS : A ∈ p}
and the topology on βS has as a basis {c`A : A ⊆ S}. Accordingly a subset A of S is
central if and only if A is a member of some minimal idempotent.

Now it is well known that a subset A of S is a member of some idempotent in
βS if and only if there is some sequence 〈xn〉∞n=1 in S with FP (〈xn〉∞n=1) ⊆ A where
FP (〈xn〉∞n=1) = {Πn∈F xn : F is a finite nonempty subset of N}, the products being
taken in increasing order of indices. Likewise it is known that A is a member of some
p ∈ K(βS) if and only if A is “piecewise syndetic”. (See Definition 3.1.)

Since members of idempotents and members of minimal ultrafilters (i.e. those
ultrafilters in K(βS)) both have simple combinatorial characterizations, it is natural
to hope for a combinatorial characterization of their combination, members of minimal
idempotents. In particular, one can ask whether the powerful “Central Sets Theorem”
characterizes central sets.

In Section 2 we present a proof of the strongest version of the Central Sets Theorem
for commutative semigroups of which we are aware. We define a rich set (Definition 2.4)
as one satisfying the conclusion of the Central Sets Theorem. We derive an algebraic
characterization of rich sets (Corollary 2.11) and use this characterization to show that
rich sets are partition regular in the sense that whenever a rich set is partitioned into
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finitely many parts, one of these parts must be a rich set.

We also conclude from the algebraic characterization of rich sets that any member
of any idempotent in c`K(βS) is a rich set. This suggests a definition.

1.2 Definition. Let (S, ·) be a semigroup and let A ⊆ S. Then A is quasi-central
if and only if there is some idempotent p ∈ c`K(βS) with p ∈ c`A.

Thus an additional question presents itself. Namely are all quasi-central sets in fact
central? (Equivalently are all idempotents in c`K(βS) in fact in c`{p : p is a minimal
idempotent of βS} ?)

In Section 3 we provide some combinatorial characterizations of central sets as
well as similar characterizations of quasi-central sets. In Sections 4 and 5 we use these
characterizations to show that in the semigroup (N,+), there are quasi-central sets that
are not central and there are rich sets that are not quasi-central.

We have already remarked that we take the points of βS to be the ultrafilters on
S. We mention now a characterization of the operations · on βS that we will utilize.
Given p and q in βS and A ⊆ S, one has A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p,
where x−1A = {y ∈ S : x · y ∈ S} . (We are not assuming S is embeddable in a group.)
See [9] for a detailed description of the semigroup (βS, ·), with the caution that there
βS is taken to be left topological rather than right topological. This problem exists
throughout the literature. There are in fact four different choices that can be made,
and all four do in fact appear in the literature. (One may choose either of the two
kinds of continuity and one may choose what one calls it. That is, what we call right
topological is called by some authors left topological.) The connection between the two
operations is as follows: Let ·` denote the operation making βS left topological. Then
given p and q in βS and A ⊆ S one has A ∈ p ·` q if and only if {x ∈ S : Ax−1 ∈ p} ∈ q

where Ax−1 = {y ∈ S : y ·x ∈ A}. Thus if one defines an operation ∗ on S by x∗y = y ·x,
one has for all p, q ∈ βS that p · q = q ∗` p. (And in particular, if S is commutative, then
p · q = q ·` p.) If S is not commutative it is known ([1] and [6]) that the left topological
and right topological structures can be quite different. We point out in Section 2 that
being a member of a minimal idempotent in (βS, ·`) (being “left central”) differs from
the notion of central (or “right central”). We don’t present a separate treatment of “left
central” because the characterizations are identical with all operations reversed.

2. The Central Sets Theorem. We establish here that any quasi-central set in
a commutative semigroup (S, ·) satisfies a strong version of the Central Sets Theorem
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involving infinitely many prespecified sequences. We further provide and utilize an
algebraic characterization of sets which satisfy this strong conclusion.

The restriction to commutative semigroups is not essential, but the Central Sets
Theorem for non-commutative semigroups is much more complicated to state. See [4,
Theorem 2.8] for a statement of this theorem with finitely many prespecified sequences
in an arbitrary semigroup.

The algebraic proof of the Central Sets Theorem is based on ideas developed by
Furstenberg and Katznelson in the context of enveloping semigroups. We begin by
quoting a well known result.

2.1 Lemma. Let n ∈ N and let T1, T2, . . . , Tn be compact right topological semi-
groups and let Y = ×n

i=1Ti with the product topology and coordinatewise operations.
Then K(Y ) =×n

i=1K(Ti).

Proof. By [5, Proposition 1.3.6] Y is a compact right topological semigroup (so
K(Y ) exists). Thus [5, Corollary 1.2.6] applies.

The following lemma encodes an important part of the ideas of Furstenberg and
Katznelson which we will use repeatedly in this paper.

2.2 Lemma. Let (D,≤) be a directed set and let (S, ·) be a semigroup and let ` ∈ N.
For each i ∈ D let Ei and Ii be subsets of ×`

t=1S such that

(1) for each i ∈ D, ∅ 6= Ii ⊆ Ei;

(2) for each i, j ∈ D if i ≤ j, then Ij ⊆ Ii and Ej ⊆ Ei;

(3) for each i ∈ D and each ~x ∈ Ii there exists j ∈ D such that ~x · Ej ⊆ Ii; and

(4) for each i ∈ D and each ~x ∈ Ei\Ii there exists j ∈ D such that ~x ·Ej ⊆ Ei and
~x · Ij ⊆ Ii.
Let E =

⋂
i∈D c`Ei and I =

⋂
i∈D c`Ii where the closures are taken in ×`

t=1βS. Then
E is a compact right topological semigroup and I is an ideal of E.

Proof. It is a routine exercise to show that×`
t=1βS is a compact right topological

semigroup and that for ~x ∈ ×`
t=1S, λ~x is continuous. By conditions (1) and (2) we

have ∅ 6= I ⊆ E.

To complete the proof we let ~p, ~q ∈ E and show that ~p · ~q ∈ E and if either ~p ∈ I

or ~q ∈ I, then ~p · ~q ∈ I. To this end, let U be an open neighborhood of ~p · ~q and let
i ∈ D be given. We show that U ∩ Ei 6= ∅ and if ~p ∈ I or ~q ∈ I, then U ∩ Ii 6= ∅. Pick
a neighborhood V of ~p such that V · ~q ⊆ U and pick ~x ∈ Ei ∩ V with ~x ∈ Ii if ~p ∈ I. If
~x ∈ Ii pick j ∈ D such that ~x · Ej ⊆ Ii. If ~x ∈ Ei\Ii, pick j ∈ D such that ~x · Ej ⊆ Ei
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and ~x · Ij ⊆ Ii. Now ~x · ~q ∈ U so pick a neighborhood W of ~q such that ~x ·W ⊆ U and
pick ~y ∈ W ∩ Ej with ~y ∈ Ij if ~q ∈ I. Then ~x · ~y ∈ U ∩ Ei and if either ~p ∈ I or ~q ∈ I,
then ~x · ~y ∈ U ∩ Ii.

2.3 Definition. (a) Let A be any set. Then Pf (A) = {B : B is a finite nonempty
subset of A}.

(b) Φ = {f : f : N → N and for all n ∈ N, f(n) ≤ n}.

We now introduce an ideal J of βS which is of interest in its own right.

2.4 Definition. Let (S, ·) be a commutative semigroup.
(a) Y = {〈〈yi,t〉∞t=1〉∞i=1 : for each i and t, yi,t ∈ S}.
(b) Given Y = 〈〈yi,t〉∞t=1〉∞i=1 in Y and A ⊆ S, A is a JY -set if and only if for

each n ∈ N there exist a ∈ S and H ∈ Pf (N) with minH ≥ n such that for all
i ∈ {1, 2, . . . , n}, a ·Πt∈H yi,t ∈ A.

(c) Given Y ∈ Y, JY = {p ∈ βS : for all A ∈ p, A is a JY -set}.
(d) J =

⋂
Y ∈Y JY

(e) A set A is a rich set if and only if A ⊆ S and for each Y = 〈〈yi,t〉∞t=1〉∞i=1 in Y,
there exist sequences 〈an〉∞n=1 in S and 〈Hn〉∞n=1 in Pf (N), with max Hn < minHn+1

for all n, such that for all f ∈ Φ, FP (〈an ·Πt∈Hnyf(n),t〉∞n=1) ⊆ A.

Note that rich sets are precisely those sets satisfying the conclusion of the Central
Sets Theorem.

If the semigroup (S, ·) is (N,+) and A ⊆ N with J ∩ c`A 6= ∅, then A has the
following interesting property: Given any sequence 〈xt〉∞t=1 in N, there exist arbitrarily
long arithmetic progressions in A with increment d ∈ FS(〈xt〉∞t=1). (To see this, let
yi,t = i · xt for each i ∈ {1, 2, . . . , `}.) Consequently in (βN,+) one has J ⊆ AP =
{p ∈ βN : for all A ∈ p, A contains arbitrarily long arithmetic progressions}.

We will see in Theorem 2.6 that J is an ideal of βS, from which it follows that
K(βS) ⊆ J . However we need the following lemma in order to conclude that J 6= ∅.

2.5 Lemma. Let (S, ·) be a commutative semigroup and let Y ∈ Y. Then K(βS) ⊆
JY .

Proof. Let p ∈ K(βS) and let A ∈ p. Let Y = 〈〈yi,t〉∞t=1〉∞i=1 in Y and let n ∈ N
be given. Let W =×n

i=1βS and let ~p = (p, p, . . . .p). By Lemma 2.1, ~p ∈ K(W ).
For k ∈ N, let Ik = {(a · Πt∈H y1,t, a · Πt∈H y2,t, . . . , a · Πt∈H yn,t) : a ∈ S

and H ∈ Pf (N) and minH ≥ k} and let Ek = Ik ∪ {(a, a, . . . , a) : a ∈ S}. Let
E =

⋂∞
k=1 c`Ek and I =

⋂∞
k=1 c`Ik. We claim that E is a subsemigroup of W and I is
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an ideal of E. Given k ∈ N and ~x = (a ·Πt∈H y1,t, a ·Πt∈H y2,t, . . . , a ·Πt∈H yn,t) with
minH ≥ k, let m = maxH + 1. Then, using the fact that S is commutative, we have
that ~x · Em ⊆ Ik. If ~x = (a, a, . . . , a), then ~x · Ek ⊆ Ek and ~x · Ik ⊆ Ik. Thus Lemma
2.2 applies.

Now ~p ∈ E. (Given k ∈ N and B1, B2, . . . , Bn ∈ p pick a ∈
⋂n

i=1 Bi. Then
(a, a, . . . , a) ∈ Ek ∩×n

i=1c`Bi.) Thus K(W ) ∩ E 6= ∅ so by [5, Corollary 1.2.15],
K(E) = K(W )∩E and hence ~p ∈ K(E) ⊆ I. Then×n

i=1c`A∩In 6= ∅ so pick a ∈ S and
H ∈ Pf (N) with minH ≥ n and (a ·Πt∈H y1,t, a ·Πt∈H y2,t, . . . , a ·Πt∈H yn,t) ∈×n

i=1A.

2.6 Theorem. Let (S, ·) be a commutative semigroup and let Y ∈ Y. Then JY is
a closed two sided ideal of βS. Consequently J is a closed two sided ideal of βS.

Proof. By Lemma 2.5, JY 6= ∅. Since it is defined as the set of all ultrafilters all
of whose members satisfy a given property, JY is closed. Let p ∈ JY and let q ∈ βS.
To see that q · p ∈ JY , let A ∈ q · p and let n ∈ N. Since A ∈ q · p pick x ∈ S such that
x−1A ∈ p. Pick a ∈ S and H ∈ Pf (N) with minH ≥ n such that a ·Πt∈H yi,t ∈ x−1A

for each i ∈ {1, 2, . . . , n}. Then x · a ·Πt∈H yi,t ∈ A for each i ∈ {1, 2, . . . , n}.
To see that p·q ∈ JY , let A ∈ p·q and let n ∈ N. Since {x ∈ S : x−1A ∈ q} ∈ p, pick

a ∈ S and H ∈ Pf (N) with minH ≥ n such that a ·Πt∈H yi,t ∈ {x ∈ S : x−1A ∈ q} for
each i ∈ {1, 2, . . . , n}. Pick x ∈

⋂n
i=1(a ·Πt∈H yi,t)−1A. Then x · a ·Πt∈H yi,t ∈ A for

each i ∈ N.

2.7 Lemma. Let (S, ·) be a commutative semigroup, and let Y = 〈〈yi,t〉∞t=1〉∞i=1 be in
Y. Let p be an idempotent in JY . Then for all A ∈ p there exist a sequence 〈an〉∞n=1 ∈ S

and a sequence 〈Hn〉∞n=1 ∈ Pf (N), with max Hn < minHn+1 for all n, such that for all
f ∈ Φ, FP (〈an ·Πt∈Hn

yf(n),t〉∞n=1) ⊆ A.

Proof. Let A1 = A and let B1 = A1 ∩ {x ∈ S : x−1A1 ∈ p}. Since p =
p · p we have B1 ∈ p so, since p ∈ JY , pick a1 and H1 such that a1 · Πt∈H1 y1,t ∈
B1. Let A2 = A1 ∩ (a1 · Πt∈H1 y1,t)−1A1. Inductively, given An, let Bn = An ∩
{x ∈ S : x−1An ∈ p}. Let m = max(Hn−1 ∪ {n}) + 1. Since Bn ∈ p, pick an ∈ S and
Hn ∈ Pf (N) such that min Hn ≥ m and for all i ∈ {1, 2, . . . ,m}, an · Πt∈Hn

yi,t ∈ Bn.
Let An+1 = An ∩

⋂n
k=1(an ·Πt∈Hn

yk,t)−1An.
Let f ∈ Φ. We show by induction on |F | that if F ∈ Pf (N) and m = minF then

Πn∈F (an · Πt∈Hn
yf(n),t) ∈ Am. If F = {m} we have am · Πt∈Hm

yf(m),t ∈ Bm ⊆ Am.
So assume |F | > 1, let G = F\{m} and let r = minG. Then Πn∈G(an ·Πt∈Hn

yf(n),t) ∈
Ar ⊆ Am+1 ⊆ (am ·Πt∈Hm

yf(m),t)−1Am so Πn∈F (an ·Πt∈Hn
yf(n),t) ∈ Am.
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The following theorem is the “Central Sets Theorem”.

2.8 Theorem. Let (S, ·) be a commutative semigroup and let A ⊆ S. If for each
Y ∈ Y there is some idemptotent p ∈ JY ∩ c`A, then A is a rich set.

Proof. Apply Lemma 2.7.

The original Central Sets Theorem ([7, Proposition 8.21]) had S = N and allowed
the (finitely many) sequences 〈yi,t〉∞t=1 to take values in Z. Since any idempotent minimal
in (βN,+) is also minimal in (βZ,+), and hence any central set in (N,+) is central in
(Z,+), this version follows from Theorem 2.8.

2.9 Corollary Let (S, ·) be a commutative semigroup and let A ⊆ S. If there is an
idempotent p ∈ J ∩ c`A, then A is a rich set. In particular each quasi-central set (and
hence each central set) is a rich set.

We now prove the converse of Theorem 2.8.

2.10 Theorem Let (S, ·) be a commutative semigroup and let A ⊆ S be a rich set.
Then for each Y ∈ Y there is an idempotent p ∈ JY ∩ c`A.

Proof. Pick sequences 〈an〉∞n=1 in S and 〈Hn〉∞n=1 in Pf (N), with maxHn <

minHn+1 for all n, such that for each f ∈ Φ, FP (〈an ·Πt∈Hn yf(n),t〉∞n=1) ⊆ A. For each
r ∈ N, let Mr =

⋃
{FP (〈an · Πt∈Hn yf(n),t〉∞n=r+1) : f ∈ Φ}, and let M =

⋂∞
r=1 c`Mr.

Note that M ⊆ c`A since M1 ⊆ A.
We claim that M is a subsemigroup of βS. To this end, let p, q ∈ M and let

B ∈ p · q and let r ∈ N. We show that B ∩ Mr 6= ∅. Let C = {x ∈ S : x−1B ∈ q}.
Then C ∈ p and p ∈ c`Mr so C ∩Mr 6= ∅ so pick f ∈ Φ and F ∈ Pf (N) with minF > r

such that x = Πn∈F (an · Πt∈Hn yf(n),t) ∈ C. Let s = max F . Now x−1B ∈ q and
q ∈ c`Ms so x−1B ∩ Ms 6= ∅. Pick g ∈ Φ and G ∈ Pf (N) with minG > s such that
y = Πn∈G(an · Πt∈Hn yg(n),t) ∈ x−1B. Let h(n) = g(n) if n ∈ G and let h(n) = f(n)
otherwise. Then x · y = Πn∈F∪G(an ·Πt∈Hn yh(n),t) ∈ B ∩Mr.

Pick an idempotent p ∈ K(M). Then p ∈ c`A so to complete the proof we show
that p ∈ JY . To this end let B ∈ p. We need to show that B is a JY -set, so let
n ∈ N. Let W = ×n

i=1M . For each r ∈ N, let Ir = {(a · x1, a · x2, . . . , a · xn) : there
exist D and D′ in Pf (N) and f ∈ Φ with D ∩ D′ = ∅ and min(D ∪ D′) > r and a =
Πm∈D(am ·Πt∈Hm yf(m),t) and for each i ∈ {1, 2, . . . , n}, xi = Πm∈D′(am ·Πt∈Hm yi,t)}.
For r ∈ N let Er = Ir ∪ {(a, a, . . . , a) : a ∈ Mr}.

Let E =
⋂∞

r=1 c`Er and I =
⋂∞

r=1 c`Ir, where the closures are taken in W . Note
that each Er ⊆×n

i=1Mr and consequently E ⊆ W . We now show that E is a semigroup
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and that I is an ideal of E, using Lemma 2.2. Let r ∈ N be given and let ~x ∈ Ir and pick
D, D′, and f as in the definition of Ir and let s = max(D∪D′). Then ~x ·Es ⊆ Ir. Now
let ~x ∈ Er\Ir, i.e., ~x = (a, a, . . . , a) for some a ∈ Mr. Pick D ∈ Pf (N) and f ∈ Φ such
that a = Πn∈D(an ·Πt∈Hn yf(n),t). Let s = maxD. Then ~x · Es ⊆ Er and ~x · Is ⊆ Ir.

Let ~p = (p, p, . . . , p). We claim ~p ∈ E. To see this, let C ∈ p and let r ∈ N. Then
C ∩ Mr 6= ∅ so pick a ∈ C ∩ Mr. Then (a, a, . . . , a) ∈ Er ∩×n

i=1C. Thus we have
~p ∈ E ∩×n

i=1K(M) so by Lemma 2.1, ~p ∈ E ∩ K(W ). Then by [5, Corollary 1.2.15]
K(E) = E ∩K(W ) so ~p ∈ K(E) ⊆ I and hence In ∩×n

i=1B 6= ∅. (Recall that we are
showing that B is a JY set.) Pick ~z = (a · x1, a · x2, . . . , a · xn) ∈ In ∩×n

i=1B. Pick
D and D′ in Pf (N) with D ∩D′ = ∅ and min(D ∪D′) > n and pick f ∈ Φ such that
a = Πm∈D(am · Πt∈Hm

yf(m),t) and for i ∈ {1, 2, . . . , n}, xi = Πm∈D′(am · Πt∈Hm
yi,t).

Let b = a · Πm∈D′ am and let G =
⋃

m∈D′ Hm and note that minG ≥ minD′ > n.
Then for each i ∈ {1, 2, . . . , n}, b ·Πt∈G yi,t ∈ B.

2.11 Corollary. Let (S, ·) be a commutative semigroup and let A ⊆ S. Then A is
a rich set if and only if for every Y ∈ Y there is an idempotent p ∈ JY ∩ c`A.

Proof. Theorems 2.8 and 2.10.

As an additional, fortuitous, corollary we see that the property of being a rich set
is partition regular.

2.12 Corollary. Let (S, ·) be a commutative semigroup and let A ⊆ S be a rich
set. If r ∈ N and A =

⋃r
i=1 Bi, then for some i ∈ {1, 2, . . . , r}, Bi is a rich set.

Proof. Direct Y by agreeing for Y = 〈〈yi,t〉∞t=1〉∞i=1 and Z = 〈〈zi,t〉∞t=1〉∞i=1 in Y,
that Y ≤ Z if and only if for each i ∈ N there exists j ∈ N with 〈yi,t〉∞t=1 = 〈zj,t〉∞t=1. (It
is routine to verify that this relation does direct Y, and that JZ ⊆ JY whenever Y ≤ Z.)
For each Y ∈ Y pick an idempotent pY ∈ JY ∩ c`A, which one can do by Theorem 2.10.
Let p ∈ βS be a cluster point of the net 〈pY 〉Y ∈Y and pick i ∈ {1, 2, . . . , r} with Bi ∈ p.
Then given any Y ∈ Y pick some Z ≥ Y in Y with pZ ∈ c`Bi. Then pZ ∈ JY ∩ c`Bi.
Thus by Theorem 2.8, Bi is a rich set.

We see now that if our commutative semigroup is countable, then rich sets satisfy
an even stronger combinatorial statement.

2.13 Theorem Let (S, ·) be a countable commutative semigroup and let A be a rich
set. There is a sequence 〈xn〉∞n=1 such that FP (〈xn〉∞n=1) ⊆ A and for each m ∈ N,
A ∩

⋂
{y−1A : y ∈ FP (〈xn〉mn=1)} is a rich set.
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Proof. Given B ⊆ S and Y ∈ Y, let X(B, Y ) = {x ∈ B : there exists an
idempotent p ∈ JY ∩ c`B ∩ c`x−1B}. Note first that if B is a rich set, then for each
Y ∈ Y, X(B, Y ) 6= ∅. Indeed by Theorem 2.10, we have some idempotent p ∈ JY ∩ c`B.
Then {x ∈ S : x−1B ∈ p} ∈ p and B ∈ p so pick x ∈ B such that x−1B ∈ p. Then
x ∈ X(B, Y ).

Next we show that if B is a rich set, then
⋂

Y ∈Y X(B, Y ) 6= ∅. Indeed suppose⋂
Y ∈Y X(B, Y ) = ∅ and for each x ∈ B, pick Yx ∈ Y such that x /∈ X(B, Yx). Direct

Y as in the proof of Corollary 2.12 above. Since B is countable, pick Z ∈ Y such that
Yx ≤ Z for each x ∈ B. (It is an easy exercise to show that one can do this.) Then
JZ ⊆ JYx for each x ∈ B so X(B,Z) ⊆ X(B, Yx) for each x ∈ B. But X(B,Z) 6= ∅ so
there is some x ∈ X(B, Yx), a contradiction.

As a final preliminary observation we note that whenever B is a rich set and x ∈⋂
Y ∈Y X(B, Y ) one has B ∩ x−1B is a rich set. Indeed, one has directly from the

definition that for each Y ∈ Y there is an idempotent p ∈ JY ∩ c`(B ∩ x−1B) so
Theorem 2.8 applies.

Now we construct 〈xn〉∞n=1 inductively. Choose x1 ∈
⋂

Y ∈Y X(A, Y ). Then A ∩
x−1

1 A is a rich set. Inductively let m ∈ N and assume we have chosen 〈xn〉mn=1 such
that FP (〈xn〉mn=1) ⊆ A and A ∩

⋂
{y−1A : y ∈ FP (〈xn〉mn=1)} is a rich set. Let B =

A∩
⋂
{y−1A : y ∈ FP (〈xn〉mn=1)} and pick xm+1 ∈

⋂
Y ∈Y X(B, Y ). Since xm+1 ∈ B we

have FP (〈xn〉m+1
n=1 ) ⊆ A. Also B ∩x−1

m+1B is a rich set and B ∩x−1
m+1B ⊆ A∩

⋂
{y−1A :

y ∈ FP (〈xn〉m+1
n=1 )}.

As we have already remarked, we restrict our attention to commutative S in The-
orem 2.8 because the conclusion becomes much more complicated when S is not com-
mutative. (In the proof in Lemma 2.5 that E is a semigroup, one uses the fact that if
H ∩ G = ∅, then a · Πt∈H yi,t · b · Πt∈G yi,t = a · b · Πt∈H∪G yi,t.) There is however a
Central Sets Theorem for noncommutative semigroups. Or rather there are two such
theorems: one for members of idempotents minimal in (βS, ·), the other for members of
idempotents minimal in (βS, ·`). (As we have remarked, the reader can see [4, Theorem
2.8] for the latter, at least for finitely many given sequences.) To convert between such
theorems one merely interchanges the order of all operations.

We conclude this section with a demonstration that the left and right notions can
be quite different. The notion we are using for central should properly be called “right
central”.

2.14 Theorem. Let S be the free semigroup on two generators a and b. There is a
central subset B of S such that whenever p ∈ S∗ = βS\S and q ∈ βS\c`{bn : n ∈ N},
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one has B /∈ p ·` q.

Proof. Let B = {sabn : n ∈ N and s ∈ S and length(s) < n}. To see that B is
central we show that c`B contains a left ideal of βS, which suffices since each left ideal
contains a minimal idempotent. To see this, let p ∈ S∗ ∩ c`{abn : n ∈ N}. Then given
any s ∈ S, s · p ∈ c`B so βS · p ⊆ c`B.

Now let p ∈ S∗ and let q ∈ βS\c`{bn : n ∈ N} and suppose that B ∈ p ·` q. Pick
w ∈ S\{bn : n ∈ N} such that Bw−1 ∈ p. Since w /∈ {bn : n ∈ N} there exist some
s ∈ S ∪ {∅} and some n ∈ N ∪ {0} such that w = sabn, where b0 = ∅. Then {u ∈ S :
length(u) > n} ∈ p, and {u ∈ S : length(u) > n} ∩Bw−1 = ∅, a contradiction.

2.15 Corollary. Let S be the free semigroup on two generators. There is a central
subset B of S which is not a member of any idempotent which is minimal in (βS, ·`),
in fact is not a member of any idempotent in (βS, ·`).

Proof. Let B be the set produced in the proof of Theorem 2.14 and let p be an
idempotent in (βS, ·`). Suppose that B ∈ p. Since B∩{bn : n ∈ N} = ∅, {bn : n ∈ N} /∈ p

so by Theorem 2.14, B /∈ p ·` p = p, a contradiction.

3. Combinatorial characterizations of central and quasi-central. Our char-
acterizations of central and quasi-central utilize a notion from topological dynamics,
namely that of being piecewise syndetic. In N, a set is syndetic if it has bounded gaps.
It is piecewise syndetic if there is a fixed bound and arbitrarily long intervals in which the
set has gaps bounded by this fixed bound. The generalization to arbitrary semigroups
is less intuitive, but standard. We are not restricting our attention to commutative
semigroups so there will be two notions, one from each side. Thus what we are calling
“piecewise syndetic” could be called “right piecewise syndetic”.

We also include a generalization to arbitrary families of sets. Given subsets A and
B of a semigroup S, we write B−1A =

⋃
t∈B t−1A. (Thus x ∈ B−1A if and only if there

is some t ∈ B with t · x ∈ A.)

3.1 Definition. Let (S, ·) be a semigroup.
(a) A set A ⊆ S is syndetic if and only if there exists G ∈ Pf (S) with S ⊆ G−1A.
(b) A set A ⊆ S is piecewise syndetic if and only if there exists G ∈ Pf (S) such

that {y−1G−1A : y ∈ S} has the finite intersection property.
(c) A family A ⊆ P(S) is collectionwise piecewise syndetic if and only if there exists

a function G : Pf (A) → Pf (S) such that {y−1(G(F))−1(
⋂
F) : y ∈ S and F ∈ Pf (A)}

has the finite intersection property.
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Observe that A is piecewise syndetic if and only if there is some G ∈ Pf (S) such that
for every F ∈ Pf (S) there is some x ∈ S with F ·x ⊆

⋃
t∈G t−1A. Observe also that A is

collectionwise piecewise syndetic if and only if there exist functions G : Pf (A) → Pf (S)
and x : Pf (A) × Pf (S) → S such that for all F ∈ Pf (S) and all F and H in Pf (A)
with F ⊆ H one has F · x(H, F ) ⊆

⋃
t∈G(F ) t−1(

⋂
F).

Note that a subset A is piecewise syndetic if and only if {A} is collectionwise piece-
wise syndetic. The importance of these notions is exhibited by the following theorem.

3.2 Theorem. Let (S, ·) be an infinite semigroup and let A ⊆ P(S). There exists
p ∈ K(βS) with A ⊆ p if and only if A is collectionwise piecewise syndetic. In particular,
given A ⊆ S, K(βS) ∩ c`A 6= ∅ if and only if A is piecewise syndetic.

Proof. After the appropriate left-right switches, this is [10, Theorem 2.1].

The following is not directly relevant to our characterization of central sets, but
does show some of the connections among the notions we are studying.

3.3 Theorem. Let (S, ·) be an infinite semigroup and let A ⊆ S. The following
statements are equivalent.

(a) A is piecewise syndetic.

(b) {x ∈ S : x−1A is central} is syndetic.

(c) There is some x ∈ S such that x−1A is central.

Proof (a) ⇒ (b). Pick by Theorem 3.2 some p ∈ K(βS) with A ∈ p. Now K(βS)
is the union of all minimal left ideals of βS. (Recall that the reference for basic facts
about compact right topological semigroups is [5].) So pick a minimal left ideal L of
βS with p ∈ L and pick an idempotent e ∈ L. Then p = p · e so pick y ∈ S such that
y−1A ∈ e.

Now by [8, Corollary 3.6] we have B = {z ∈ S : z−1(y−1A) ∈ e} is syndetic, so pick
finite G ⊆ S such that S = G−1B. Let D = {x ∈ S : x−1A is central}. We claim that
S = (y · G)−1D. Indeed, let x ∈ S be given and pick t ∈ G such that t · x ∈ B. Then
(t · x)−1(y−1A) ∈ e so (t · x)−1(y−1A) is central. But (t · x)−1(y−1A) = (y · t · x)−1A.
Thus y · t · x ∈ D so x ∈ (y · t)−1D as required.

(b) ⇒ (c). Trivial.

(c) ⇒ (a). Pick x ∈ S such that x−1A is central and pick an idempotent p ∈ K(βS)
such that x−1A ∈ p. Then A ∈ x ·p and x ·p ∈ K(βS) so by Theorem 3.2, A is piecewise
syndetic.
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Our combinatorial characterizations of central and quasi-central are based on an
analysis of the usual proof (due to F. Galvin) that any member of any idempotent
contains FP (〈xn〉∞n=1) for some sequence 〈xn〉∞n=1 in S. Let’s review that proof now.

Let p = p·p in βS and let A ∈ p. Let A1 = A and let B1 = A1∩{x ∈ S : x−1A1 ∈ p}.
Since p · p = p one has B1 ∈ p. Pick x1 ∈ B1 and let A2 = A1 ∩ x1

−1A1. Let
B2 = A2 ∩ {x ∈ S : x−1A2 ∈ p} and pick x2 ∈ B2 and continue in this way. One has
then, for example, that x1·x4·x5·x10 ∈ A as follows. First x10 ∈ B10 ⊆ A10 ⊆ A9 ⊆ . . . ⊆
A6 ⊆ x5

−1A5. Then x5 · x10 ∈ A5 ⊆ x4
−1A4 so x4 · x5 · x10 ∈ A4 ⊆ A3 ⊆ A2 ⊆ x1

−1A1.
Now the important thing to notice about this proof is that when one chooses xn one in
fact has a large number of choices. That is, one can draw a tree, branching infinitely
often at each node, so that any path through that tree yields a sequence 〈xn〉∞n=1 with
FP (〈xn〉∞n=1) ⊆ A. (Recall that in FP (〈xn〉∞n=1), the products are taken in increasing
order of indices.)

We formalize the notion of “tree” below. We write ω = {0, 1, 2, 3, . . .}, the first
infinite ordinal and recall that each ordinal is the set of its predecessors. (So 3 =
{0, 1, 2} and 0 = ∅ and, if f is the function {(0, 3), (1, 5), (2, 9), (3, 7), (4, 5)}, then f|3 =
{(0, 3), (1, 5), (2, 9)}.)

3.4 Definition. T is a tree in A if and only if T is a set of functions and for each
f ∈ T , domain(f) ∈ ω and range(f) ⊆ A and if domain(f) = n > 0, then f|n−1 ∈ T . T

is a tree if and only if for some A, T is a tree in A.

The last requirement in the definition is not essential; we utilize it nowhere in our
proofs. Further, any set of functions with domains in ω can be converted to a tree
by adding in all restrictions to initial segments. We include the requirement in the
definition for aesthetic reasons – it is not nice for branches at some late level to appear
from nowhere.

3.5 Definition. (a) Let f be a function with domain(f) = n ∈ ω and let x be
given. Then f_x = f ∪ {(n, x)}.

(b) Given a tree T and f ∈ T , Bf = Bf (T ) = {x : f_x ∈ T}.
(c) Let (S, ·) be a semigroup and let A ⊆ S. Then T is a ∗-tree in A if and only if

T is a tree in A and for all f ∈ T and all x ∈ Bf , Bf_x ⊆ x−1Bf .
(d) Let (S, ·) be a semigroup and let A ⊆ S. Then T is a FP-tree in A if and

only if T is a tree in A and for all f ∈ T , Bf = {Πt∈F g(t) : g ∈ T and f ⊂
6= g and

∅ 6= F ⊆ domain(g)\domain(f)}.

The idea of the terminology is that a FP-tree is a tree of finite products. It is this
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notion which provides the most fundamental combinatorial characterization of both
“central” and “quasi-central”. A ∗-tree arises more directly from the proof outlined
above.

3.6 Lemma. Let (S, ·) be an infinite semigroup and let A ⊆ S. Let p be an
idempotent in βS with A ∈ p. There is a FP-tree T in A such that for each f ∈ T ,
Bf ∈ p.

Proof. We will define the initial segments Tn = {f ∈ T : domain(f) = n}
inductively. Let T0 = {∅} (of course) and let C∅ = A ∩ {x ∈ S : x−1A ∈ p} and note
that C∅ ∈ p. Let T1 = {(0, x) : x ∈ C∅}.

Inductively assume we have n ∈ N and have defined Tn so that for each f ∈ Tn

and all x ∈ FP (〈f(t)〉n−1
t=0 ) one has x ∈ A and x−1A ∈ p. Given f ∈ Tn, write

Pf = FP (〈f(t)〉n−1
t=0 ) and note that, given x ∈ Pf , since x−1A ∈ p one also has {y ∈ S :

y−1(x−1A) ∈ p} ∈ p. Let Cf = A ∩ {y ∈ S : y−1A ∈ p} ∩
⋂

x∈Pf
(x−1A) ∩

⋂
x∈Pf

{y ∈
S : y−1(x−1A) ∈ p}, and note that Cf ∈ p. Let Tn+1 = {f_y : f ∈ Tn and y ∈ Cf}. To
see that our induction hypothesis is satisfied, let g ∈ Tn+1 and let z ∈ FP (〈g(t)〉nt=0).
Pick nonempty F ⊆ {0, 1, . . . , n} such that z = Πt∈F g(t). Let y = g(n) and let f = g|n

(so g = f_y and f ∈ Tn). Now if n /∈ F one has z ∈ FP (〈f(t)〉n−1
t=0 ) so z ∈ A and

z−1A ∈ p by the induction hypothesis. If F = {n}, then z = y and y ∈ Cf so y ∈ A

and y−1A ∈ p. Thus assume {n} is properly contained in F and let G = F\{n}. Let
x = Πt∈G f(t) so that x ∈ FP (〈f(t)〉n−1

t=0 ). Now y ∈ x−1A so z = x · y ∈ A. Also
z−1A = y−1(x−1A) ∈ p.

The induction being complete, let T =
⋃∞

n=0 Tn. Then T is a tree in A. One
sees immediately from the construction that for each f ∈ T , Bf = Cf . We need to
show that for each f ∈ T one has Bf = {Πt∈F g(t) : g ∈ T and f ⊂

6= g and ∅ 6=
F ⊆ domain(g)\domain(f)}. Given f ∈ T and x ∈ Bf , let g = f_x and let F =
domain(g)\domain(f) (which is a singleton). For the other inclusion we first observe
that if f, h ∈ T with f ⊆ h then Pf ⊆ Ph so Bh ⊆ Bf . Let f ∈ Tn and let x ∈
{Πt∈F g(t) : g ∈ T and f ⊂

6= g and ∅ 6= F ⊆ domain(g)\domain(f)}. Pick g ∈ T with
f ⊂

6= g and pick F with ∅ 6= F ⊆ domain(g)\domain(f) such that x = Πt∈F g(t). First
assume F = {m}. Then m ≥ n. Let h = g|m. Then f ⊆ h and h_x = g|m+1 ∈ T .
Hence x ∈ Bh ⊆ Bf as required. Now assume |F | > 1, let m = maxF , and let
G = F\{m}. Let h = g|m, let x = Πt∈G g(t), and let y = g(m). Then y ∈ Bh. Let
Pf = FP (〈f(t)〉n−1

t=0 ) and Ph = FP (〈h(t)〉m−1
t=0 ). We need to show that x · y ∈ Bf .

That is, we need x · y ∈ A, (x · y)−1A ∈ p, and for all z ∈ Pf , x · y ∈ z−1A and
(x · y)−1(z−1A) ∈ p. Now x ∈ Ph and y ∈ Bh so y ∈ x−1A and y−1(x−1A) ∈ p so
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x · y ∈ A and (x · y)−1A ∈ p. Let z ∈ Pf . Then z · x ∈ Ph and y ∈ Bh so y ∈ (z · x)−1A

and y−1((z · x)−1A) ∈ p so x · y ∈ z−1A and (x · y)−1(z−1A) ∈ p.

3.7 Theorem. Let (S, ·) be an infinite semigroup and let A ⊆ S. Statements (1),
(2), (3), and (4) are equivalent and are implied by statment (5). If S is countable, then
all five statements are equivalent.

(1) A is quasi-central.

(2) There is a FP-tree T in A such that for each F ∈ Pf (T ),
⋂

f∈F Bf is piecewise
syndetic.

(3) There is a ∗-tree T in A such that for each F ∈ Pf (T ),
⋂

f∈F Bf is piecewise
syndetic.

(4) There is a downward directed family 〈CF 〉F∈I of subsets of A such that

(a) for each F ∈ I and each x ∈ CF there exists G ∈ I with CG ⊆ x−1CF and

(b) for each F ∈ I, CF is piecewise syndetic.

(5) There is a decreasing sequence 〈Cn〉∞n=1 of subsets of A such that

(a) for each n ∈ N and each x ∈ Cn, there exists m ∈ N with Cm ⊆ x−1Cn

and

(b) for each n ∈ N, Cn is piecewise syndetic.

Proof. (1) ⇒ (2). Pick an idempotent p ∈ c`K(βS) with A ∈ p. By Lemma 3.6
pick a FP-tree T in A with Bf ∈ p for each f ∈ T . Then given F ∈ Pf (T ), one has⋂

f∈F Bf ∈ p so K(βS) ∩ c`
⋂

f∈F Bf 6= ∅ so by Theorem 3.2,
⋂

f∈F Bf is piecewise
syndetic.

(2) ⇒ (3). Let T be a FP-tree. Then given f ∈ T and x ∈ Bf , we claim that
Bf_x ⊆ x−1Bf . To this end let y ∈ Bf_x and pick g ∈ T with f_x ⊂

6= g and pick
F ⊆ domain(g)\domain(f_x) such that y = Πt∈F g(t). Let n = domain(f) and let
G = F ∪ {n}. Then x · y = Πt∈G g(t) and G ⊆ domain(g)\domain(f), so x · y ∈ Bf as
required.

(3) ⇒ (4). Let T be the given ∗-tree. Let I = Pf (T ) and for each F ∈ I, let
CF =

⋂
f∈F Bf . Then immediately each CF is piecewise syndetic. Let F ∈ I and let

x ∈ CF . Let G = {f_x : f ∈ F}. Now for each f ∈ F we have Bf_x ⊆ x−1Bf so
CG ⊆ x−1CF .

(4) ⇒ (1). Let M =
⋂

F∈I c`CF . It suffices to show that M ∩ c`K(βS) 6= ∅ and
M is a subsemigroup of βS. For by [8, Corollary 4.6] c`K(βS) is a semigroup. So one
concludes that M ∩ c`K(βS) is a compact right topological semigroup and one then has
that there is an idempotent p ∈ M ∩ c`K(βS). Since M ⊆ c`A one has A ∈ p.
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To see that M ∩ c`K(βS) 6= ∅ it suffices, since 〈CF 〉F∈I is a downward directed
family, to show that for each F ∈ I, c`CF ∩ c`K(βS) 6= ∅. But this is an immediate
consequence of Theorem 3.2. To see that M is a subsemigroup of βS, let p, q ∈ M and
let F ∈ I. We claim that CF ⊆ {x ∈ S : x−1CF ∈ q} (and hence CF ∈ p · q). So let
x ∈ CF and pick G ∈ I such that CG ⊆ x−1CF . Then CG ∈ q so x−1CF ∈ q.

That (5) ⇒ (4) is trivial.

Finally assume that S is countable. We show that (3) ⇒ (5). So let T be the given
∗-tree in A. Then T is countable so enumerate T as 〈fn〉∞n=1. For each n ∈ N, let
Cn =

⋂n
k=1 Bfk

. Then immediately each Cn is piecewise syndetic. Let n ∈ N and let
x ∈ Cn. Pick m ∈ N such that {fk

_x : k ∈ {1, 2, . . . , n}} ⊆ {ft : t ∈ {1, 2, . . . ,m}}.
Then Cm ⊆ x−1Cn.

We have a nearly identical characterization of central sets.

3.8 Theorem. Let (S, ·) be an infinite semigroup and let A ⊆ S. Statements (1),
(2), (3), and (4) are equivalent and are implied by statment (5). If S is countable, then
all five statements are equivalent.

(1) A is central.

(2) There is a FP-tree T in A such that {Bf : f ∈ T} is collectionwise piecewise
syndetic.

(3) There is a ∗-tree T in A such that {Bf : f ∈ T} is collectionwise piecewise
syndetic.

(4) There is a downward directed family 〈CF 〉F∈I of subsets of A such that

(a) for each F ∈ I and each x ∈ CF there exists G ∈ I with CG ⊆ x−1CF and

(b) {CF : F ∈ I} is collectionwise piecewise syndetic.

(5) There is a decreasing sequence 〈Cn〉∞n=1 of subsets of A such that

(a) for each n ∈ N and each x ∈ Cn, there exists m ∈ N with Cm ⊆ x−1Cn

and

(b) {Cn : n ∈ N} is collectionwise piecewise syndetic.

Proof. (1) ⇒ (2). Pick an idempotent p ∈ K(βS) with A ∈ p. By Lemma 3.6
pick a FP-tree with {Bf : f ∈ T} ⊆ p. By Theorem 3.2 {Bf : f ∈ T} is collectionwise
piecewise syndetic.

(2) ⇒ (3). This is identical to the corresponding proof in Theorem 3.7.

(3) ⇒ (4). This is identical to the corresponding proof in Theorem 3.7 except that
one notes that since {Bf : f ∈ T} is collectionwise piecewise syndetic, so is {

⋂
f∈F Bf :

F ∈ Pf (T )}.
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(4) ⇒ (1). Let M =
⋂

F∈I c`CF . Exactly as in the proof of Theorem 3.7 we have
that M is a subsemigroup of βS. Since {CF : F ∈ I} is collectionwise piecewise syndetic,
we have by Theorem 3.2 that M ∩K(βS) 6= ∅ so we may pick a minimal left ideal L of
βS with L∩M 6= ∅. Then L∩M is a compact subsemigroup of βS which thus contains
an idempotent, which is necessarily minimal.

That (5) ⇒ (4) is trivial.

The proof that (3) ⇒ (5) when S is countable is nearly identical to the correspond-
ing part of Theorem 3.7.

We close this section by pointing out two Ramsey-Theoretic consequences of our
characterizations.

3.9 Corollary. Let (S, ·) be an infinite semigroup, let r ∈ N, and let S =
⋃r

i=1 Ai.
There exist i ∈ {1, 2, . . . , r} and a FP-tree T in Ai such that {Bf : f ∈ T} is collection-
wise piecewise syndetic.

Proof. Pick an idempotent p ∈ K(βS) and pick i ∈ {1, 2, . . . , r} such that Ai ∈ p.
Apply Theorem 3.8.

3.10 Corollary Let (S, ·) be an infinite commutative semigroup. Let A ⊆ S and
assume there is a ∗-tree T in A such that for each F ∈ Pf (T ) one has

⋂
f∈F Bf is

piecewise syndetic. Then whenever r ∈ N and A =
⋃r

i=1 Di one has some Di is a rich
set.

Proof. By Theorem 3.7 pick an idempotent p ∈ c`K(βS) with A ∈ p. Then if
A =

⋃r
i=1 Di one has some Di ∈ p and hence Di is quasi-central. Apply Corollary 2.9.

4. Quasi-central need not imply central. It is easy to see that in some
semigroups the notions of central and quasi-central are identical. For example, if (S, ·)
is a left-zero semigroup (so that x · y = x for all x and y in S) then so is βS, and hence
K(βS) = βS so every subset of S is central.

For a slightly less trivial example, consider (N,∨) where x ∨ y = max{x, y}. Then
given p ∈ N∗ = βN\N and x ∈ N, x ∨ p = p ∨ x = p while given p, q ∈ N∗ one has
q∨p = p. Then K(βN,∨) = N∗ so the notions “central”, “quasi-central”, and “infinite”
are synonymous.

We show in this section that in the semigroup (N,+) there is a subset which is
quasi-central but not central. (The semigroup (N,+) is the granddaddy of all semigroups
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and is the one wherein many of the most interesting combinatorial applications of the
algebraic structure of βS lie.)

Since the operation here is “+” we will write FS(〈xn〉∞n=1) = {Σn∈F xn : F ∈
Pf (N)} in lieu of FP (〈xn〉∞n=1) and −x + A in lieu of x−1A. Also, since (N,+) is
commutative we have −x + A = A− x = {y ∈ N : y + x ∈ A}.

We define now the set which is quasi-central, but not central.

4.1 Definition. (a) Let n ∈ N. Then Xn = {22n·(2b+1) + a · 22n + 22n−2 : a, b ∈ N
and a ≤ b}.

(b) X =
⋃∞

n=1 Xn.

(c) Given x ∈ N, supp(x) is the finite subset of N∪{0} such that x = Σt∈supp(x) 2t.

(d) D = {Σ`
i=1 xi : ` ∈ N and for each i ∈ {1, 2, . . . , `}, xi ∈ X and if ` > 1 then

for each i ∈ {1, 2, . . . , `− 1}, max supp(xi) < min supp(xi+1)}.
(e) Let r ∈ N. Then Dr = D ∩ N2r.

4.2 Lemma. Let u ∈ N and assume there exists c ∈ D such that u + c ∈ D and
max supp(u) < min supp(c). Then u ∈ D.

Proof. Pick c and d in D with max supp(u) < min supp(c) and u + c = d

and max supp(c) as small as possible among all such pairs. Pick ` and m in N such
that c = Σ`

i=1 xi and d = Σm
i=1 yi where x1, x2, . . . , x` and y1, y2, . . . , ym are as in

the definition of D. It suffices to show that x` = ym. For then, by the minimality of
max supp(c) we must have ` = 1 and hence u = Σm−1

i=1 yi.

Now x` = 22n·(2b+1) + a · 22n + 22n−2 for some a, b, n ∈ N with a ≤ b. Also
ym = 22k·(2f+1) + g · 22k + 22k−2 for some k, f, g ∈ N with g ≤ f . Now there is no
carrying when the xi’s are added in binary and similarly there is no carrying when
the yi’s are added in binary. Consequently max supp(u + c) = 2n · (2b + 1) and
max supp(d) = 2k ·(2f +1) so n = k and b = f . Now also max supp(u+c−x`) < 2n−2
and max supp(d − ym) < 2n − 2 so a · 22n = g · 22n so a = g. That is ym = x` as
required.

4.3 Lemma. If p ∈ βN and q ∈ c`D ∩
⋂∞

n=1 c`N2n and p + q ∈ c`D, then p ∈ c`D.

Proof. We have that D ∈ p + q. We claim that {u ∈ N : −u + D ∈ q} ⊆ D so let
u ∈ N such that −u+D ∈ q. Let m = max supp(u) and pick c ∈ (−u+D)∩D∩N2m+1.
Then u + c ∈ D and max supp(u) < min supp(c) so by Lemma 4.2 u ∈ D.

4.4 Theorem. D is quasi-central but not central.
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Proof. To see that D is quasi-central we show that 〈Dn〉∞n=1 satisfies statement (5)
of Theorem 3.7. Given n ∈ N and a ∈ Dn, let m = max supp(a). Then Dm+1 ⊆ −a+Dn.
Given n ∈ N\{1} we have that Xn ⊆ Dn so to see that Dn is piecewise syndetic it suffices
to show that Xn is piecewise syndetic. Let G = {1, 2, . . . , 22n}. Then given any finite
F ⊆ N, let b = maxF and let x = 22n·(2b+1) + 22n−2. Then F + x ⊆

⋃
t∈G−t + Xn.

Now suppose that D is central and pick an idempotent q ∈ K(βN) ∩ c`D. Since
q = q+q we have q ∈

⋂∞
n=1 c`N2n. (There is some i ∈ {0, 1, . . . , 2n−1} with N2n +i ∈ q

and N2n + 2i ∈ q + q so i = 0.) Pick any p ∈ N∗ ∩ c`{22m+1 : m ∈ N}. Since
q ∈ K(βN) we have L = βN + q is a minimal left ideal of βN and p + q ∈ L so
L = βN+p+q so q ∈ βN+p+q, so pick r ∈ βN such that q = r+p+q. By Lemma 4.3,
r+p ∈ c`D. So pick x ∈ N such that −x+D ∈ p. Also {22m+1 : m > max supp(x)} ∈ p

so pick m > max supp(x) with 22m+1 ∈ −x + D. But then x + 22m+1 ∈ D so
max supp(x + 22m+1) is even, a contradiction.

One should note that the “ 22n−2 ” terms in the definition of Xn play a crucial
role. If one instead defines Xn

′ = {22n·(2b+1) + a · 22n : a, b ∈ N and a ≤ b} one has that
X1

′ contains arbitrarily long blocks of N4 and it is not hard to see (using, say, Theorem
3.8) that any set containing arbitrarily long blocks of Nn for any fixed n is central.

The reader may want to amuse himself by figuring out where our proof breaks down
if Xn

′ replaces Xn in the definition of D.

5. Sets satisfying the Central Sets Theorem need not be quasi-central.
We show in fact that there is a subset A of N which is a rich set but is not even piecewise
syndetic (so is certainly not quasi-central since K(βN) ∩ c`A = ∅). This same set A is
in fact a member of an idempotent in J so we obtain as a corollary that J 6= c`K(βN).

5.1 Lemma. Let n, m, k ∈ N and for each i ∈ {1, 2, . . . , n}, let 〈yi,t〉∞t=1 be a
sequence in N. Then there exists H ∈ Pf (N) with min H > m such that for each
i ∈ {1, 2, . . . , n}, Σt∈H yi,t ∈ N2k.

Proof. Choose an infinite set G1 ⊆ N such that for all t, s ∈ G1, y1,t ≡ y1,s

(mod 2k). Inductively, given i ∈ {1, 2, . . . , n−1} and Gi, choose an infinite subset Gi+1

of Gi such that for all t, s ∈ Gi+1, yi+1,t ≡ yi+1,s (mod 2k). Then for all i ∈ {1, 2, . . . , n}
and all t, s ∈ Gn one has yi,t ≡ yi,s (mod 2k). Now pick H ⊆ Gn with min H > m and
|H| = 2k.

5.2 Lemma. There is a set A ⊆ N such that
(1) A is not piecewise syndetic.
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(2) For all x ∈ A there exists n ∈ N such that ∅ 6= A ∩ N2n ⊆ −x + A.

(3) For each n ∈ N and any n sequences 〈y1,t〉∞t=1, 〈y2,t〉∞t=1, . . . , 〈yn,t〉∞t=1 in N there
exist a ∈ N and H ∈ Pf (N) such that for all i ∈ {1, 2, . . . , n}, a+Σt∈H yi,t ∈ A∩N2n.

Proof. For each k ∈ N let Bk = {2k, 2k+1, 2k+2, . . . , 2k+1−1} and let A = {n ∈ N :
for each k ∈ N, Bk\supp(n) 6= ∅}. Then one recognizes that n ∈ A by looking at the
binary expansion of n and noting that there is at least one 0 between positions 2k and
2k+1 for each k ∈ N.

To show that A is not piecewise syndetic we need to show that for each g ∈ N
there is some b ∈ N such that for any x ∈ N there is some y ∈ {x + 1, x + 2, . . . , x + b}
with {y + 1, y + 2, . . . , y + g} ∩ A = ∅. To this end let g ∈ N be given and pick k ∈ N
such that 22k

> g. Let b = 22k+1
. Let x ∈ N be given and pick the least a ∈ N such

that a · 22k+1 − 22k

> x and let y = a · 22k+1 − 22k

. Then x < y ≤ x + b and for each
t ∈ {1, 2, . . . , 22k −1} one has {2k, 2k +1, 2k +2, . . . , 2k+1−1} ⊆ supp(y+t) so y+t /∈ A.

To verify conclusion (2), let x ∈ N and pick k ∈ N such that 22k−1 > x. Let n = 2k.
Then ∅ 6= A ∩ N2n ⊆ −x + A.

Finally, to verify (3) let n ∈ N and let sequences 〈y1,t〉∞t=1, 〈y2,t〉∞t=1, . . . , 〈yn,t〉∞t=1

be given. We first observe that by Lemma 5.1 we can choose H ∈ Pf (N) such that for
each i ∈ {1, 2, . . . , n}, Σt∈H yi,t ∈ N2n+1.

Next we observe that given any z1, z2, . . . , zn in N and any k with 2k > n, there
exists r ∈ Bk such that Bk\supp(2r + zi) 6= ∅ for each i ∈ {1, 2, . . . , n}. Indeed, if
r ∈ Bk and Bk ⊆ supp(2r + z) then supp(z) ∩ Bk = Bk\{r}. Consequently |{r ∈ Bk :
there is some i ∈ {1, 2, . . . , n} with Bk ⊆ supp(2r + zi)}| ≤ n.

For i ∈ {1, 2, . . . , n}, let z0,i = Σt∈H yi,t. Pick the least ` such that 2` > n. Now
given i we have 2n+1|z0,i and 2`−1 < n + 1 so 2`−1 ∈ B`−1\supp(z0,i), where B`−1 is
defined as in the paragraph above. Pick r0 ∈ B` such that B`\supp(2r0 + z0,i) 6= ∅ for
each i ∈ {1, 2, . . . , n} and let z1,i = z0,i + 2r0 . Inductively choose rj ∈ B`+j such that
B`+j\supp(2rj + zj,i) 6= ∅ for each i ∈ {1, 2, . . . , n} and let zj+1,i = zj,i + 2rj . Continue
the induction until ` + j = k where 22k

> Σt∈H yi,t for each i ∈ {1, 2, . . . , n} and let
a = 2r0 + 2r1 + . . . + 2rk−` .

5.3 Theorem. There is a set A ⊆ N such that A is a rich set but K(βN)∩c`A = ∅.
Proof. Let A be as in Lemma 5.2. Since A is not piecewise syndetic we have by

Theorem 3.2 that K(βN)∩c`A = ∅. We could appeal to Lemma 5.4 below and Theorem
2.7 to conclude that A is a rich set but this fact has a very easy elementary proof which
we present now.
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Let Y = 〈〈yi,t〉∞t=1〉∞i=1 be given. Choose by condition (3) of Lemma 5.2 some a1 and
H1 with a1 + Σt∈H1 y1,t ∈ A. Inductively, given an and Hn, let ` = max Hn and pick
m > n in N such that for all i ∈ {1, 2, . . . , n}, an + Σt∈Hn yi,t < 22m

. Pick by condition
(3) of Lemma 5.2 (applied to the sequences 〈y1,`+t〉∞t=1, 〈y2,`+t〉∞t=1, . . . , 〈ym,`+t〉∞t=1, so
that min Hn+1 > ` = max Hn.) some an+1 and Hn+1 such that for all i ∈ {1, 2, . . . ,m},
an+1 + Σt∈Hn+1 yi,t ∈ A ∩ N22m

. Observe that if x, y ∈ A and for some k, x < 22k

and
22k |y, then x+y ∈ A. Consequently for f ∈ Φ one has FS(〈an+Σt∈Hn yf(n),t〉∞n=1) ⊆ A.

Now we turn our attention to showing that there is an idempotent in J\c`K(βN).

5.4 Lemma. Assume A ⊆ N and

(1) for all x ∈ A there is some n ∈ N such that ∅ 6= A ∩ N2n ⊆ −x + A and

(2) for all n ∈ N and all sequences 〈y1,t〉∞t=1, 〈y2,t〉∞t=1, . . . , 〈yn,t〉∞t=1 in N there exist
a ∈ N and H ∈ Pf (N) such that for all i ∈ {1, 2, . . . , n}, a + Σt∈H yi,t ∈ A ∩ N2n.
Then there is some idempotent p in J ∩ c`A.

Proof. Let T = c`A ∩
⋂∞

n=1 c`N2n. Then condition (1) guarantees that T is a
semigroup. (Since each A ∩ N2n 6= ∅, T 6= ∅. Given p and q in T we have p + q ∈⋂∞

n=1 c`N2n and A ⊆ {x ∈ N : −x + A ∈ q} so A ∈ p + q.)

Pick a minimal idempotent p in T . We claim p ∈ J . To this end let y ∈ Y
be given and let B ∈ p. To see that B is a JY -set, let n ∈ N. For each r ∈ N
let Ir = {(a + Σt∈H y1,t, a + Σt∈H y2,t, . . . , a + Σt∈H yn,t) : a ∈ N and H ∈ Pf (N)
and minH > r and for each i ∈ {1, 2, . . . , n}, a + Σt∈H yi,t ∈ A ∩ N2r} and let
Er = Ir ∪ {(a, a, . . . , a) : a ∈ A ∩ N2r}. Let E =

⋂∞
r=1 c`Er and I =

⋂∞
r=1 c`Ir where

the closures are taken in W =×n
i=1(βN).

Observe first that E ⊆×n
i=1T , since each Er ⊆×n

i=1(A∩N2r). To see that I 6= ∅
(and hence E 6= ∅) we notice that each Ir 6= ∅ by condition (2) (using the sequences
〈y′1,t〉∞t=1, 〈y′2,t〉∞t=1, . . . , 〈y′n,t〉∞t=1 where y′i,t = yi,r+t).

Now we show that E is a semigroup and I is an ideal of E using Lemma 2.2. Let r ∈
N and let ~x ∈ Ir. Pick a ∈ N and H ∈ Pf (N) with minH > r and a+Σt∈H yi,t ∈ A∩N2r

for each i ∈ {1, 2, . . . , n} such that ~x = (a+Σt∈H y1,t, a+Σt∈H y2,t, . . . , a+Σt∈H yn,t).
Choose by condition (1) for each i ∈ {1, 2, . . . , n} some ki ∈ N such that A ∩ N2ki ⊆
−(a+Σt∈H yi,t)+A. Let s = max ({k1, k2, . . . , kn}∪H)+1. It is routine to show that
~x + Es ⊆ Ir.

Now let ~x = (a, a, . . . , a) where a ∈ A ∩ N2r. Choose by condition (1) k ∈ N such
that A ∩ N2k ⊆ −a + A. Let s = max{k, r}. Then one can see that ~x + Es ⊆ Er and

20



~x + Is ⊆ Ir so Lemma 2.2 applies.
Now let ~p = (p, p, . . . , p). Then given C ∈ p and r ∈ N we have C ∩ A ∩ N2r 6= ∅

so picking a ∈ C ∩ A ∩ N2r we have (a, a, . . . , a) ∈ (×n
i=1C) ∩ Er. Thus ~p ∈ E so, as

before, ~p is minimal in E so ~p ∈ I.
Thus (×n

i=1B)∩In 6= ∅. That is there exist a ∈ N and H ∈ Pf (N) with minH ≥ n

and for each i ∈ {1, 2, . . . , n}, a + Σt∈H yi,t ∈ B.

5.5 TheoremThere is an idempotent p ∈ J\c`K(βN). In particular J 6= c`K(βN).

Proof. Lemma 5.2, Theorem 5.3, and Lemma 5.4.
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