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CARTESIAN PRODUCTS OF SETS
SATISFYING THE CENTRAL SETS THEOREM

NEIL HINDMAN AND DONA STRAUSS

Abstract. Central subsets of a discrete semigroup S have
very strong combinatorial properties which are a consequence
of the Central Sets Theorem. We show here that, not only
is the Cartesian product of two central sets central, but in
fact the Cartesian product of any two sets satisfying the con-
clusion of the Central Sets Theorem satisfies the conclusion
of the Central Sets Theorem. Intimately related to the no-
tion of a central set is something we call a J-set. These sets
have many of the combinatorial properties of central sets and
we show that this notion is also preserved under finite Carte-
sian products. Finally, we characterize when the Cartesian
product of infinitely many sets is central.

1. Introduction

Central subsets of the set N of positive integers were introduced
by H. Furstenberg [5], where they were defined in terms of notions
from topological dynamics. Furstenberg showed that if N is parti-
tioned into finitely many cells, one of these cells must be central,
and he proved the original Central Sets Theorem.

Given a set X we write Pf (X) for the set of finite nonempty
subsets of X. Given sets X and Y we write XY for the set of
functions from X to Y .
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Theorem 1.1 (Original Central Sets Theorem). Let A be a central
subset of N and let F ∈ Pf

( NZ
)
. There exist a sequence 〈an〉∞n=1

in N and a sequence 〈Hn〉∞n=1 in Pf (N) such that
(1) for each n ∈ N, max Hn < minHn+1 and
(2) for each K ∈ Pf (N) and each f ∈ F ,∑

n∈K

(
an +

∑
t∈Hn

f(t)
)
∈ A.

Proof. [5, Proposition 8.21]. �

Central subsets of N have remarkably strong combinatorial prop-
erties, many of which were derived in [5]. For example, any central
set contains solutions to any partition regular system of homoge-
neous linear equations as well as

FS(〈xn〉∞n=1) = {
∑

n∈F xn : F ∈ Pf (N)}
for some sequence 〈xn〉∞n=1.

V. Bergelson suggested that we could prove Theorem 1.1 for
sets A which were members of minimal idempotents in the semi-
group (βN,+) and he was right. (The algebraic structure of the
Stone-Čech compactification of a discrete semigroup will be briefly
described later in this introduction.) The dynamical definition of
central can be extended to apply to an arbitrary semigroup. With
the assistance of B. Weiss, it was shown [2] that for countable semi-
groups S a subset C of S satisfies the dynamical definition of central
if and only if C is a member of a minimal idempotent in βS. (A por-
tion of this argument was anticipated by S. Glasner in [6].) Later
H. Shi and H. Yang [13] established the same equivalence for arbi-
trary semigroups. Furthermore, many of the strong combinatorial
properties apply to central subsets of arbitrary semigroups. See
[9, Part III] for a summary of some of these results. We will for-
mally define central sets as members of minimal idempotents once
we have described what this means.

Recently a new and stronger version of the Central Sets Theorem
was obtained. The following is this theorem as applied to commu-
tative semigroups. The full version for arbitrary semigroups will be
stated in Section 2.

Theorem 1.2. Let (S, +) be a commutative semigroup and let T =
NS, the set of sequences in S. Let A be a central subset of S. There
exist functions α : Pf (T ) → S and H : Pf (T ) → Pf (N) such that
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(1) if F,G ∈ Pf (T ) and F ⊆6 G, then max H(F ) < minH(G)
and

(2) whenever n ∈ N, G1, G2, . . . , Gn ∈ Pf (T ),
G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm, and for each i ∈ {1, 2, . . . , n},
fi ∈ Gi, one has

∑n
i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ A.

Proof. [4, Theorem 2.2]. �

Definition 1.3. Let (S, +) be a commutative semigroup and let
A ⊆ S. Then A is a C-set if and only if A satisfies the conclusion
of Theorem 1.2.

Closely related to the concept of a C-set is the notion of J-set.

Definition 1.4. Let (S, +) be a commutative semigroup and let
A ⊆ S. Then A is a J-set if and only if whenever F ∈ Pf

(NS
)
, there

exist a ∈ S and H ∈ Pf (N) such that for all f ∈ F , a+
∑

t∈H f(t) ∈
A.

The set J of ultrafilters, every member of which is a J-set, is a
two sided ideal of βS, and a subset of S is a C-set if and only if it
is a member of an idempotent in J [4, Theorems 3.5 and 3.8].

One has immediately that every central set is a C-set and every
C-set is a J-set. Trivially the set of odd positive integers is a J-set
which is not a C-set. And, as a consequence of [4, Theorem 3.8]
and [8, Theorem 5.5], there is a subset of N which is a C-set but
not a central set.

Notice that J-sets are already guaranteed to have substantial
combinatorial content. For example, if A is a J-set in (N,+) and
〈xn〉∞n=1 is a sequence in N, then A contains arbitrarily long arith-
metic progressions with increment in FS(〈xn〉∞n=1). (For k, t ∈ N,
define fk(t) = k · xt and for l ∈ N apply the definition of J-set to
Fl = {f1, f2, . . . , fl}.)

If S is any commutative semigroup and A is a subset of S such
that there is a left invariant mean µ on S with µ(A) > 0, then A is
a J-set [11, Theorem 6.10].

We are concerned in this paper with Cartesian products of cen-
tral sets, J-sets, and C-sets. In Section 2 we shall state the version
of the (new) Central Sets Version which applies to possibly non-
commutative semigroups. We will extend the definitions of J-sets
and C-sets to arbitrary semigroups, and prove that for arbitrary
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semigroups, the product of two central sets is a central set, the
product of two J-sets is a J-set, and the product of two C-sets is a
C-set.

In Section 3 we will characterize precisely when the arbitrary
Cartesian product of sets is a central set, as well as when such a
product is piecewise syndetic. We shall also show that this charac-
terization is not valid for J-sets or C-sets.

We now present our promised introduction to the algebra of βS.
Let (S, ·) be an infinite discrete semigroup. The Stone-Čech com-
pactification βS of S is the set of ultrafilters on S, the principal
ultrafilters being identified with the points of S. Given A ⊆ S
and p ∈ βS, p ∈ c`A = A if and only if A ∈ p. The operation
extends to βS making (βS, ·) a right topological semigroup (mean-
ing that for each p ∈ βS the function ρp : βS → βS defined by
ρp(q) = q · p is continuous) with S contained in its topological cen-
ter (meaning that for each x ∈ S the function λx : βS → βS
defined by λx(q) = x · q is continuous). Given p, q ∈ βS and
A ⊆ S, A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p, where
x−1A = {y ∈ S : x · y ∈ A}.

Like any compact topological semigroup, βS has a smallest two
sided ideal K(βS) which is the union of all of the minimal left ideals
of βS and is also the union of all of the minimal right ideals of βS.
The intersection of any minimal left ideal with any minimal right
ideal is a group, and in particular there are idempotents in K(βS).
Such idempotents are said to be minimal . See [9] for an elementary
introduction to the algebraic structure of βS as well as unfamiliar
algebraic facts used here.

When we write “let S be a semigroup”, we shall assume the
operation is denoted by · (or simply by juxtaposition) unless we
specify otherwise.

Definition 1.5. Let S be a semigroup and let A ⊆ S. Then A is
central if and only if there is an idempotent p ∈ K(βS) such that
A ∈ p.
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2. Finite Cartesian products of central sets, J-sets,
and C-sets

We begin with the simple proof that the product of two central
sets is central. Given the simplicity of its proof, it is surprising that
no one (including us) seems to have noticed it before.

Theorem 2.1. Let S and T be infinite discrete semigroups. Let
p · p = p ∈ K(βS) and let q · q = q ∈ K(βT ). Let

ι̃ : β(S × T ) → βS × βT

be the continuous extension of the identity function on S×T and let
M = ι̃−1[{(p, q)}]. Then M is a compact subsemigroup of β(S×T )
and K(M) ⊆ K

(
β(S × T )

)
.

Proof. We have that ι̃ is surjective and by [9, Corollary 4.22],
(due to P. Milnes in [12]) ι̃ is a homomorphism. Consequently
M is a compact subsemigroup of β(S × T ). By [9, Exercise 1.7.3],
ι̃
[
K

(
β(S × T )

)]
= K(βS × βT ). Also, by [9, Theorem 2.23],

K(βS × βT ) = K(βS)×K(βT )

and so (p, q) ∈ K(βS × βT ). Consequently K
(
β(S × T )

)
∩M 6= ∅

and therefore K
(
β(S × T )

)
∩M is an ideal of M and so K(M) ⊆

K
(
β(S×T )

)
∩M . (In fact equality holds by [9, Theorem 1.65].) �

Corollary 2.2. Let S and T be infinite discrete semigroups, let A
be a central subset of S and let B be a central subset of T . Then
A×B is a central subset of S × T .

Proof. Pick p = p·p ∈ K(βS) and q = q·q ∈ K(βT ) such that A ∈ p
and B ∈ q. Let M be as in Theorem 2.1 and pick r = r ·r ∈ K(M).
Then ι̃ (r) = (p, q) and so A × B ∈ r. Since r ∈ K

(
β(S × T )

)
we

have that A×B is central. �

We extend the definitions of J-sets and C-sets to arbitrary semi-
groups and show that the Cartesian product of two J-sets is a J-set
and the Cartesian product of two C-sets is a C-set. We introduce
some special notation. The notation does not reflect all of the
variables upon which it depends. In a noncommutative semigroup,
when we write

∏
t∈F xt we mean the product taken in increasing

order of indices.
We use

∏
for algebraic products and use × to denote Cartesian

products.
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Definition 2.3. Let S be a semigroup.

(a) T = NS.
(b) For m ∈ N, Im = {

(
H(1),H(2), . . . ,H(m)

)
:

each H(j) ∈ Pf (N) and for any j ∈ {1, 2, . . . ,m − 1},
max H(j) < minH(j + 1)}.

(c) Given m ∈ N, a ∈ Sm+1, H ∈ Im, and f ∈ T ,

x(m,a,H, f) =
( ∏m

j=1

(
a(j) ·

∏
t∈H(j) f(t)

))
· a(m + 1) .

(d) A ⊆ S is a J-set if and only if for each F ∈ Pf (T ) there
exist m ∈ N, a ∈ Sm+1, and H ∈ Im such that for each
f ∈ F , x(m,a, H, f) ∈ A.

(e) J(S) = {p ∈ βS : for all A ∈ p, A is a J-set}.
(f) A ⊆ S is a C-set if and only if there exist

m : Pf (T ) → N, α ∈×F∈Pf (T ) Sm(F )+1, and
H ∈×F∈Pf (T ) Im(F ) such that
(1) if F,G ∈ Pf (T ) and F ⊆6 G, then max H(F )

(
m(F )

)
<

minH(G)(1) and
(2) whenever n ∈ N, G1, G2, . . . , Gn ∈ Pf (T ),

G1 ⊆6 G2 ⊆6 . . . ⊆6 Gn, and for each i ∈ {1, 2, . . . , n},
fi ∈ Gi, one has

∏n
i=1 x(m(Gi), α(Gi),H(Gi), fi) ∈ A.

In [4] the definition of a J-set was superficially stronger because
it required that for each n ∈ N, there exist m, a and H as in
Definition 2.3(d) with the additional requirement that minH(1) >
n. That version can be seen to be equivalent to the one given here
by replacing each f ∈ F by the function gf defined by gf (k) =
f(n + k).

We need to note at this point that if S is commutative, the
definitions of J-set and C-set given here agree with those given
earlier. If A ⊆ S is a J-set as defined by Definition 2.3 it is clearly
also a J-set as defined by Definition 1.4. The converse is not quite
so trivial because, given that a ·

∏
t∈H f(t) ∈ A, one does not know

that a ∈ S · S.

Lemma 2.4. Let S be a commutative semigroup and let A ⊆ S.
Then A is a J-set as defined by Definition 1.4 if and only if A is a
J-set as defined by Definition 2.3. Also A is a C-set as defined by
Definition 1.3 if and only if A is a C-set as defined by Definition
2.3.
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Proof. We have already remarked that the sufficiency of the state-
ment for J-sets is trivial. Assume that A is a J-set as defined by
Definition 1.4. Let F ∈ Pf (T ). Pick c ∈ S and for f ∈ F , define
gf ∈ T by gf (n) = c · f(n). Pick b ∈ S and H ∈ Pf (N) such that
for each f ∈ F , b ·

∏
t∈H gf (t) ∈ A. Let k = |H|, let m = 1, let

H(1) = H, let a(1) = b, and let a(2) = ck.
The proof of the assertion about C-sets is essentially the same,

though notationally more cumbersome. �

As promised earlier, we state what is currently the most general
version of the Central Sets Theorem.

Theorem 2.5. Let S be an infinite semigroup and let A be a central
subset of S. Then A is a C-set.

Proof. [4, Corollary 3.10]. �

We now turn our attention to proving that the product of two J-
sets is a J-set. To accomplish this, we use the notion of an adequate
partial semigroup.

Definition 2.6. (a) A partial semigroup is a set S together
with an operation ∗ that maps a subset D of S × S into S
and satisfies the associative law (x ∗ y) ∗ z = x ∗ (y ∗ z) in
the sense that if either side is defined then so is the other
and they are equal.

(b) Given a partial semigroup S, the set D ⊆ S × S on which
∗ is defined, and x ∈ S, ϕ(x) = {y ∈ S : (x, y) ∈ D}.

(c) The partial semigroup S is adequate if and only if for each
F ∈ Pf (S),

⋂
x∈F

ϕ(x) 6= ∅.
(d) If S is an adequate partial semigroup, then

δS =
⋂

x∈S c`βSϕ(x).
(e) Let S be a partial semigroup, let A ⊆ S, and let x ∈ S.

Then x−1A = {y ∈ ϕ(x) : x ∗ y ∈ A}.
(f) Let S be an adequate partial semigroup and let p, q ∈ δS.

Then p ∗ q = {A ⊆ S : {x ∈ S : x−1A ∈ q} ∈ p}.

Lemma 2.7. Let S be an adequate partial semigroup. Then (δS, ∗)
is a compact right topological semigroup.

Proof. [1, Proposition 2.6]. �

We shall need the following extension of [9, Lemma 4.14].
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Lemma 2.8. Let S be an adequate partial semigroup, let p ∗ p =
p ∈ δS, let A ∈ p, and let A? = {x ∈ A : x−1A ∈ p}. If x ∈ A?,
then x−1A? ∈ p.

Proof. Let x ∈ A? and let B = x−1A. Then B ∈ p so B? ∈ p. We
claim that B? ⊆ x−1A?. Let y ∈ B?. Then y ∈ B so y ∈ ϕ(x) and
x ∗ y ∈ A. We need to show that (x ∗ y)−1A ∈ p. Since y ∈ B?,
y−1B ∈ p so it suffices to show that y−1B ⊆ (x ∗ y)−1A. So let
z ∈ y−1B. Then z ∈ ϕ(y) and y∗z ∈ B = x−1A so y∗z ∈ ϕ(x) and
x∗(y∗z) ∈ A. Therefore, z ∈ ϕ(x∗y) and (x∗y)∗z = x∗(y∗z) ∈ A
as required. �

Definition 2.9. Let I =
⋃∞

m=1 Im and define a partial operation
on I by(

H(1),H(2), . . . ,H(m)
)
∗

(
K(1),K(2), . . . ,K(n)

)
=(

H(1),H(2), . . . ,H(m),K(1),K(2), . . . ,K(n)
)

provided maxH(m) < minK(1) with the operation undefined oth-
erwise.

It is trivial to verify that (I, ∗) is an adequate partial semigroup
and that δI =

⋂∞
n=1 c`βI{H ∈ I : minH(1) > n}.

Lemma 2.10. Let S be a semigroup, let A be a J-set in S, and let
F ∈ Pf

(NS
)
. Let

B =
{(

H(1),H(2), . . . ,H(m)
)
∈ I :

(∃a ∈ Sm+1)(∀f ∈ F )(x(m,a,H, f) ∈ A)
}

.

Let p = p ∗ p ∈ δI. Then B ∈ p.

Proof. Suppose B /∈ p. Let C = I \B. We claim that we can choose
a sequence 〈m(n)〉∞n=1 in N and a sequence 〈H(n)〉∞n=1 such that for
each n ∈ N, H(n) ∈ Im(n) and maxH(n)

(
m(n)

)
< minH(n+1)(1),

and FP (〈H(n)〉∞n=1) ⊆ C, where FP (〈H(n)〉∞n=1) = {
∏

n∈K H(n) :
K ∈ Pf (N)}.

By Lemma 2.8 pick H(1) ∈ C? and choose m(1) ∈ N such that
H(1) ∈ Im(1). Inductively let n ∈ N and assume that we have
chosen 〈m(t)〉nt=1 in N and 〈H(t)〉nt=1 with each H(t) ∈ Im(t) such
that whenever ∅ 6= K ⊆ {1, 2, . . . , n},

∏
t∈K H(t) ∈ C?. Let E =

{
∏

t∈K H(t) : ∅ 6= K ⊆ {1, 2, . . . , n}
}
. Let D = C? ∩

⋂
B∈E B−1C?.

Then D ∈ p so pick H(n + 1) ∈ D and pick m(n + 1) such that
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H(n + 1) ∈ Im(n+1). The induction being complete, the claim is
established.

Pick d ∈ S. For f ∈ F , define gf ∈ NS by

gf (n) =
∏

t∈H(n)(1) f(t)

if m(n) = 1 and

gf (n) =
∏

t∈H(n)(1) f(t) ·
∏m(n)

l=2

(
d ·

∏
t∈H(n)(l) f(t)

)
if m(n) > 1. Pick k ∈ N, G ∈ Ik, and a ∈ Sk+1 such that for each
f ∈ F , x(k, a, G, gf ) ∈ A. Let s1 = 1 and for i ∈ {1, 2, . . . , k}, let
si+1 = si +

∑
n∈G(i) m(n). For i ∈ {1, 2, . . . , k + 1}, let b(si) = a(i)

and for i ∈ {1, 2, . . . , k} and si < j < si+1, let b(j) = d. Let(
K(1),K(2), . . . ,K(sk+1 − 1)

)
=∏k

i=1

∏
n∈G(i)

(
H(n)(1),H(n)(2), . . . ,H(n)

(
m(n)

))
,

the last product being computed in I. Then(
K(1),K(2), . . . ,K(sk+1 − 1)

)
∈ FP (〈H(n)〉∞n=1)

and for each f ∈ F , x(sk+1 − 1, b,K, f) = x(k, a, G, gf ) ∈ A so
FP (〈H(n)〉∞n=1) ∩ B 6= ∅, a contradiction. �

Theorem 2.11. Let S and T be semigroups, let A be a J-set in S,
and let B be a J-set in T . Then A×B is a J-set in S × T .

Proof. Let F ∈ Pf

(N(S × T )
)
. Pick p = p ∗ p ∈ δI. Let

B =
{(

(H(1),H(2), . . . ,H(m)
)
∈ I :

(∃a ∈ Sm+1)(∀f ∈ F )
(
x(m, a, H, π1 ◦ f) ∈ A

)
}

and let

C =
{(

(H(1),H(2), . . . ,H(m)
)
∈ I :

(∃b ∈ Tm+1)(∀f ∈ F )
(
x(m, a, H, π2 ◦ f) ∈ B

)
} .

Then B∩C ∈ p so pick
(
H(1),H(2), . . . ,H(m)

)
∈ B∩C. Let a and

b be as guaranteed by the definitions of B and C respectively. Then
given f ∈ F , x(m, (a, b),H, f) ∈ A×B. �

Finally, we shall show in Theorem 2.16 that the Cartesian prod-
uct of two C-sets is a C-set. We need the following result from
[4].



10 NEIL HINDMAN AND DONA STRAUSS

Theorem 2.12. Let S be an infinite semigroup. Then J(S) is an
ideal of βS. A subset A of S is a C-set if and only if there is an
idempotent p ∈ J(S) such that A ∈ p.

Proof. [4, Theorems 3.5 and 3.8]. �

In the process of proving that the Cartesian product of two C-
sets is a C-sets, we shall use the fact that the property of being a
J-set is partition regular, a fact which we feel is interesting in its
own right.

Lemma 2.13. Let S be an infinite semigroup, let A be a J-set in S,
let F ∈ Pf

(NS
)
, and let 〈Hn〉∞n=1 be a sequence in Pf (N) such that

for each n, max Hn < minHn+1. There exist m ∈ N, a ∈ Sm+1,
and G ∈ Im such that for all f ∈ F ,∏m

j=1

(
a(j) ·

∏
k∈G(j)

∏
t∈Hk

f(t)
)
· a(m + 1) ∈ A .

Proof. For f ∈ F , define gf ∈ NS by gf (k) =
∏

t∈Hk
f(t). Pick

m ∈ N, a ∈ Sm+1, and G ∈ Im as guaranteed by Definition 2.3(d)
for {gf : f ∈ F}. �

Theorem 2.14. Let S be an infinite semigroup, let A be a J-set
in S, and assume that A = A1 ∪ A2. Either A1 is a J-set in S or
A2 is a J-set in S.

Proof. It suffices to let F ∈ Pf

(NS
)

and show that there exist
i ∈ {1, 2}, u ∈ N, c ∈ Sm+1, and K ∈ Iu such that for all f ∈ F ,∏u

j=1

(
c(j) ·

∏
t∈K(j) f(t)

)
· c(m+1) ∈ Ai. (For if F1 were a witness

to the fact that A1 is not a J-set and F2 were a witness to the fact
that A2 is not a J-set, then F = F1 ∪ F2 would fail to satisfy the
above statement.) So let F ∈ Pf

(NS
)

be given.
Let k = |F | and write F = {f1, f2, . . . , fk}. Pick by the Hales-

Jewett Theorem ([7] or see [9, Section 14.2]) some n ∈ N such
that whenever the length n words over the alphabet {1, 2, . . . , k}
are 2-colored, there is a variable word w(v) such that

{
w(j) : j ∈

{1, 2, . . . , k}
}

is monochromatic. By replacing n + 2 by n, we can
(and shall) assume that w(v) begins and ends with a constant.
(The only reason for doing this is to make it easier to compute the
number u below.)

Let W be the set of length n words over {1, 2, . . . , k}. For w =
b1b2 · · · bn ∈ W (where each bi ∈ {1, 2, . . . , k}) define gw : N → S
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by, for l ∈ ω = N∪{0} and i ∈ {1, 2, . . . , n}, gw(ln+i) = fbi
(ln+i).

For l ∈ ω, let Hl = {ln + 1, ln + 2, . . . , ln + n}. Pick by Lemma
2.13, m ∈ N, a ∈ Sm+1, and G ∈ Im such that for all w ∈ W ,∏m

j=1

(
a(j) ·

∏
k∈G(j)

∏
t∈Hk

gw(t)
)
· a(m + 1) ∈ A .

Define ϕ : W → {1, 2} by ϕ(w) = 1 if∏m
j=1

(
a(j) ·

∏
k∈G(j)

∏
t∈Hk

gw(t)
)
· a(m + 1) ∈ A1

and ϕ(w) = 2 otherwise. Pick a variable word w(v) (beginning
and ending with a constant) such that

{
w(j) : j ∈ {1, 2, . . . , k}

}
is

monochromatic with respect to ϕ. Assume without loss of general-
ity that ϕ

(
w(j)

)
= 1 for all j ∈ {1, 2, . . . , k}. Let w(v) = b1b2 · · · bn

where each bi ∈ {1, 2, . . . , k} ∪ {v}, some bi = v, and b1 and bn are
in {1, 2, . . . , k}.

Pick r ∈ N, L ∈ Ir+1, and M ∈ Ir such that for each i ∈
{1, 2, . . . , r}, max L(i) < minM(i) and maxM(i) < minL(i + 1),⋃r+1

i=1 L(i) =
{
j ∈ {1, 2, . . . , n} : bj ∈ {1, 2, . . . , k}

}
, and⋃r

i=1 M(i) = {j ∈ {1, 2, . . . , n} : bj = v} .

(For example, if k = 3, n = 8, and w(v) = 2vv31v12, then r = 2,
L(1) = {1}, M(1) = {2, 3}, L(2) = {4, 5}, M(2) = {6}, and L(3) =
{7, 8}.)

Let u = r ·
∑m

j=1 |G(j)|. We claim that there exist c ∈ Su+1 and
K ∈ Iu such that for each s ∈ {1, 2, . . . , k},∏u

j=1

(
c(j) ·

∏
t∈K(j) fs(t)

)
· c(u + 1) =∏m

j=1

(
a(j) ·

∏
k∈G(j)

∏
t∈Hk

gw(s)(t)
)
· a(m + 1) ∈ A1

which will complete the proof. Write⋃m
j=1 G(j) = {γ0, γ1, . . . , γd−1}

with γ0 < γ1 < . . . < γd−1 (so that u = rd). For y ∈ {0, 1, . . . , d−1}
and i ∈ {1, 2, . . . , r}, let K(yr + i) = {γyn + s : s ∈ M(i)}.

(In the event that S is commutative, this portion of the proof is
much simpler. One may let u = 1, let

K(1) =
⋃d−1

y=0

⋃r
i=1{γyn + s : s ∈ M(i)} ,

let c(1) = a(1) ·
∏d−1

y=0

∏r+1
i=1

∏
t∈L(i) fbt(γyn + t), and let c(2) =

a(m + 1).)
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If S is noncommutative, computing the exact values of c(1), c(2),
. . . , c(u + 1) is notationally very messy. (Actually c(1) is easy. It
is a(1) ·

∏
j∈L(0) fbj

(γ0n + j).) Instead of trying to spell it out, we
shall give an illustration, from which we hope the general process
will be clear. Say n = 6, m = 2, G(1) = {2, 4}, G(2) = {5},
and w(v) = b1vb3vvb6 where b1, b3, and b6 are in {1, 2, . . . , k}.
Thus r = 2, L(1) = {1}, L(2) = {3}, L(3) = {6}, M(1) = {2},
M(2) = {4, 5}, and u = 6. Then K(1) = {14}, K(2) = {16, 17},
K(3) = {26}, K(4) = {28, 29}, K(5) = {32}, and K(6) = {34, 35}.
Given s ∈ {1, 2, . . . , k} we have∏u

j=1

(
c(j) ·

∏
t∈K(j) fs(t)

)
· c(u + 1)

=
∏m

j=1

(
a(j) ·

∏
k∈G(j)

∏
t∈Hk

gw(s)(t)
)
· a(m + 1)

= a(1) · fb1(13) · fs(14) · fb3(15) · fs(16) · fs(17) · fb6(18)
· fb1(25) · fs(26) · fb3(27) · fs(28) · fs(29) · fb6(30) · a(2)
· fb1(31) · fs(32) · fb3(33) · fs(34) · fs(35) · fb6(36) · a(3) .

Then c(1) = a(1) · fb1(13), c(2) = fb3(15), c(3) = fb6(18) · fb1(25),
c(4) = fb3(27), c(5) = fb6(30) · a(2) · fb1(31), c(6) = fb3(33), and
c(7) = fb6(36) · a(3). �

Lemma 2.15. Let S and T be semigroups, let p be an idempotent
in J(S), and let q be an idempotent in J(T ). Let ι̃ : β(S × T ) →
βS×βT be the continuous extension of the identity function. Then
ι̃−1[{(p, q}] ∩ J(S × T ) 6= ∅.
Proof. We claim that {A×B ∩ J(S × T ) : A ∈ p and B ∈ q} has
the finite intersection property. To see this, it suffices to let A ∈ p
and B ∈ q and show that A×B ∩ J(S×T ) 6= ∅. By Theorem 2.11
A×B is a J-set in S×T . By Theorem 2.14, the property of being
a J-set is partition regular. So by [9, Theorem 3.11] there is an
ultrafilter r on S × T such that A×B ∈ r and every member of r
is a J-set. That is, r ∈ A×B ∩ J(S × T ). �

Theorem 2.16. Let S and T be semigroups, let A be a C-set in
S, and let B be a C-set in T . Then A×B is a C-set in S × T .

Proof. Pick idempotents p ∈ J(S) and q ∈ J(T ) such that A ∈ p
and B ∈ q. By Lemma 2.15, ι̃−1[{(p, q}] ∩ J(S × T ) is a compact
subsemigroup of β(S × T ) so pick an idempotent

r ∈ ι̃−1[{(p, q}] ∩ J(S × T ) .

By Theorem 2.12, A×B is a C-set in S × T . �
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3. Infinite Cartesian products

In this section we shall determine when the Cartesian products
of subsets of semigroups is central. We shall also see that the same
conditions are sufficient but not necessary for the infinite Cartesian
product of C-sets to be a C-set and likewise are not necessary for
the infinite Cartesian product of J-sets to be a J-set.

We shall utilize two notions of size of a semigroup that originate
in topological dynamics (and introduce a new one). Notice that all
of these notions are one sided.

Definition 3.1. Let S be a semigroup and let A ⊆ S.
(a) The set A is thick if and only if for each F ∈ Pf (S) there

exists x ∈ S such that Fx ⊆ A.
(b) The set A is piecewise syndetic if and only if there exists

H ∈ Pf (S) such that
⋃

t∈H t−1A is thick.
(c) The set A is weakly thick if and only if there exists s ∈ S

such that s−1A is thick.

There are simple algebraic characterizations of the first two of
these notions. (And the algebraic characterization of thick immedi-
ately translates into an algebraic characterization of weakly thick.)

Lemma 3.2. Let S be a semigroup and let A ⊆ S.
(a) The set A is thick if and only if there is a left ideal L of βS

such that L ⊆ A.
(b) The set A is piecewise syndetic if and only if A∩K(βS) 6= ∅.

Proof. (a) [3, Theorem 2.9(c)].
(b) [9, Theorem 4.40]. �

From these algebraic characterizations it is immediate that any
thick set is central and any central set is piecewise syndetic. It is
also trivially true that any thick set is weakly thick. And it is im-
mediate from the definitions that any weakly thick set is piecewise
syndetic.

If S is commutative, then it is immediate that the notions of
thick and weakly thick are equivalent. It is a fact proved in [10]
that the notions of thick and weakly thick are also equivalent for
left amenable semigroups. (We will not need this latter fact.) On
the other hand, if S is the free semigroup on the alphabet {a, b}
and A = aS, then for any x ∈ S, {b}x ∩ A = ∅ while a−1A = S,
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so A is weakly thick but not thick. The fact that any weakly thick
set is central is not obvious.

Lemma 3.3. Let S be a semigroup and let A ⊆ S. If A is weakly
thick, then A is central.

Proof. Pick s ∈ S such that s−1A is thick and pick by Lemma
3.2(a) a left ideal L of βS such that L ⊆ s−1A. Since every left
ideal contains a minimal left ideal, we may assume that L is a
minimal left ideal. Pick a minimal right ideal R ⊆ sβS. Then
L∩R is a group so pick an idempotent p ∈ L∩R. Since L ⊆ s−1A
we have that sL ⊆ A. Since p ∈ sβS, pick q ∈ βS such that
p = sq. Then p = pp = sqp and qp ∈ L so p ∈ sL ⊆ A and thus
p ∈ K(βS) ∩A. �

Lemma 3.4. Let I be a set and for each α ∈ I, let Sα be a semi-
group and let Aα ⊆ Sα. Let S =×α∈I Sα and let A =×α∈I Aα.

(a) If for each α ∈ I, Aα is thick in Sα, then A is thick in S.
(b) If for each α ∈ I, Aα is weakly thick in Sα, then A is weakly

thick in S.
(c) If A is central in S, then for each α ∈ I, Aα is central in

Sα.
(d) If A is piecewise syndetic in S, then for each α ∈ I, Aα is

piecewise syndetic in Sα.
(e) If A is a J-set in S, then for each α ∈ I, Aα is a J-set in

Sα.
(f) If A is a C-set in S, then for each α ∈ I, Aα is a C-set in

Sα.

Proof. The proofs of all of these statements except statement (c)
are completely elementary and routine and we omit them. To verify
statement (c), assume that A is central in S and let α ∈ I. Since
πα is a homomorphism from S onto Sα, its continuous extension
π̃α : βS → βSα is a surjective homomorphism by [9, Corollary 4.22].
By [9, Exercise 1.7.3], πα[K(βS)] = K(βSα). Pick an idempotent
p ∈ K(βS) such that A ∈ p. Then π̃α(p) is an idempotent in
K(βSα) and Aα ∈ π̃α(p). �

We omit the routine proof of the following lemma.
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Lemma 3.5. Let S and T be semigroups, let A ⊆ S, and let B ⊆ T .
If A is piecewise syndetic in S and B is piecewise syndetic in T ,
then A×B is piecewise syndetic in S × T .

The following lemma is the key to our characterization of when
the arbitrary product of sets is a central set.

Lemma 3.6. Let I be a set and for each α ∈ I, let Sα be a semi-
group and let Aα ⊆ Sα. Let S = ×α∈I Sα, let A = ×α∈I Aα, and
let J = {α ∈ I : Aα is not weakly thick in Sα}. If J is infinite, then
A is not piecewise syndetic in S.

Proof. Suppose instead that A is piecewise syndetic in S and pick
H ∈ Pf (S) such that

⋃
m∈H m−1A is thick. Pick an injection

δ : H → J . Given m ∈ H, we have that Aδ(m) is not weakly
thick in Sδ(m) so pick Km ∈ Pf (Sδ(m)) such that for all x ∈ Sδ(m),
Kmx \ (mδ(m))−1Aδ(m) 6= ∅. For each α ∈ I \ δ[H], pick zα ∈ Sα.
Let

K = {x ∈ S : (∀α ∈ I \ δ[H])(xα = zα)
and (∀m ∈ H)(xδ(m) ∈ Km)} .

Then K ∈ Pf (S) so pick y ∈ S such that Ky ⊆
⋃

m∈H m−1A. For
each m ∈ H, Kmyδ(m) \ (mδ(m))−1Aδ(m) 6= ∅ so pick wm ∈ Km such
that mδ(m)wmyδ(m) /∈ Aδ(m). Define u ∈ S by, for α ∈ I,

uα =
{

zα if α ∈ I \ δ[H]
wm if m ∈ H and α = δ(m) .

Then u ∈ K so pick m ∈ H such that muy ∈ A. Then

mδ(m)wmyδ(m) = mδ(m)uδ(m)yδ(m) ∈ Aδ(m) ,

a contradiction. �

Theorem 3.7. Let I be a set and for each α ∈ I, let Sα be a
semigroup and let Aα ⊆ Sα. Let S = ×α∈I Sα, let A = ×α∈I Aα,
and let J = {α ∈ I : Aα is not weakly thick in Sα}. Then A is
piecewise syndetic in S if and only if J is finite and for each α ∈ I,
Aα is piecewise syndetic in Sα.

Proof. Necessity. By Lemma 3.4(d), each Aα is piecewise syndetic
in Sα and by Lemma 3.6, J is finite.

Sufficiency. If J = ∅ we have by Lemma 3.4(b) that A is weakly
thick in S and hence is piecewise syndetic in S. So assume that
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J 6= ∅. If I \ J = ∅, then I is finite so A is piecewise syndetic in S
by Lemma 3.5. So assume also that I \ J 6= ∅.

Now ×α∈I\J Aα is weakly thick in ×α∈I\J Sα by Lemma 3.4(b)
so is piecewise syndetic. Also ×α∈J Aα is piecewise syndetic in
×α∈J Sα by Lemma 3.5. Therefore×α∈I\J Aα××α∈J Aα is piece-
wise syndetic in ×α∈I\J Sα ××α∈J Sα by Lemma 3.5. �

We then have immediately our desired characterization of when
the Cartesian product of sets is central.

Theorem 3.8. Let I be a set and for each α ∈ I, let Sα be a
semigroup and let Aα ⊆ Sα. Let S = ×α∈I Sα, let A = ×α∈I Aα,
and let J = {α ∈ I : Aα is not weakly thick in Sα}. Then A is
central in S if and only if J is finite and for each α ∈ I, Aα is
central in Sα.

Proof. Necessity. By Lemma 3.4(c), each Aα is central in Sα and,
since central sets are piecewise syndetic, by Lemma 3.6, J is finite.

Sufficiency. If J = ∅ we have by Lemma 3.4(b), A is weakly thick
in S and hence by Lemma 3.3, A is central in S. So assume that
J 6= ∅. If I \J = ∅, then I is finite so A is central in S by Corollary
2.2. So assume also that I \ J 6= ∅.

Now ×α∈I\J Aα is weakly thick in ×α∈I\J Sα by Lemma 3.4(b)
so is central by Lemma 3.3. Also ×α∈J Aα is central in ×α∈J Sα

by Corollary 2.2. Therefore ×α∈I\J Aα ××α∈J Aα is central in
×α∈I\J Sα ××α∈J Sα by Corollary 2.2. �

In one direction we have the corresponding results for J-sets and
C-sets. The proofs are nearly identical to the suffiency parts of
Theorems 3.7 and 3.8, so we omit them.

Theorem 3.9. Let I be a set and for each α ∈ I, let Sα be a
semigroup and let Aα ⊆ Sα. Let S = ×α∈I Sα, let A = ×α∈I Aα,
and let J = {α ∈ I : Aα is not weakly thick in Sα}. If J is finite
and for each α ∈ I, Aα is a J-set in Sα, then A is a J-set in S.
If J is finite and for each α ∈ I, Aα is a C-set in Sα, then A is a
C-set in S.

We now see that the requirement that J be finite is not necessary
for the product of sets to be a C-set in ×∞

n=1N. Since (N,+) is
commutative, the notions of thick and weakly thick are equivalent
in N.



PRODUCTS OF CENTRAL SETS 17

Theorem 3.10. For each n ∈ N \ {1}, let

An = {x ∈ N : x 6≡ −1 (mod n)} .

Let ϕ : N → N \ {1} and assume that lim
n→∞

ϕ(n) = ∞. Let A =

×∞
n=1Aϕ(n) and let S = ×∞

n=1N. Then each An is not thick in
(N,+), but A is a C-set (and hence a J-set) in S.

Proof. Trivially each An is not thick. Pick any p = p+ p ∈ K(βN).
Given any n, since Nn ⊆ An, we have that An ∈ p.

For each r ∈ N, let Br = ×r
n=1Aϕ(n) and let Sr = ×r

n=1N. Let
ι̃r : βSr → ×r

n=1βN be the continuous extension of the identity
function on Sr. Pick by Theorem 2.1, qr = qr + qr ∈ K(βSr) such
that ι̃r(qr) = (p, p, . . . , p) and notice that Br ∈ qr. We claim that
for each x ∈ Br, −x + Br ∈ qr. To see this, let x ∈ Br and note
that for each n ∈ {1, 2, . . . , r}, Nϕ(n) ∈ p so ×r

n=1Nϕ(n) ∈ qr. We
claim that ×r

n=1Nϕ(n) ⊆ −x + Br, so let y ∈×r
n=1Nϕ(n). Given

n ∈ {1, 2, . . . , r}, (x + y)n = xn + yn ≡ xn 6≡ −1
(
mod ϕ(n)

)
so

x + y ∈ Br.
Next notice that if F ∈ Pf (N) and n ∈ N with n > |F |, then

there is some a ∈ {1, 2, . . . , n} such that F + a ⊆ An.
To see that A is a C-set in S, we shall define α(F ) ∈ S and

H(F ) ∈ Pf (N) for F ∈ Pf

( NS
)

by induction on |F | satisfying the
following induction hypotheses:

(1) If ∅ 6= G ⊆6 F , then max H(G) < minH(F ).
(2) If m ∈ N, ∅ 6= G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm = F and

fi ∈ Gi for each i ∈ {1, 2, . . . ,m}, then∑m
i=1

(
α(Gi) +

∑
l∈H(Gi)

fi(l)
)
∈ A.

Assume first that F = {f}. Define H(F ) = {1}. For n ∈ N,
since ϕ(n) > |F |, pick cn ∈ {1, 2, . . . , ϕ(n)} such that cn+f(1)(n) ∈
Aϕ(n) and define α(F )(n) = cn.

Now assume that |F | > 1 and that α(G) and H(G) have been
defined whenever ∅ 6= G ⊆6 F . Let K =

⋃
{H(G) : ∅ 6= G ⊆6 F}

and let k = maxK. Let

M = {
∑m

i=1

(
α(Gi) +

∑
l∈H(Gi)

fi(l)
)

:
m ∈ N , ∅ 6= G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm ⊆6 F

and fi ∈ Gi for each i ∈ {1, 2, . . . ,m}} .

Then M ⊆ A by assumption.
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Pick r ∈ N such that for all n > r, ϕ(n) > (|M | + 1) · |F |. Let
M ′ = {x|{1,2,...,r} : x ∈ M}. For f ∈ F , define f ′ : N → Sr by, for
n ∈ N, f ′(n) = f(n)|{1,2,...,r}. Then M ′ ⊆ Br and for all x ∈ M ′,
−x + Br ∈ qr. Let C = Br ∩

⋂
x∈M ′ (−x + Br). Then C ∈ qr and

so C is piecewise syndetic in Sr. Pick by [4, Theorem 2.1] some
c ∈ Sr and L ∈ Pf (N) such that minL > k and for each f ∈ F ,
c +

∑
l∈L f ′(l) ∈ C. Define H(F ) = L.

Now for n > r, let

Vn = {xn +
∑

l∈L f(l)(n) : x ∈ M and f ∈ F} ∪
{
∑

l∈L f(l)(n) : f ∈ F} .

Then |Vn| ≤ |M | · |F | + |F | < ϕ(n) so pick dn ∈ {1, 2, . . . , ϕ(n)}
such that Vn + dn ⊆ Aϕ(n). Define α(F ) by, for n ∈ N,

α(F )(n) =
{

dn if n > r
cn if n ≤ r .

We claim that α(F ) and H(F ) are as required. Requirement (1)
is satisfied directly. To verify (2), let m ∈ N and assume that ∅ 6=
G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm = F and fi ∈ Gi for each i ∈ {1, 2, . . . ,m}.

Assume first that m = 1. We want to show that

α(F ) +
∑

l∈H(F ) f1(l) ∈ A .

So let n ∈ N. We shall show that

α(F )(n) +
∑

l∈H(F ) f1(l)(n) ∈ Aϕ(n) .

If n ≤ r, then

α(F )(n) +
∑

l∈H(F ) f1(l)(n) = cn +
∑

l∈H(F ) f ′1(l)(n) ∈ Aϕ(n)

because c +
∑

l∈H(F ) f ′1(l) ∈ Br. If n > r, then

α(F )(n) +
∑

l∈H(F ) f1(l)(n) = dn +
∑

l∈H(F ) f1(l)(n)
∈ dn + Vn ⊆ Aϕ(n) .

Now assume that m > 1 and let

x =
∑m−1

i=1

(
α(Gi) +

∑
l∈H(Gi)

fi(l)
)
.

We want to show that α(F )+
∑

l∈H(F ) fm(l)+x ∈ A. So let n ∈ N.
We need to show that

α(F )(n) +
∑

l∈H(F ) fm(l)(n) + xn ∈ Aϕ(n) .
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If n ≤ r, then

α(F )(n) +
∑

l∈H(F ) fm(l)(n) = cn +
∑

l∈H(F ) f ′m(l)(n)

and
c +

∑
l∈H(F ) f ′m(l) ∈ C ⊆ −x|{1,2,...,r} + Br

so cn +
∑

l∈H(F ) fm(l)(n) + xn ∈ Aϕ(n). If n > r, then

xn + α(F )(n) +
∑

l∈H(F ) fm(l)(n) ∈ dn + Vn ⊆ Aϕ(n) . �

Notice that the set A in Theorem 3.10 is not a central set in S,
in fact it is not a piecewise syndetic set in S by Lemma 3.6.

Notice that in Theorem 3.10 the size of sets witnessing that Aϕ(n)

is not thick went to infinity, although that size could grow as slowly
as we please. We see now that if the size did not go to infinity, then
the Cartesian product could not be a J-set.

Theorem 3.11. Let I be a set and for each α ∈ I, let (Sα,+) be
a commutative semigroup and let Aα ⊆ Sα. Let S = ×α∈I Sα, let
A = ×α∈I Aα, and let J = {α ∈ I : Aα is not thick in Sα}. For
α ∈ J , choose Fα ∈ Pf (Sα) such that for all x ∈ Sα, (Fα+x)\Aα 6=
∅. If there exists k ∈ N such that {α ∈ I : |Fα| ≤ k} is infinite,
then A is not a J-set in S.

Proof. Pick by the pigeon hole principle some k ∈ N such that
{α ∈ I : |Fα| = k} is infinite and let L be a countably infinite subset
of {α ∈ I : |Fα| = k}. Enumerate L as 〈δ(n)〉∞n=1. For n ∈ N, let
Fδ(n) = {xn,1, xn,2, . . . , xn,k}. For each α ∈ I pick bα ∈ Sα. For
i ∈ {1, 2, . . . , k}, define fi : N → S by, for n ∈ N and α ∈ I,

fi(n)(α) =
{

xn,i if α = δ(n)
bα if α 6= δ(n) .

Suppose that we have a ∈ S and H ∈ Pf (N) such that for
all i ∈ {1, 2, . . . , k}, a +

∑
t∈H fi(t) ∈ A. Pick n ∈ H and let

w = aδ(n) +
∑

t∈H\{n} bδ(n) (so, if H = {n}, then w = aδ(n)). Pick
i ∈ {1, 2, . . . , k} such that w + xn,i /∈ Aδ(n). Then(

a +
∑

t∈H fi(t)
)(

δ(n)
)

= w + xn,i /∈ Aδ(n)

so a +
∑

t∈H fi(t) /∈ A, a contradiction. �

As a consequence of Theorem 3.11, for any n > 1, if An is as in
Theorem 3.10, then ×∞

k=1An is not a J-set in ×∞
k=1N.



20 NEIL HINDMAN AND DONA STRAUSS

References

[1] V. Bergelson, A. Blass, and N. Hindman, Partition theorems for spaces of
variable words, Proc. London Math. Soc. 68 (1994), 449-476.

[2] V. Bergelson and N. Hindman, Nonmetrizable topological dynamics and
Ramsey Theory , Trans. Amer. Math. Soc. 320 (1990), 293-320.

[3] V. Bergelson, N. Hindman, and R. McCutcheon, Notions of size and com-
binatorial properties of quotient sets in semigroups, Topology Proceedings
23 (1998), 23-60.

[4] D. De, N. Hindman, and D. Strauss, A new and stronger Central Sets
Theorem, Fund. Math. 199 (2008), 155-175.

[5] H. Furstenberg, Recurrence in ergodic theory and combinatorical number
theory, Princeton University Press, Princeton, 1981.

[6] S. Glasner, Divisibility properties and the Stone-Čech compactification,
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