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Abstract. Central sets in a semigroup S are most simply
characterized as members of minimal idempotents in the
Stone-Čech compactification βSd of S with the discrete topol-
ogy. They are known to have remarkably strong combinato-
rial properties. In this paper we concentrate on members of
idempotents in compact subsemigroups T of βSd. We show
that under reasonable hypotheses any member of a minimal
idempotent in T is in fact a member of many distinct minimal
idempotents in T . And we show that under certain assump-
tions which occur quite widely, the subsets of S whose closures
contain T must contain images of all first entries matrices. For
example, all of our results apply to the case in which (S, +)
is a commutative cancellative topological semigroup with an
identity and T is the set of ultrafilters on S which converge
to the identity.
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1. Introduction

Central subsets of N were defined by H. Furstenberg [5] in terms
of notions from topological dynamics, and he proved the original
Central Sets Theorem.

Theorem 1.1 (Furstenberg). Let l ∈ N and for each i ∈ {1, 2,
. . . , l}, let 〈yi,n〉∞n=1 be a sequence in Z. Let C be a central subset
of N. Then there exist sequences 〈an〉∞n=1 in N and 〈Hn〉∞n=1 in
Pf (N) = {F ⊆ N : F is finite and nonempty} such that

(1) for all n, max Hn < minHn+1 and
(2) for all F ∈ Pf (N) and all i ∈ {1, 2, . . . , l},∑

n∈F (an +
∑

t∈Hn
yi,t) ∈ C.

Proof. [5, Proposition 8.21]. �

This theorem was shown in [5] to have several powerful conse-
quences. V. Bergelson suggested that we ought to be able to prove
Theorem 1.1 for subsets of N that are members of idempotents in
the smallest ideal of (βN,+), and it turned out that Bergelson was
right.

We take the Stone-Čech compactification of a discrete space X to
be the set of ultrafilters on X, the principal ultrafilters being identi-
fied with the points of X. Given a semigroup (S, ·) with the discrete
topology, the operation extends to the Stone-Čech compactification
βS of S in such a way that (βS, ·) is a right topological semigroup
(meaning that for each p ∈ βS, the function ρp : βS → βS defined
by ρp(q) = q · p is continuous) with S contained in its topological
center (meaning that for each x ∈ S, the function λx : βS → βS
defined by λx(q) = x · q is continuous). Since it is a compact Haus-
dorff right topological semigroup, (βS, ·) has a smallest two sided
ideal K(βS) which is the union of all of the minimal left ideals of
βS and is also the union of all of the minimal right ideals of βS.
The intersection of any minimal left ideal with any minimal right
ideal is a group, and in particular there are idempotents in K(βS).
An idempotent in K(βS) is called simply a minimal idempotent.
(See [10] for an elementary introduction to the algebraic structure
of (βS, ·).)

With the assistance of B. Weiss, it was shown [1] that for count-
able semigroups S (with metric phase space) a subset C of S satis-
fies the dynamical definition of central if and only if C is a member
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of a minimal idempotent in βS. Later H. Shi and H. Yang [12]
established the same equivalence for arbitrary semigroups.

In many cases there are interesting compact subsemigroups of
βS, which therefore have smallest ideals with the structure indi-
cated above, but for which known theorems about K(βS) provide
no information. For example, if for each n ∈ N, An = (0, 1/n) ⊆ R,
then T =

⋂∞
n=1 c`βRd

An is a subsemigroup of (βRd,+) and so has
a smallest ideal K(T ). (Here Rd is R with the discrete topology.)
If one had that T ∩ K(βRd) 6= ∅, then by [10, Theorem 1.65] one
would have that K(T ) = T ∩ K(βRd). But T ∩ K(βRd) = ∅, so
no useful information about K(T ) is obtained from what is known
about the structure of K(βRd). This structure, and that associated
with other subsemigroups of

(
(0,∞),+

)
, was investigated in [7].

Of particular interest has been the fact, as was shown in [5], that
any central subset of N contains an image of any first entries matrix .
(The notion is based on Deuber’s (m, p, c)-sets [4].) We follow the
usual custom of denoting the entries of a matrix by the lower case
letter corresponding to the upper case name of the matrix.

Definition 1.2. Let u, v ∈ N and let M be a u × v matrix with
entries from Q. Then M is a first entries matrix if and only if no row
of M is ~0 and for all i, j ∈ {1, 2, . . . , u}, if k = min{t : mi,t 6= 0} =
min{t : mj,t 6= 0}, then mi,k = mj,k > 0. If k = min{t : mi,t 6= 0},
then mi,k is a first entry of M .

Theorem 1.3. If C is a central subset of N, u, v ∈ N, and M is
a first entries matrix with entries from Q, then there exists some
~x ∈ Nv such that M~x ∈ Cu.

Proof. [5, page 174]. Or see [10, Theorem 15.5]. �

Many natural results in Ramsey Theory assert that whenever N
is partitioned into finitely many sets, one of these contains an image
of some first entries matrix. (See [10, Section 15.1].) Further the
image partition regularity of any finite matrix is characterized in
terms of first entries matrices. (See [10, Theorem 15.24].) Accord-
ingly, it was interesting to see (as was done in [7]) that if for each
n ∈ N, An = (0, 1/n) and T =

⋂∞
n=1 c`βNAn, then any member of a

minimal idempotent in T also satisfied the conclusion of Theorem
1.3.
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We shall be concerned in this paper with compact subsemigroups
T of βSd. In Section 2 we shall establish that under reasonable
hypotheses any member of a minimal idempotent of T is a member
of very many minimal idempotents of T – as many as there are
points in βSd. A trivial consequence of this, namely that a central
set in βSd can be divided into two disjoint central sets was not
known, even for βN, until the publication of [8]. In this section,
the “reasonable hypotheses” are that S is infinite and very weakly
cancellative and that T is the intersection of at most |S| sets of the
form A, where A ⊆ S has the same cardinality as S.

In Section 3 we shall establish a version of the Central Sets The-
orem which is valid for members of minimal idempotents in certain
compact subsemigroups T of βSd. The hypotheses of this theorem
are valid in the case in which S is a commutative left topological
semigroup with an identity and T is the set of ultrafilters in βSd

which converge to the identity. As a fortuitous corollary we obtain
a version of the Central Sets Theorem for commutative semigroups
which is superficially stronger than the strongest previously known
version. (We shall establish that it is not actually stronger.)

In Section 4 we will derive conditions guaranteeing that mem-
bers of minimal idempotents in T contain images of all first entries
matrices with entries from ω = N ∪ {0}, or at least all of those
all of whose first entries are equal to 1. In the case where S is a
group, the entries of the matrices are allowed to come from Z. The
hypotheses used in this section hold in the case in which S is a
commutative left topological semigroup with an identity, such that
the semigroup operation is jointly continuous at the identity, and
T is the set of ultrafilters in βSd which converge to the identity.

All hypothesized topological spaces are Hausdorff.

2. Many Minimal Idempotents

As we have already noted, central sets are guaranteed to have sub-
stantial combinatorial properties. And, since whenever S is parti-
tioned into finitely many cells, one of these must be central, one
obtains as a corollary in each case the corresponding Ramsey The-
oretic result. One naturally wanted to know then whether every
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central set can be divided into two disjoint central sets. That ques-
tion was answered in the affirmative for central subsets of N as a
consequence of the following theorem.

Theorem 2.1. Let p be a minimal idempotent in (βN,+) and let
L and R be respectively the minimal left and minimal right ideals of
(βN,+) with p ∈ L∩R. Then for each C ∈ p, there are 2c minimal
idempotents in L ∩ C and 2c minimal idempotents in R ∩ C.

Proof. [8, Theorem 2.12]. �

Our extension of this result uses a very weak version of cancella-
tivity.

Definition 2.2. Let (S, ·) be an infinite semigroup with cardinal-
ity κ. A subset A of S is a left solution set of S (respectively a
right solution set of S) if and only if there exist w, z ∈ S such that
A = {x ∈ S : w = zx} (respectively A = {x ∈ S : w = xz}). The
semigroup S is weakly left cancellative if every left solution set is
finite and S is weakly right cancellative if every right solution set
is finite. The semigroup S is very weakly left cancellative if the
union of fewer than κ left solution sets of S must have cardinality
less than κ and S is very weakly right cancellative if the union of
fewer than κ right solution sets of S must have cardinality less than
κ. The semigroup S is weakly cancellative if it is both weakly left
cancellative and weakly right cancellative and S is very weakly can-
cellative if it is both very weakly left cancellative and very weakly
right cancellative.

We remark that if κ is regular, S is very weakly left cancellative if
and only if every left solution set of S has cardinality less than κ. If
κ is singular, S is very weakly left cancellative if and only if there is
a cardinal less than κ which is an upper bound for the cardinalities
of all left solution sets of S. Of course, weak left cancellativity
implies very weak left cancellativity. The two notions are equivalent
if κ = ω.

The following theorem extends Theorem 2.1 except that we do
not make any assertions about the number of minimal idempotents
in a given left ideal. Given a topological space S and a subset
A of S, we shall use the notation A exclusively to denote c`βSd

A,
the closure of A with respect to Stone-Čech compactification of
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Sd, where Sd is S with the discrete topology. Recall that if X
is any discrete space, q ∈ βX, Y is a compact Hausdorff space,
f : X → Y , and y ∈ Y , then q- lim

x∈X
f(x) = y if and only if for every

neighborhood U of y in Y , {x ∈ X : f(x) ∈ U} ∈ q.

Theorem 2.3. Let (S, ·) be an infinite very weakly cancellative
semigroup with cardinality κ and assume that A ⊆ P(S) such that
A is closed under finite intersections, |A| ≤ κ, and for all A ∈ A,
|A| = κ. Let T =

⋂
A∈A A, and assume that T is a subsemigroup

of (βSd, ·). Let p be an idempotent in K(T ), let C ∈ p, and let R
be the minimal right ideal of T to which p belongs. Then there are
22κ

idempotents in K(T ) ∩R ∩ C.

Proof. Let Uκ(S) be the set of κ-uniform ultrafilters on S. By
[2, Lemma 3.1] Uκ(S) is an ideal of S. By [10, Theorem 3.62],
Uκ(S) ∩ T 6= ∅ so Uκ(S) ∩ T is an ideal of T so p ∈ Uκ(S). Let
C? = {x ∈ C : x−1C ∈ p}, where x−1C = {y ∈ S : xy ∈
C}. By [10, Lemma 4.14], if x ∈ C?, then x−1C? ∈ p. Choose
ϕ : κ → Pf (C?) × A such that for each F ∈ Pf (C?) and each
B ∈ A, |ϕ−1[{(F,B)}]| = κ. Enumerate S as {sα : α < κ}. We
inductively choose 〈tα〉α<κ such that for each α < κ

(i) tα ∈ C? ∩
⋂

a∈π1(ϕ(α)) a−1C?,
(ii) tα ∈ π2

(
ϕ(α)

)
, and

(iii) if γ, δ, β < α, then sγtα 6= sδtβ .

This is possible since C? ∩ π2

(
ϕ(α)

)
∩

⋂
a∈π1(ϕ(α)) a−1C? ∈ p, and

therefore has cardinality κ, and S is very weakly cancellative.
For α < κ, let Xα =

{
β < κ : π1

(
ϕ(α)

)
⊆ π1

(
ϕ(β)

)
and

π2

(
ϕ(β)

)
⊆ π2

(
ϕ(α)

)}
. We claim that {Xα : α < κ} has the

κ-uniform finite intersection property. To see this, let F ∈ Pf (κ),
let G =

⋃
α∈F π1

(
ϕ(α)

)
and let B =

⋂
α∈F π2

(
ϕ(α)

)
. Then

ϕ−1[{(G, B)}] ⊆
⋂

α∈F Xα .

Let Q = {q ∈ βκd : {Xα : α < κ} ⊆ q}. (Here κd is κ with the
discrete topology.) By [10, Theorem 3.62], |Q| = 22κ

. For q ∈ Q,
let pq = q-lim

α<κ
tα.

Let V = C? ∩
⋂

a∈C? a−1C?. Then p ∈ V . We claim that V
is a subsemigroup of βS. To see this, it suffices by [10, Theorem
4.20] to note that if a ∈ C? and b ∈ a−1C?, then ab ∈ C? and
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b
(
(ab)−1C?

)
⊆ a−1C?. Now we claim that for all q ∈ Q, pq ∈

V ∩ T . To see that pq ∈ V , let a ∈ C?. Pick α < κ such that
π1

(
ϕ(α)

)
= {a}. Then for all β ∈ Xα, tβ ∈ C? ∩ a−1C?. To see

that pq ∈ T , let B ∈ A and pick α < κ such that π2

(
ϕ(α)

)
= A∩B.

Then for all β ∈ Xα, tβ ∈ A ∩B.
Now we claim that if q1 and q2 are distinct members of Q, then

Tpq1 ∩Tpq2 = ∅. To see this, suppose instead one has r, v ∈ T such
that rpq1 = vpq2 . Pick Y1 ∈ q1 and Y2 ∈ q2 such that Y1 ∩ Y2 = ∅.
Then {sγtα : γ < α and α ∈ Y1} ∈ rpq1 and {sδtβ : δ < β and
β ∈ Y2} ∈ vpq2 . But by (iii), these sets are disjoint.

Given q ∈ Q, (T ∩ V )pq is a left ideal of T ∩ V and R ∩ T ∩ V
is a right ideal of T ∩ V . (It is nonempty since p ∈ R ∩ T ∩ V .) So
pick an idempotent r ∈ K(T ∩ V )∩ (T ∩ V )pq ∩ (R∩ T ∩ V ). Since
p ∈ K(T ) ∩ V , K(T ∩ V ) = K(T ) ∩ V by [10, Theorem 1.65] so
r ∈ K(T ). �

Corollary 2.4. Let (S, ·) be an infinite very weakly cancellative
semigroup with cardinality κ, let p be an idempotent in K(βSd),
let C ∈ p, and let R be the minimal right ideal of βSd to which p
belongs. Then there are 22κ

idempotents in K(βSd) ∩R ∩ C.

Proof. Let A = {S} and apply Theorem 2.3. �

We now see that there are many examples where Theorem 2.3
applies. By a “left topological” semigroup, we mean a semigroup
(S, ·) with topology such that for each x ∈ S the function
λx : S → S, defined by λx(y) = x · y, is continuous.

Corollary 2.5. Let (S, ·) be a nondiscrete weakly cancellative left
topological semigroup with identity 1, let

κ = min{|U | : U is a neighborhood of 1} ,

and assume that A is a basis of open neighborhoods at 1 with |A| ≤
κ. Let T =

⋂
U∈A U . Then T is a compact subsemigroup of βSd.

Let p be an idempotent in K(T ), let C ∈ p, and let R be the minimal
right ideal of T to which p belongs. Then there are 22κ

idempotents
in K(T ) ∩R ∩A.

Proof. Pick U ∈ A such that |U | = κ. We may then presume that
|S| = κ, since S could be replaced by the subsemigroup generated
by U and A by {U ∩ V : V ∈ A}. It suffices to show that T is
a subsemigroup of βSd, since then Theorem 2.3 applies. By [10,
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Theorem 4.20], it suffices to note that for each A ∈ A and each
a ∈ A, there exists B ∈ A such that a ·B ⊆ A. �

We see now that we can get a good deal of the conclusion of
Corollary 2.5 even if there is no basis of neighborhoods of 1 of
cardinality at most κ.

Corollary 2.6. Let (S, ·) be a nondiscrete weakly cancellative left
topological semigroup with identity 1, let

κ = min{|U | : U is a neighborhood of 1} ,

and assume that B is a family of neighborhoods of 1 with |B| ≤ κ
and |U | = κ for some U ∈ B. Then

⋂
U∈B U contains a compact

subsemigroup T of βSd with the property that there are 22κ
idem-

potents in every minimal right ideal of T .

Proof. We may assume that the members of B are open, since each
member can be replaced by its interior. Pick U ∈ B such that |U | =
κ. We may then assume that |S| = κ, since S could be replaced by
the subsemigroup generated by U and B by {U ∩ V : V ∈ B}.

We shall now define a family Bn of open neighborhoods of 1 for
every n ∈ ω. We let B0 = {

⋂
F : F ∈ Pf (B)}. Now let n ∈ N and

assume that we have chosen Bm for each m ∈ {0, 1, . . . , n− 1} such
that

(1) Bm is closed under finite intersections;
(2) |Bm| ≤ κ;
(3) if m < n− 1, then Bm ⊆ Bm+1;
(4) if m < n − 1, B ∈ Bm, and s ∈ B, then there exists V ∈

Bm+1 such that sV ⊆ B.

For every B ∈ Bn−1 and every t ∈ B we choose an open neigh-
borhood Vt,B of 1 satisfying tVt,B ⊆ B and we put

C = Bn−1 ∪ {Vt,B : B ∈ Bn−1 and t ∈ B}

and Bn = {
⋂
F : F ∈ Pf (C}.

We now let A =
⋃∞

n=0 Bn. Then A satisfies the hypotheses of
Theorem 2.3. Thus, if T =

⋂
V ∈A V , it suffices to show that T is

a subsemigroup of βSd, since then Theorem 2.3 applies. By [10,
Theorem 4.20], it suffices to note that for each A ∈ A and each
a ∈ A, there exists B ∈ A such that a ·B ⊆ A. �
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In the above two corollaries we assumed that S was weakly can-
cellative rather than just very weakly cancellative because in the
proof we passed to the semigroup generated by U . It is not true
in general that a subsemigroup of a very weakly cancellative semi-
group is itself very weakly cancellative. (For example, define an
operation ∗ on ω by x ∗ y = 0, let M be any uncountable cancella-
tive semigroup with identity 1, let S = ω×M , and let T = ω×{1}.
Then any left or right solution set in S is countable, so S is very
weakly cancellative, while T is not.)

Corollary 2.7. Let S be an infinite discrete weakly cancellative
semigroup of cardinality κ and let p be a κ-uniform ultrafilter on S
which is an idempotent in βS. Suppose that B is a set of members
of p of cardinality at most κ. Then

⋂
B∈B B contains a compact

subsemigroup T of βS with the property that every minimal right
ideal of T contains 22κ

idempotents. In particular, every member
of p is a member of 22κ

idempotents.

Proof. We may suppose that S has an identity 1 since an identity
may be adjoined. By [9, Lemma 2.11, Lemma 2.12, and Theorem
2.16] we can define a nondiscrete left invariant topology Tp on S for
which a subset V of S is a neighborhood of 1 if and only if 1 ∈ V
and V ∈ p. Our claim now follows from Corollary 2.6. �

The condition of [10, Theorem 4.20] that was used in the proof
of Corollaries 2.5 and 2.6 to establish that T is a subsemigroup of
βSd is quite simple. And we shall need to adopt this requirement
on A in subsequent sections. We see now that this condition is
not necessary to conclude that T is a semigroup. Given x ∈ N we
define supp(x) ∈ Pf (ω) by x =

∑
t∈supp(x) 2t. Given p, q ∈ βSd and

A ⊆ S, one has that A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p.
If the operation is denoted by +, we have A ∈ p + q if and only if
{x ∈ S : −x + A ∈ q} ∈ p, where −x + A = {y ∈ S : x + y ∈ A}.
Theorem 2.8. For each n ∈ N, let An = {x ∈ N : |supp(x)| >
n}, let A = {An : n ∈ N}, and let T =

⋂
A∈A A. Then T is a

subsemigroup of (βN,+) but A does not satisfy the condition of
[10, Theorem 4.20]. In fact, there is no n ∈ N such that for all
x ∈ An there exists m ∈ N with x + Am ⊆ A1.

Proof. We verify the last assertion first. So let n ∈ N and suppose
that for all x ∈ An there exists m ∈ N with x + Am ⊆ A1. Let
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x = 2n+1 − 1. Then |supp(x)| = n + 1 > n so x ∈ An. Pick
m ∈ N such that x + Am ⊆ A1. Let y = 1 + 2m+n+1 − 2n+1. Then
|supp(y)| = m + 1 so y ∈ Am. But x + y = 2m+n+1 so x + y /∈ A1.

Now to see that T is a semigroup, let p, q ∈ T and suppose that
p + q /∈ T . Pick n ∈ N such that

B = {x ∈ N : |supp(x)| ≤ n} ∈ p + q .

Let C = {x ∈ N : −x + B ∈ q}. Then C ∈ p. Pick x ∈ C and let
k = max supp(x). Pick y ∈ C ∩An+k+2 and let G = supp(y). Then
|G \ {0, 1, . . . , k}| ≥ n + 2. Let l = maxG and pick

z ∈ (−x + B) ∩ (−y + B) ∩An+l+1 .

Let H = supp(z). We claim that {k + 1, k + 2, . . . , l} ⊆ H. For
otherwise, if say t ∈ {k+1, k+2, . . . , l}\H, then there is no carrying
past position t when x and z are added so

H \ {0, 1, . . . , l} ⊆ supp(x + z)

so |supp(x + z)| > n, a contradiction. But now, |supp(y + z) ∩
{k+1, k+2, . . . , l}| ≥ |G\{0, 1, . . . , k}|−1 ≥ n+1, a contradiction.

�

3. A New Central Sets Theorem for Subsemigroups

The original Central Sets Theorem (Theorem 1.1) applied to finitely
many sequences in Z. And the version presented in [10] as Theo-
rem 14.11 dealt with countably many sequences in an arbitrary
commutative semigroup. (There are also versions for noncommu-
tative semigroups, but they are much more complicated and we will
not deal with them in this paper.)

In [3, Theorem 2.2] we proved a new version of the Central Sets
Theorem which applies to all sequences in a commutative semi-
group (S, +) simultaneously. (We are switching to additive nota-
tion because from here on we will be restricting our attention to
commutative semigroups and additive notation is much more con-
venient when dealing with partition regularity of matrices as we
shall do in the next section.)

Theorem 3.1. Let (S, +) be a commutative semigroup and let T =
NS, the set of sequences in S. Let C be a central subset of S. There
exist functions α : Pf (T ) → S and H : Pf (T ) → Pf (N) such that
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(1) if F,G ∈ Pf (T ) and F ⊆6 G, then max H(F ) < minH(G)
and

(2) whenever m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . .
⊆6 Gm, and for each i ∈ {1, 2, . . . ,m}, fi ∈ Gi, one has∑m

i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ C.

Proof. [3, Theorem 2.2]. �

In this section we shall primarily be interested in a version of the
Central Sets Theorem applied to members of minimal idempotents
in T =

⋂
A∈A A for a suitable family A of subsets of S. This will

be Theorem 3.4. However, the case A = {S} yields a strengthening
of Theorem 3.1, which we shall present as Corollary 3.5. We shall
then show that the “strengthening” is only superficial.

The proof of the following lemma uses a technique which has
become standard in proofs of versions of the Central Sets Theo-
rem. This technique was originally due to H. Furstenberg and Y.
Katznelson in [6].

Lemma 3.2. Let (S, +) be a discrete commutative semigroup, let
c ∈ N, let A ⊆ P(S), let T =

⋂
A∈A A, let (D,≤) be a directed set,

and let T ⊆ DS, the set of functions from D to S. Assume that

(1) A 6= ∅ and ∅ /∈ A;
(2) (∀A ∈ A)(∀B ∈ A)(A ∩B ∈ A);
(3) (∀A ∈ A)(∀a ∈ A)(∃B ∈ A)(a + B ⊆ A); and
(4)

(
∀A ∈ A

)(
∀d ∈ D

)(
∀F ∈ Pf (T )

)(
∃d′ ∈ D

)(
d < d′ and

(∀f ∈ F )(f(d′) ∈ A)
)
.

Let C ⊆ S and assume that C ∩K(T )∩
⋂

A∈A cA 6= ∅. Then for all
F ∈ Pf (T ), all d ∈ D, and all A ∈ A, there exist a ∈ A, m ∈ N,
and d1, d2, . . . , dm in D such that d < d1 < d2 < . . . < dm, ca ∈ C,
and for all f ∈ F , ca +

∑m
j=1 f(dj) ∈ C.

Proof. Pick p ∈ C∩K(T )∩
⋂

A∈A cA. Let F ∈ Pf (T ) be given. Let
l = |F | and enumerate F as {f1, f2, . . . , fl}. Let Y = ×l+1

i=1T and
Z = ×l+1

i=1βS. Then by [10, Theorem 2.22], Y and Z are compact
right topological semigroups and if ~x ∈×l+1

i=1S, then λ~x : Z → Z is
continuous.
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For d ∈ D and A ∈ A, let

IA,d =
{(

ca +
∑m

j=1 f1(dj), . . . , ca +
∑m

j=1 fl(dj), ca
)

:
a ∈ A , ca ∈ A , m ∈ N , d1, d2, . . . , dm ∈ D ,
d < d1 < d2 < . . . < dm, and
(∀i ∈ {1, 2, . . . , l})(ca +

∑m
j=1 fi(dj) ∈ A)

}
and let EA,d = IA,d ∪ {(ca, ca, . . . , ca) : a ∈ A and ca ∈ A}.

Let I =
⋂

A∈A
⋂

d∈D c`ZIA,d and let E =
⋂

A∈A
⋂

d∈D c`ZEA,d.
Trivially I ⊆ E. We claim that E is a subsemigroup of Y and I is
an ideal of E.

We show first that each IA,d 6= ∅. From this it follows that I 6= ∅
since if d, d′ ∈ D, A,A′ ∈ A, and e ∈ D such that d ≤ e and d′ ≤ e,
then IA∩A′,e ⊆ IA,d∩IA′,d′ . So let A ∈ A and d ∈ D. Now A∩cA ∈ p
so pick a ∈ A such that ca ∈ A. Pick B ∈ A such that ca+B ⊆ A.
Pick by (4) some d′ ∈ D such that d < d′ and for all i ∈ {1, 2, . . . , l},
fi(d′) ∈ B. Then

(
ca+f1(d′), ca+f2(d′), . . . , ca+fl(d′), ca

)
∈ IA,d.

To see that E ⊆ Y , let ~q = (q1, q2, . . . , ql+1) ∈ E. Let i ∈ {1, 2,
. . . , l+1}. To see that qi ∈ T let A ∈ A. Pick any d ∈ D. If A /∈ qi,
then π−1

i [ S \A ] would be a neighborhood of ~q missing EA,d.
Now let ~q, ~r ∈ E. We show that ~q + ~r ∈ E and if either ~q ∈ I

or ~r ∈ I, then ~q + ~r ∈ I. Let A ∈ A, let d ∈ D, and let U be an
open neighborhood of ~q + ~r. Pick a neighborhood V of ~q such that
V + ~r ⊆ U . Pick ~x ∈ V ∩ EA,d with ~x ∈ Ia,d if ~q ∈ I.

If ~x ∈ IA,d, pick a ∈ A, m ∈ N, and d1, d2, . . . , dm ∈ D such
that d < d1 < d2 < . . . < dm, ca ∈ A, xl+1 = ca, and for all
i ∈ {1, 2, . . . , l}, xi = ca +

∑m
j=1 fi(dj) ∈ A. Pick B0 ∈ A such that

a+B0 ⊆ A and ca+B0 ⊆ A. For i ∈ {1, 2, . . . , l}, pick Bi ∈ A such
that ca +

∑m
j=1 fi(dj) + Bi ⊆ A. Let B =

⋂l
i=0 Bi and let e = dm.

If ~x ∈ EA,d \ Ia,d, pick a ∈ A such that ca ∈ A and ~x =
(ca, ca, . . . , ca). Pick B ∈ A such that a + B ⊆ A and ca + B ⊆ A
and let e = d.

Now ~x + ~r ∈ U and ~x ∈ ×l+1
i=1S so pick a neighborhood W of ~r

such that ~x + W ⊆ U . Pick ~y ∈ W ∩ EB,e with ~y ∈ IB,e if ~r ∈ I.
If ~y ∈ IB,e, pick b ∈ B, n ∈ N, and e1, e2, . . . , en ∈ D such that

cb ∈ B, e < e1 < e2 < . . . < en, yl+1 = cb, and for i ∈ {1, 2, . . . , l},
yi = cb +

∑n
j=1 fi(ej) ∈ B.

If ~y ∈ EB,e \ IB,e, pick b ∈ B such that cb ∈ B and ~y =
(cb, cb, . . . , cb).
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Then ~x + ~y ∈ U ∩ EA,d and if ~x ∈ IA,d or ~y ∈ IB,e, then ~x + ~y ∈
U ∩ IA,d.

By [10, Theorem 2.23], K(Y ) =×l+1
i=1K(T ). Let p = (p, p, . . . , p).

It suffices to show that p ∈ E. For then p ∈ E ∩ K(Y ) and so by
[10, Theorem 1.65] K(E) = E ∩ K(Y ) and thus p ∈ K(E) ⊆ I.
Since ×l+1

i=1C is a neighborhood of p and will therefore meet IA,d

for any A ∈ A and any d ∈ D, this will complete the proof.
So let A ∈ A, let d ∈ D, and let U be a neighborhood of p. Pick

M ∈ p such that ×l+1
i=1M ⊆ U . Now M ∩A∩ cA ∈ p so pick a ∈ A

such that ca ∈ M ∩A. Then (ca, ca, . . . , ca) ∈ U ∩ EA,d. �

Definition 3.3. Let (D,≤) be a directed set. Then P lin
f (D) =

{H : H is a finite nonempty linearly ordered subset of D}.

Theorem 3.4. Let (S, +) be a discrete commutative semigroup, let
A ⊆ P(S), let T =

⋂
A∈A A, let (D,≤) be a directed set, and let

T ⊆ DS. Assume that
(1) A 6= ∅ and ∅ /∈ A;
(2) (∀A ∈ A)(∀B ∈ A)(A ∩B ∈ A);
(3) (∀A ∈ A)(∀a ∈ A)(∃B ∈ A)(a + B ⊆ A); and
(4)

(
∀A ∈ A

)(
∀d ∈ D

)(
∀F ∈ Pf (T )

)(
∃d′ ∈ D

)(
d < d′ and

(∀f ∈ F )(f(d′) ∈ A)
)
.

Let C ⊆ S and assume that there is an idempotent p in C ∩K(T ).
Let ϕ : Pf (T ) → A. Then there exist α : Pf (T ) → C and H :
Pf (T ) → P lin

f (D) such that

(a)
(
∀F ∈ Pf (T )

)(
α(F ) ∈ ϕ(F )

)
;

(b)
(
∀F ∈ Pf (T )

)(
∀f ∈ F

)(
α(F )+

∑
t∈H(F ) f(t) ∈ C∩ϕ(F )

)
;

(c) if F,G ∈ Pf (T ) and G ⊆6 F , then max H(G) < minH(F );
and

(d) if m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm,
and for each i ∈ {1, 2, . . . ,m}, fi ∈ Gi, then∑m

i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ C.

Proof. Let C? = {x ∈ C : −x + C ∈ p}. Then by [10, Lemma
4.14], for each x ∈ C?, −x + C? ∈ p. We define α(F ) and H(F ) by
induction on |F | such that

(i) α(F ) ∈ ϕ(F ) ∩ C?;
(ii) for all f ∈ F , α(F ) +

∑
t∈H(F ) f(t) ∈ C? ∩ ϕ(F );
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(iii) if ∅ 6= G ⊆6 F , then max H(G) < minH(F ); and
(iv) if m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm

= F , and for each i ∈ {1, 2, . . . ,m}, fi ∈ Gi, then∑m
i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ C?.

Assume first that F = {f}. Pick by Lemma 3.2 (with c = 1)
α(F ) ∈ ϕ(F ) ∩ C?, m ∈ N, and d1, d2, . . . , dm ∈ D such that
d1 < d2 < . . . < dm and α(F ) +

∑m
j=1 f(dj) ∈ C? ∩ ϕ(F ). Let

H(F ) = {d1, d2, . . . , dm}. All hypotheses hold, (iii) vacuously.
Now assume that |F | > 1 and α(G) and H(G) have been defined

for all G with ∅ 6= G ⊆6 F . Let L =
⋃
{H(G) : ∅ 6= G ⊆6 F} and

pick d ∈ D such that if ∅ 6= G ⊆6 F , then max H(G) ≤ d. Let

M =
{ ∑r

i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)

:
r ∈ N , ∅ 6= G1 ⊆6 G2 ⊆6 . . . ⊆6 Gr ⊆6 F

and for each i ∈ {1, 2, . . . , r} , fi ∈ Gi

}
.

By hypothesis (iv), M is a finite subset of C?. Let

B = C? ∩ ϕ(F ) ∩
⋂

x∈M (−x + C?) .

Then B ∈ p. Pick by Lemma 3.2 α(F ) ∈ ϕ(F ) ∩ C?, n ∈ N, and
e1, e2, . . . , en ∈ D such that d < e1 < e2 < . . . < en and for each
f ∈ F , α(F )+

∑m
j=1 f(ej) ∈ B. Let H(F ) = {e1, e2, . . . , en}. Then

hypotheses (i) and (ii) are satisfied directly. If ∅ 6= G ⊆6 F , then
max H(G) ≤ d < e1 = minH(F ), so hypothesis (iii) holds.

To verify hypothesis (iv), let m ∈ N and assume that ∅ 6=
G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm = F and for each i ∈ {1, 2, . . . ,m}, fi ∈
Gi. Assume first that m = 1. Then α(G1) +

∑
t∈H(G1) f1(t) =

α(F ) +
∑

t∈H(F ) f1(t) ∈ C?. Now assume that m > 1 and let
r = m − 1. Then x =

∑r
i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ M and

α(F ) +
∑

t∈H(F ) fm(t) ∈ B ⊆ −x + C?. �

Corollary 3.5. Let (S, +) be a discrete commutative semigroup,
let (D,≤) be a directed set with no maximum element, let T = DS,
and let C be a central subset of S. Then there exist α : Pf (T ) → C

and H : Pf (T ) → P lin
f (D) such that

(a) if F,G ∈ Pf (T ) and G ⊆6 F , then max H(G) < minH(F )
and
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(d) if m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm,
and for each i ∈ {1, 2, . . . ,m}, fi ∈ Gi, then∑m

i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ C.

Proof. In Theorem 3.4 let A = {S} and of course let ϕ(F ) = S for
each F ∈ Pf (T ). �

Theorem 3.1 is the special case of Corollary 3.5 in which D = N.
We see now that in fact Corollary 3.5 is indeed derivable from
Theorem 3.1.

Theorem 3.6. Let S be a commutative semigroup, let (D,≤) be a
directed set with no largest element, let T2 = DS, and let C ⊆ S
satisfy the conclusion of Theorem 3.1. Then C also satisfies the
conclusion of Corollary 3.5.

Proof. Let T1 = NS and pick α1 : Pf (T1) → S and H1 : Pf (T1) →
Pf (N) as guaranteed by Theorem 3.1.

Pick an increasing sequence 〈an〉∞n=1 in D. Define ϕ : T2 → T1

by ϕ(f)(n) = f(an).
We define γ : Pf (T2) → Pf (T1) so that

(1) for all G ∈ Pf (T2), ϕ[G] ⊆ γ(G) and
(2) if F,G ∈ Pf (T2) and F ⊆6 G, then γ(F ) ⊆6 γ(G).

We do this for G ∈ Pf (T2) inductively on |G|. For f ∈ T2, let
γ({f}) = {ϕ(f)}. Now let G ∈ Pf (T2) with |G| ≥ 2 and assume
that γ(F ) has been defined for all F with ∅ 6= F ⊆6 G. Let K =
ϕ[G] ∪

⋃
{γ(F ) : ∅ 6= F ⊆6 G}, pick f ∈ T1 \ K, and let γ(G) =

K ∪ {f}.
Now define α2 : Pf (T2) → S and H2 : Pf (T2) → P lin

f (D) as fol-
lows. Given G ∈ Pf (T2), let α2(G) = α1

(
γ(G)

)
and H2(G) =

{
at :

t ∈ H1

(
γ(G)

)}
. If F,G ∈ Pf (T2) and F ⊆6 G, then γ(F ) ⊆6 γ(G), so

max H1

(
γ(F )

)
< minH1

(
γ(G)

)
and thus maxH2(F ) < minH2(G).

Now assume that m ∈ N, G1, G2, . . . , Gm ∈ Pf (T2),
G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm and for each i ∈ {1, 2, . . . ,m}, fi ∈ Gi.
Then γ(G1) ⊆6 γ(G2) ⊆6 . . . ⊆6 γ(Gm) and for each i ∈ {1, 2, . . . ,
m}, ϕ(fi) ∈ γ(Gi) so
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∑m
i=1

(
α2(Gi) +

∑
s∈H2(Gi)

fi(s)
)

=
∑m

i=1

(
α2(Gi) +

∑
t∈H1(γ(Gi))

fi(at)
)

=
∑m

i=1

(
α1

(
γ(Gi)

)
+

∑
t∈H1(γ(Gi))

ϕ(fi)(t)
)

∈ C .

�

4. Ramsey Theoretic Consequences

We obtain conditions in this section guaranteeing that members
of minimal idempotents in T =

⋂
A∈A A contain images of first

entries matrices with entries from ω or Z. We also show that these
conditions are satisfied in commonly arising situations.

Lemma 4.1. Let (S, +) be a commutative semigroup, let A ⊆
P(S), let u, v ∈ N and let M be a u× v matrix with entries from ω

and no row equal to ~0. Assume that
(1) (∀A ∈ A)(∀B ∈ A)(A ∩B ∈ A) and
(2) (∀A ∈ A)(∃B ∈ A)(B + B ⊆ A).

Then for every A ∈ A there exists B ∈ A such that for all ~x ∈ Bv,
M~x ∈ Au.

Proof. Define inductively ϕl(A) by ϕ1(A) = A and ϕl+1(A) =
ϕl(A) + A. One easily sees by induction that for all l ∈ N and
all A ∈ A, there exists B ∈ A such that ϕl(B) ⊆ A.

Let A ∈ A be given. For i ∈ {1, 2, . . . , u}, let li =
∑v

j=1 mi,j and
pick Bi ∈ A such that ϕli(Bi) ⊆ A. Let B =

⋂l
i=1 Bi. �

Definition 4.2. If M is a first entries matrix, then P (M) is the
set of first entries of M . If P (M) = {1}, then M is a monic first
entries matrix .

Some of the classic results of Ramsey Theory assert that, given a
fine partition N, one cell contains the image of a monic first entries
matrix. For example Schur’s Theorem [11] and the length 4 version
of van der Waerden’s Theorem [13] are respectively the assertions
that  1 0

0 1
1 1

 and


1 0
1 1
1 2
1 3
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have that property.

Theorem 4.3. Let (S, +) be a commutative semigroup, let A ⊆
P(S), let u, v ∈ N, let M be a u×v first entries matrix with entries
from ω, and assume that

(1) (∀A ∈ A)(∀B ∈ A)(A ∩B ∈ A);
(2) A 6= ∅ and ∅ /∈ A;
(3) (∀A ∈ A)(∀a ∈ A)(∃B ∈ A)(a + B ⊆ A); and
(4) (∀A ∈ A)(∃B ∈ A)(B + B ⊆ A).

Let T =
⋂

A∈A A. Then T is a subsemigroup of βSd. If p is an
idempotent in K(T ) ∩

⋂
A∈A

⋂
c∈P (M) cA and C ∈ p, then for all

A ∈ A there exists ~x ∈ Av such that M~x ∈ Cu.

Proof. Assume that p is an idempotent in K(T )∩
⋂

A∈A
⋂

c∈P (M) cA

and C ∈ p. Let C? = {x ∈ C : −x + C ∈ p}. We may assume that
M has no repeated rows. We proceed by induction on v. If v = 1,
then M = (c). Given A ∈ A, cA ∩ C ∈ p so pick x ∈ A such that
cx ∈ C.

Now let v ∈ N and assume the result is valid for v. Let M be a
u × (v + 1) matrix. By rearranging rows and adding rows if need
be, we have

M =

 c 0
c M1

0 M2


where M1 is a u1×v matrix with entries from ω and no row equal to
~0 and M2 is a u2×v first entries matrix. Also P (M) = P (M2)∪{c}.

For i ∈ {1, 2, . . . , u− 1} let ~ri be the ith row of
(

M1

M2

)
.

Let D be the set of finite sequences in A, ordering D by ~G < ~G′

if and only if ~G is a proper subsequence of ~G′. Given ~G ∈ D, let
`(~G) be the number of terms in ~G. We claim that we can choose
~x(~G) ∈ Sv for each ~G ∈ D so that

(a) ~ri · ~x(~G) ∈
⋂`( ~G)

j=1 Gj for each i ∈ {1, 2, . . . , u1} and
(b) if m ∈ N, ~G1, ~G2, . . . , ~Gm ∈ D, and ~G1 < ~G2 < . . . < ~Gm,

then
(i) M2

(
~x(~G1) + ~x(~G2) + . . . + ~x(~Gm)

)
∈ (C?)u2 and

(ii) ~x(~G1) + ~x(~G2) + . . . + ~x(~Gm) ∈
(⋂`( ~G1)

i=1 G1,i

)v

.
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We proceed by induction on `(~G). Assume first that ~G = 〈A〉.
Pick by Lemma 4.1 some B ∈ A such that for all ~y ∈ Bv, M1~y ∈
Au1 . Since A ∩B ∈ A, pick ~x(~G) ∈ (A ∩B)v such that M2~x(~G) ∈
(C?)u2 . The hypotheses are satisfied.

Now assume that `(~G) > 1 and we have chosen ~x( ~H) for every

proper subsequence ~H of ~G. Let A =
⋂`( ~G)

i=1 Gi. Let

R = {( ~H1, ~H2, . . . , ~Hk) : k ∈ N , ~H1, ~H2, . . . , ~Hk ∈ D ,

and ~H1 < ~H2 < . . . < ~Hk < ~G} .

Given H = ( ~H1, ~H2, . . . , ~Hk) ∈ R, we have

~x( ~H1) + ~x( ~H2) + . . . + ~x( ~Hk) ∈
(⋂`( ~H1)

i=1 H1,i

)v

and
⋂`( ~H1)

i=1 H1,i ∈ A. Applying assumptions (1) and (4) pick DH ∈
A such that ~x( ~H1)+~x( ~H2)+ . . .+~x( ~Hk)+(DH)v ⊆

(⋂`( ~H1)
i=1 H1,i

)v

.
Pick by Lemma 4.1 some B ∈ A such that for all ~y ∈ Bv, M1~y ∈

Au1 . Let E = A ∩B ∩
⋂
H∈R DH. Let

Q =
{
~ri ·

(
~x( ~H1) + . . . + ~x( ~Hk)

)
: ( ~H1, ~H2, . . . , ~Hk) ∈ R

and i ∈ {u1 + 1, u1 + 2, . . . , u− 1}
}

.

Then Q ⊆ C?. Pick ~x(~G) ∈ Ev such that

M2~x(~G) ∈
(
C? ∩

⋂
b∈Q(−b + C?)

)u2 .

Since ~x(~G) ∈ Bv, hypothesis (a) holds. To verify hypothesis (b), let
m ∈ N, let ~H1, ~H2, . . . , ~Hm ∈ D, and assume that ~H1 < ~H2 < . . . <
~Hm = ~G. If m = 1, we have ~x(~G) ∈ Av and M2~x(~G) ∈ (C?)u2 as
required, so assume that m > 1 and let H = ( ~H1, ~H2, . . . , ~Hm−1) ∈
R. Then ~x(~G) ∈ (DH)v so

~x( ~H1) + ~x( ~H2) + . . . + ~x( ~Hm−1) + ~x(~G) ∈
(⋂`( ~H1)

i=1 H1,i

)v

.

And for i ∈ {u1 + 1, u1 + 2, . . . , u− 1},

bi = ~ri ·
(
~x( ~H1) + ~x( ~H2) + . . . + ~x( ~Hk)

)
∈ Q

so ~ri · ~x(~G) ∈ −b + C? and thus

~ri ·
(
~x( ~H1) + ~x( ~H2) + . . . + ~x( ~Hk) + ~x(~G)

)
∈ C? .
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Now for i ∈ {1, 2, . . . , u1}, define fi : D → S by fi(~G) = ~ri ·~x(~G).
Let T = {f1, f2, . . . , fu1}. We claim that the hypotheses of Lemma
3.2 are satisfied. Hypotheses (1), (2), and (3) are satisfied directly.
To verify hypothesis (4), let A ∈ A, ~G = 〈G1, G2, . . . , Gk〉 ∈ D, and
F ∈ Pf (T ) be given. Let ~G′ = 〈G1, G2, . . . , Gk, A〉. Then ~G < ~G′

and if fi ∈ F , then fi(~G′) = ~ri · ~x(~G′) ∈ A by condition (a).
To conclude the proof, let A ∈ A and let ~G = 〈A〉. Pick

by Lemma 3.2 a ∈ A, m ∈ N, and ~G1, ~G2, . . . , ~Gm in D such
that ~G < ~G1 < ~G2 < . . . < ~Gm, ca ∈ C, and for all f ∈ F ,
ca +

∑m
j=1 f(~Gj) ∈ C. Let ~y = ~x(~G1) + ~x(~G2) + . . . + ~x(~Gm).

Then ~y ∈ Av and M2~y ∈ Cu2 . Also, if i ∈ {1, 2, . . . , u1}, then

ca + ~ri · ~y = ca +
∑m

j=1 fi(~Gj) ∈ C. So
(

a
~y

)
∈ Av+1 and

M

(
a
~y

)
∈ Cu. �

It is possible that Theorem 4.3 is vacuous. That is, there might
not be any idempotents in K(T ) ∩

⋂
A∈A

⋂
c∈P (M) cA – this set

might even be empty. For example if (S, +) = (N, ·), A = {N}, and
M = (2), one has that the multiplicative analogue of 2N is {x2 : x ∈
N} and K(βN, ·)∩{x2 : x ∈ N} = ∅. (See [10, Exercise 15.1.2].) We
are of course interested in knowing when the conclusion of Theorem
4.3 is both nonvacuous and nontrivial. We show first that for monic
first entries matrices, this is easy to guarantee.

Since S is commutative, the hypothesis that S is left topological
in the following theorem is equivalent to saying that S is semitopo-
logical, that is, the operation is separately continuous. Recall that
A denotes the closure of A in βSd, where Sd is the set S with the
discrete topology.

Corollary 4.4. Let (S, +) be a commutative and weakly cancella-
tive Hausdorff semitopological semigroup with identity 0 and as-
sume that 0 is not an isolated point and + is jointly continuous at
0. Let A denote the family of neighborhoods of 0, let T =

⋂
A∈A A,

let u, v ∈ N, and let M be a u×v monic first entries matrix with en-
tries from ω. Then T is a subsemigroup of βSd and K(T ) ⊆ βSd\S
so there are minimal idempotents of K(T ) in βSd\S. In particular,
whenever A ∈ A, r ∈ N, and A =

⋃r
i=1 Ci, there exist i ∈ {1, 2, . . . ,

r} and ~x ∈ (Ci)v such that Ci is infinite and M~x ∈ (Ci)u.
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Proof. The hypotheses of Theorem 4.3 are satisfied. By [10, Theo-
rem 4.36] βSd \ S is an ideal of βSd and, since each member of A
is infinite, K(T ) ∩ (βSd \ S) 6= ∅ and so K(T ) ⊆ βSd \ S. Pick an
idempotent p ∈ K(T ), let A ∈ A, let r ∈ N, and let A =

⋃r
i=1 Ci.

Pick i ∈ {1, 2, . . . , r} such that Ci ∈ p and note that Ci is infinite.
Theorem 4.3 guarantees directly the existence of ~x ∈ Av such that
M~x ∈ (Ci)u. To see that one may guarantee that ~x ∈ (Ci)v, note
that we may assume that for each j ∈ {1, 2, . . . , v}, there is a row
of M whose jth entry is 1 and all other entries are 0. �

The following corollary provides a somewhat more complicated
method of guaranteeing that one cell of a partition must contain
the image of a first entries matrix which need not be monic.

Corollary 4.5. Let (S, +) be a commutative and weakly cancella-
tive semigroup with identity 0, let A ⊆ P(S), and assume that

(1) (∀A ∈ A)(∀B ∈ A)(A ∩B ∈ A);
(2) A 6= ∅ and ∅ /∈ A;
(3) (∀A ∈ A)(∀a ∈ A)(∃B ∈ A)(a + B ⊆ A); and
(4) (∀A ∈ A)(∃B ∈ A)(B + B ⊆ A).

Let V be a subsemigroup of (N, ·) with 1 ∈ V and assume that
{cA : A ∈ A and c ∈ V } has the infinite finite intersection property.
Let u, v ∈ N and let M be a u× v first entries matrix with entries
from ω with P (M) ⊆ V . Let T =

⋂
{cA : A ∈ A and c ∈ V }.

Then T is a subsemigroup of βSd for which K(T ) ⊆ βSd \ S. If p
is any idempotent in K(T ) and if C ∈ p, there exists ~x ∈ Sv such
that M~x ∈ Cu. In particular, if r ∈ N and S =

⋃r
i=1 Ci, then there

exists i ∈ {1, 2, . . . , r} such that Ci \ {0} is infinite and contains an
image of M .

Proof. Let B =
{ ⋂

F : F is a finite nonempty subset of {cA : c ∈ V

and A ∈ A}
}
. Then B satisfies (1), (2), (3), and (4). Also, using

the fact that V is a subsemigroup of (N, ·),⋂
B∈B B ∩

⋂
B∈B

⋂
c∈P (M) cB =

⋂
B∈B B .

Since T =
⋂

B∈B B, we can apply Theorem 4.3. As before, we
observe that βSd \ S is an ideal of βSd and, since each member of
B is infinite, T ∩ (βSd \ S) 6= ∅ and so K(T ) ⊆ βSd \ S. �

Corollary 4.6. Let (S, +) be an infinite weakly cancellative dis-
crete commutative semigroup, and let V be a subsemigroup of (N, ·)
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such that 1 ∈ V and, for every n ∈ V and s, t ∈ S, ns = nt implies
that s = t. Let T =

⋂
n∈V nS. Then T is a subsemigroup of βS

and if p is any idempotent in K(T ), p ∈ βSd \S and every member
of p contains an image of every first entries matrix over ω whose
first entries are in V .

Proof. It is clear that, for every n ∈ V , nS is infinite. For any finite
nonempty subset F of V ,

⋂
n∈F nS is infinite because (

∏
n∈F n)S ⊆⋂

n∈F nS. Our claim now follows from Corollary 4.5 with A =
{S}. �

We observe that the following corollary cannot be deduced from
previously known theorems such as [10, Theorem 15.5], because it is
possible that T∩K(βS) = ∅. This is the case, as we have previously
remarked, if S = (N, ·) and A =

{
{nc : n ∈ S} : c ∈ N

}
. We remind

the reader that {nc : n ∈ S} is the multiplicative analogue of cS.
Also, the “image of a first entries matrix”in the case in which S is
a subsemigroup of (N·), must be interpreted multiplicatively. For

example, if M =
(

1 3
0 2

)
and ~x ∈ S2, we interpret the image of

M determined by ~x to be
(

x1 · (x2)3

(x2)2

)
.

Corollary 4.7. Let S be a subsemigroup of (N, ·) and let T =⋂
c∈S {nc : n ∈ S}. If p is an idempotent in K(T ), then p ∈ βSd \S

and every member of p contains an image of every first entries
matrix over ω with entries in S.

Proof. This follows immediately from Corollary 4.6 with V = S.
�

We observe that hypothesis (3) in the following theorem is weaker
than hypothesis (4) in the statement of Corollary 4.5. We note that
the element p in the statement of Theorem 4.8 is not necessarily in
K(T ) and is not neccessarily idempotent.

When we say that a semigroup (S, +) is torsion free, we mean
that whenever n ∈ N and s and t are distinct members of S, ns 6=
nt. In this case, for every n ∈ N and every s ∈ nS there is a
unique element t ∈ S for which nt = s. We put m

n s = mt for
every m ∈ N. Thus multiplication by positive rational numbers is
partially defined on S.
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Theorem 4.8. Let (S, +) be an infinite commutative and weakly
cancellative semigroup with identity 0. Suppose also that S is tor-
sion free. Let A be a nonempty family of infinite subsets of S and
assume that

(1) (∀A ∈ A)(∀B ∈ A)(A ∩B ∈ A);
(2) (∀A ∈ A)(∀a ∈ A)(∃B ∈ A)(a + B ⊆ A); and
(3) (∀A ∈ A)(∀n ∈ N)(∃B ∈ A)(nB ⊆ A).

Let T =
⋂
{nA : n ∈ N and A ∈ A}. Then T is a subsemigroup of

βSd, and there is an element p ∈ T \S such that every member of p
contains an image of every first entries matrix M with nonnegative
rational entries. In particular, if A ∈ A and if A\{0} is partitioned
into a finite number of subsets, one member of the partition must
contain an image of M .

Proof. To see that T is a subsemigroup of βSd, we use [10, Theorem
4.20]. Let n ∈ N, let A ∈ A, and let b ∈ nA. Pick s ∈ A such that
b = ns and pick B ∈ A such that s + B ⊆ A. Then b + nB ⊆ nA.

Next we claim that T \ S 6= ∅. By [10, Corollary 3.14] it suffices
to show that {nA : n ∈ N and A ∈ A} has the infinite finite
intersection property. To this end, let A ∈ A and let F ∈ Pf (N).
For each n ∈ F , let kn =

∏
t∈F\{n} t and pick Bn ∈ A such that

knBn ⊆ A. Let C =
⋂

n∈F Bn and let r =
∏

t∈F t. Given n ∈ F ,
rC = nknC ⊆ nA so rC ⊆

⋂
n∈F nA.

Pick r ∈ T \ S and let q be an idempotent in K(βN,+). Let
p = q-lim

n∈N
(r-lim

s∈S
ns). We claim that p ∈ T \ S. To see that p ∈ T

suppose instead that we have some n ∈ N and A ∈ A such that
nA /∈ p. Then {m ∈ N : r-lim

s∈S
ms ∈ S \ nA} ∈ q so pick m ∈ N

such that r-lim
s∈S

ms ∈ S \ nA. Then {s ∈ S : ms ∈ S \ nA} ∈ r.

Pick B ∈ A such that mB ⊆ A. Then nB ∈ r so pick s ∈ nB such
that ms ∈ S \A. Then s = nt for some t ∈ B and ms = nmt ∈ nA,
a contradiction.

To see that p /∈ S suppose instead that p ∈ S. Then {n ∈ N :
r-lim

s∈S
ns = p} ∈ q so pick n 6= m such that r-lim

s∈S
ns = p and

r-lim
s∈S

ms = p. Then there is some s ∈ S such that ns = ms,

contradicting the assumption that S is torsion free.
Let M be a u× v first entries matrix with nonnegative rational

entries. Let P ∈ p. Since p /∈ S, we may assume that 0 /∈ P . If
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Q = {n ∈ N : n� r ∈ P}, then Q ∈ q. By Theorem 1.3 pick ~x ∈ Nv

such that, if M~x = ~y ∈ Nu, then yi ∈ Q for every i ∈ {1, 2, · · · , u}.
Now {s ∈ S : yis ∈ P} ∈ r for every i ∈ {1, 2, · · · , u} and so we
can choose s ∈ S \{0} such that yis ∈ P for every i ∈ {1, 2, · · · , u}.
Let ~t = (y1s, y2s, · · · , yus)T ∈ (S \ {0})u. Then M~t is defined and
all its entries are in P . �

Corollary 4.9. Let (S, +) be an infinite commutative and weakly
cancellative semigroup with identity 0 which is torsion-free. Then
there exists p ∈ (βSd \ S) ∩

⋂
n∈N nS such that every member of

p contains an image of every first entries matrix with nonnegative
rational entries.

Proof. This is immediate from Theorem 4.8, with A = {S}. �

In an arbitrary commutative semigroup (S, +), it may make no
sense to allow entries of a matrix to be negative since −x may not
mean anything in S. If S is a group, it does make sense, and we get
a nearly verbatim version of Theorem 4.3 allowing entries of M to
be negative. (Though recall that in a first entries matrix, all first
entries are positive.)

Theorem 4.10. Let (S, +) be an abelian group, let A ⊆ P(S), let
u, v ∈ N, let M be a u× v first entries matrix with entries from Z,
and assume that

(1) (∀A ∈ A)(∀B ∈ A)(A ∩B ∈ A);
(2) A 6= ∅ and ∅ /∈ A;
(3) (∀A ∈ A)(∀a ∈ A)(∃B ∈ A)(a + B ⊆ A); and
(4) (∀A ∈ A)(∃B ∈ A)(B + B ⊆ A).

Let T =
⋂

A∈A A. Then T is a subsemigroup of βSd. If p is an
idempotent in K(T ) ∩

⋂
A∈A

⋂
c∈P (M) cA and C ∈ p, then for all

A ∈ A there exists ~x ∈ Av such that M~x ∈ Cu. In particular, if M
is monic, then every member of every idempotent in K(T ) contains
an image of M .

If we assume, in addition, that S is torsion free, there is an
ultrafilter q ∈ T with the property that every member of q contains
an image of every first entries matrix over Q.
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Proof. Let k = 1 + max
{
|mi,j | : i ∈ {1, 2, . . . , u} and j ∈ {1, 2, . . . ,

v}
}
. Define a v × v matrix E by, for t, j ∈ {1, 2, . . . , v},

et,j =
{

kj−t if j ≥ t
0 if j < t .

Then E is a monic first entries matrix with entries from ω, ME is
a first entries matrix with entries from ω, and P (ME) = P (M).
(This is easy to verify, or see [10, Lemma 15.14].)

Let A ∈ A. By Lemma 4.1 pick B ∈ A such that for all ~y ∈ Bv,
E~y ∈ Av. By Theorem 4.3 pick ~y ∈ Bv such that ME~y ∈ Cu. Let
~x = E~y.

The claim made in the case in which S is torsion free follows in
the same way from Theorem 4.8. �

The following corollary follows from Theorem 4.10 in the same
way that Corollary 4.4 followed from Theorem 4.3.

Corollary 4.11. Let (S, +) be a nondiscrete abelian Hausdorff
topological group. Let A = {A : A is a neighborhood of 0}, let
T =

⋂
A∈A A, let u, v ∈ N, and let M be a u × v monic first en-

tries matrix with entries from Z. Then T is a subsemigroup of βSd

and K(T ) ⊆ βSd \ S so there are minimal idempotents of K(T ) in
βSd \ S. In particular, whenever A ∈ A, r ∈ N, and A =

⋃r
i=1 Ci,

there exist i ∈ {1, 2, . . . , r} and ~x ∈ (Ci)v such that Ci is infinite
and M~x ∈ (Ci)u.

If, in addition, S is torsion free, there is an element q ∈ T with
the property that every member of q contains an image of every first
entries matrix over Q.
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