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Some Combinatorially defined Subsets
of βN and their Relation to the Idempotents

Neil Hindman1

and

Dona Strauss

Abstract. Members of idempotents in (βN, +), especially those in the smallest ideal,
have strong combinatorial properties. And the closure Γ of the set of idempotents has a
simple combinatorial description. We investigate here the relationships among several
subsets of βN that have simple combinatorial descriptions, as well as the semigroups
they generate and their closures.

1. Introduction

In 1974, the following theorem was proved.

1.1 Theorem. Let r ∈ N and let N =
⋃r

i=1 Ci. There exist i ∈ {1, 2, . . . , r} and a
sequence 〈xt〉∞t=1 such that FS(〈xt〉∞t=1) ⊆ Ci, where

FS(〈xt〉∞t=1) = {
∑

t∈F xt : F ∈ Pf (N)}

and Pf (N) is the set of finite nonempty subsets of N.

Proof. [8].

The proof given in [8] was elementary but very complicated. Another, less compli-
cated, elementary proof was found by Baumgartner [2]. Subsequently a much simpler
proof was found by F. Galvin and S. Glazer. (See the notes to Chapter 5 of [11] for an
account of the discovery of this proof.) The crux of this simpler proof is that ordinary
addition on N can be extended to its Stone-Čech compactification βN so that (βN,+)
becomes a right topological semigroup (meaning that for each p ∈ βN, the function
ρp : βN → βN is continuous, where ρp(q) = q + p) with N contained in its topological
center (meaning that for each x ∈ N, the function λx : βN → βN is continuous, where
λx(q) = x + q). Any compact Hausdorff right topological semigroup has idempotents
[5, Corollary 2.10]. And idempotents are intimately related to finite sums sets.

1 This author acknowledges support received from the National Science Foundation via Grant
DMS-0852512.
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1.2 Theorem. Let A ⊆ N. There is an idempotent p ∈ c`A if and only if there is a
sequence 〈xt〉∞t=1 in N with FS(〈xt〉∞t=1) ⊆ A.

Proof. [11, Theorem 5.12].

We take the points of βN to be the ultrafilters on N, identifying the principal
ultrafilters with the points of N. Given A ⊆ N and p ∈ βN, one has that p ∈ c`A = A

if and only if A ∈ p. If p, q ∈ βN and A ⊆ N, one has that A ∈ p + q if and only if
{x ∈ N : −x + A ∈ q} ∈ p. The set {A : A ⊆ N} is a basis for the open sets and a basis
for the closed sets of βN.

1.3 Definition. Γ = {p ∈ βN : (∀A ∈ p)(∃〈xt〉∞t=1)(FS(〈xt〉∞t=1) ⊆ A}.

As an immediate consequence of Theorem 1.2 one has that Γ = c`{p ∈ βN : p+p =
p}.

In [7], H. Furstenberg defined central subsets of N in terms of some notions from
topological dynamics and proved the Central Sets Theorem. Given sets A and B, we
let AB be the set of functions from A to B.

1.4 Theorem. Let A be a central subset of N and let F ∈ Pf

( NZ
)
. There exist a

sequence 〈an〉∞n=1 in N and a sequence 〈Hn〉∞n=1 in Pf (N) such that

(1) for each n ∈ N, max Hn < minHn+1 and

(2) for each K ∈ Pf (N) and each f ∈ F ,
∑

n∈K

(
an +

∑
t∈Hn

f(t)
)
∈ A.

Proof. [7, Proposition 8.21].

Central subsets of N have remarkably strong combinatorial properties. For example,
they contain solutions to any partition regular system of homogenous linear equations
in N. See [11, Chapters 14 and 15] for many more examples.

Any compact Hausdorff right topological semigroup S has important algebraic
properties. A non-empty subset V of S is a left ideal if SV ⊆ V , a right ideal if
V S ⊆ V , and an ideal if it is both a left and a right ideal. Every left ideal of S contains
a minimal left ideal, and every right ideal of S contains a minimal right ideal. S has a
smallest two sided ideal K(S), which is the union of all the minimal left ideals of S and
the union of all the minimal right ideals of S. The intersection of any minimal left ideal
and any minimal right ideal of S is a group. In particular, it contains an idempotent
and so the set E(S) of idempotents of S is non-empty. An idempotent in S is called
minimal if it is in K(S), and this is equivalent to being minimal for the ordering defined
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on idempotents by stating that p ≤ q if p + q = q + p = p. Proofs of these statements
can be found in [11, Theorems 1.38 and 1.51].

In [3] it was shown, with the assistance of B. Weiss, that a subset A of N is central if
and only if it is a member of a minimal idempotent. (This equivalence was subsequently
extended to arbitrary semigroups by H. Shi and H. Yang [14].)

We thus see that members of idempotents have strong combinatorial properties,
and members of idempotents in K(βN) have even stronger combinatorial properties.
We shall be interested in this paper in several subsets of βN that are defined by at least
superficially weaker combinatorial properties. We mention one of these first, because of
its relationship to an open problem of relatively long standing.

1.5 Definition. Let k ∈ N \ {1}.
(a) Given a sequence 〈xt〉∞t=1 in N,

FS≤k(〈xt〉∞t=1) = {
∑

t∈F xt : F ∈ Pf (N) and |F | ≤ k}.
(b) Fk = {p ∈ βN : (∀A ∈ p)(∃〈xt〉∞t=1)(FS≤k(〈xt〉∞t=1) ⊆ A)}.

1.6 Definition.

(a) For n ∈ N, the support of n, supp(n), is the finite nonempty subset of ω =
{0, 1, 2, . . .} such that n =

∑
t∈supp(n) 2t.

(b) For x, y ∈ N, x << y if and only if max supp(x) < min supp(y).

We see that members of Fk(N) for k ≥ 2 enjoy a property which might, at first
sight, seem to be stronger than their defining property.

1.7 Lemma. Let k ∈ N \ {1}, let p ∈ Fk(N), and let A ∈ p. Then there exists a
sequence 〈xt〉∞t=1 such that FS≤k(〈xt〉∞t=1) ⊆ A and for each t ∈ N, xt << xt+1.

Proof. Let B0 = {x ∈ A : min supp(x) is even} and let B1 = {x ∈ A : min supp(x)
is odd}. Pick i ∈ {0, 1} such that Bi ∈ p and pick a sequence 〈xt〉∞t=1 such that
FS≤k(〈xt〉∞t=1) ⊆ Bi. We note that no three of these have the same minimum of their
supports. Indeed, suppose that n < m < r and min supp(xn) = min supp(xm) =
min supp(xr) = k. Then some two have k +1 in their support or some two do not have
k +1 in their support. Say these two are xm and xn. Then min supp(xn +xm) = k +1
so xn + xm /∈ Bi.

Since no three terms have the same minimum of their supports, we can choose a
subsequence 〈yt〉∞t=1 of 〈xt〉∞t=1 such that for each n, yn << yn+1.

A favorite problem of I. Leader is whether there is a proof that whenever r ∈ N and
N =

⋃r
i=1 Ci, there must exist i ∈ {1, 2, . . . , r} and 〈xt〉∞t=1 such that FS≤2(〈xt〉∞t=1) ⊆
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Ci that does not also prove the Finite Sums Theorem (Theorem 1.1). The question is
asked in this form in [9, Question 12].

If one wants to be picky, the answer to the question phrased in this fashion is “yes”.
For example, one may take an idempotent p in βN and let N =

⋃r
i=1 Ci. Then pick

i ∈ {1, 2, . . . , r} such that Ci ∈ p and let B = {x ∈ Ci : −x + Ci ∈ p}. Then B ∈ p so
pick x1 ∈ B and inductively pick xn+1 ∈ B∩

⋂n
k=1(−xk+Ci). Then FS≤2(〈xt〉∞t=1) ⊆ Ci

and one certainly does not know that FS(〈xt〉∞t=1) ⊆ Ci. However, since Ci ∈ p one
does in fact have by Theorem 1.2 that there does exist 〈yt〉∞t=1 with FS(〈yt〉∞t=1) ⊆ Ci.

In [4, Question 8.1] Leader rephrased the question as follows to make it more precise.

1.8 Question. Does there exist a set A ⊆ N such that whenever r ∈ N and A =
⋃r

i=1 Ci,
there must exist i ∈ {1, 2, . . . , r} and 〈xt〉∞t=1 such that FS≤2(〈xt〉∞t=1) ⊆ Ci, but there
does not exist 〈yt〉∞t=1 with FS(〈yt〉∞t=1) ⊆ A?

An affirmative answer to Question 1.8 is equivalent to the assertion that Γ 6= F2. On
the one hand, if p ∈ F2\Γ and A ∈ p such that there is no 〈yt〉∞t=1 with FS(〈yt〉∞t=1) ⊆ A,
then A provides an affirmative answer to Question 1.8. The other implication is an
immediate consequence of the following lemma, which we shall be using frequently.

1.9 Lemma. Let A be a set of subsets of N such that whenever A ∈ A and A ⊆ B ⊆ N,
one has B ∈ A and let R = {A ⊆ N : whenever r ∈ N and A =

⋃r
i=1 Ci, there exists

i ∈ {1, 2, . . . , r} such that Ci ∈ A}. Given any A ∈ R, there exists p ∈ βN such that
A ∈ p and p ⊆ A.

Proof. One notes that if A ∈ R, r ∈ N, and A =
⋃r

i=1 Ci, then some Ci ∈ R. Thus
[11, Theorem 3.11] applies.

We pause to point out that Question 1.8 makes sense in any semigroup (S, +).
(If the operation is not commutative one needs to specify the order of the sums in
FS≤2(〈xt〉∞t=1) and FS(〈xt〉∞t=1). Standardly they would be taken in increasing order.)
We shall see in Theorem 1.11 that a negative answer to Question 1.8 would have to
involve special properties of the semigroup (N,+).

Recall the infinite version of Ramsey’s Theorem. Given a set X and a cardinal k,
[X]k = {A ⊆ X : |A| = k}.

1.10 Theorem. Let k, r ∈ N. If |X| = ω and [X]k =
⋃r

i=1 Di, then there exists
i ∈ {1, 2, . . . , r} and B ∈ [X]ω such that [B]k ⊆ Di.

Proof. [13].
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1.11 Theorem. Let (G, +) be a direct sum of infinitely many copies of Z2. There exists
a set A ⊆ G such that whenever r ∈ N and A =

⋃r
i=1 Ci, there must exist i ∈ {1, 2,

. . . , r} and 〈xt〉∞t=1 such that FS≤2(〈xt〉∞t=1) ⊆ Ci, but there does not exist 〈yt〉∞t=1 with
FS(〈yt〉∞t=1) ⊆ A.

Proof. Viewing G as a vector space over Z2, choose a sequence 〈en〉∞n=1 of linearly
independent members of G. Let A = {en + em : n, m ∈ N and n 6= m}. There do not
exist x1, x2, x3 ∈ A such that FS(〈xt〉3t=1) ⊆ A.

Let r ∈ N and let A =
⋃r

i=1 Ci. For i ∈ {1, 2, . . . , r}, let Di =
{
{n, m} ∈ [N]2 :

en + em ∈ Ci

}
. Pick by Ramsey’s Theorem some i ∈ {1, 2, . . . , r} and B ∈ [N]ω such

that [B]2 ⊆ Di. Then {en + em : {n, m} ∈ [B]2} ⊆ Ci. Pick k ∈ B and enumerate
B \ {k} as 〈nt〉∞t=1. For t ∈ N, let xt = ek + ent . Then FS≤2(〈xt〉∞t=1) ⊆ Ci.

Defining F2(S) = {p ∈ βS : (∀A ∈ p)(∃〈xt〉∞t=1)(FS≤2(〈xt〉∞t=1) ⊆ A)} and Γ(S) =
{p ∈ βS : (∀A ∈ p)(∃〈xt〉∞t=1)(FS(〈xt〉∞t=1) ⊆ A)}, one sees as a consequence of Theorem
1.11 that, if S is an infinite group of index 2, then F2(S) 6= Γ(S).

Since we cannot answer Question 1.8, we do not know whether for some k ∈ N\{1}
Fk+1 6= Fk, nor do we know whether this holds for all such k.

We now introduce the other subsets of βN with which we shall be concerned. Given
a finite sequence 〈xt〉kt=1, FS(〈xt〉kt=1) =

{ ∑
t∈F xt : ∅ 6= F ⊆ {1, 2, . . . , k}

}
.

1.12 Definition. Let k ∈ N \ {1}.

Pk = {p ∈ βN : (∀A ∈ p)(∃〈xt〉kt=1)(FS(〈xt〉kt=1) ⊆ A)} .

Sk = {p ∈ βN : (∀A ∈ p)(∃〈xt〉kt=1)

(x1 << x2 << . . . << xk and FS(〈xt〉kt=1) ⊆ A)} .

Mk = {p ∈ βN : (∀A ∈ p)(∃〈xt〉kt=1)(∃〈yt〉∞t=1)

(FS(〈xt〉kt=1) + FS(〈yt〉∞t=1) ⊆ A)} .

1.13 Definition.

(a) E = {p ∈ βN : p + p = p}.
(b) EK = {p ∈ K(βN) : p + p = p}.
(c) P =

⋂∞
k=2 Pk.

(d) M =
⋂∞

k=2 Mk.

(e) S =
⋂∞

k=2 Sk.

1.14 Lemma. Let k ∈ N \ {1}. Then Mk and Pk are subsemigroups of βN.
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Proof. That Pk is a semigroup was proved in [10, Lemma 2.3]. (What we are calling
Pk here was called Sk there.)

To see that Mk is a semigroup, let p, q ∈ Mk and let A ∈ p + q. Let

B = {x ∈ N : −x + A ∈ q} .

Then B ∈ p, so pick 〈xt〉kt=1 and 〈yt〉∞t=1 such that FS(〈xt〉kt=1) + FS(〈yt〉∞t=1) ⊆ B. In
particular FS(〈xt + yt〉kt=1) ⊆ B. Let C =

⋂
{−v + A : v ∈ FS(〈xt + yt〉kt=1)}. Then

C ∈ q so pick 〈wt〉kt=1 and 〈zt〉∞t=1 such that FS(〈wt〉kt=1) + FS(〈zt〉∞t=1) ⊆ C. Then
FS(〈xt + yt + wt〉kt=1) + FS(〈zt〉∞t=1) ⊆ A.

As a consequence of Lemma 1.14 one also has that P and M are subsemigroups
of βN. It is a consequence of results of Section 3 that none of the other sets defined in
Definitions 1.12 and 1.13 is a semigroup.

1.15 Definition. Given H ⊆ βN,
〈
H

〉
is the subsemigroup generated by H.

It is immediate from the definitions that all of the objects defined in Definitions
1.12 and 1.13 except E and EK are closed.

In Section 2 we shall investigate the relationships that hold among Fk, Sk, Pk, and
Mk for various values of k. Except for our already confessed ignorance about whether
any or all Fk = Γ, we shall determine precisely which inclusions hold, namely only the
trivial ones.

In Section 3 we shall investigate the relationships that hold among EK, E, Γ,
F2, S2, P2, S, M , and P , and the semigroups they generate and the closures of those
generated semigroups. Again, with the same exceptions regarding F2 we will show that
the only inclusions that hold among them are the trivial ones.

2. Sets determined by finitely many sums

By virtue of Lemma 1.7 we have that for each k ∈ N \ {1}, Fk ⊆ Sk. All of the other
inclusions in the following diagram (wherein the fact that A ⊆ B is indicated by an
arrow from A to B) are trivial.
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P2

↗↑↖
S2 P3 M2

↗ ↑↗↑↖↑
F2 S3 P4 M3

↑↗↑↗↑↖↑
F3 S4 P5 M4
...

...
...

...

Figure 1

Trivially Γ is a subset of each of the sets in Figure 1 We do not know whether
Fk = Γ for some or all k ∈ N \ {1}. We show in this section that, with that glaring gap,
the only inclusions that hold among the sets in Figure 1 are those that follow from the
indicated inclusions.

Recall the finite version of Ramsey’s Theorem.

2.1 Theorem. Let k, r, n ∈ N. There exists m ∈ N such that if |X| = m and [X]k =⋃r
i=1 Di, there exists i ∈ {1, 2, . . . , r} and B ∈ [X]n such that [B]k ⊆ Di.

Proof. [13].

The following theorem lies behind many of the facts of this section. We let
FU(〈Ft〉kt=1) =

{ ⋃
t∈H Ft : ∅ 6= H ⊆ {1, 2, . . . , k}

}
.

2.2 Theorem. (Nešetřil and Rödl). Let r, k ∈ N There is a finite set S of finite
nonempty sets such that:

(1) Whenever S =
⋃r

i=1Di, there exist i ∈ {1, 2, . . . , r} and pairwise disjoint
F1, F2, . . . , Fk in S with FU(〈Ft〉kt=1) ⊆ Di and

(2) there do not exist pairwise disjoint F1, F2, . . . , Fk+1 in S with FU(〈Ft〉k+1
t=1 ) ⊆ S.

Proof. [12, Theorem 1.1]. (Or see [6, p. 126].) (The fact that S and the members of
S are finite is not stated, but follows from the proof.)

Properly interpreted, the proof of [12, Theorem 1.1] produces the following family
for k = 2 and arbitrary r. For u, v ∈ N with u < v, let Au,v = {u, u + 1, . . . , v − 1}.
By Theorem 2.1, pick m ∈ N such that whenever |X| = m and [X]2 =

⋃r
i=1 Di, there

exists i ∈ {1, 2} and B ∈ [X]3 such that [B]2 ⊆ Di. Let S = {Au,v : 1 ≤ u < v ≤ m}.
Given that S =

⋃r
i=1Di, for each i ∈ {1, 2, . . . , r}, let Di =

{
{u, v} : 1 ≤ u < v ≤
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m and Au,v ∈ Di

}
. Pick i ∈ {1, 2, . . . , r} and u, v, w with 1 ≤ u < v < w ≤ m such that{

{u, v}, {u, w}, {v, w}
}
⊆ Di. Then {Au,v, Au,w, Av,w} ⊆ Di. Thus if F1 = Au,v and

F2 = Av,w one has that FU(〈Ft〉2t=1) ⊆ Di so (1) holds. Further, if u, v, w, z ∈ {1, 2,

. . . , m}, u < v, w < z, u ≤ w, Au,v ∈ S, Aw,z ∈ S, and Au,v ∪ Aw,z ∈ S, we must have
that v = w. Consequently, (2) holds.

The family in the paragraph above has the additional property that maxF1 <

minF2. Unfortunately, the proof of [12, Theorem 1.1] does not produce such increasing
sets for k > 2. We are grateful to Imre Leader for providing us with the proof of
Theorem 2.5 below in which increasing sets are guaranteed.

2.3 Lemma. Let k, r ∈ N. There exists S ∈ Pf (N) such that

(1) whenever S =
⋃r

i=1 Ci, there exist i ∈ {1, 2, . . . , r} and a sequence 〈xt〉kt=1 such
that FS(〈xt〉kt=1) ⊆ Ci and

(2) there does not exist a sequence 〈xt〉k+1
t=1 such that FS(〈xt〉k+1

t=1 ) ⊆ S.

Proof. Pick a finite set S as guaranteed for k and r by Theorem 2.2. We may presume
that

⋃
S ⊆ N. Let S = {

∑
t∈F 3t : F ∈ S}.

To verify (1), let S =
⋃r

i=1 Ci. For i ∈ {1, 2, . . . , r}, let

Di = {F ∈ S :
∑

t∈F 3t ∈ Ci} .

Pick i ∈ {1, 2, . . . , r} and pairwise disjoint F1, F2, . . . , Fk in S such that FU(〈Ft〉kt=1) ⊆
Di. For n ∈ {1, 2, . . . , k}, let xn =

∑
t∈Fn

3t.

To verify (2), suppose that we have a sequence 〈xn〉k+1
n=1 such that FS(〈xn〉k+1

n=1) ⊆ S.
For n ∈ {1, 2, . . . , k+1} let Fn be the member of S such that xn =

∑
t∈Fn

3t. If n 6= m,
then Fn ∩ Fm = ∅ since otherwise xn + xm would have a 2 in its ternary expansion,
which none of the members of S have. Then FU(〈Fn〉k+1

n=1) ⊆ S, a contradiction.

2.4 Lemma. Let m, r ∈ N and let S ∈ Pf (N). There exists X ∈ Pf (N) such that
whenever Pf (X) =

⋃r
i=1Di, there exists Y ∈ [X]m and for each x ∈ S there exists

i(x) ∈ {1, 2, . . . , r} such that [Y ]x ⊆ Di(x).

Proof. We proceed by induction on |S|, the case |S| = 1 being an immediate conse-
quence of Theorem 2.1. Now assume that |S| > 1 and the result holds for smaller sets.
Pick z ∈ S and pick by Theorem 2.1, n ∈ N such that if |W | = n and [W ]z =

⋃r
i=1Di,

there exist Y ∈ [W ]m and i(z) ∈ {1, 2, . . . , r} such that [Y ]z ⊆ Di(z).

Pick X as guaranteed by the induction hypothesis for n, r, and S \ {z}. Let
Pf (X) =

⋃r
i=1Di and pick W ∈ [X]n and for each x ∈ S \ {z} pick i(x) ∈ {1, 2, . . . , r}
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such that [W ]x ⊆ Di(x). Pick Y ∈ [W ]m and i(z) ∈ {1, 2, . . . , r} such that [Y ]z ⊆ Di(z).

2.5 Theorem. Let r, k ∈ N There is a finite set S of finite nonempty subsets of N such
that:

(1) Whenever S =
⋃r

i=1Di, there exist i ∈ {1, 2, . . . , r} and F1, F2, . . . , Fk in S such
that for each t ∈ {1, 2, . . . , k − 1}, max Ft < minFt+1, and FU(〈Ft〉kt=1) ⊆ Di and

(2) there do not exist pairwise disjoint F1, F2, . . . , Fk+1 in S with FU(〈Ft〉k+1
t=1 ) ⊆ S.

Proof. Let S be as guaranteed by Lemmma 2.3 and let m = k · max S. Pick X as
guaranteed by Lemma 2.4 for m and r. Let S = {B ⊆ X : |B| ∈ S}.

To verify (1), let S =
⋃r

i=1Di. For i ∈ {2, 3, . . . , r} let Ei = Di and let E1 =
Pf (X) \

⋃r
i=2Di. Pick Y ∈ [X]m and for each x ∈ S pick i(x) ∈ {1, 2, . . . , r} such that

[Y ]x ⊆ Ei(x). For i ∈ {1, 2, . . . , r}, let Ci = {x ∈ S : i(x) = i}. Pick i ∈ {1, 2, . . . , r} and
〈xt〉kt=1 such that FS(〈xt〉kt=1) ⊆ Ci.

Enumerate Y in order as 〈yt〉mt=1. Let F1 = {y1, y2, . . . , yx1}. For t ∈ {2, 3, . . . , k},
let Ft = {ys :

∑t−1
j=1 xj < s ≤

∑t
j=1 xj}. Then for each t ∈ {1, 2, . . . , k − 1}, maxFt <

minFt+1 and for each t ∈ {1, 2, . . . , k}, |Ft| = xt. To see that FU(〈Ft〉kt=1) ⊆ Di, let
∅ 6= H ⊆ {1, 2, . . . , k}. Let z =

∑
t∈H xt. Then

⋃
t∈H Ft ∈ [Y ]z and i(z) = i so⋃

t∈H Ft ∈ Ei. Since z ∈ S,
⋃

t∈H Ft ∈ S so
⋃

t∈H Ft ∈ Di.

To verify (2), suppose we have pairwise disjoint F1, F2, . . . , Fk+1 in S such that
FU(〈Ft〉k+1

t=1 ) ⊆ S. For each t ∈ {1, 2, . . . , k + 1}, let xt = |Ft|. Then FS(〈xt〉k+1
t=1 ) ⊆ S,

a contradiction.

The proof of the following corollary can be taken nearly verbatim from the proof
of [10, Corollary 3.8], so we omit it here. (Much of that argument can be taken from
the proof of Theorem 2.8 also.)

2.6 Corollary. Let k ∈ N \ {1}. There is a set A ⊆ N such that

(1) Whenever r ∈ N and A =
⋃r

i=1 Ci there exist i ∈ {1, 2, . . . , r} and a sequence
〈xt〉kt=1 such that x1 << x2 << . . . << xk and FS(〈xt〉kt=1) ⊆ Ci and

(2) there does not exist a sequence 〈xt〉k+1
t=1 with FS(〈xt〉k+1

t=1 ) ⊆ A.

2.7 Theorem. For each k ∈ N \ {1}, Sk \ Pk+1 6= ∅.
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Proof. Let

R = {A ⊆ N : whenever r ∈ N and A =
⋃r

i=1 Ci ,

there exist i ∈ {1, 2, . . . , r} and 〈xt〉kt=1 such that

x1 << x2 << . . . << xk and FS(〈xt〉kt=1) ⊆ Ci} .

Pick A as guaranteed by Corollary 2.6. By Lemma 1.9 pick p ∈ Sk ∩ c`A. Since A ∈ p,
p /∈ Pk+1.

2.8 Theorem. Let k ∈ N \ {1}. Then Mk \ Pk+1 6= ∅.

Proof. For each r ∈ N, pick by Theorem 2.2 a finite set Sr of finite nonempty subsets
of N such that:

(1) Whenever Sr =
⋃r

i=1Di, there exist i ∈ {1, 2, . . . , r} and pairwise disjoint
F1, F2, . . . , Fk in Sr with FU(〈Ft〉kt=1) ⊆ Di;

(2) there do not exist pairwise disjoint F1, F2, . . . , Fk+1 in Sr with FU(〈Ft〉k+1
t=1 ) ⊆ Sr;

and

(3) r + max
⋃
Sr < min

⋃
Sr+1.

For each r, let ar = max
⋃
Sr and let B =

⋃∞
r=1{ar + 1, ar + 2, . . . , ar + r}. Let

D = {
∑

t∈F 3t +
∑

t∈G 3t : G ∈ Pf (B) and (∃r)(F ∈ Sr)}. Let

R = {A ⊆ N : whenever r ∈ N and A =
⋃r

i=1 Ci ,

there exist i ∈ {1, 2, . . . , r} and sequences〈xt〉kt=1 and 〈yt〉∞t=1

such that FS(〈xt〉kt=1) + FS(〈yt〉∞t=1) ⊆ Ci} .

We claim that D ∈ R so that by Lemma 1.9, D ∩Mk 6= ∅.
So let r ∈ N and let D =

⋃r
i=1 Ci. By |Sr| repetitions of [11, Corollary 5.17] pick

a sequence 〈Gn〉∞n=1 in Pf (B) such that for each n, maxGn < minGn+1, and for each
F ∈ Sr there exists i(F ) ∈ {1, 2, . . . , r} such that

{
∑

t∈F 3t +
∑

t∈H 3t : H ∈ FU(〈Gn〉∞n=1} ⊆ Ci(F ) .

For i ∈ {1, 2, . . . , r}, let Di = {F ∈ Sr : i(F ) = i} and pick i ∈ {1, 2, . . . , r} and
pairwise disjoint F1, F2, . . . , Fk ∈ Sr such that FU(〈Ft〉kt=1) ⊆ Di. For t ∈ {1, 2, . . . , k},
let xt =

∑
n∈Ft

3n and for t ∈ N, let yt =
∑

n∈Gt
3n. Then FS(〈xt〉kt=1)+FS(〈yt〉∞t=1) ⊆

Ci. We thus have D ∩Mk 6= ∅.
Suppose now that D ∩ Pk+1 6= ∅ and pick 〈xn〉k+1

n=1 such that FS(〈xn〉k+1
n=1) ⊆ D.

For each n ∈ {1, 2, . . . , k + 1}, pick r(n) ∈ N, Fn ∈ Sr(n), and Gn ∈ Pf (B) such that
xn =

∑
t∈Fn

3t +
∑

t∈Gn
3t. Note that if n 6= l, then (Fn ∪Gn)∩ (Fl ∪Gl) = ∅ because

xn + xl ∈ D and so has all 1’s in its ternary expansion. Since any member of D has
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ternary support meeting exactly one Sr, we have that there is some r such that r(n) = r

for all n ∈ {1, 2, . . . , k + 1}. But now, FU(〈Fn〉k+1
n=1) ⊆ Sr, a contradiction.

We extend the notion of a sum subsystem defined in [11, Definition 5.13] for infinite
sequences in the obvious way to apply to finite sequences.

2.9 Definition. Let n, k ∈ N and let 〈yt〉nt=1 be a sequence in N. Then 〈xt〉kt=1 is a sum
subsystem of 〈yt〉nt=1 if and only if there exists a sequence 〈Ft〉kt=1 in Pf ({1, 2, . . . , n})
such that for each t ∈ {1, 2, . . . , k}, xt =

∑
s∈Ft

ys and for each t ∈ {1, 2, . . . , k − 1},
max Ft < minFt+1.

2.10 Lemma. Let k, r ∈ N. There exists n ∈ N such that whenever 〈yt〉nt=1 is a
sequence in N and FS(〈yt〉nt=1) =

⋃r
i=1 Ci, there exist i ∈ {1, 2, . . . , r} and a sum

subsystem 〈xt〉kt=1 of 〈yt〉nt=1 such that FS(〈xt〉kt=1) ⊆ Ci.

Proof. This follows from [11, Corollary 5.15] by a standard compactness argument.
(See [11, Section 5.5].)

2.11 Theorem. Let D =
{
x ∈ N : (∃n ∈ N)(supp(x) ⊆ {2n + 1, 2n + 2, . . . , 2n + n}

}
.

Then D ∩ S 6= ∅, D ∩ M2 = ∅, D ∩ F2 = ∅, and D ∩ (βN + F2) = ∅. In particular,
S \M2 6= ∅ and S \ c`

〈
F2

〉
6= ∅.

Proof. To see that D ∩ S 6= ∅, it suffices to let k ∈ N and show that D ∩ Sk 6= ∅. (For
then, {D∩Sk : k ∈ N} is a collection of closed subsets of βN with the finite intersection
property.) So let k ∈ N. Let

R = {A ⊆ N : whenever r ∈ N and A =
⋃r

i=1 Ci ,

there exist i ∈ {1, 2, . . . , r} and 〈xt〉kt=1 such that

x1 << x2 << . . . << xk and FS(〈xt〉kt=1) ⊆ Ci} .

To see that D∩Sk 6= ∅, it suffices by Lemma 1.9 to show that D ∈ R. So let r ∈ N and
let D =

⋃r
i=1 Ci.

Pick by Lemma 2.10, n ∈ N such that whenever 〈yt〉nt=1 is a sequence in N and
FS(〈yt〉nt=1) =

⋃r
i=1 Ei, there exist i ∈ {1, 2, . . . , r} and a sum subsystem 〈xt〉kt=1 of

〈yt〉nt=1 such that FS(〈xt〉kt=1) ⊆ Ei. For t ∈ {1, 2, . . . , n} let yt = 22n+t. Pick i ∈ {1, 2,

. . . , r} and a sum subsystem 〈xt〉kt=1 of 〈yt〉nt=1 such that FS(〈xt〉kt=1) ⊆ Ci. Since
〈xt〉kt=1 is a sum subsystem of 〈yt〉nt=1 we have that x1 << x2 << . . . << xk.

To see that D ∩ M2 = ∅ suppose instead we have x1, x2, and 〈yt〉∞t=1 such that
FS(〈xt〉2t=1)+FS(〈yt〉∞t=1) ⊆ D. By passing to a sum subsystem, we may presume that
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for each t ∈ N, yt << yt+1. Pick n such that supp(x1 +y1) ⊆ {2n +1, 2n +2, . . . , 2n +n}
and pick t such that min supp(yt) > 2n + n. Then x1 + y1 + yt /∈ D, a contradiction.

To see that D∩F2 = ∅, suppose instead that D∩F2 6= ∅ and pick by Lemma 1.7 a
sequence 〈xt〉∞t=1 such that FS≤2(〈xt〉∞t=1) ⊆ D and for each t ∈ N, xt << xt+1. Pick n

such that supp(x1) ⊆ {2n + 1, 2n + 2, . . . , 2n + n} and pick t such that min supp(xt) >

2n + n. Then x1 + xt /∈ D, a contradiction.

To see that D ∩ (βN + F2) = ∅, suppose instead we have p ∈ βN and q ∈ F2 such
that D ∈ p + q. Then {z ∈ N : −z + D ∈ q} ∈ p so pick z ∈ N such that −z + D ∈ q.
Pick by Lemma 1.7 a sequence 〈xt〉∞t=1 such that FS≤2(〈xt〉∞t=1) ⊆ −z + D and for
each t ∈ N, xt << xt+1. Pick n such that max supp(z) < 2n and pick t such that
min supp(xt) > 2n. Then xt /∈ −z + D, a contradiction.

Since
〈
F2

〉
⊆ F2 ∪ (βN + F2) we have that S \ c`

〈
F2

〉
6= ∅.

A subsemigroup known to contain much of the algebraic structure of βN (and with
copies arising in many contexts) is H. (See [11, Sections 6.1 and 7.2].)

2.12 Definition. H =
⋂∞

n=1 2nN.

2.13 Lemma. P2 ⊆ H.

Proof. Let p ∈ P2 and suppose that p /∈ H. Pick the least n ∈ N such that 2nN /∈ p.
Then 2nN + 2n−1 ∈ p. Pick x and y such that {x, y, x + y} ⊆ 2nN + 2n−1. then
min supp(x) = min supp(y) = n− 1 and so min supp(x + y) > n− 1, a contradiction.

2.14 Theorem. There is a set D ⊆ N such that D ∩ M 6= ∅, D ∩ S2 = ∅, and
D ∩ (H + H) = ∅. In particular, M \ c`

〈
S2

〉
6= ∅.

Proof. For n ∈ N, let An = {2n + 1, 2n + 2, . . . , 2n + n} and let 〈Bn〉∞n=1 be a sequence
of pairwise disjoint infinite subsets of N \

⋃∞
n=1 An with minBn > 2n + n for each n.

Let D = {x + y : (∃n ∈ N)(supp(x) ⊆ An and supp(y) ⊆ Bn)}.
To see that D ∩M 6= ∅ we let k ∈ N and show that D ∩Mk 6= ∅. Let

R = {A ⊆ N : whenever r ∈ N and A =
⋃r

i=1 Ci ,

there exist i ∈ {1, 2, . . . , r} and sequences〈xt〉kt=1 and 〈yt〉∞t=1

such that FS(〈xt〉kt=1) + FS(〈yt〉∞t=1) ⊆ Ci} .

By Lemma 1.9 it suffices to show that D ∈ R. So let r ∈ N and let D =
⋃r

i=1 Ci. Pick by
Lemma 2.10 some n ∈ N such that given any sequence 〈zt〉nt=1, if FS(〈zt〉nt=1) =

⋃r
i=1 Ei,
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there exist i ∈ {1, 2, . . . , r} and 〈xt〉kt=1 such that FS(〈xt〉kt=1) ⊆ Ei. For t ∈ {1, 2, . . . ,

n}, let zt = 22n+t.

By 2n − 1 repeated applications of [11, Corollary 5.15] choose a sum subsystem
〈yt〉∞t=1 of 〈2t〉t∈Bn such that for each w ∈ FS(〈zt〉nt=1) there exists i(w) ∈ {1, 2, . . . , r}
such that w + FS(〈yt〉∞t=1) ⊆ Ci(w). For i ∈ {1, 2, . . . , r}, let

Ei = {w ∈ FS(〈zt〉nt=1) : i(w) = i} .

Pick i ∈ {1, 2, . . . , r} and 〈xt〉kt=1 such that FS(〈xt〉kt=1) ⊆ Ei. Then FS(〈xt〉kt=1) +
FS(〈yt〉∞t=1) ⊆ Ci.

To see that D ∩ S2 = ∅, suppose instead that we have u << v such that {u, v, u +
v} ⊆ D. Then there exist n, m, x1, x2, y1, and y2 such that u = x1 + y1, v =
x2 + y2, supp(x1) ⊆ An, supp(y1) ⊆ Bn, supp(x2) ⊆ Am, and supp(y2) ⊆ Bm. Since
supp(u + v) ∩ An 6= ∅ and supp(u + v) ∩ Am 6= ∅, we have that n = m. But now
max supp(u) > 2n + n ≥ min supp(v), a contradiction.

To see that D ∩ (H + H) = ∅ suppose instead that we have p, q ∈ H such that
D ∈ p + q. Then {w ∈ N : −w + D ∈ q} ∈ p. Pick w1 such that −w1 + D ∈ q

and pick n such that 2n > max supp(w1). Pick w2 such that min supp(w2) > 2n and
−w2+D ∈ q. Pick z ∈ (−w1+D)∩(−w2+D) such that min supp(z) > max supp(w2).
Then min supp(w1 + z) ∈ Ak for some k < n and min supp(w2 + z) ∈ Al for some
l ≥ n. But then max supp(z) ∈ Bk ∩Bl, a contradiction.

By Lemma 2.13, we have
〈
S2

〉
⊆ S2 ∪ (H + H), so M \ c`

〈
S2

〉
6= ∅.

Recall that we do not know that F2 6= Γ. If F2 = Γ, then F2 ⊆ Sk ∩ Pk ∩Mk for
each k ∈ N \ {1}.

2.15 Theorem. For any k, l ∈ N \ {1}, if A is any one of Sk, Pk, or Mk and B is
any one of Fl, Sl, Pl, or Ml, then A ⊆ B if and only if the inclusion follows from the
inclusions shown in Figure 1.

Proof. By Theorem 2.7 we have that each Sk \ Pk+1 6= ∅. By Theorem 2.8 we have
that each Mk \ Pk+1 6= ∅. By Theorem 2.11 we have for each k and l that Sk \Ml 6= ∅
and Sk \ Fl 6= ∅. By Theorem 2.14 we have for each k and l that Mk \ Sl 6= ∅ and
Mk \ Fl 6= ∅.

The next result is not related to any of our inclusions, but we feel it provides an
interesting relationship.

2.16 Theorem. Let k ∈ N. Then Pk + Γ ⊆6 Mk.
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Proof. Since Pk ⊆ H by Lemma 2.13 and Γ ⊆ H, we have by Theorem 2.14 that
Mk \ (Pk + Γ) 6= ∅.

To see that Pk + Γ ⊆ Mk, let p ∈ Pk, let q ∈ Γ, and let A ∈ p + q. Then
{x ∈ N : −x+A ∈ q} ∈ p so pick 〈xt〉kt=1 such that FS(〈xt〉kt=1) ⊆ {x ∈ N : −x+A ∈ q}.
Then

⋂
{−z + A : z ∈ FS(〈xt〉kt=1)} ∈ q so pick 〈yt〉∞t=1 such that FS(〈yt〉∞t=1) ⊆⋂

{−z + A : z ∈ FS(〈xt〉kt=1)}.

3. The generated semigroups and their closures

All of the inclusions indicated in the following diagram are trivial. We begin this section
by showing that no inclusion holds among the sets in Figure 2 unless it follows from the
diagramed ones.

P

↗↑
c`

〈
S

〉
M

↑↖↑〈
S

〉
c`

〈
Γ
〉

↑↖ ↑ ↖
S

〈
Γ
〉

c`
〈
E

〉
↖↑ ↖↗ ↑ ↖

Γ
〈
E

〉
c`

〈
EK

〉
↖ ↑ ↖ ↑

E
〈
EK

〉
↖ ↑

EK

Figure 2

The following lemma is certainly known by a number of people, but we cannot find
a convenient reference.

3.1 Lemma. Let q ∈ EK. Then for each n ∈ N, nq ∈ EK where nq is the product
computed in (βN, ·).

Proof. The mapping x 7→ nx from βN to itself is an injective homomorphism by [11,
Lemma 13.1 and Exercise 3.4.1]. So it maps idempotents to idempotents and preserves
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their order. And by [11, Lemma 6.6] all idempotents are in the range of this map. It
therefore maps minimal idempotents to minimal idempotents.

3.2 Theorem. c`
〈
EK

〉
\

〈
S2

〉
6= ∅.

Proof. We define functions f and g from N to ω by f(n) = min
(
supp(n)

)
and g(n) =

max
(
supp(n)

)
. As usual, f̃ and g̃ will denote the extensions of f and g respectively to

continuous functions from βN to βω.

Let 〈An〉∞n=1 be a sequence of pairwise disjoint infinite subsets of 2N− 1. It follows
from [11, Lemma 6.8] that, for any x ∈ βN and any y ∈ H, f̃(x + y) = f̃(x) and
g̃(x + y) = g̃(y). So, for each n ∈ N, {x ∈ H : f̃(x) ∈ An} and {x ∈ H : g̃(x) ∈ An} are
respectively right and left ideals of H. We can therefore choose for each n a minimal
idempotent pn of H in the intersection of these two sets. Since H contains all the
idempotents of βN [11, Lemma 6.8], H ∩ K(βN) 6= ∅ and is therefore an ideal of H so
K(H) ⊆ K(βN). So each pn ∈ EK. By Lemma 3.1 we also have 2pn ∈ EK. Let q be
a point of accumulation of the sequence 〈pn + 2pn〉∞n=1. Then q ∈ c`

〈
EK

〉
. We shall

show that q /∈
〈
S2

〉
.

We shall first show that q /∈ H + H. Suppose, on the contrary, that q = u + v

for some u, v ∈ H. We claim that there is at most one value of n ∈ N for which
pn + 2pn ∈ βN + v. To see this, observe that g(2n) = g(n) + 1 for every n ∈ N
and hence, by continuity, g̃(2x) = g̃(x) + 1 for every x ∈ βN. Also, for all x ∈
βN + v we have that g̃(x) = g̃(v). Thus, if pn + 2pn ∈ βN + v, we have that g̃(v) =
g̃(pn + 2pn) = g̃(2pn) = g̃(pn) + 1. Since the mapping n 7→ g̃(pn) is injective, the claim
is established. Now let M = {n ∈ N : pn + 2pn /∈ βN + v}, so that |N \M | ≤ 1. Now
q ∈ c`(N + v) and q ∈ c`({pn + 2pn : n ∈ M}). By [11, Theorem 3.40], this implies
that {pn + 2pn : n ∈ M} ∩ (βN + v) 6= ∅ or c`({pn + 2pn : n ∈ M}) ∩ (N + v) 6= ∅.
However, the first possibility does not hold, by definition of M , and the second does
not hold because N + H does not meet H. This contradiction shows that q /∈ H + H. So
q /∈

〈
S2

〉
\ S2.

We shall now show that q /∈ S2, and this will complete the proof. For n ∈ N,
we define h(n) ∈ Z2 as follows: if supp(n) is written as {i1, i2, · · · , im} in increasing
order, h(n) is the number mod 2 of values of k in {1, 2, · · · ,m − 1} for which ik is
odd and ik+1 is even. Then h̃ : βN → Z2 denotes the continuous extension of h. We
observe that, for any n1, n2 ∈ N for which n1 << n2, h(n1 + n2) = h(n1) + h(n2)
except in the case in which g(n1) is odd and f(n2) is even, and that, in this case,
h(n1 + n2) = h(n1) + h(n2) + 1. We claim that h̃(pn) = 0 for every n ∈ N. To see
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this, let h̃(pn) = a and let D = {r ∈ N : h(r) = a , f(r) ∈ An, and g(r) ∈ An}. Then
D ∈ pn. So we can choose n1, n2 ∈ D for which n1 << n2 and n1 + n2 ∈ D. This
implies that a = a + a and hence that a = 0. Similarly one can show that h̃(2pn) = 0
and h̃(pn +2pn) = 1. So h̃(q) = 1. Now let E = {r ∈ N : h(r) = 1 , f(r) is odd and g(r)
is even}. Then E ∈ q. However, if r1, r2 ∈ E and r1 << r2, then h(r1 + r2) = 0 and so
r1 + r2 /∈ E. So q /∈ S2.

3.3 Theorem. There exist p and q in EK such that p + q /∈ S2. In particular〈
EK

〉
\ S2 6= ∅.

Proof. Let S be the semigroup of [11, Example 2.13]. (This is the 8 element semigroup
generated by e and f and determined by the relations ee = e, ff = f , efefe = e, and
fefef = f .) As can be quickly verified S is simple. That is, K(S) = S.

Define h : N → S as follows:

(1) for k ∈ ω, h(2k) =
{

e if k is even
f if k is odd;

(2) for F ∈ Pf (ω) with |F | > 1, h(
∑

t∈F 2t) =
∏

t∈F h(2t).

Let h̃ : βN → S be the continuous extension of h. By [11, Theorem 4.21] the restriction
of h̃ to H is a homomorphism, and it is easy to verify that h̃[H] = S. By [11, Exercise
1.7.3], h̃[K(H)] = K(S) = S. Pick idempotents p, q ∈ K(H) such that h̃(p) = e and
h̃(q) = f . Since all of the idempotents of βN are in H, H∩K(βN) 6= ∅ and so H∩K(βN)
is an ideal of βN and thus K(H) ⊆ H∩K(βN). (In fact, equality holds by [11, Theorem
1.65], but we don’t need that now.) Therefore p, q ∈ EK.

We have that h̃(p+q) = ef so h−1[{ef}] ∈ p+q. Suppose that we have x << y such
that {x, y, x+y} ⊆ h−1[{ef}]. Since x << y we have h(x+y) = h(x)h(y) = efef 6= ef ,
a contradiction.

3.4 Theorem. There exists p ∈ Γ such that p+p /∈ c`(H+E). In particular, Γ\
〈
E

〉
6= ∅

and
〈
Γ
〉
\ c`

〈
E

〉
6= ∅.

Proof. Let 〈An〉∞n=1 partition ω into infinite sets and for each n ∈ N let Cn = {x ∈ N :
supp(x) ⊆ An}. Then Cn = FS(〈2t〉t∈An) so pick by [11, Lemma 5.11] an idempotent
qn ∈ Cn. Let p be a cluster point of the sequence 〈qn〉∞n=1. Then p ∈ c`E = Γ.

Suppose that p+p ∈ c`(H+E). Let D = {z ∈ N : there exist m < n in N, x ∈ Cm,
and y ∈ Cn such that x << y and z = x + y}. Note that z ∈ D if and only if for some
m < n the support of z consists of members of Am followed by members of An.

We claim that D ∈ p+p. To see this, we show that
⋃∞

n=1 Cn ⊆ {x ∈ N : −x+D ∈ p}
which suffices since

⋃∞
n=1 Cn ∈ p. So let x ∈

⋃∞
n=1 Cn and pick m ∈ N such that x ∈ Cm.
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Then
⋃∞

n=m+1 Cn ∈ p and
⋃∞

n=m+1 Cn ⊆ −x + D.

For each n ∈ N, let Vn = H ∩ {x ∈ N : max supp(x) ∈ An}. We claim that p + p ∈
c`(

⋃∞
n=1 Vn). To see this let B ∈ p + p. Since p + p ∈ c`(H + E), pick v ∈ H and

u ∈ E such that v + u ∈ B ∩D. We shall show that there is some n ∈ N such that
Cn ∈ u, from which it follows easily that v + u ∈ Vn and thus B ∩ Vn 6= ∅. To
this end pick x ∈ N such that −x + D ∈ u. Let k = 1 + max supp(x). We can’t have
|{n ∈ N : supp(x)∩An 6= ∅}| ≥ 3 since then N2k∩(−x+D) = ∅ while N2k∩(−x+D) ∈ u.

Assume first that {n ∈ N : supp(x) ∩ An 6= ∅} = {m,n} for some m < n. Then
N2k ∩ (−x + D) ⊆ Cn so Cn ∈ u.

Now assume that {n ∈ N : supp(x) ∩ An 6= ∅} = {m}. Since u + u = u, pick
y ∈ N2k ∩ (−x + D) such that −y + (−x + D) ∈ u. Let l = 1 + max supp(y). Since
x+y ∈ D we have some n > m such that the support of x+y consists of some members
of Am followed by some members of An. Then N2l ∩ (−(x + y) + D) ⊆ Cn so again
Cn ∈ u.

We have now established our claim that p + p ∈ c`(
⋃∞

n=1 Vn). Also, p + p ∈
βN + p = c`(N + p) so by [11, Theorem 3.40] either (N + p) ∩ c`(

⋃∞
n=1 Vn) 6= ∅ or⋃∞

n=1 Vn ∩ (βN + p) 6= ∅. One can’t have (N + p) ∩ c`(
⋃∞

n=1 Vn) 6= ∅ because if x ∈ N,
then x + p /∈ H while c`(

⋃∞
n=1 Vn) ⊆ H. So there exist some q ∈ βN and m ∈ N such

that q + p ∈ Vm. Let M = {x ∈ N : max supp(x) ∈ Am}. Since q + p ∈ Vm, we have
that M ∈ p. (We know that M ∈ q + p so pick x ∈ N such that −x + M ∈ p. Let
k = 1 + max supp(x). Then N2k ∩ (−x + M) ⊆ M .) But also

⋃∞
n=m+1 Cm ∈ p and

M ∩
⋃∞

n=m+1 Cm = ∅, a contradiction.

Our final preliminary result is very simple.

3.5 Theorem. E \ c`K(βN) 6= ∅. In particular, E \ c`
〈
EK

〉
6= ∅.

Proof. Pick by [11, Lemma 5.11] an idempotent p ∈ FS(〈22n〉∞n=1). By [1, Corollary
4.2], FS(〈22n〉∞n=1) is not piecewise syndetic so by [11, Corollary 4.41], p /∈ c`K(βN).
For the “in particular” assertion note that K(βN) is a semigroup so

〈
EK

〉
⊆ K(βN).

3.6 Theorem. Let A and B each be any one of EK,
〈
EK

〉
, c`

〈
EK

〉
, E,

〈
E

〉
, c`

〈
E

〉
,

Γ,
〈
Γ
〉
, c`

〈
Γ
〉
, S,

〈
S

〉
, c`

〈
S

〉
, M , or P . Then A ⊆ B if and only if the inclusion follows

from the inclusions shown in Figure 2.

Proof. The necessary examples are contained in Theorems 2.11, 2.14, 3.2, 3.3, 3.4, and
3.5. For example, the fact that S \

〈
EK

〉
6= ∅ follows from the fact in Theorem 3.5 that

E \ c`
〈
EK

〉
6= ∅ because E ⊆ S and

〈
EK

〉
⊆ c`

〈
EK

〉
.
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Finally, consider the following diagram. (If we had three dimensional paper, we
could combine it with Figure 2.) Again, all of the indicated inclusions are trivial.

P2

↗ ↑↖
c`

〈
S2

〉
P

↑↖ ↑〈
S2

〉
c`

〈
F2

〉
M

↑↖ ↑↖ ↑*

S2

〈
F2

〉
c`

〈
Γ
〉

↖ ↑↖ ↑ ↖*

F2

〈
Γ
〉

c`
〈
E

〉
↖ ↑ ↖↗ ↑ ↖*

Γ
〈
E

〉
c`

〈
EK

〉
↖ ↑ ↖ ↑

E
〈
EK

〉
↖ ↑

EK

|
|

Figure 3

We have already obtained all of the necessary results to show that no inclusion
among the sets in Figure 3 holds unless it is forced by the indicated inclusions, except
that we don’t know whether any or all of the starred inclusions is reversible.

3.7 Theorem. Let A be any one of EK,
〈
EK

〉
, c`

〈
EK

〉
, E,

〈
E

〉
, c`

〈
E

〉
, Γ,

〈
Γ
〉
,

c`
〈
Γ
〉
, S2,

〈
S2

〉
, c`

〈
S2

〉
, M , P , or P2. Let B be any of those sets or F2,

〈
F2

〉
, or

c`
〈
F2

〉
. Then A ⊆ B if and only if the inclusion follows from the inclusions shown in

Figure 2.

Proof. The necessary examples are contained in Theorems 2.7, 2.11, 2.14, 3.2, 3.3, 3.4,
and 3.5.
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[6] P. Frankl, R. Graham, and V. Rödl, Induced restricted Ramsey theorems for spaces,
J. Comb. Theory (Series A) 44 (1987), 120-128.

[7] H. Furstenberg, Recurrence in ergodic theory and combinatorical number theory,
Princeton University Press, Princeton, 1981.

[8] N. Hindman, Finite sums from sequences within cells of a partition of N, J. Comb.
Theory (Series A) 17 (1974), 1-11.

[9] N. Hindman, I. Leader, and D. Strauss, Open problems in partition regularity Comb.
Prob. and Comp. 12 (2003), 571-583.

[10] N. Hindman and D. Strauss, Compact subsemigroups of (βN,+) containing the
idempotents, Proc. Edinburgh Math. Soc. 39 (1996), 291-307.

[11] N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification: theory
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