This paper was published in J. Comb. Theory (Series A) 118 (2011) 373-386. To the best of my knowledge, this is the final version as it was submitted to the publisher. -NH

Some Combinatorially defined Subsets of $\beta \mathbb{N}$ and their Relation to the Idempotents

Neil Hindman ${ }^{1}$

and

Dona Strauss

Abstract

Members of idempotents in $(\beta \mathbb{N},+)$, especially those in the smallest ideal, have strong combinatorial properties. And the closure Γ of the set of idempotents has a simple combinatorial description. We investigate here the relationships among several subsets of $\beta \mathbb{N}$ that have simple combinatorial descriptions, as well as the semigroups they generate and their closures.

1. Introduction

In 1974, the following theorem was proved.
1.1 Theorem. Let $r \in \mathbb{N}$ and let $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$. There exist $i \in\{1,2, \ldots, r\}$ and a sequence $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq C_{i}$, where

$$
F S\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right\}
$$

and $\mathcal{P}_{f}(\mathbb{N})$ is the set of finite nonempty subsets of \mathbb{N}.
Proof. [8].
The proof given in [8] was elementary but very complicated. Another, less complicated, elementary proof was found by Baumgartner [2]. Subsequently a much simpler proof was found by F. Galvin and S. Glazer. (See the notes to Chapter 5 of [11] for an account of the discovery of this proof.) The crux of this simpler proof is that ordinary addition on \mathbb{N} can be extended to its Stone-Čech compactification $\beta \mathbb{N}$ so that $(\beta \mathbb{N},+)$ becomes a right topological semigroup (meaning that for each $p \in \beta \mathbb{N}$, the function $\rho_{p}: \beta \mathbb{N} \rightarrow \beta \mathbb{N}$ is continuous, where $\left.\rho_{p}(q)=q+p\right)$ with \mathbb{N} contained in its topological center (meaning that for each $x \in \mathbb{N}$, the function $\lambda_{x}: \beta \mathbb{N} \rightarrow \beta \mathbb{N}$ is continuous, where $\left.\lambda_{x}(q)=x+q\right)$. Any compact Hausdorff right topological semigroup has idempotents [5, Corollary 2.10]. And idempotents are intimately related to finite sums sets.

[^0]1.2 Theorem. Let $A \subseteq \mathbb{N}$. There is an idempotent $p \in c \not A$ if and only if there is a sequence $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ in \mathbb{N} with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$.

Proof. [11, Theorem 5.12].
We take the points of $\beta \mathbb{N}$ to be the ultrafilters on \mathbb{N}, identifying the principal ultrafilters with the points of \mathbb{N}. Given $A \subseteq \mathbb{N}$ and $p \in \beta \mathbb{N}$, one has that $p \in c \ell A=\bar{A}$ if and only if $A \in p$. If $p, q \in \beta \mathbb{N}$ and $A \subseteq \mathbb{N}$, one has that $A \in p+q$ if and only if $\{x \in \mathbb{N}:-x+A \in q\} \in p$. The set $\{\bar{A}: A \subseteq \mathbb{N}\}$ is a basis for the open sets and a basis for the closed sets of $\beta \mathbb{N}$.
1.3 Definition. $\Gamma=\left\{p \in \beta \mathbb{N}:(\forall A \in p)\left(\exists\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)\left(F S\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A\right\}\right.$.

As an immediate consequence of Theorem 1.2 one has that $\Gamma=c \ell\{p \in \beta \mathbb{N}: p+p=$ $p\}$.

In [7], H. Furstenberg defined central subsets of \mathbb{N} in terms of some notions from topological dynamics and proved the Central Sets Theorem. Given sets A and B, we let ${ }^{A} B$ be the set of functions from A to B.
1.4 Theorem. Let A be a central subset of \mathbb{N} and let $F \in \mathcal{P}_{f}\left(\mathbb{N}_{\mathbb{Z}}\right)$. There exist a sequence $\left\langle a_{n}\right\rangle_{n=1}^{\infty}$ in \mathbb{N} and a sequence $\left\langle H_{n}\right\rangle_{n=1}^{\infty}$ in $\mathcal{P}_{f}(\mathbb{N})$ such that
(1) for each $n \in \mathbb{N}$, max $H_{n}<\min H_{n+1}$ and
(2) for each $K \in \mathcal{P}_{f}(\mathbb{N})$ and each $f \in F, \sum_{n \in K}\left(a_{n}+\sum_{t \in H_{n}} f(t)\right) \in A$.

Proof. [7, Proposition 8.21].
Central subsets of \mathbb{N} have remarkably strong combinatorial properties. For example, they contain solutions to any partition regular system of homogenous linear equations in \mathbb{N}. See [11, Chapters 14 and 15] for many more examples.

Any compact Hausdorff right topological semigroup S has important algebraic properties. A non-empty subset V of S is a left ideal if $S V \subseteq V$, a right ideal if $V S \subseteq V$, and an ideal if it is both a left and a right ideal. Every left ideal of S contains a minimal left ideal, and every right ideal of S contains a minimal right ideal. S has a smallest two sided ideal $K(S)$, which is the union of all the minimal left ideals of S and the union of all the minimal right ideals of S. The intersection of any minimal left ideal and any minimal right ideal of S is a group. In particular, it contains an idempotent and so the set $E(S)$ of idempotents of S is non-empty. An idempotent in S is called minimal if it is in $K(S)$, and this is equivalent to being minimal for the ordering defined
on idempotents by stating that $p \leq q$ if $p+q=q+p=p$. Proofs of these statements can be found in [11, Theorems 1.38 and 1.51].

In [3] it was shown, with the assistance of B. Weiss, that a subset A of \mathbb{N} is central if and only if it is a member of a minimal idempotent. (This equivalence was subsequently extended to arbitrary semigroups by H. Shi and H. Yang [14].)

We thus see that members of idempotents have strong combinatorial properties, and members of idempotents in $K(\beta \mathbb{N})$ have even stronger combinatorial properties. We shall be interested in this paper in several subsets of $\beta \mathbb{N}$ that are defined by at least superficially weaker combinatorial properties. We mention one of these first, because of its relationship to an open problem of relatively long standing.
1.5 Definition. Let $k \in \mathbb{N} \backslash\{1\}$.
(a) Given a sequence $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ in \mathbb{N},
$F S_{\leq k}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right.$ and $\left.|F| \leq k\right\}$.
(b) $\mathcal{F}_{k}=\left\{p \in \beta \mathbb{N}:(\forall A \in p)\left(\exists\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)\left(F S_{\leq k}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A\right)\right\}$.

1.6 Definition.

(a) For $n \in \mathbb{N}$, the support of $n, \operatorname{supp}(n)$, is the finite nonempty subset of $\omega=$ $\{0,1,2, \ldots\}$ such that $n=\sum_{t \in \operatorname{supp}(n)} 2^{t}$.
(b) For $x, y \in \mathbb{N}, x \ll y$ if and only if $\max \operatorname{supp}(x)<\min \operatorname{supp}(y)$.

We see that members of $\mathcal{F}_{k}(\mathbb{N})$ for $k \geq 2$ enjoy a property which might, at first sight, seem to be stronger than their defining property.
1.7 Lemma. Let $k \in \mathbb{N} \backslash\{1\}$, let $p \in \mathcal{F}_{k}(\mathbb{N})$, and let $A \in p$. Then there exists a sequence $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ such that $F S_{\leq k}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$ and for each $t \in \mathbb{N}, x_{t} \ll x_{t+1}$.

Proof. Let $B_{0}=\{x \in A: \min \operatorname{supp}(x)$ is even $\}$ and let $B_{1}=\{x \in A: \min \operatorname{supp}(x)$ is odd\}. Pick $i \in\{0,1\}$ such that $B_{i} \in p$ and pick a sequence $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ such that $F S_{\leq k}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq B_{i}$. We note that no three of these have the same minimum of their supports. Indeed, suppose that $n<m<r$ and $\min \operatorname{supp}\left(x_{n}\right)=\min \operatorname{supp}\left(x_{m}\right)=$ $\min \operatorname{supp}\left(x_{r}\right)=k$. Then some two have $k+1$ in their support or some two do not have $k+1$ in their support. Say these two are x_{m} and x_{n}. Then $\min \operatorname{supp}\left(x_{n}+x_{m}\right)=k+1$ so $x_{n}+x_{m} \notin B_{i}$.

Since no three terms have the same minimum of their supports, we can choose a subsequence $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ of $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ such that for each $n, y_{n} \ll y_{n+1}$.

A favorite problem of I. Leader is whether there is a proof that whenever $r \in \mathbb{N}$ and $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$, there must exist $i \in\{1,2, \ldots, r\}$ and $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ such that $F S_{\leq 2}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq$
C_{i} that does not also prove the Finite Sums Theorem (Theorem 1.1). The question is asked in this form in [9, Question 12].

If one wants to be picky, the answer to the question phrased in this fashion is "yes". For example, one may take an idempotent p in $\beta \mathbb{N}$ and let $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$. Then pick $i \in\{1,2, \ldots, r\}$ such that $C_{i} \in p$ and let $B=\left\{x \in C_{i}:-x+C_{i} \in p\right\}$. Then $B \in p$ so pick $x_{1} \in B$ and inductively pick $x_{n+1} \in B \cap \bigcap_{k=1}^{n}\left(-x_{k}+C_{i}\right)$. Then $F S_{\leq 2}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq C_{i}$ and one certainly does not know that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq C_{i}$. However, since $C_{i} \in p$ one does in fact have by Theorem 1.2 that there does exist $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ with $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq C_{i}$.

In [4, Question 8.1] Leader rephrased the question as follows to make it more precise.
1.8 Question. Does there exist a set $A \subseteq \mathbb{N}$ such that whenever $r \in \mathbb{N}$ and $A=\bigcup_{i=1}^{r} C_{i}$, there must exist $i \in\{1,2, \ldots, r\}$ and $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ such that $F S_{\leq 2}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq C_{i}$, but there does not exist $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ with $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$?

An affirmative answer to Question 1.8 is equivalent to the assertion that $\Gamma \neq \mathcal{F}_{2}$. On the one hand, if $p \in \mathcal{F}_{2} \backslash \Gamma$ and $A \in p$ such that there is no $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ with $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$, then A provides an affirmative answer to Question 1.8. The other implication is an immediate consequence of the following lemma, which we shall be using frequently.
1.9 Lemma. Let \mathcal{A} be a set of subsets of \mathbb{N} such that whenever $A \in \mathcal{A}$ and $A \subseteq B \subseteq \mathbb{N}$, one has $B \in \mathcal{A}$ and let $\mathcal{R}=\left\{A \subseteq \mathbb{N}\right.$: whenever $r \in \mathbb{N}$ and $A=\bigcup_{i=1}^{r} C_{i}$, there exists $i \in\{1,2, \ldots, r\}$ such that $\left.C_{i} \in \mathcal{A}\right\}$. Given any $A \in \mathcal{R}$, there exists $p \in \beta \mathbb{N}$ such that $A \in p$ and $p \subseteq \mathcal{A}$.

Proof. One notes that if $A \in \mathcal{R}, r \in \mathbb{N}$, and $A=\bigcup_{i=1}^{r} C_{i}$, then some $C_{i} \in \mathcal{R}$. Thus [11, Theorem 3.11] applies.

We pause to point out that Question 1.8 makes sense in any semigroup ($S,+$). (If the operation is not commutative one needs to specify the order of the sums in $F S_{\leq 2}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)$ and $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)$. Standardly they would be taken in increasing order.) We shall see in Theorem 1.11 that a negative answer to Question 1.8 would have to involve special properties of the semigroup ($\mathbb{N},+$).

Recall the infinite version of Ramsey's Theorem. Given a set X and a cardinal k, $[X]^{k}=\{A \subseteq X:|A|=k\}$.
1.10 Theorem. Let $k, r \in \mathbb{N}$. If $|X|=\omega$ and $[X]^{k}=\bigcup_{i=1}^{r} D_{i}$, then there exists $i \in\{1,2, \ldots, r\}$ and $B \in[X]^{\omega}$ such that $[B]^{k} \subseteq D_{i}$.

Proof. [13].
1.11 Theorem. Let $(G,+)$ be a direct sum of infinitely many copies of \mathbb{Z}_{2}. There exists a set $A \subseteq G$ such that whenever $r \in \mathbb{N}$ and $A=\bigcup_{i=1}^{r} C_{i}$, there must exist $i \in\{1,2$, $\ldots, r\}$ and $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ such that $F S_{\leq 2}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq C_{i}$, but there does not exist $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ with $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$.

Proof. Viewing G as a vector space over \mathbb{Z}_{2}, choose a sequence $\left\langle e_{n}\right\rangle_{n=1}^{\infty}$ of linearly independent members of G. Let $A=\left\{e_{n}+e_{m}: n, m \in \mathbb{N}\right.$ and $\left.n \neq m\right\}$. There do not exist $x_{1}, x_{2}, x_{3} \in A$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{3}\right) \subseteq A$.

Let $r \in \mathbb{N}$ and let $A=\bigcup_{i=1}^{r} C_{i}$. For $i \in\{1,2, \ldots, r\}$, let $D_{i}=\left\{\{n, m\} \in[\mathbb{N}]^{2}\right.$: $\left.e_{n}+e_{m} \in C_{i}\right\}$. Pick by Ramsey's Theorem some $i \in\{1,2, \ldots, r\}$ and $B \in[\mathbb{N}]^{\omega}$ such that $[B]^{2} \subseteq D_{i}$. Then $\left\{e_{n}+e_{m}:\{n, m\} \in[B]^{2}\right\} \subseteq C_{i}$. Pick $k \in B$ and enumerate $B \backslash\{k\}$ as $\left\langle n_{t}\right\rangle_{t=1}^{\infty}$. For $t \in \mathbb{N}$, let $x_{t}=e_{k}+e_{n_{t}}$. Then $F S_{\leq 2}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq C_{i}$.

Defining $\mathcal{F}_{2}(S)=\left\{p \in \beta S:(\forall A \in p)\left(\exists\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)\left(F S_{\leq 2}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A\right)\right\}$ and $\Gamma(S)=$ $\left\{p \in \beta S:(\forall A \in p)\left(\exists\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)\left(F S\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A\right)\right\}$, one sees as a consequence of Theorem 1.11 that, if S is an infinite group of index 2 , then $\mathcal{F}_{2}(S) \neq \Gamma(S)$.

Since we cannot answer Question 1.8, we do not know whether for some $k \in \mathbb{N} \backslash\{1\}$ $\mathcal{F}_{k+1} \neq \mathcal{F}_{k}$, nor do we know whether this holds for all such k.

We now introduce the other subsets of $\beta \mathbb{N}$ with which we shall be concerned. Given a finite sequence $\left\langle x_{t}\right\rangle_{t=1}^{k}, F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right)=\left\{\sum_{t \in F} x_{t}: \emptyset \neq F \subseteq\{1,2, \ldots, k\}\right\}$.
1.12 Definition. Let $k \in \mathbb{N} \backslash\{1\}$.

$$
\begin{aligned}
P_{k}=\{p \in \beta \mathbb{N}: & \left.(\forall A \in p)\left(\exists\left\langle x_{t}\right\rangle_{t=1}^{k}\right)\left(F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq A\right)\right\} \\
S_{k}=\{p \in \beta \mathbb{N}: & (\forall A \in p)\left(\exists\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \\
& \left.\left(x_{1} \ll x_{2} \ll \ldots \ll x_{k} \text { and } F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq A\right)\right\} \\
M_{k}=\{p \in \beta \mathbb{N}: & (\forall A \in p)\left(\exists\left\langle x_{t}\right\rangle_{t=1}^{k}\right)\left(\exists\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \\
& \left.\left(F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right)+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A\right)\right\} .
\end{aligned}
$$

1.13 Definition.

(a) $E=\{p \in \beta \mathbb{N}: p+p=p\}$.
(b) $E K=\{p \in K(\beta \mathbb{N}): p+p=p\}$.
(c) $P=\bigcap_{k=2}^{\infty} P_{k}$.
(d) $M=\bigcap_{k=2}^{\infty} M_{k}$.
(e) $S=\bigcap_{k=2}^{\infty} S_{k}$.
1.14 Lemma. Let $k \in \mathbb{N} \backslash\{1\}$. Then M_{k} and P_{k} are subsemigroups of $\beta \mathbb{N}$.

Proof. That P_{k} is a semigroup was proved in [10, Lemma 2.3]. (What we are calling P_{k} here was called S_{k} there.)

To see that M_{k} is a semigroup, let $p, q \in M_{k}$ and let $A \in p+q$. Let

$$
B=\{x \in \mathbb{N}:-x+A \in q\}
$$

Then $B \in p$, so pick $\left\langle x_{t}\right\rangle_{t=1}^{k}$ and $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right)+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq B$. In particular $F S\left(\left\langle x_{t}+y_{t}\right\rangle_{t=1}^{k}\right) \subseteq B$. Let $C=\bigcap\left\{-v+A: v \in F S\left(\left\langle x_{t}+y_{t}\right\rangle_{t=1}^{k}\right)\right\}$. Then $C \in q$ so pick $\left\langle w_{t}\right\rangle_{t=1}^{k}$ and $\left\langle z_{t}\right\rangle_{t=1}^{\infty}$ such that $F S\left(\left\langle w_{t}\right\rangle_{t=1}^{k}\right)+F S\left(\left\langle z_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq C$. Then $F S\left(\left\langle x_{t}+y_{t}+w_{t}\right\rangle_{t=1}^{k}\right)+F S\left(\left\langle z_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$.

As a consequence of Lemma 1.14 one also has that P and M are subsemigroups of $\beta \mathbb{N}$. It is a consequence of results of Section 3 that none of the other sets defined in Definitions 1.12 and 1.13 is a semigroup.
1.15 Definition. Given $H \subseteq \beta \mathbb{N},\langle H\rangle$ is the subsemigroup generated by H.

It is immediate from the definitions that all of the objects defined in Definitions 1.12 and 1.13 except E and $E K$ are closed.

In Section 2 we shall investigate the relationships that hold among $\mathcal{F}_{k}, S_{k}, P_{k}$, and M_{k} for various values of k. Except for our already confessed ignorance about whether any or all $\mathcal{F}_{k}=\Gamma$, we shall determine precisely which inclusions hold, namely only the trivial ones.

In Section 3 we shall investigate the relationships that hold among $E K, E, \Gamma$, $\mathcal{F}_{2}, S_{2}, P_{2}, S, M$, and P, and the semigroups they generate and the closures of those generated semigroups. Again, with the same exceptions regarding \mathcal{F}_{2} we will show that the only inclusions that hold among them are the trivial ones.

2. Sets determined by finitely many sums

By virtue of Lemma 1.7 we have that for each $k \in \mathbb{N} \backslash\{1\}, \mathcal{F}_{k} \subseteq S_{k}$. All of the other inclusions in the following diagram (wherein the fact that $A \subseteq B$ is indicated by an arrow from A to B) are trivial.

Figure 1
Trivially Γ is a subset of each of the sets in Figure 1 We do not know whether $\mathcal{F}_{k}=\Gamma$ for some or all $k \in \mathbb{N} \backslash\{1\}$. We show in this section that, with that glaring gap, the only inclusions that hold among the sets in Figure 1 are those that follow from the indicated inclusions.

Recall the finite version of Ramsey's Theorem.
2.1 Theorem. Let $k, r, n \in \mathbb{N}$. There exists $m \in \mathbb{N}$ such that if $|X|=m$ and $[X]^{k}=$ $\bigcup_{i=1}^{r} D_{i}$, there exists $i \in\{1,2, \ldots, r\}$ and $B \in[X]^{n}$ such that $[B]^{k} \subseteq D_{i}$.

Proof. [13].
The following theorem lies behind many of the facts of this section. We let $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{k}\right)=\left\{\bigcup_{t \in H} F_{t}: \emptyset \neq H \subseteq\{1,2, \ldots, k\}\right\}$.
2.2 Theorem. (Nešetřil and Rödl). Let $r, k \in \mathbb{N}$ There is a finite set \mathcal{S} of finite nonempty sets such that:
(1) Whenever $\mathcal{S}=\bigcup_{i=1}^{r} \mathcal{D}_{i}$, there exist $i \in\{1,2, \ldots, r\}$ and pairwise disjoint $F_{1}, F_{2}, \ldots, F_{k}$ in \mathcal{S} with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{k}\right) \subseteq \mathcal{D}_{i}$ and
(2) there do not exist pairwise disjoint $F_{1}, F_{2}, \ldots, F_{k+1}$ in \mathcal{S} with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{k+1}\right) \subseteq \mathcal{S}$.

Proof. [12, Theorem 1.1]. (Or see [6, p. 126].) (The fact that \mathcal{S} and the members of \mathcal{S} are finite is not stated, but follows from the proof.)

Properly interpreted, the proof of [12, Theorem 1.1] produces the following family for $k=2$ and arbitrary r. For $u, v \in \mathbb{N}$ with $u<v$, let $A_{u, v}=\{u, u+1, \ldots, v-1\}$. By Theorem 2.1, pick $m \in \mathbb{N}$ such that whenever $|X|=m$ and $[X]^{2}=\bigcup_{i=1}^{r} D_{i}$, there exists $i \in\{1,2\}$ and $B \in[X]^{3}$ such that $[B]^{2} \subseteq D_{i}$. Let $\mathcal{S}=\left\{A_{u, v}: 1 \leq u<v \leq m\right\}$. Given that $\mathcal{S}=\bigcup_{i=1}^{r} \mathcal{D}_{i}$, for each $i \in\{1,2, \ldots, r\}$, let $D_{i}=\{\{u, v\}: 1 \leq u<v \leq$
m and $\left.A_{u, v} \in \mathcal{D}_{i}\right\}$. Pick $i \in\{1,2, \ldots, r\}$ and u, v, w with $1 \leq u<v<w \leq m$ such that $\{\{u, v\},\{u, w\},\{v, w\}\} \subseteq D_{i}$. Then $\left\{A_{u, v}, A_{u, w}, A_{v, w}\right\} \subseteq \mathcal{D}_{i}$. Thus if $F_{1}=A_{u, v}$ and $F_{2}=A_{v, w}$ one has that $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{2}\right) \subseteq \mathcal{D}_{i}$ so (1) holds. Further, if $u, v, w, z \in\{1,2$, $\ldots, m\}, u<v, w<z, u \leq w, A_{u, v} \in \mathcal{S}, A_{w, z} \in \mathcal{S}$, and $A_{u, v} \cup A_{w, z} \in \mathcal{S}$, we must have that $v=w$. Consequently, (2) holds.

The family in the paragraph above has the additional property that max $F_{1}<$ $\min F_{2}$. Unfortunately, the proof of [12, Theorem 1.1] does not produce such increasing sets for $k>2$. We are grateful to Imre Leader for providing us with the proof of Theorem 2.5 below in which increasing sets are guaranteed.
2.3 Lemma. Let $k, r \in \mathbb{N}$. There exists $S \in \mathcal{P}_{f}(\mathbb{N})$ such that
(1) whenever $S=\bigcup_{i=1}^{r} C_{i}$, there exist $i \in\{1,2, \ldots, r\}$ and a sequence $\left\langle x_{t}\right\rangle_{t=1}^{k}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq C_{i}$ and
(2) there does not exist a sequence $\left\langle x_{t}\right\rangle_{t=1}^{k+1}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k+1}\right) \subseteq S$.

Proof. Pick a finite set \mathcal{S} as guaranteed for k and r by Theorem 2.2. We may presume that $\cup \mathcal{S} \subseteq \mathbb{N}$. Let $S=\left\{\sum_{t \in F} 3^{t}: F \in \mathcal{S}\right\}$.

To verify (1), let $S=\bigcup_{i=1}^{r} C_{i}$. For $i \in\{1,2, \ldots, r\}$, let

$$
\mathcal{D}_{i}=\left\{F \in \mathcal{S}: \sum_{t \in F} 3^{t} \in C_{i}\right\} .
$$

Pick $i \in\{1,2, \ldots, r\}$ and pairwise disjoint $F_{1}, F_{2}, \ldots, F_{k}$ in \mathcal{S} such that $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{k}\right) \subseteq$ \mathcal{D}_{i}. For $n \in\{1,2, \ldots, k\}$, let $x_{n}=\sum_{t \in F_{n}} 3^{t}$.

To verify (2), suppose that we have a sequence $\left\langle x_{n}\right\rangle_{n=1}^{k+1}$ such that $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{k+1}\right) \subseteq S$. For $n \in\{1,2, \ldots, k+1\}$ let F_{n} be the member of \mathcal{S} such that $x_{n}=\sum_{t \in F_{n}} 3^{t}$. If $n \neq m$, then $F_{n} \cap F_{m}=\emptyset$ since otherwise $x_{n}+x_{m}$ would have a 2 in its ternary expansion, which none of the members of S have. Then $F U\left(\left\langle F_{n}\right\rangle_{n=1}^{k+1}\right) \subseteq \mathcal{S}$, a contradiction.
2.4 Lemma. Let $m, r \in \mathbb{N}$ and let $S \in \mathcal{P}_{f}(\mathbb{N})$. There exists $X \in \mathcal{P}_{f}(\mathbb{N})$ such that whenever $\mathcal{P}_{f}(X)=\bigcup_{i=1}^{r} \mathcal{D}_{i}$, there exists $Y \in[X]^{m}$ and for each $x \in S$ there exists $i(x) \in\{1,2, \ldots, r\}$ such that $[Y]^{x} \subseteq \mathcal{D}_{i(x)}$.

Proof. We proceed by induction on $|S|$, the case $|S|=1$ being an immediate consequence of Theorem 2.1. Now assume that $|S|>1$ and the result holds for smaller sets. Pick $z \in S$ and pick by Theorem 2.1, $n \in \mathbb{N}$ such that if $|W|=n$ and $[W]^{z}=\bigcup_{i=1}^{r} \mathcal{D}_{i}$, there exist $Y \in[W]^{m}$ and $i(z) \in\{1,2, \ldots, r\}$ such that $[Y]^{z} \subseteq \mathcal{D}_{i(z)}$.

Pick X as guaranteed by the induction hypothesis for n, r, and $S \backslash\{z\}$. Let $\mathcal{P}_{f}(X)=\bigcup_{i=1}^{r} \mathcal{D}_{i}$ and pick $W \in[X]^{n}$ and for each $x \in S \backslash\{z\}$ pick $i(x) \in\{1,2, \ldots, r\}$
such that $[W]^{x} \subseteq \mathcal{D}_{i(x)}$. Pick $Y \in[W]^{m}$ and $i(z) \in\{1,2, \ldots, r\}$ such that $[Y]^{z} \subseteq \mathcal{D}_{i(z)}$.
2.5 Theorem. Let $r, k \in \mathbb{N}$ There is a finite set \mathcal{S} of finite nonempty subsets of \mathbb{N} such that:
(1) Whenever $\mathcal{S}=\bigcup_{i=1}^{r} \mathcal{D}_{i}$, there exist $i \in\{1,2, \ldots, r\}$ and $F_{1}, F_{2}, \ldots, F_{k}$ in \mathcal{S} such that for each $t \in\{1,2, \ldots, k-1\}, \max F_{t}<\min F_{t+1}$, and $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{k}\right) \subseteq \mathcal{D}_{i}$ and
(2) there do not exist pairwise disjoint $F_{1}, F_{2}, \ldots, F_{k+1}$ in \mathcal{S} with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{k+1}\right) \subseteq \mathcal{S}$.

Proof. Let S be as guaranteed by Lemmma 2.3 and let $m=k \cdot \max S$. Pick X as guaranteed by Lemma 2.4 for m and r. Let $\mathcal{S}=\{B \subseteq X:|B| \in S\}$.

To verify (1), let $\mathcal{S}=\bigcup_{i=1}^{r} \mathcal{D}_{i}$. For $i \in\{2,3, \ldots, r\}$ let $\mathcal{E}_{i}=\mathcal{D}_{i}$ and let $\mathcal{E}_{1}=$ $\mathcal{P}_{f}(X) \backslash \bigcup_{i=2}^{r} \mathcal{D}_{i}$. Pick $Y \in[X]^{m}$ and for each $x \in S$ pick $i(x) \in\{1,2, \ldots, r\}$ such that $[Y]^{x} \subseteq \mathcal{E}_{i(x)}$. For $i \in\{1,2, \ldots, r\}$, let $C_{i}=\{x \in S: i(x)=i\}$. Pick $i \in\{1,2, \ldots, r\}$ and $\left\langle x_{t}\right\rangle_{t=1}^{k}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq C_{i}$.

Enumerate Y in order as $\left\langle y_{t}\right\rangle_{t=1}^{m}$. Let $F_{1}=\left\{y_{1}, y_{2}, \ldots, y_{x_{1}}\right\}$. For $t \in\{2,3, \ldots, k\}$, let $F_{t}=\left\{y_{s}: \sum_{j=1}^{t-1} x_{j}<s \leq \sum_{j=1}^{t} x_{j}\right\}$. Then for each $t \in\{1,2, \ldots, k-1\}$, $\max F_{t}<$ $\min F_{t+1}$ and for each $t \in\{1,2, \ldots, k\},\left|F_{t}\right|=x_{t}$. To see that $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{k}\right) \subseteq \mathcal{D}_{i}$, let $\emptyset \neq H \subseteq\{1,2, \ldots, k\}$. Let $z=\sum_{t \in H} x_{t}$. Then $\bigcup_{t \in H} F_{t} \in[Y]^{z}$ and $i(z)=i$ so $\bigcup_{t \in H} F_{t} \in \mathcal{E}_{i}$. Since $z \in S, \bigcup_{t \in H} F_{t} \in \mathcal{S}$ so $\bigcup_{t \in H} F_{t} \in \mathcal{D}_{i}$.

To verify (2), suppose we have pairwise disjoint $F_{1}, F_{2}, \ldots, F_{k+1}$ in \mathcal{S} such that $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{k+1}\right) \subseteq \mathcal{S}$. For each $t \in\{1,2, \ldots, k+1\}$, let $x_{t}=\left|F_{t}\right|$. Then $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k+1}\right) \subseteq S$, a contradiction.

The proof of the following corollary can be taken nearly verbatim from the proof of [10, Corollary 3.8], so we omit it here. (Much of that argument can be taken from the proof of Theorem 2.8 also.)
2.6 Corollary. Let $k \in \mathbb{N} \backslash\{1\}$. There is a set $A \subseteq \mathbb{N}$ such that
(1) Whenever $r \in \mathbb{N}$ and $A=\bigcup_{i=1}^{r} C_{i}$ there exist $i \in\{1,2, \ldots, r\}$ and a sequence $\left\langle x_{t}\right\rangle_{t=1}^{k}$ such that $x_{1} \ll x_{2} \ll \ldots \ll x_{k}$ and $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq C_{i}$ and
(2) there does not exist a sequence $\left\langle x_{t}\right\rangle_{t=1}^{k+1}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k+1}\right) \subseteq A$.
2.7 Theorem. For each $k \in \mathbb{N} \backslash\{1\}, S_{k} \backslash P_{k+1} \neq \emptyset$.

Proof. Let
$\mathcal{R}=\left\{A \subseteq \mathbb{N}:\right.$ whenever $r \in \mathbb{N}$ and $A=\bigcup_{i=1}^{r} C_{i}$, there exist $i \in\{1,2, \ldots, r\}$ and $\left\langle x_{t}\right\rangle_{t=1}^{k}$ such that $x_{1} \ll x_{2} \ll \ldots \ll x_{k}$ and $\left.F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq C_{i}\right\}$.
Pick A as guaranteed by Corollary 2.6. By Lemma 1.9 pick $p \in S_{k} \cap c \nmid A$. Since $A \in p$, $p \notin P_{k+1}$.
2.8 Theorem. Let $k \in \mathbb{N} \backslash\{1\}$. Then $M_{k} \backslash P_{k+1} \neq \emptyset$.

Proof. For each $r \in \mathbb{N}$, pick by Theorem 2.2 a finite set \mathcal{S}_{r} of finite nonempty subsets of \mathbb{N} such that:
(1) Whenever $\mathcal{S}_{r}=\bigcup_{i=1}^{r} \mathcal{D}_{i}$, there exist $i \in\{1,2, \ldots, r\}$ and pairwise disjoint $F_{1}, F_{2}, \ldots, F_{k}$ in \mathcal{S}_{r} with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{k}\right) \subseteq \mathcal{D}_{i} ;$
(2) there do not exist pairwise disjoint $F_{1}, F_{2}, \ldots, F_{k+1}$ in \mathcal{S}_{r} with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{k+1}\right) \subseteq \mathcal{S}_{r}$; and
(3) $r+\max \bigcup \mathcal{S}_{r}<\min \bigcup \mathcal{S}_{r+1}$.

For each r, let $a_{r}=\max \bigcup \mathcal{S}_{r}$ and let $B=\bigcup_{r=1}^{\infty}\left\{a_{r}+1, a_{r}+2, \ldots, a_{r}+r\right\}$. Let $D=\left\{\sum_{t \in F} 3^{t}+\sum_{t \in G} 3^{t}: G \in \mathcal{P}_{f}(B)\right.$ and $\left.(\exists r)\left(F \in \mathcal{S}_{r}\right)\right\}$. Let
$\mathcal{R}=\left\{A \subseteq \mathbb{N}\right.$: whenever $r \in \mathbb{N}$ and $A=\bigcup_{i=1}^{r} C_{i}$,
there exist $i \in\{1,2, \ldots, r\}$ and sequences $\left\langle x_{t}\right\rangle_{t=1}^{k}$ and $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ such that $\left.F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right)+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq C_{i}\right\}$.

We claim that $D \in \mathcal{R}$ so that by Lemma 1.9, $\bar{D} \cap M_{k} \neq \emptyset$.
So let $r \in \mathbb{N}$ and let $D=\bigcup_{i=1}^{r} C_{i}$. By $\left|\mathcal{S}_{r}\right|$ repetitions of [11, Corollary 5.17] pick a sequence $\left\langle G_{n}\right\rangle_{n=1}^{\infty}$ in $\mathcal{P}_{f}(B)$ such that for each n, $\max G_{n}<\min G_{n+1}$, and for each $F \in \mathcal{S}_{r}$ there exists $i(F) \in\{1,2, \ldots, r\}$ such that

$$
\left\{\sum_{t \in F} 3^{t}+\sum_{t \in H} 3^{t}: H \in F U\left(\left\langle G_{n}\right\rangle_{n=1}^{\infty}\right\} \subseteq C_{i(F)} .\right.
$$

For $i \in\{1,2, \ldots, r\}$, let $\mathcal{D}_{i}=\left\{F \in \mathcal{S}_{r}: i(F)=i\right\}$ and pick $i \in\{1,2, \ldots, r\}$ and pairwise disjoint $F_{1}, F_{2}, \ldots, F_{k} \in \mathcal{S}_{r}$ such that $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{k}\right) \subseteq \mathcal{D}_{i}$. For $t \in\{1,2, \ldots, k\}$, let $x_{t}=\sum_{n \in F_{t}} 3^{n}$ and for $t \in \mathbb{N}$, let $y_{t}=\sum_{n \in G_{t}} 3^{n}$. Then $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right)+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq$ C_{i}. We thus have $\bar{D} \cap M_{k} \neq \emptyset$.

Suppose now that $\bar{D} \cap P_{k+1} \neq \emptyset$ and pick $\left\langle x_{n}\right\rangle_{n=1}^{k+1}$ such that $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{k+1}\right) \subseteq D$. For each $n \in\{1,2, \ldots, k+1\}$, pick $r(n) \in \mathbb{N}, F_{n} \in \mathcal{S}_{r(n)}$, and $G_{n} \in \mathcal{P}_{f}(B)$ such that $x_{n}=\sum_{t \in F_{n}} 3^{t}+\sum_{t \in G_{n}} 3^{t}$. Note that if $n \neq l$, then $\left(F_{n} \cup G_{n}\right) \cap\left(F_{l} \cup G_{l}\right)=\emptyset$ because $x_{n}+x_{l} \in D$ and so has all 1's in its ternary expansion. Since any member of D has
ternary support meeting exactly one \mathcal{S}_{r}, we have that there is some r such that $r(n)=r$ for all $n \in\{1,2, \ldots, k+1\}$. But now, $F U\left(\left\langle F_{n}\right\rangle_{n=1}^{k+1}\right) \subseteq \mathcal{S}_{r}$, a contradiction.

We extend the notion of a sum subsystem defined in [11, Definition 5.13] for infinite sequences in the obvious way to apply to finite sequences.
2.9 Definition. Let $n, k \in \mathbb{N}$ and let $\left\langle y_{t}\right\rangle_{t=1}^{n}$ be a sequence in \mathbb{N}. Then $\left\langle x_{t}\right\rangle_{t=1}^{k}$ is a sum subsystem of $\left\langle y_{t}\right\rangle_{t=1}^{n}$ if and only if there exists a sequence $\left\langle F_{t}\right\rangle_{t=1}^{k}$ in $\mathcal{P}_{f}(\{1,2, \ldots, n\})$ such that for each $t \in\{1,2, \ldots, k\}, x_{t}=\sum_{s \in F_{t}} y_{s}$ and for each $t \in\{1,2, \ldots, k-1\}$, $\max F_{t}<\min F_{t+1}$.
2.10 Lemma. Let $k, r \in \mathbb{N}$. There exists $n \in \mathbb{N}$ such that whenever $\left\langle y_{t}\right\rangle_{t=1}^{n}$ is a sequence in \mathbb{N} and $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{n}\right)=\bigcup_{i=1}^{r} C_{i}$, there exist $i \in\{1,2, \ldots, r\}$ and a sum subsystem $\left\langle x_{t}\right\rangle_{t=1}^{k}$ of $\left\langle y_{t}\right\rangle_{t=1}^{n}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq C_{i}$.

Proof. This follows from [11, Corollary 5.15] by a standard compactness argument. (See [11, Section 5.5].)
2.11 Theorem. Let $D=\left\{x \in \mathbb{N}:(\exists n \in \mathbb{N})\left(\operatorname{supp}(x) \subseteq\left\{2^{n}+1,2^{n}+2, \ldots, 2^{n}+n\right\}\right\}\right.$. Then $\bar{D} \cap S \neq \emptyset, \bar{D} \cap M_{2}=\emptyset, \bar{D} \cap \mathcal{F}_{2}=\emptyset$, and $\bar{D} \cap\left(\beta \mathbb{N}+\mathcal{F}_{2}\right)=\emptyset$. In particular, $S \backslash M_{2} \neq \emptyset$ and $S \backslash c \ell\left\langle\mathcal{F}_{2}\right\rangle \neq \emptyset$.

Proof. To see that $\bar{D} \cap S \neq \emptyset$, it suffices to let $k \in \mathbb{N}$ and show that $\bar{D} \cap S_{k} \neq \emptyset$. (For then, $\left\{\bar{D} \cap S_{k}: k \in \mathbb{N}\right\}$ is a collection of closed subsets of $\beta \mathbb{N}$ with the finite intersection property.) So let $k \in \mathbb{N}$. Let

$$
\begin{aligned}
\mathcal{R}=\{A \subseteq \mathbb{N}: & \text { whenever } r \in \mathbb{N} \text { and } A=\bigcup_{i=1}^{r} C_{i}, \\
& \text { there exist } i \in\{1,2, \ldots, r\} \text { and }\left\langle x_{t}\right\rangle_{t=1}^{k} \text { such that } \\
& \left.x_{1} \ll x_{2} \ll \ldots \ll x_{k} \text { and } F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq C_{i}\right\} .
\end{aligned}
$$

To see that $\bar{D} \cap S_{k} \neq \emptyset$, it suffices by Lemma 1.9 to show that $D \in \mathcal{R}$. So let $r \in \mathbb{N}$ and let $D=\bigcup_{i=1}^{r} C_{i}$.

Pick by Lemma 2.10, $n \in \mathbb{N}$ such that whenever $\left\langle y_{t}\right\rangle_{t=1}^{n}$ is a sequence in \mathbb{N} and $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{n}\right)=\bigcup_{i=1}^{r} E_{i}$, there exist $i \in\{1,2, \ldots, r\}$ and a sum subsystem $\left\langle x_{t}\right\rangle_{t=1}^{k}$ of $\left\langle y_{t}\right\rangle_{t=1}^{n}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq E_{i}$. For $t \in\{1,2, \ldots, n\}$ let $y_{t}=2^{2^{n}+t}$. Pick $i \in\{1,2$, $\ldots, r\}$ and a sum subsystem $\left\langle x_{t}\right\rangle_{t=1}^{k}$ of $\left\langle y_{t}\right\rangle_{t=1}^{n}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq C_{i}$. Since $\left\langle x_{t}\right\rangle_{t=1}^{k}$ is a sum subsystem of $\left\langle y_{t}\right\rangle_{t=1}^{n}$ we have that $x_{1} \ll x_{2} \ll \ldots \ll x_{k}$.

To see that $\bar{D} \cap M_{2}=\emptyset$ suppose instead we have x_{1}, x_{2}, and $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{2}\right)+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq D$. By passing to a sum subsystem, we may presume that
for each $t \in \mathbb{N}, y_{t} \ll y_{t+1}$. Pick n such that $\operatorname{supp}\left(x_{1}+y_{1}\right) \subseteq\left\{2^{n}+1,2^{n}+2, \ldots, 2^{n}+n\right\}$ and pick t such that min $\operatorname{supp}\left(y_{t}\right)>2^{n}+n$. Then $x_{1}+y_{1}+y_{t} \notin D$, a contradiction.

To see that $\bar{D} \cap \mathcal{F}_{2}=\emptyset$, suppose instead that $\bar{D} \cap \mathcal{F}_{2} \neq \emptyset$ and pick by Lemma 1.7 a sequence $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ such that $F S_{\leq 2}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq D$ and for each $t \in \mathbb{N}, x_{t} \ll x_{t+1}$. Pick n such that $\operatorname{supp}\left(x_{1}\right) \subseteq\left\{2^{n}+1,2^{n}+2, \ldots, 2^{n}+n\right\}$ and pick t such that min $\operatorname{supp}\left(x_{t}\right)>$ $2^{n}+n$. Then $x_{1}+x_{t} \notin D$, a contradiction.

To see that $\bar{D} \cap\left(\beta \mathbb{N}+\mathcal{F}_{2}\right)=\emptyset$, suppose instead we have $p \in \beta \mathbb{N}$ and $q \in \mathcal{F}_{2}$ such that $D \in p+q$. Then $\{z \in \mathbb{N}:-z+D \in q\} \in p$ so pick $z \in \mathbb{N}$ such that $-z+D \in q$. Pick by Lemma 1.7 a sequence $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ such that $F S_{\leq 2}\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq-z+D$ and for each $t \in \mathbb{N}, x_{t} \ll x_{t+1}$. Pick n such that $\max \operatorname{supp}(z)<2^{n}$ and pick t such that $\min \operatorname{supp}\left(x_{t}\right)>2^{n}$. Then $x_{t} \notin-z+D$, a contradiction.

Since $\left\langle\mathcal{F}_{2}\right\rangle \subseteq \mathcal{F}_{2} \cup\left(\beta \mathbb{N}+\mathcal{F}_{2}\right)$ we have that $S \backslash c \ell\left\langle\mathcal{F}_{2}\right\rangle \neq \emptyset$.
A subsemigroup known to contain much of the algebraic structure of $\beta \mathbb{N}$ (and with copies arising in many contexts) is \mathbb{H}. (See [11, Sections 6.1 and 7.2].)
2.12 Definition. $\mathbb{H}=\bigcap_{n=1}^{\infty} \overline{2^{n}} \bar{N}$.
2.13 Lemma. $P_{2} \subseteq \mathbb{H}$.

Proof. Let $p \in P_{2}$ and suppose that $p \notin \mathbb{H}$. Pick the least $n \in \mathbb{N}$ such that $2^{n} \mathbb{N} \notin p$. Then $2^{n} \mathbb{N}+2^{n-1} \in p$. Pick x and y such that $\{x, y, x+y\} \subseteq 2^{n} \mathbb{N}+2^{n-1}$. then $\min \operatorname{supp}(x)=\min \operatorname{supp}(y)=n-1$ and so $\min \operatorname{supp}(x+y)>n-1$, a contradiction.
2.14 Theorem. There is a set $D \subseteq \mathbb{N}$ such that $\bar{D} \cap M \neq \emptyset, \bar{D} \cap S_{2}=\emptyset$, and $\bar{D} \cap(\mathbb{H}+\mathbb{H})=\emptyset$. In particular, $M \backslash c \ell\left\langle S_{2}\right\rangle \neq \emptyset$.

Proof. For $n \in \mathbb{N}$, let $A_{n}=\left\{2^{n}+1,2^{n}+2, \ldots, 2^{n}+n\right\}$ and let $\left\langle B_{n}\right\rangle_{n=1}^{\infty}$ be a sequence of pairwise disjoint infinite subsets of $\mathbb{N} \backslash \bigcup_{n=1}^{\infty} A_{n}$ with $\min B_{n}>2^{n}+n$ for each n. Let $D=\left\{x+y:(\exists n \in \mathbb{N})\left(\operatorname{supp}(x) \subseteq A_{n}\right.\right.$ and $\left.\left.\operatorname{supp}(y) \subseteq B_{n}\right)\right\}$.

To see that $\bar{D} \cap M \neq \emptyset$ we let $k \in \mathbb{N}$ and show that $\bar{D} \cap M_{k} \neq \emptyset$. Let $\mathcal{R}=\left\{A \subseteq \mathbb{N}\right.$: whenever $r \in \mathbb{N}$ and $A=\bigcup_{i=1}^{r} C_{i}$, there exist $i \in\{1,2, \ldots, r\}$ and sequences $\left\langle x_{t}\right\rangle_{t=1}^{k}$ and $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ such that $\left.F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right)+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq C_{i}\right\}$.
By Lemma 1.9 it suffices to show that $D \in \mathcal{R}$. So let $r \in \mathbb{N}$ and let $D=\bigcup_{i=1}^{r} C_{i}$. Pick by Lemma 2.10 some $n \in \mathbb{N}$ such that given any sequence $\left\langle z_{t}\right\rangle_{t=1}^{n}$, if $F S\left(\left\langle z_{t}\right\rangle_{t=1}^{n}\right)=\bigcup_{i=1}^{r} E_{i}$,
there exist $i \in\{1,2, \ldots, r\}$ and $\left\langle x_{t}\right\rangle_{t=1}^{k}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq E_{i}$. For $t \in\{1,2, \ldots$, $n\}$, let $z_{t}=2^{2^{n}+t}$.

By $2^{n}-1$ repeated applications of [11, Corollary 5.15] choose a sum subsystem $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ of $\left\langle 2^{t}\right\rangle_{t \in B_{n}}$ such that for each $w \in F S\left(\left\langle z_{t}\right\rangle_{t=1}^{n}\right)$ there exists $i(w) \in\{1,2, \ldots, r\}$ such that $w+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq C_{i(w)}$. For $i \in\{1,2, \ldots, r\}$, let

$$
E_{i}=\left\{w \in F S\left(\left\langle z_{t}\right\rangle_{t=1}^{n}\right): i(w)=i\right\} .
$$

Pick $i \in\{1,2, \ldots, r\}$ and $\left\langle x_{t}\right\rangle_{t=1}^{k}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq E_{i}$. Then $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right)+$ $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq C_{i}$.

To see that $\bar{D} \cap S_{2}=\emptyset$, suppose instead that we have $u \ll v$ such that $\{u, v, u+$ $v\} \subseteq D$. Then there exist $n, m, x_{1}, x_{2}, y_{1}$, and y_{2} such that $u=x_{1}+y_{1}, v=$ $x_{2}+y_{2}, \operatorname{supp}\left(x_{1}\right) \subseteq A_{n}, \operatorname{supp}\left(y_{1}\right) \subseteq B_{n}, \operatorname{supp}\left(x_{2}\right) \subseteq A_{m}$, and $\operatorname{supp}\left(y_{2}\right) \subseteq B_{m}$. Since $\operatorname{supp}(u+v) \cap A_{n} \neq \emptyset$ and $\operatorname{supp}(u+v) \cap A_{m} \neq \emptyset$, we have that $n=m$. But now $\max \operatorname{supp}(u)>2^{n}+n \geq \min \operatorname{supp}(v)$, a contradiction.

To see that $\bar{D} \cap(\mathbb{H}+\mathbb{H})=\emptyset$ suppose instead that we have $p, q \in \mathbb{H}$ such that $D \in p+q$. Then $\{w \in \mathbb{N}:-w+D \in q\} \in p$. Pick w_{1} such that $-w_{1}+D \in q$ and pick n such that $2^{n}>\max \operatorname{supp}\left(w_{1}\right)$. Pick w_{2} such that min $\operatorname{supp}\left(w_{2}\right)>2^{n}$ and $-w_{2}+D \in q$. Pick $z \in\left(-w_{1}+D\right) \cap\left(-w_{2}+D\right)$ such that min $\operatorname{supp}(z)>\max \operatorname{supp}\left(w_{2}\right)$. Then $\min \operatorname{supp}\left(w_{1}+z\right) \in A_{k}$ for some $k<n$ and $\min \operatorname{supp}\left(w_{2}+z\right) \in A_{l}$ for some $l \geq n$. But then max $\operatorname{supp}(z) \in B_{k} \cap B_{l}$, a contradiction.

By Lemma 2.13, we have $\left\langle S_{2}\right\rangle \subseteq S_{2} \cup(\mathbb{H}+\mathbb{H})$, so $M \backslash c \ell\left\langle S_{2}\right\rangle \neq \emptyset$.
Recall that we do not know that $\mathcal{F}_{2} \neq \Gamma$. If $\mathcal{F}_{2}=\Gamma$, then $\mathcal{F}_{2} \subseteq S_{k} \cap P_{k} \cap M_{k}$ for each $k \in \mathbb{N} \backslash\{1\}$.
2.15 Theorem. For any $k, l \in \mathbb{N} \backslash\{1\}$, if A is any one of S_{k}, P_{k}, or M_{k} and B is any one of $\mathcal{F}_{l}, S_{l}, P_{l}$, or M_{l}, then $A \subseteq B$ if and only if the inclusion follows from the inclusions shown in Figure 1.

Proof. By Theorem 2.7 we have that each $S_{k} \backslash P_{k+1} \neq \emptyset$. By Theorem 2.8 we have that each $M_{k} \backslash P_{k+1} \neq \emptyset$. By Theorem 2.11 we have for each k and l that $S_{k} \backslash M_{l} \neq \emptyset$ and $S_{k} \backslash \mathcal{F}_{l} \neq \emptyset$. By Theorem 2.14 we have for each k and l that $M_{k} \backslash S_{l} \neq \emptyset$ and $M_{k} \backslash \mathcal{F}_{l} \neq \emptyset$.

The next result is not related to any of our inclusions, but we feel it provides an interesting relationship.
2.16 Theorem. Let $k \in \mathbb{N}$. Then $P_{k}+\Gamma \subsetneq M_{k}$.

Proof. Since $P_{k} \subseteq \mathbb{H}$ by Lemma 2.13 and $\Gamma \subseteq \mathbb{H}$, we have by Theorem 2.14 that $M_{k} \backslash\left(P_{k}+\Gamma\right) \neq \emptyset$.

To see that $P_{k}+\Gamma \subseteq M_{k}$, let $p \in P_{k}$, let $q \in \Gamma$, and let $A \in p+q$. Then $\{x \in \mathbb{N}:-x+A \in q\} \in p$ so pick $\left\langle x_{t}\right\rangle_{t=1}^{k}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right) \subseteq\{x \in \mathbb{N}:-x+A \in q\}$. Then $\bigcap\left\{-z+A: z \in F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right)\right\} \in q$ so pick $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ such that $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq$ $\bigcap\left\{-z+A: z \in F S\left(\left\langle x_{t}\right\rangle_{t=1}^{k}\right)\right\}$.

3. The generated semigroups and their closures

All of the inclusions indicated in the following diagram are trivial. We begin this section by showing that no inclusion holds among the sets in Figure 2 unless it follows from the diagramed ones.

Figure 2

The following lemma is certainly known by a number of people, but we cannot find a convenient reference.
3.1 Lemma. Let $q \in E K$. Then for each $n \in \mathbb{N}, n q \in E K$ where $n q$ is the product computed in $(\beta \mathbb{N}, \cdot)$.

Proof. The mapping $x \mapsto n x$ from $\beta \mathbb{N}$ to itself is an injective homomorphism by [11, Lemma 13.1 and Exercise 3.4.1]. So it maps idempotents to idempotents and preserves
their order. And by [11, Lemma 6.6] all idempotents are in the range of this map. It therefore maps minimal idempotents to minimal idempotents.
3.2 Theorem. $c \ell\langle E K\rangle \backslash\left\langle S_{2}\right\rangle \neq \emptyset$.

Proof. We define functions f and g from \mathbb{N} to ω by $f(n)=\min (\operatorname{supp}(n))$ and $g(n)=$ $\max (\operatorname{supp}(n))$. As usual, \widetilde{f} and \widetilde{g} will denote the extensions of f and g respectively to continuous functions from $\beta \mathbb{N}$ to $\beta \omega$.

Let $\left\langle A_{n}\right\rangle_{n=1}^{\infty}$ be a sequence of pairwise disjoint infinite subsets of $2 \mathbb{N}-1$. It follows from [11, Lemma 6.8] that, for any $x \in \beta \mathbb{N}$ and any $y \in \mathbb{H}, \tilde{f}(x+y)=\widetilde{f}(x)$ and $\widetilde{g}(x+y)=\widetilde{g}(y)$. So, for each $n \in \mathbb{N},\left\{x \in \mathbb{H}: \widetilde{f}(x) \in \bar{A}_{n}\right\}$ and $\left\{x \in \mathbb{H}: \widetilde{g}(x) \in \bar{A}_{n}\right\}$ are respectively right and left ideals of \mathbb{H}. We can therefore choose for each n a minimal idempotent p_{n} of \mathbb{H} in the intersection of these two sets. Since \mathbb{H} contains all the idempotents of $\beta \mathbb{N}$ [11, Lemma 6.8], $\mathbb{H} \cap K(\beta \mathbb{N}) \neq \emptyset$ and is therefore an ideal of \mathbb{H} so $K(\mathbb{H}) \subseteq K(\beta \mathbb{N})$. So each $p_{n} \in E K$. By Lemma 3.1 we also have $2 p_{n} \in E K$. Let q be a point of accumulation of the sequence $\left\langle p_{n}+2 p_{n}\right\rangle_{n=1}^{\infty}$. Then $q \in c \ell\langle E K\rangle$. We shall show that $q \notin\left\langle S_{2}\right\rangle$.

We shall first show that $q \notin \mathbb{H}+\mathbb{H}$. Suppose, on the contrary, that $q=u+v$ for some $u, v \in \mathbb{H}$. We claim that there is at most one value of $n \in \mathbb{N}$ for which $p_{n}+2 p_{n} \in \beta \mathbb{N}+v$. To see this, observe that $g(2 n)=g(n)+1$ for every $n \in \mathbb{N}$ and hence, by continuity, $\widetilde{g}(2 x)=\widetilde{g}(x)+1$ for every $x \in \beta \mathbb{N}$. Also, for all $x \in$ $\beta \mathbb{N}+v$ we have that $\widetilde{g}(x)=\widetilde{g}(v)$. Thus, if $p_{n}+2 p_{n} \in \beta \mathbb{N}+v$, we have that $\widetilde{g}(v)=$ $\widetilde{g}\left(p_{n}+2 p_{n}\right)=\widetilde{g}\left(2 p_{n}\right)=\widetilde{g}\left(p_{n}\right)+1$. Since the mapping $n \mapsto \widetilde{g}\left(p_{n}\right)$ is injective, the claim is established. Now let $M=\left\{n \in \mathbb{N}: p_{n}+2 p_{n} \notin \beta \mathbb{N}+v\right\}$, so that $|\mathbb{N} \backslash M| \leq 1$. Now $q \in c \ell(\mathbb{N}+v)$ and $q \in c \ell\left(\left\{p_{n}+2 p_{n}: n \in M\right\}\right)$. By [11, Theorem 3.40], this implies that $\left\{p_{n}+2 p_{n}: n \in M\right\} \cap(\beta \mathbb{N}+v) \neq \emptyset$ or $c \ell\left(\left\{p_{n}+2 p_{n}: n \in M\right\}\right) \cap(\mathbb{N}+v) \neq \emptyset$. However, the first possibility does not hold, by definition of M, and the second does not hold because $\mathbb{N}+\mathbb{H}$ does not meet \mathbb{H}. This contradiction shows that $q \notin \mathbb{H}+\mathbb{H}$. So $q \notin\left\langle S_{2}\right\rangle \backslash S_{2}$.

We shall now show that $q \notin S_{2}$, and this will complete the proof. For $n \in \mathbb{N}$, we define $h(n) \in \mathbb{Z}_{2}$ as follows: if $\operatorname{supp}(n)$ is written as $\left\{i_{1}, i_{2}, \cdots, i_{m}\right\}$ in increasing order, $h(n)$ is the number mod 2 of values of k in $\{1,2, \cdots, m-1\}$ for which i_{k} is odd and i_{k+1} is even. Then $\widetilde{h}: \beta \mathbb{N} \rightarrow \mathbb{Z}_{2}$ denotes the continuous extension of h. We observe that, for any $n_{1}, n_{2} \in \mathbb{N}$ for which $n_{1} \ll n_{2}, h\left(n_{1}+n_{2}\right)=h\left(n_{1}\right)+h\left(n_{2}\right)$ except in the case in which $g\left(n_{1}\right)$ is odd and $f\left(n_{2}\right)$ is even, and that, in this case, $h\left(n_{1}+n_{2}\right)=h\left(n_{1}\right)+h\left(n_{2}\right)+1$. We claim that $\widetilde{h}\left(p_{n}\right)=0$ for every $n \in \mathbb{N}$. To see
this, let $\widetilde{h}\left(p_{n}\right)=a$ and let $D=\left\{r \in \mathbb{N}: h(r)=a, f(r) \in A_{n}\right.$, and $\left.g(r) \in A_{n}\right\}$. Then $D \in p_{n}$. So we can choose $n_{1}, n_{2} \in D$ for which $n_{1} \ll n_{2}$ and $n_{1}+n_{2} \in D$. This implies that $a=a+a$ and hence that $a=0$. Similarly one can show that $\widetilde{h}\left(2 p_{n}\right)=0$ and $\widetilde{h}\left(p_{n}+2 p_{n}\right)=1$. So $\widetilde{h}(q)=1$. Now let $E=\{r \in \mathbb{N}: h(r)=1, f(r)$ is odd and $g(r)$ is even $\}$. Then $E \in q$. However, if $r_{1}, r_{2} \in E$ and $r_{1} \ll r_{2}$, then $h\left(r_{1}+r_{2}\right)=0$ and so $r_{1}+r_{2} \notin E$. So $q \notin S_{2}$.
3.3 Theorem. There exist p and q in $E K$ such that $p+q \notin S_{2}$. In particular $\langle E K\rangle \backslash S_{2} \neq \emptyset$.

Proof. Let S be the semigroup of [11, Example 2.13]. (This is the 8 element semigroup generated by e and f and determined by the relations $e e=e, f f=f$, efefe $=e$, and fefef $=f$.) As can be quickly verified S is simple. That is, $K(S)=S$.

Define $h: \mathbb{N} \rightarrow S$ as follows:
(1) for $k \in \omega, h\left(2^{k}\right)= \begin{cases}e & \text { if } k \text { is even } \\ f & \text { if } k \text { is odd; }\end{cases}$
(2) for $F \in \mathcal{P}_{f}(\omega)$ with $|F|>1, h\left(\sum_{t \in F} 2^{t}\right)=\prod_{t \in F} h\left(2^{t}\right)$.

Let $\widetilde{h}: \beta \mathbb{N} \rightarrow S$ be the continuous extension of h. By [11, Theorem 4.21] the restriction of \widetilde{h} to \mathbb{H} is a homomorphism, and it is easy to verify that $\widetilde{h}[\mathbb{H}]=S$. By [11, Exercise 1.7.3], $\widetilde{h}[K(\mathbb{H})]=K(S)=S$. Pick idempotents $p, q \in K(\mathbb{H})$ such that $\widetilde{h}(p)=e$ and $\widetilde{h}(q)=f$. Since all of the idempotents of $\beta \mathbb{N}$ are in $\mathbb{H}, \mathbb{H} \cap K(\beta \mathbb{N}) \neq \emptyset$ and so $\mathbb{H} \cap K(\beta \mathbb{N})$ is an ideal of $\beta \mathbb{N}$ and thus $K(\mathbb{H}) \subseteq \mathbb{H} \cap K(\beta \mathbb{N})$. (In fact, equality holds by [11, Theorem 1.65], but we don't need that now.) Therefore $p, q \in E K$.

We have that $\widetilde{h}(p+q)=e f$ so $h^{-1}[\{e f\}] \in p+q$. Suppose that we have $x \ll y$ such that $\{x, y, x+y\} \subseteq h^{-1}[\{e f\}]$. Since $x \ll y$ we have $h(x+y)=h(x) h(y)=$ efef $\neq e f$, a contradiction.
3.4 Theorem. There exists $p \in \Gamma$ such that $p+p \notin c \ell(\mathbb{H}+E)$. In particular, $\Gamma \backslash\langle E\rangle \neq \emptyset$ and $\langle\Gamma\rangle \backslash c \ell\langle E\rangle \neq \emptyset$.

Proof. Let $\left\langle A_{n}\right\rangle_{n=1}^{\infty}$ partition ω into infinite sets and for each $n \in \mathbb{N}$ let $C_{n}=\{x \in \mathbb{N}$: $\left.\operatorname{supp}(x) \subseteq A_{n}\right\}$. Then $C_{n}=F S\left(\left\langle 2^{t}\right\rangle_{t \in A_{n}}\right)$ so pick by [11, Lemma 5.11] an idempotent $q_{n} \in \overline{C_{n}}$. Let p be a cluster point of the sequence $\left\langle q_{n}\right\rangle_{n=1}^{\infty}$. Then $p \in c \ell E=\Gamma$.

Suppose that $p+p \in c \ell(\mathbb{H}+E)$. Let $D=\left\{z \in \mathbb{N}\right.$: there exist $m<n$ in $\mathbb{N}, x \in C_{m}$, and $y \in C_{n}$ such that $x \ll y$ and $\left.z=x+y\right\}$. Note that $z \in D$ if and only if for some $m<n$ the support of z consists of members of A_{m} followed by members of A_{n}.

We claim that $D \in p+p$. To see this, we show that $\bigcup_{n=1}^{\infty} C_{n} \subseteq\{x \in \mathbb{N}:-x+D \in p\}$ which suffices since $\bigcup_{n=1}^{\infty} C_{n} \in p$. So let $x \in \bigcup_{n=1}^{\infty} C_{n}$ and pick $m \in \mathbb{N}$ such that $x \in C_{m}$.

Then $\bigcup_{n=m+1}^{\infty} C_{n} \in p$ and $\bigcup_{n=m+1}^{\infty} C_{n} \subseteq-x+D$.
For each $n \in \mathbb{N}$, let $V_{n}=\mathbb{H} \cap \overline{\left\{x \in \mathbb{N}: \max \operatorname{supp}(x) \in A_{n}\right\}}$. We claim that $p+p \in$ $c \ell\left(\bigcup_{n=1}^{\infty} V_{n}\right)$. To see this let $B \in p+p$. Since $p+p \in c \ell(\mathbb{H}+E)$, pick $v \in \mathbb{H}$ and $u \in E$ such that $v+u \in \overline{B \cap D}$. We shall show that there is some $n \in \mathbb{N}$ such that $C_{n} \in u$, from which it follows easily that $v+u \in V_{n}$ and thus $\bar{B} \cap V_{n} \neq \emptyset$. To this end pick $x \in \mathbb{N}$ such that $-x+D \in u$. Let $k=1+\max \operatorname{supp}(x)$. We can't have $\left|\left\{n \in \mathbb{N}: \operatorname{supp}(x) \cap A_{n} \neq \emptyset\right\}\right| \geq 3$ since then $\mathbb{N} 2^{k} \cap(-x+D)=\emptyset$ while $\mathbb{N} 2^{k} \cap(-x+D) \in u$.

Assume first that $\left\{n \in \mathbb{N}: \operatorname{supp}(x) \cap A_{n} \neq \emptyset\right\}=\{m, n\}$ for some $m<n$. Then $\mathbb{N} 2^{k} \cap(-x+D) \subseteq C_{n}$ so $C_{n} \in u$.

Now assume that $\left\{n \in \mathbb{N}: \operatorname{supp}(x) \cap A_{n} \neq \emptyset\right\}=\{m\}$. Since $u+u=u$, pick $y \in \mathbb{N} 2^{k} \cap(-x+D)$ such that $-y+(-x+D) \in u$. Let $l=1+\max \operatorname{supp}(y)$. Since $x+y \in D$ we have some $n>m$ such that the support of $x+y$ consists of some members of A_{m} followed by some members of A_{n}. Then $\mathbb{N} 2^{l} \cap(-(x+y)+D) \subseteq C_{n}$ so again $C_{n} \in u$.

We have now established our claim that $p+p \in c \ell\left(\bigcup_{n=1}^{\infty} V_{n}\right)$. Also, $p+p \in$ $\beta \mathbb{N}+p=c \ell(\mathbb{N}+p)$ so by [11, Theorem 3.40] either $(\mathbb{N}+p) \cap c \ell\left(\bigcup_{n=1}^{\infty} V_{n}\right) \neq \emptyset$ or $\bigcup_{n=1}^{\infty} V_{n} \cap(\beta \mathbb{N}+p) \neq \emptyset$. One can't have $(\mathbb{N}+p) \cap c \ell\left(\bigcup_{n=1}^{\infty} V_{n}\right) \neq \emptyset$ because if $x \in \mathbb{N}$, then $x+p \notin \mathbb{H}$ while $c \ell\left(\bigcup_{n=1}^{\infty} V_{n}\right) \subseteq \mathbb{H}$. So there exist some $q \in \beta \mathbb{N}$ and $m \in \mathbb{N}$ such that $q+p \in V_{m}$. Let $M=\left\{x \in \mathbb{N}: \max \operatorname{supp}(x) \in A_{m}\right\}$. Since $q+p \in V_{m}$, we have that $M \in p$. (We know that $M \in q+p$ so pick $x \in \mathbb{N}$ such that $-x+M \in p$. Let $k=1+\max \operatorname{supp}(x)$. Then $\mathbb{N} 2^{k} \cap(-x+M) \subseteq M$.) But also $\bigcup_{n=m+1}^{\infty} C_{m} \in p$ and $M \cap \bigcup_{n=m+1}^{\infty} C_{m}=\emptyset$, a contradiction.

Our final preliminary result is very simple.
3.5 Theorem. $E \backslash c \ell K(\beta \mathbb{N}) \neq \emptyset$. In particular, $E \backslash c \ell\langle E K\rangle \neq \emptyset$.

Proof. Pick by [11, Lemma 5.11] an idempotent $p \in \overline{F S\left(\left\langle 2^{2 n}\right\rangle_{n=1}^{\infty}\right)}$. By [1, Corollary 4.2], $F S\left(\left\langle 2^{2 n}\right\rangle_{n=1}^{\infty}\right)$ is not piecewise syndetic so by [11, Corollary 4.41], $p \notin c \ell K(\beta \mathbb{N})$. For the "in particular" assertion note that $K(\beta \mathbb{N})$ is a semigroup so $\langle E K\rangle \subseteq K(\beta \mathbb{N})$. \square
3.6 Theorem. Let A and B each be any one of $E K,\langle E K\rangle, c \ell\langle E K\rangle, E,\langle E\rangle, c \ell\langle E\rangle$, $\Gamma,\langle\Gamma\rangle, c \ell\langle\Gamma\rangle, S,\langle S\rangle, c \ell\langle S\rangle, M$, or P. Then $A \subseteq B$ if and only if the inclusion follows from the inclusions shown in Figure 2.

Proof. The necessary examples are contained in Theorems 2.11, 2.14, 3.2, 3.3, 3.4, and 3.5. For example, the fact that $S \backslash\langle E K\rangle \neq \emptyset$ follows from the fact in Theorem 3.5 that $E \backslash c \ell\langle E K\rangle \neq \emptyset$ because $E \subseteq S$ and $\langle E K\rangle \subseteq c l\langle E K\rangle$.

Finally, consider the following diagram. (If we had three dimensional paper, we could combine it with Figure 2.) Again, all of the indicated inclusions are trivial.

Figure 3

We have already obtained all of the necessary results to show that no inclusion among the sets in Figure 3 holds unless it is forced by the indicated inclusions, except that we don't know whether any or all of the starred inclusions is reversible.
3.7 Theorem. Let A be any one of $E K,\langle E K\rangle, c l\langle E K\rangle, E,\langle E\rangle, c \ell\langle E\rangle, \Gamma,\langle\Gamma\rangle$, $c \ell\langle\Gamma\rangle, S_{2},\left\langle S_{2}\right\rangle, c \ell\left\langle S_{2}\right\rangle, M, P$, or P_{2}. Let B be any of those sets or $\mathcal{F}_{2},\left\langle\mathcal{F}_{2}\right\rangle$, or $c \backslash\left\langle\mathcal{F}_{2}\right\rangle$. Then $A \subseteq B$ if and only if the inclusion follows from the inclusions shown in Figure 2.

Proof. The necessary examples are contained in Theorems 2.7, 2.11, 2.14, 3.2, 3.3, 3.4, and 3.5.

References

[1] C. Adams, N. Hindman, and D. Strauss, Largeness of the set of finite products in a semigroup, Semigroup Forum 76 (2008), 276-296.
[2] J. Baumgartner, A short proof of Hindman's Theorem, J. Comb. Theory (Series A) 17 (1974), 384-386.
[3] V. Bergelson and N. Hindman, Nonmetrizable topological dynamics and Ramsey Theory, Trans. Amer. Math. Soc. 320 (1990), 293-320.
[4] V. Bergelson and B. Rothschild, A selection of open problems, Topology and its Applications, to appear.
[5] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969.
[6] P. Frankl, R. Graham, and V. Rödl, Induced restricted Ramsey theorems for spaces, J. Comb. Theory (Series A) 44 (1987), 120-128.
[7] H. Furstenberg, Recurrence in ergodic theory and combinatorical number theory, Princeton University Press, Princeton, 1981.
[8] N. Hindman, Finite sums from sequences within cells of a partition of \mathbb{N}, J. Comb. Theory (Series A) 17 (1974), 1-11.
[9] N. Hindman, I. Leader, and D. Strauss, Open problems in partition regularity Comb. Prob. and Comp. 12 (2003), 571-583.
[10] N. Hindman and D. Strauss, Compact subsemigroups of $(\beta \mathbb{N},+)$ containing the idempotents, Proc. Edinburgh Math. Soc. 39 (1996), 291-307.
[11] N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification: theory and applications, de Gruyter, Berlin, 1998.
[12] J. Nešetřil and V. Rödl, Finite union theorem with restrictions, Graphs and Comb. 2 (1986), 357-361.
[13] F. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264-286.
[14] H. Shi and H. Yang, Nonmetrizable topological dynamical characterization of central sets, Fund. Math. 150 (1996), 1-9.

Neil Hindman	Dona Strauss
Department of Mathematics	Department of Pure Mathematics
Howard University	University of Leeds
Washington, DC 20059	Leeds LS2 9J2
USA	UK
nhindman@aol.com	d.strauss@hull.ac.uk

[^0]: ${ }^{1}$ This author acknowledges support received from the National Science Foundation via Grant DMS-0852512.

