This paper was published in *Proc. Edinburgh Math. Soc.* **39** (1996), 291-307. To the best of my knowledge, this is the final version as it was submitted to the publisher.–NH

Compact Subsemigroups of $(\beta \mathbb{N}, +)$ Containing the Idempotents

Neil Hindman¹

and

Dona Strauss

Abstract. The space $\beta \mathbb{N}$ is the Stone-Čech compactification of the discrete space of positive integers. The set of elements of $\beta \mathbb{N}$ which are in the kernel of every continuous homomorphism from $\beta \mathbb{N}$ to a topological group is a compact semigroup containing the idempotents. At first glance it would seem a good candidate for the smallest such semigroup. We produce an infinite nested sequence of smaller such semigroups, all defined naturally in terms of addition on \mathbb{N} .

1. Introduction. Given a discrete semigroup (S, \cdot) the operation can be extended to the Stone-Čech compactification βS of S so that $(\beta S, \cdot)$ is a compact right topological semigroup. (See [12] for an elementary construction of this extension, with the caution that there βS is left rather than right topological.) As a compact right topological semigroup βS has idempotents [6, Corollary 2.10]. The existence of these idempotents, especially idempotents in the smallest ideal of βS , has important combinatorial consequences (See [11] and [15], for example.)

Of special interest are the semigroups $(\mathbb{N}, +)$ and (\mathbb{N}, \cdot) , where \mathbb{N} is the set of positive integers. Let $E = \{p \in \beta \mathbb{N} : p + p = p\}$ and let $\Gamma = c\ell E$. It turns out that Γ is a right ideal of $(\beta \mathbb{N}, \cdot)$. This fact provided the first (and for a long time only) proof of the following result: If \mathbb{N} is partitioned into finitely many cells, then there exist sequences $\langle x_n \rangle_{n=1}^{\infty}$ and $\langle y_n \rangle_{n=1}^{\infty}$ such that $FS(\langle x_n \rangle_{n=1}^{\infty}) \cup FP(\langle y_n \rangle_{n=1}^{\infty})$ is contained in one cell of the partition [9, Theorem 2.6]. (Here $FS(\langle x_n \rangle_{n=1}^{\infty}) = \{\sum_{n \in F} x_n : F \text{ is a}$ finite nonempty subset of $\mathbb{N}\}$ and $FP(\langle y_n \rangle_{n=1}^{\infty}) = \{\prod_{n \in F} y_n : F \text{ is a finite nonempty}$ subset of $\mathbb{N}\}$).

It is an intriguing fact that Γ is defined additively, is a right ideal, in particular a subsemigroup, of $(\beta \mathbb{N}, \cdot)$, and yet is not a subsemigroup of $(\beta \mathbb{N}, +)$. In fact there exist idempotents p and q in $(\beta \mathbb{N}, +)$ such that $p + q \notin \Gamma$. (See Section 3 for the easy proof of this latter assertion.) An intriguing and potentially useful problem then arises: Characterize the smallest compact subsemigroup of $(\beta \mathbb{N}, +)$ which contains the set Eof idempotents.

¹ This author gratefully acknowledges support received from the National Science Foundation via grant DMS 90-25025.

We take the points of $\beta \mathbb{N}$ to be the ultrafilters on \mathbb{N} . The reader is referred to [12] for background material. We will often use the fact that $A \in p + q$ if and only if $\{x \in \mathbb{N} : A - x \in q\} \in p$, where $A - x = \{y \in \mathbb{N} : y + x \in A\}$. (And similarly $A \in p \cdot q$ if and only if $\{x \in \mathbb{N} : A/x \in q\} \in p$, where $A/x = \{y \in \mathbb{N} : y \cdot x \in A\}$.)

Homomorphisms to other algebraic structures are a useful tool for investigating the algebraic structure of $\beta \mathbb{N}$. For example, such homomorphisms were used in [13] to show that the maximal groups in the smallest ideal of $(\beta \mathbb{N}, +)$ contain copies of the free group on 2^c generators. Now given any continuous homomorphism from $(\beta \mathbb{N}, +)$ to a compact topological group the kernel necessarily contains E. (It also must contain any element of finite order [1, Corollary 2.3]. Whether any such exist besides the idempotents is a difficult open problem.)

Let C be the intersection of the kernels of all continuous homomorphisms from $(\beta \mathbb{N}, +)$ to arbitrary compact topological groups. (We use "C" for kernel because K standardly represents the smallest ideal.) Then C is a compact semigroup containing E and at first glance seems like a good candidate for the smallest such. This turns out to fail badly, as we shall see.

The set $\Gamma = c\ell E$ can be characterized as follows [11, Lemma 2.3(a)]: Let $p \in \beta\mathbb{N}$. Then $p \in \Gamma$ if and only if for every $A \in p$ there is a sequence $\langle x_n \rangle_{n=1}^{\infty}$ with $FS(\langle x_n \rangle_{n=1}^{\infty}) \subseteq A$. In a similar fashion we define sets $S_n \subseteq \beta\mathbb{N}$ for each $n \in \mathbb{N} \setminus \{1\}$ as follows: Let $p \in \beta\mathbb{N}$. Then $p \in S_n$ if and only if for each $A \in p$, there is a sequence $\langle x_t \rangle_{t=1}^n$ with $FS(\langle x_t \rangle_{t=1}^n) \subseteq A$. (Given an index set J, $FS(\langle x_i \rangle_{i\in J}) = \{\sum_{i \in F} x_i : F \text{ is a finite nonempty subset of } J.\}$.) In a similar vein define T and M by agreeing that, given $p \in \beta\mathbb{N}$, $p \in T$ if and only if whenever $A \in p$, there exist some a and some $\langle y_t \rangle_{t=1}^\infty$ with $a + FS(\langle y_t \rangle_{t=1}^\infty) \subseteq A$ and that $p \in M$ if and only if whenever $A \in p$ and $n \in \mathbb{N}$, there exist $\langle x_t \rangle_{t=1}^n$ and $\langle y_t \rangle_{t=1}^\infty$ such that $FS(\langle x_t \rangle_{t=1}^n) + FS(\langle y_t \rangle_{t=1}^\infty) \subseteq A$. It will be shown in Theorem 2.4 that T is the smallest closed left ideal of $(\beta\mathbb{N}, +)$ containing the idempotents.

Let I be the semigroup generated by the set E of idempotents and let S_I be the smallest compact subsemigroup of $(\beta \mathbb{N}, +)$ containing E. In Section 2 we investigate each of the objects defined above, show that all (except Γ and $c\ell I$) are semigroups and show that the following pattern of inclusions holds:

 $\Gamma \subseteq$

 $I \subseteq$

$$c\ell I \subseteq S_I \subseteq M \subseteq T \cap \bigcap_{n=2}^{\infty} S_n \subseteq \bigcap_{n=2}^{\infty} S_n \subseteq \dots S_3 \subseteq S_2 \subseteq C.$$

In Section 3 we show that $\Gamma \setminus I \neq \emptyset$, $I \setminus \Gamma \neq \emptyset$, $T \setminus \bigcap_{n=1}^{\infty} S_n \neq \emptyset$, $\bigcap_{n=1}^{\infty} S_n \setminus T \neq \emptyset$, and

that all but one of the inclusions displayed above (including "...") is proper. (We have been unable to decide whether $M = T \cap \bigcap_{n=2}^{\infty} S_n$.) In Section 4 we present relationships between these sets and other structures.

We would like to thank the referee for a very helpful and detailed report.

We conclude this introduction by displaying some results which we will utilise later.

1.1 Lemma. (a) Let $p \in E$ and let $A \in p$. There exists $\langle x_n \rangle_{n=1}^{\infty}$ such that $FS(\langle x_n \rangle_{n=1}^{\infty}) \subseteq A$.

(b) Let $\langle x_n \rangle_{n=1}^{\infty}$ be a sequence in \mathbb{N} . There exist $p \in E$ such that for all $m \in \mathbb{N}$, $FS(\langle x_n \rangle_{n=m}^{\infty}) \in p$.

Proof. (a) This is what is show in the Galvin-Glazer proof of the Finite Sum Theorem. See [5, Theorem 10.3] or [12].

(b) [10, Lemma 2.4 and Theorem 2.5].

1.2 Lemma. Let n and r be in \mathbb{N} . There is some $m \in \mathbb{N}$ such that whenever $\langle y_t \rangle_{t=1}^m$ is a sequence in \mathbb{N} and D_1, D_2, \ldots, D_r are subsets of \mathbb{N} with $FS(\langle y_t \rangle_{t=1}^m) \subseteq \bigcup_{i=1}^r D_i$, there exist $i \in \{1, 2, \ldots, r\}$ and $\langle x_t \rangle_{t=1}^n$ with $FS(\langle x_t \rangle_{t=1}^n) \subseteq D_i$.

Proof. By the finite version of the Finite Unions Theorem [8, p. 82] pick $m \in \mathbb{N}$ such that whenever the finite nonempty subsets of $\{1, 2, \ldots, m\}$ are covered by r cells, there will exist pairwise disjoint B_1, B_2, \ldots, B_n with all sets of the form $\bigcup_{t \in F} B_t$ in the same cell of the cover (for $\emptyset \neq F \subseteq \{1, 2, \ldots, n\}$).

Next let $\langle y_t \rangle_{t=1}^m$ and $\langle D_i \rangle_{i=1}^r$ be given with $FS(\langle y_t \rangle_{t=1}^m) \subseteq \bigcup_{i=1}^r D_i$. For each $i \in \{1, 2, \ldots, r\}$, let $H_i = \{F \subseteq \{1, 2, \ldots, m\} : F \neq \emptyset$ and $\sum_{t \in F} y_t \in D_i\}$. Pick $i \in \{1, 2, \ldots, r\}$ and pairwise disjoint B_1, B_2, \ldots, B_n with $\bigcup_{j \in F} B_j \in H_i$ whenever $\emptyset \neq F \subseteq \{1, 2, \ldots, n\}$. Let $x_j = \sum_{t \in B_j} y_t$ for $j \in \{1, 2, \ldots, n\}$. Then given $\emptyset \neq F \subseteq \{1, 2, \ldots, n\}$, $\sum_{j \in F} x_j = \sum_{j \in F} \sum_{t \in B_j} y_t$. Since $\bigcup_{j \in F} B_j \in H_i$ one has that $\sum_{j \in F} x_t \in D_i$.

The following lemma is apparently originally due to Frolík.

1.3 **Lemma**. Let X and Y be σ -compact subsets of $\beta \mathbb{N}$. If $c\ell X \cap c\ell Y \neq \emptyset$, then $X \cap c\ell Y \neq \emptyset$ or $Y \cap c\ell X \neq \emptyset$.

Proof. See [14, Lemma 1.1].

2. Inclusions among semigroups containing the idempotents. We begin by displaying the definitions of the objects we are studying. Recall that $E = \{p \in \beta \mathbb{N} : p + p = p\}$.

2.1 **Definition**. (a) $C = \{p \in \beta \mathbb{N} : \text{for any compact topological group } G \text{ and any continuous homomorphism } \varphi \text{ from } (\beta \mathbb{N}, +) \text{ to } G, \varphi(p) \text{ is the identity of } G \}.$

(b) For $n \in \mathbb{N} \setminus \{1\}$, $S_n = \{p \in \beta \mathbb{N} : \text{for all } A \in p \text{ there exists } \langle x_t \rangle_{t=1}^n \text{ such that } FS(\langle x_t \rangle_{t=1}^n) \subseteq A\}.$

(c) $T = \{p \in \beta \mathbb{N} : \text{for all } A \in p \text{ there exist } a \in \mathbb{N} \text{ and } \langle y_t \rangle_{t=1}^{\infty} \text{ such that } a + FS(\langle y_t \rangle_{t=1}^{\infty}) \subseteq A\}.$

(d) $M = \{ p \in \beta \mathbb{N} : \text{for all } A \in p \text{ and all } n \in \mathbb{N} \text{ there exist } \langle x_t \rangle_{t=1}^n \text{ and } \langle y_t \rangle_{t=1}^\infty \text{ such that } FS(\langle x_t \rangle_{t=1}^n) + FS(\langle y_t \rangle_{t=1}^\infty) \subseteq A \}.$

(e) $S_I = \bigcap \{S : S \text{ is a compact subsemigroup of } (\beta \mathbb{N}, +) \text{ and } E \subseteq S \}.$

(f) $I = \bigcap \{S : S \text{ is a semigroup of } (\beta \mathbb{N}, +) \text{ and } E \subseteq S \}.$

(g) $\Gamma = \{ p \in \beta \mathbb{N} : \text{for all } A \in p \text{ there exists } \langle y_t \rangle_{t=1}^{\infty} \text{ such that } FS(\langle y_t \rangle_{t=1}^{\infty}) \subseteq A \}.$

2.2 Lemma. Each of the objects defined in Definition 2.1 contains E and all except I are compact.

Proof. The idempotents are contained in Γ by Lemma 1.1(a). Clearly Γ is contained in each of M, T, and S_n (for $n \in \mathbb{N} \setminus \{1\}$). The idempotents are contained in I and S_I by definition and are contained in C by elementary algebra.

That S_I and C are compact follows from elementary topology. The others all have definitions which begin "for all $A \in p$ " (and refer no more to p). If a point p is not in the specified set it has a member A failing the definition. Then $c\ell A$ is a neighborhood of p missing the specified set. [

We will see in the next section that I is not closed when we show that the inclusion $I \subseteq c\ell I$ is proper.

2.3 Lemma. Each of the objects defined in Definition 2.1 except Γ is a semigroup.

Proof. That C, I, and S_I are semigroups follows by elementary algebra.

Let $n \in \mathbb{N}\setminus\{1\}$ and let $p, q \in S_n$. To see that $p + q \in S_n$, let $A \in p + q$. Then $\{x \in \mathbb{N} : A - x \in q\} \in p$ so pick $\langle x_t \rangle_{t=1}^n$ such that $FS(\langle x_t \rangle_{t=1}^n) \subseteq \{x \in \mathbb{N} : A - x \in q\}$. Now $FS(\langle x_t \rangle_{t=1}^n)$ is finite so if $B = \bigcap\{A - a : a \in FS(\langle x_t \rangle_{t=1}^n)\}$ we have $B \in q$. Pick $\langle y_t \rangle_{t=1}^n$ such that $FS(\langle y_t \rangle_{t=1}^n) \subseteq B$. We claim $FS(\langle x_t + y_t \rangle_{t=1}^n) \subseteq A$. To see this let $\emptyset \neq F \subseteq \{1, 2, \ldots, n\}$. Then $\sum_{t \in F} y_t \in B \subseteq A - \sum_{t \in F} x_t$ so $\sum_{t \in F} (x_t + y_t) \in A$.

That T is a semigroup follows from the fact that it is a left ideal which we will present in Theorem 2.4. To see that M is a semigroup, let $p, q \in M$ and let $A \in$ p + q. Let $B = \{x \in \mathbb{N} : A - x \in q\}$. Then $B \in p$ so pick $\langle x_t \rangle_{t=1}^n$ and $\langle y_t \rangle_{t=1}^\infty$ such that $FS(\langle x_t \rangle_{t=1}^n) + FS(\langle y_t \rangle_{t=1}^\infty) \subseteq B$. In particular $FS(\langle x_t + y_t \rangle_{t=1}^n) \subseteq B$. Let $D = \bigcap \{A - a : a \in FS(\langle x_t + y_t \rangle_{t=1}^n) \}.$ Then $D \in q$ so pick $\langle z_t \rangle_{t=1}^n$ and $\langle w_t \rangle_{t=1}^\infty$ such that $FS(\langle z_t \rangle_{t=1}^n) + FS(\langle w_t \rangle_{t=1}^\infty) \subseteq D$. Then $FS(\langle z_t + x_t + y_t \rangle_{t=1}^n) + FS(\langle w_t \rangle_{t=1}^\infty) \subseteq A$.

We shall see in Theorem 2.11 that Γ is not a semigroup.

2.4 **Theorem.** T is the smallest closed left ideal of $(\beta \mathbb{N}, +)$ which contains the idempotents and $T = c\ell \bigcup \{\beta \mathbb{N} + p : p \in E\} = c\ell \bigcup \{\mathbb{N} + p : p \in E\}.$

Proof. By Lemma 2.2 *T* is closed and contains the idempotents. To see that *S* is a left ideal let $p \in \beta \mathbb{N}$ and $q \in T$. Let $A \in p + q$. Then $\{x \in \mathbb{N} : A - x \in q\} \in p$ so pick *x* such that $A - x \in q$. Pick *a* and $\langle y_t \rangle_{t=1}^{\infty}$ such that $a + FS(\langle y_t \rangle_{t=1}^{\infty}) \subseteq A - x$. Then $x + a + FS(\langle y_t \rangle_{t=1}^{\infty}) \subseteq A$.

As a closed left ideal containing the idempotents, $T \supseteq c\ell \bigcup \{\beta \mathbb{N} + p : p \in E\}$. To complete the proof, we show $T \subseteq c\ell \bigcup \{\beta \mathbb{N} + p : p \in E\}$. To this end let $q \in T$ and let $A \in q$. Pick a and $\langle y_t \rangle_{t=1}^{\infty}$ such that $a + FS(\langle y_t \rangle_{t=1}^{\infty}) \subseteq A$. Pick by Lemma 1.1 $p \in E$ with $FS(\langle y_t \rangle_{t=1}^{\infty}) \in p$. Then $A \in a + p$ so $(c\ell A) \cap (\mathbb{N} + p) \neq \emptyset$.

2.5 Theorem. (a)
$$\Gamma \subseteq c\ell I$$

(b) $c\ell I \subseteq S_I$
(c) $S_I \subseteq M$
(d) $M \subseteq T \cap \bigcap_{n=2}^{\infty} S_n$
(e) For each $n \in \mathbb{N} \setminus \{1\}, S_{n+1} \subseteq S_n$.
(f) $S_2 \subseteq C$.

Proof. Statements (b), (d), and (e) are trivial and (c) follows immediately from the fact that M is a compact subsemigroup of $\beta \mathbb{N}$ containing the idempotents. By [11, Lemma 2.3], $\Gamma = c\ell E$ so (a) holds.

To verify (f), let $p \in S_2$ and let φ be a continuous homomorphism from $(\beta \mathbb{N}, +)$ to a topological group (G, +) with identity 0. Suppose that $\varphi(p) = a \neq 0$. Then $a \neq a + a$ so pick a neighborhood V of a such that $V \cap (V+V) = \emptyset$. Pick $A \in p$ such that $\varphi[c\ell A] \subseteq V$ and pick x_1 and x_2 with $\{x_1, x_2, x_1 + x_2\} \subseteq A$. Then $\varphi(x_1 + x_2) \in V \cap (V + V)$, a contradiction. []

The following simple result allows us to tell when a set A has closure intersecting various of our special semigroups. For example, it tells us that for $A \subseteq \mathbb{N}$ and $n \in \mathbb{N} \setminus \{1\}$, $c\ell A \cap S_n \neq \emptyset$ if and only if whenever F is a finite partition of A there exist $B \in F$ and $\langle x_t \rangle_{t=1}^n$ with $FS(\langle x_t \rangle_{t=1}^n) \subseteq B$. (Let $\mathcal{G} = \{FS(\langle x_t \rangle_{t=1}^n) : \langle x_t \rangle_{t=1}^n$ is an *n*-term sequence in $\mathbb{N}\}$. Then $S_n = \{p \in \beta \mathbb{N} : \text{for each } A \in p \text{ there exists } G \in \mathcal{G} \text{ with } G \subseteq A\}$.)

2.6 **Theorem**. Let X be a discrete space, let $A \subseteq X$, and let $\mathcal{G} \subseteq \mathcal{P}(X)$. The following statements are equivalent.

(a) There exists $p \in clA$ such that for every $B \in p$ there exists $G \in \mathcal{G}$ with $G \subseteq B$.

- (b) Whenever \mathcal{F} is a finite partition of A there exist $B \in \mathcal{F}$ and $G \in \mathcal{G}$ with $G \subseteq B$.
- (c) When \mathcal{F} is finite and $\bigcup \mathcal{F} = A$, there exist $B \in \mathcal{F}$ and $G \in \mathcal{G}$ with $G \subseteq B$.

Proof. That (a) implies (b) and (b) implies (c) is trivial.

To see that (c) implies (a), it suffices to show that $\{A\} \cup \{\mathbb{N} \setminus B : B \subseteq \mathbb{N} \text{ and for all } G \in \mathcal{G}, G \setminus B \neq \emptyset\}$ has the finite intersection property, since any ultrafilter p extending this family is as required by (a). But a failure of the finite intersection property would make $A = \bigcup \mathcal{F}$ where \mathcal{F} is finite and for each $B \in \mathcal{F}$, one has no $G \in \mathcal{G}$ with $G \subseteq B$, contradicting (c).

2.7 **Theorem.** Let $A \subseteq \mathbb{N}$. Then $(c\ell A) \cap \bigcap_{n=2}^{\infty} S_n \neq \emptyset$ if and only if for every $n \in \mathbb{N}$ there exists $\langle x_t \rangle_{t=1}^n$ with $FS(\langle x_t \rangle_{t=1}^n) \subseteq A$.

Proof. The necessity is an immediate consequence of Theorem 2.6.

Sufficiency. We have by Lemma 2.2 and Theorem 2.5 that $\{(c\ell A) \cap S_n : n \in \mathbb{N} \setminus \{1\}\}$ is a nested collection of closed sets so it suffices to show that $(c\ell A) \cap S_n \neq \emptyset$ for each $n \in \mathbb{N} \setminus \{1\}$. To this end let $n \in \mathbb{N} \setminus \{1\}$ and let \mathcal{F} be a finite partition of A. Let $r = |\mathcal{F}|$ and pick m as guaranteed by Lemma 1.2 for n and r. Pick $\langle y_t \rangle_{t=1}^m$ with $FS(\langle y_t \rangle_{t=1}^m) \subseteq A$. By Lemma 1.2 pick $B \in \mathcal{F}$ and $\langle x_t \rangle_{t=1}^n$ with $FS(\langle x_t \rangle_{t=1}^n) \subseteq B$.

The following notion, used to characterize members of C, is of independent interest.

2.8 **Definition**. Let $A \subseteq \mathbb{N}$. Then A is a rational approximation set if and only if whenever F is a finite nonempty subset of \mathbb{R} and $\epsilon > 0$, there exists some $n \in A$ such that for each $x \in F$ there exists $m \in \mathbb{Z}$ with $|x - m/n| < \epsilon/n$.

2.9 Lemma. Let $p \in \beta \mathbb{N}$. The following statements are equivalent.

(a) $p \in C$;

(b) for each $A \in p$, A is a rational approximation set;

(c) for each $A \in p$, each $x \in \mathbb{R}$, and each $\epsilon > 0$ there exist $n \in A$ and $m \in \mathbb{Z}$ with $|x - m/n| < \epsilon/n$.

Proof. To see that (a) implies (b), let $A \in p$ and let finite nonempty $F \subseteq \mathbb{R}$ be given. Write $F = \{x_1, x_2, \ldots, x_k\}$. We view the circle group \mathbb{T} as \mathbb{R}/\mathbb{Z} , denoting by [x] the equivalence class $x + \mathbb{Z}$. Define $h : \mathbb{N} \longrightarrow \bigvee_{i=1}^{k} \mathbb{T}$ by $h(n) = ([nx_1], [nx_2], \ldots, [nx_k])$. Then h is a homomorphism so the continuous extension $h^{\beta} : \beta \mathbb{N} \longrightarrow \bigvee_{i=1}^{k} \mathbb{T}$ is a homomorphism, as was observed by Milnes [17]. Since $p \in C$, $h^{\beta}(p) = ([0], [0], \ldots, [0])$ so pick

 $B \in p$ such that $h^{\beta}[c\ell B] \subseteq \{([y_1], [y_2], \dots, [y_k]) : \text{for each } i \in \{1, 2, \dots, k\}, -\epsilon < y_i < \epsilon\}$. Pick $n \in B \cap A$. Since $n \in B$, pick for each $i \in \{1, 2, \dots, k\}$ some y_i with $-\epsilon < y_i < \epsilon$ such that $[nx_i] = [y_i]$. Given $i \in \{1, 2, \dots, k\}$, pick $m_i \in \mathbb{Z}$ such that $nx_i = y_i + m_i$ then $-\epsilon < nx_i - m_i < \epsilon$ so $|x_i - m_i/n| < \epsilon/n$.

That (b) implies (c) is trivial.

To see that (c) implies (a), observe that it suffices to show that given any continuous homomorphism $\varphi : \beta \mathbb{N} \longrightarrow \mathbb{T}$ one has $\varphi(p) = [0]$. (See for example the introduction to [1].) So let such φ be given and pick $x \in \mathbb{R}$ with $[x] = \varphi(1)$. Suppose that $\varphi(p) \neq [0]$ and pick $\epsilon > 0$ such that $\varphi(p) \notin \{[y] : -\epsilon \leq y \leq \epsilon\}$. Pick $A \in p$ such that $\varphi[c\ell A] \cap \{[y] : -\epsilon \leq y \leq \epsilon\} = \emptyset$. Pick $n \in A$ and $m \in \mathbb{Z}$ such that $|x - m/n| < \epsilon/n$ and let y = nx - m. Then $\varphi(n) = [y]$ and $-\epsilon < y < \epsilon$, a contradiction.

2.10 **Theorem**. Let $A \subseteq \mathbb{N}$. Then $c \ell A \cap C \neq \emptyset$ if and only if A is a rational approximation set.

Proof. Necessity. Pick $p \in c\ell A \cap C$. By Lemma 2.9, A is a rational approximation set.

Sufficiency. Let $\mathcal{G} = \{B \subseteq \mathbb{N} : B \text{ is a rational approximation set.}\}$ It is an easy consequence of the definition of rational approximation sets that whenever \mathcal{F} is a finite partition of A, one has $\mathcal{F} \cap \mathcal{G} \neq \emptyset$. Thus by Theorem 2.6 there is some $p \in c\ell A$ such that for every $B \in p$ there is some $G \in \mathcal{G}$ with $G \subseteq B$ (and hence $B \in \mathcal{G}$). Then by Lemma 2.9 $p \in C$.

2.11 **Theorem**. Γ is not a semigroup. In fact $(E + E) \setminus \Gamma \neq \emptyset$.

Proof. Pick by Lemma 1.1(b) idempotents p and q such that $FS(\langle 2^{2t} \rangle_{t=m}^{\infty}) \in p$ and $FS(\langle 2^{2t+1} \rangle_{t=m}^{\infty}) \in q$ for each $m \in \mathbb{N}$. Let $A = \{\sum_{t \in F} 2^{2t} + \sum_{t \in G} 2^{2t+1} : F$ and Gare finite nonempty subsets of \mathbb{N} and max $F < \min G\}$. We claim that $A \in p + q$. To see this it suffices to show that $FS(\langle 2^{2t} \rangle_{t=1}^{\infty}) \subseteq \{x \in \mathbb{N} : A - x \in q\}$ so let F be a finite nonempty subset of \mathbb{N} and let $m = \max F + 1$. Then $FS(\langle 2^{2t+1} \rangle_{t=m}^{\infty}) \subseteq A - \sum_{t \in F} 2^{2t} \in q$.

Now suppose $p + q \in \Gamma$. Then pick a sequence $\langle y_t \rangle_{t=1}^{\infty}$ with $FS(\langle y_t \rangle_{t=1}^{\infty}) \subseteq A$. Pick F_1 and G_1 with max $F_1 < \min G_1$ such that $y_1 = \sum_{t \in F_1} 2^{2t} + \sum_{t \in G_1} 2^{2t+1}$. Let $m = \max G_1 + 1$. Pick nonempty $H \subseteq \mathbb{N} \setminus \{1\}$ such that 2^{2m} divides $\sum_{t \in H} y_t$. (Take any 2^m elements with all y_t in the same congruence class mod 2^{2m} .) Pick F_2 and G_2 with max $F_2 < \min G_2$ such that $\sum_{t \in H} y_t = \sum_{t \in F_2} 2^{2t} + \sum_{t \in G_2} 2^{2t+1}$. Since 2^{2m} divides $\sum_{t \in H} y_t$ we have min $F_2 \ge m$. Thus $y_1 + \sum_{t \in H} y_t = \sum_{t \in F_1} 2^{2t} + \sum_{t \in G_1} 2^{2t+1} + \sum_{t \in G_2} 2^{2t+1} + \sum_{t \in G$ $\sum_{t \in F_2} 2^{2t} + \sum_{t \in G_2} 2^{2t+1} \text{ where } \max F_1 < \min G_1 < \max G_1 < \min F_2 < \max F_2 < \min G_2 \text{ so by uniqueness of binary expansion, } y_1 + \sum_{t \in H} y_t \notin A, \text{ a contradiction. }$

Our proof that $c\ell I$ is not a semigroup is in some respects similar to the proof that Γ is not a semigroup. However, instead of the binary expansion of integers we use the factorial expansion, $x = \sum_{t \in F} a_t \cdot t!$ where each $a_t \in \{1, 2, \ldots, t\}$. In the proof we also utilize in an incidental fashion the semigroup $(\beta \mathbb{N}, \cdot)$.

2.12 **Theorem**. $c\ell I$ is not a semigroup. In fact $(E + \Gamma) \setminus c\ell I \neq \emptyset$.

Proof. Since $\Gamma \subseteq c\ell I$, the second statement implies the first. Let $A = \{\sum_{n \in F} n! + \sum_{n \in G} k \cdot n! : F \text{ and } G \text{ are finite nonempty subsets of } \mathbb{N} \text{ and } \max F < \min G \text{ and } k \in \mathbb{N} \text{ and } k \leq \min G \}$. Define $g : \mathbb{N} \longrightarrow \mathbb{N}$ by $g(x) = a_{\ell}$ where $x = \sum_{t \in F} a_t \cdot t!$, each $a_t \in \{1, 2, \ldots, t\}$, and $\ell = \max F$. That is g(x) is the leftmost nonzero digit in the factorial expansion of x. Denote also by g its continuous extension from $\beta \mathbb{N}$ to $\beta \mathbb{N}$.

We claim that:

(1) If
$$q \in \bigcap_{n=1}^{\infty} c\ell(\mathbb{N}n)$$
, then $g(p+q) = g(q)$ for all $p \in \beta\mathbb{N}$.

To see this, suppose instead there is some $B \subseteq \mathbb{N}$ with $g(p+q) \in c\ell B$ and $g(q) \in c\ell(\mathbb{N}\setminus B)$. Pick $C \in p+q$ and $D \in q$ with $g[c\ell C] \subseteq c\ell B$ and $g[c\ell D] \subseteq c\ell(\mathbb{N}\setminus B)$. Since $C \in p+q$ pick $x \in \mathbb{N}$ with $C-x \in q$. Pick $y \in (C-x) \cap D \cap \mathbb{N}x!$. Then $y+x \in C$ so $g(y+x) \in B$. But $g(y+x) = g(y) \in \mathbb{N}\setminus B$, a contradiction.

Next we claim:

(2) If
$$q \in E$$
 and $c\ell A \cap (\beta \mathbb{N} + q) \neq \emptyset$, then $g(q) \in \mathbb{N}$.

To see this suppose that $g(q) \notin \mathbb{N}$, so that for each $k, D_k = \{m \in \mathbb{N} : g(m) > k\} \in q$. Pick $p \in \beta \mathbb{N}$ with $p + q \in c\ell A$. Let $B = \{m + n : m, n \in \mathbb{N} \text{ and } g(n) > g(m) > 1$ and $n \in \mathbb{N}m!\}$. We show that $B \in p + q$ which will be a contradiction since $B \cap A = \emptyset$. We claim in fact that for all $x \in \mathbb{N}, B - x \in q$. For this, since q = q + q, it suffices to show that $(\mathbb{N}x!) \cap D_1 \subseteq \{m \in \mathbb{N} : (B - x) - m \in q\}$ so let $m \in (\mathbb{N}x!) \cap D_1$. Then $D_{g(m)} \cap \mathbb{N}m! \subseteq (B - x) - m$ (since g(m + x) = g(m)) so $(B - x) - m \in q$.

Next we claim:

(3) If
$$p \in c\ell(FS(\langle n! \rangle_{n=1}^{\infty})) \cap \bigcap_{n=1}^{\infty} c\ell(\mathbb{N}n)$$
 and $r \in \beta\mathbb{N}$, then $g(r \cdot p) = r$.

To see this it suffices to show that for all $n \in \mathbb{N}$, $g(n \cdot p) = n$, so let $n \in \mathbb{N}$ be given. Let $B = \{\sum_{t \in F} t! : F \text{ is a finite nonempty subset of } \mathbb{N} \text{ and } \min F \ge n\}$. Then $B \in p$ so $n \cdot B \in n \cdot p$ and $g[n \cdot B] = \{n\}$. Now by Lemma 1.1 pick $p \in E \cap c\ell FS(\langle n! \rangle_{n=1}^{\infty})$ and let $r \in \beta \mathbb{N} \setminus \mathbb{N}$. Now for each $x \in \mathbb{N}$, $x \cdot p \in E$ so $r \cdot p \in \Gamma$. Let $s = p + r \cdot p$. We show that $s \notin c\ell I$. Suppose instead that $s \in c\ell I$. Observe that $A \in s$. Indeed $FS(\langle n! \rangle_{n=1}^{\infty}) \subseteq \{x \in \mathbb{N} : A - x \in r \cdot p\}$. (Given $\sum_{n \in F} n!$ one sees that $\mathbb{N} \setminus \{1\} \subseteq \{k : (A - \sum_{n \in F} n!)/k \in p\}$ by noting that $\{\sum_{n \in G} n! : \min G > \max F \text{ and } \min G \geq k\} \subseteq (A - \sum_{n \in F} n!)/k$.)

We claim that $s \in c\ell \bigcup_{k=1}^{\infty} (I \cap g^{-1}[\{k\}])$. To see this, let $B \in s$. Since $s \in c\ell I$, we have $c\ell(A \cap B) \cap I \neq \emptyset$ so we may pick $\ell \in \mathbb{N}$ and $q_1, q_2, \ldots, q_\ell \in E$ with $q_1 + q_2 + \ldots + q_\ell \in c\ell(A \cap B)$. We may presume $\ell \geq 2$. Now by (2) we have $g(q_\ell) \in \mathbb{N}$. Let $k = g(q_\ell)$. By (1), $g(q_1 + q_2 + \ldots + q_\ell) = k$ so $c\ell B \cap (I \cap g^{-1}[\{k\}]) \neq \emptyset$.

Now also $s \in c\ell(\mathbb{N} + r \cdot p)$ so $c\ell(\mathbb{N} + r \cdot p) \cap c\ell \bigcup_{k=1}^{\infty} c\ell(I \cap g^{-1}[\{k\}]) \neq \emptyset$ so by Lemma 1.3 either one has some $n \in \mathbb{N}$ with $n + r \cdot p \in c\ell \bigcup_{k=1}^{\infty} c\ell(I \cap g^{-1}[\{k\}]) \subseteq \bigcap_{m=1}^{\infty} c\ell(\mathbb{N}m))$ or one has some $q \in \beta\mathbb{N}$ and some $k \in \mathbb{N}$ with $q + r \cdot p \in c\ell(I \cap g^{-1}[\{k\}]) \subseteq g^{-1}[\{k\}])$. The first possibility would imply that $n \in \bigcap_{m=1}^{\infty} c\ell(\mathbb{N}m)$. The second would imply that $g(q + r \cdot p) = k$ while by (1) and (3) $g(q + r \cdot p) = g(r \cdot p) = r \notin \mathbb{N}$.

3. The inclusions are proper. We show in this section that the objects mentioned in Theorem 2.5 are all distinct (except that we have been unable to determine whether $M = T \cap \bigcap_{n=2}^{\infty} S_n$). We proceed from the left in the inclusion diagram from the introduction.

3.1 **Theorem**. $I \setminus \Gamma \neq \emptyset$ and $\Gamma \setminus I \neq \emptyset$.

Proof. That $I \setminus \Gamma \neq \emptyset$ follows from Theorem 2.11. That $\Gamma \setminus I \neq \emptyset$ follows from Theorem 2.12 since $E + I \subseteq I$.

In the following theorem (and the rest of this section) the inclusions hold by Theorem 2.5 (or are completely trivial). We concentrate on establishing the inequalities.

3.2 **Theorem**. $\Gamma \underset{\neq}{\subseteq} c\ell I$, $I \underset{\neq}{\subseteq} c\ell I$, and $c\ell I \underset{\neq}{\subseteq} S_I$.

Proof. That $\Gamma \neq c\ell I$ follows from the fact from Theorem 3.1 that $I \setminus \Gamma \neq \emptyset$. The remaining two conclusions follow from the fact (Theorem 2.12) that $c\ell I$ is not a semigroup.

We produce in the following lemma another closed subsemigroup of $\beta \mathbb{N}$ containing the idempotents. It was not included in those discussed in Section 2 because its definition is less natural than those defined there. When we write $\sum_{t \in F} a_t \cdot t!$, we shall assume Fis finite and nonempty and each $a_t \in \{1, 2, \ldots, t\}$.

3.3 Lemma. Let $B = \{\sum_{t \in F} a_t \cdot t! : (1) F \text{ is a finite nonempty subset of } \mathbb{N}; (2) \text{ for } each t \in F, a_t \in \{1, 2, \ldots, t\}; (3) \text{ there exists } t \in F \text{ such that } a_t > 1; \text{ and } (4) \text{ whenever } n, t \in F \text{ with } t < n \text{ either } a_t = a_n = 1 \text{ or } a_t > a_n\}.$ Then $(\bigcap_{n=1}^{\infty} c\ell \mathbb{N}n) \setminus c\ell B$ is a closed subsemigroup of $(\beta \mathbb{N}, +)$ containing the idempotents.

Proof. To see that it is a semigroup, let $p, q \in (\bigcap_{n=1}^{\infty} c\ell \mathbb{N}n) \setminus c\ell B$. Then $p + q \in \bigcap_{n=1}^{\infty} c\ell \mathbb{N}n$ so we only need to show that $\mathbb{N} \setminus B \in p + q$. To this end and we let $x \in \mathbb{N} \setminus B$ and show that $(\mathbb{N} \setminus B) - x \in q$. Write $x = \sum_{t \in F} a_t \cdot t!$ and let $m = \max F + 1$. We show that $\mathbb{N}m! \subseteq (\mathbb{N} \setminus B) - x$, so let $y \in \mathbb{N}m!$ and write $y = \sum_{t \in G} b_t \cdot t!$ and note that $\min G \geq m$.

Now $x \notin B$. Assume first that for all $t \in F$, $a_t = 1$. If for all $t \in G$, $b_t = 1$, we have $y + x \notin B$ so assume for some $n \in G$, $b_n > 1$. Pick any $t \in F$. Then t < n and $a_t = 1 < b_n$ so again $y + x \notin B$. Now assume we have t < n in F with $a_t \leq a_n$ and it is not the case that $a_t = a_n = 1$. Then directly we have y + x fails to satisfy (4) of the definition so $y + x \notin B$.

Now let $p \in E$. Then $p \in \bigcap_{n=1}^{\infty} c\ell \mathbb{N}n$ so we show that $\mathbb{N} \setminus B \in p$. Suppose instead that $B \in p$ and let $D = \{\sum_{t \in F} t! : F \text{ is a finite nonempty subset of } \mathbb{N}\}$. Then $D \subseteq \mathbb{N} \setminus B$ so if $D \in p$ we are done. Assume $D \notin p$.

Assume that for some $k \geq 2$, $\{\sum_{t \in F} a_t \cdot t! : \min F \geq k \text{ and } \{a_t : t \in F\} \subseteq \{1, 2, \dots, k\}\} \in p$. Since $p = p + p + \dots + p$ (k times) and $p \in \bigcap_{n=1}^{\infty} c \ell \mathbb{N}n$ we have that $\{\sum_{t \in F} a_t \cdot t! : |F| \geq k\} \in p$. Let $E = B \cap \{\sum_{t \in F} a_t \cdot t! : \min F \geq k \text{ and } |F| \geq k$ and $\{a_t : t \in F\} \subseteq \{1, 2, \dots, k\}\}$. Then $E \in p$ so pick $x \in E$ such that $E - x \in p$. Write $x = \sum_{t \in F} a_t \cdot t!$ and let $m = \max F + 1$. Pick $y \in \mathbb{N}m! \cap (E - x)$, and write $y = \sum_{t \in G} b_t \cdot t!$. Since $x \in B$ and $|F| \geq k$ and each $a_t \leq k$, there is some $t \in F$ with $a_t = 1$. Since $y \in E$, $y \in B$ so $y \notin D$ so there is some $n \in G$ with $b_n > 1$. But then t < n and $a_t < b_n$ so $y + x \notin B$ so $y + x \notin E$ a contradiction.

Thus it must be the case that for all $k \in \mathbb{N}$, $E_k = \{\sum_{t \in F} a_t \cdot t! : \{a_t : t \in F\} \setminus \{1, 2, \ldots, k\} \neq \emptyset\} \in p$. Since $B \in p$, pick x such that $B - x \in p$ and write $x = \sum_{t \in F} a_t \cdot t!$. Let $k = \max\{a_t : t \in F\}$ and let $m = \max F + 1$. Pick $y \in \mathbb{N}m! \cap E_k \cap (B - x)$ and write $y = \sum_{t \in G} b_t \cdot t!$. Pick $n \in G$ such that $b_n > k$ and pick any $t \in F$. Then t < n and $b_n > a_t$ so $y + x \notin B$, a contradiction.

3.4 **Theorem**. $S_I \stackrel{\subset}{\neq} M$.

Proof. Let *B* be as in Lemma 3.3 and let $H = \{\sum_{t \in F} a_t \cdot t! : \text{whenever } n, t \in F$ with t < n one has $a_t > a_n\}$. Observe that given any $n \in \mathbb{N}$ there exists $\langle x_t \rangle_{t=1}^n$ with $FS(\langle x_t \rangle_{t=1}^n) \subseteq H$. (For example let $x_t = (n+1-t) \cdot (n+t)!$.) Thus by Theorem 2.7 we may pick $p \in c\ell H \cap \bigcap_{n=2}^{\infty} S_n$. By Lemma 1.1 pick $q = q + q \in \bigcap_{m=1}^{\infty} c\ell(FS(\langle t! \rangle_{t=m}^\infty))$. We claim that $p + q \in M \cap c\ell B$ (so that by Lemma 3.3, $p + q \in M \setminus S_I$).

To see that $p+q \in M$, let $A \in p+q$ and let $n \in \mathbb{N}$ be given. Since $\{x \in \mathbb{N} : A-x \in q\} \in p$ and $p \in S_n$, pick $\langle x_t \rangle_{t=1}^n$ with $FS(\langle x_t \rangle_{t=1}^n) \subseteq \{x \in \mathbb{N} : A-x \in q\}$. Let $D = \bigcap \{A-z : z \in FS(\langle x_t \rangle_{t=1}^n)\}$. Since $D \in q = q+q$ pick $\langle y_t \rangle_{t=1}^\infty$ with $FS(\langle y_t \rangle_{t=1}^\infty) \subseteq D$.

Then $FS(\langle x_t \rangle_{t=1}^n) + FS(\langle y_t \rangle_{t=1}^\infty) \subseteq A.$

To see that $B \in p + q$ we show that $H \subseteq \{x \in \mathbb{N} : B - x \in q\}$. So let $x \in H$ and write $x = \sum_{t \in F} a_t \cdot t!$. Let $m = \max F + 1$. Then $FS(\langle t! \rangle_{t=m}^{\infty}) \subseteq B - x$ so $B - x \in q$.

As we have remarked, we do not know whether $M = T \cap \bigcap_{n=2}^{\infty} S_n$. It is trivial that $T \setminus \bigcap_{n=2}^{\infty} S_n \neq \emptyset$, indeed that $T \setminus S_2 \neq \emptyset$. In fact by Theorem 2.5 $S_2 \subseteq C$ and trivially $C \subseteq \bigcap_{n=1}^{\infty} c\ell(\mathbb{N}n)$ while, given any idempotent p we have by Theorem 2.4 that $1 + p \in c\ell(\mathbb{N}2 + 1) \cap T$. This suggests replacing T by $T \cap \bigcap_{n=1}^{\infty} c\ell(\mathbb{N}n)$.

3.5 **Theorem**. $\bigcap_{n=2}^{\infty} S_n \setminus T \neq \emptyset$, $(T \cap \bigcap_{n=1}^{\infty} c\ell(\mathbb{N}n)) \setminus S_2 \neq \emptyset$, and $T \cap \bigcap_{n=2}^{\infty} S_n \subseteq \bigcap_{n=2}^{\infty} S_n$.

Proof. For the first statement, let $A = \bigcup_{n=1}^{\infty} FS(\langle 2^{2^n+i} \rangle_{i=1}^n)$. By Theorem 2.7, $(c\ell A) \cap \bigcap_{n=2}^{\infty} S_n \neq \emptyset$. It is easy to see however that one cannot get any $t \in \mathbb{N}$ and any sequence $\langle x_n \rangle_{n=1}^{\infty}$ with $t + FS(\langle x_n \rangle_{n=1}^{\infty}) \subseteq A$ (since all elements of A have binary expansions with support restricted to a small segment of \mathbb{N}). Thus $(c\ell A) \cap T = \emptyset$.

Now let $B = \bigcup_{k=4}^{\infty} (2 \cdot (k!) + FS(\langle n! \rangle_{n=k+1}^{\infty}))$, so that *B* consists of all numbers whose rightmost nonzero factorial digit is a 2, occurring at position 4 or above and all other nonzero digits are 1. Then there do not exist $x, y \in B$ with $x + y \in B$. (Given $x, y \in B$ either the rightmost digit of x + y is 4 or there are two digits in the expansion of x + y which are greater than 1.) Thus $(c\ell B) \cap S_2 = \emptyset$.

Now pick by Lemma 1.1 p = p + p with $p \in \bigcap_{m=1}^{\infty} c\ell(FS(\langle n! \rangle_{n=m}^{\infty}))$ and pick $q \in \beta \mathbb{N} \setminus \mathbb{N}$ with $\{2 \cdot (k!) : k \in \mathbb{N}\} \in q$. Then $p, q \in \bigcap_{n=1}^{\infty} c\ell(\mathbb{N}n)$ so $q + p \in \bigcap_{n=1}^{\infty} c\ell(\mathbb{N}n)$. By Theorem 2.4, $q + p \in T$. Since $\{2 \cdot (k!) : k \in \mathbb{N} \text{ and } k \geq 4\} \subseteq \{x \in \mathbb{N} : B - x \in p\}$, one has $q + p \in c\ell B$.

The last conclusion of the theorem follows from the first.

The following result is a special case of Theorem 3.9, but its proof is much simpler so we present it separately.

3.6 Theorem. $S_3 \stackrel{\subset}{\neq} S_2$.

Proof. Let $A = \{2^{2m} - 2^{2n} : m, n \in \mathbb{N} \text{ and } m > n\}$. It is easy to see that one cannot get any $x_1, x_2, x_3 \in A$ with $\{x_1 + x_2, x_1 + x_3, x_2 + x_3\} \subseteq A$. Thus $(c\ell A) \cap S_3 = \emptyset$. To see that $(c\ell A) \cap S_2 \neq \emptyset$ we use Theorem 2.6. So let \mathcal{F} be a finite partition of A. For each $F \in \mathcal{F}$, let $B(F) = \{\{n, m\} : n, m \in \mathbb{N} \text{ and } m > n \text{ and } 2^{2m} - 2^{2n} \in F\}$. By Ramsey's Theorem [8, p. 7] pick $F \in \mathcal{F}$ and n < m < r in \mathbb{N} with $\{\{n, m\}, \{n, r\}, \{m, r\}\} \subseteq B(F)$. Let $x_1 = 2^{2m} - 2^{2n}$ and $x_2 = 2^{2r} - 2^{2m}$. Then $x_1 + x_2 = 2^{2r} - 2^{2n}$ so $\{x_1, x_2, x_1 + x_2\} \subseteq F$.

For our proof of Theorem 3.9 we need the following result. Given a sequence $\langle F_t \rangle_{t=1}^n$ of sets we write $FU(\langle F_t \rangle_{t=1}^n) = \{\bigcup_{t \in G} F_t : G \text{ is a (finite) nonempty subset of } \{1, 2, \ldots, n\}\}.$

3.7 **Theorem.** (Nešetřil and Rödl). Let $r, n \in \mathbb{N}$. There is a finite set S of finite nonempty sets such that:

(a) Whenever $S = \bigcup_{i=1}^{r} \mathcal{B}_i$, there exist $i \in \{1, 2, ..., r\}$ and pairwise disjoint $F_1, F_2, ..., F_n$ in S with $FU(\langle F_t \rangle_{t=1}^n) \subseteq \mathcal{B}_i$ and

(b) there do not exist pairwise disjoint $F_1, F_2, \ldots, F_{n+1}$ in \mathcal{S} with $FU(\langle F_t \rangle_{t=1}^{n+1}) \subseteq \mathcal{S}$.

Proof. [18, Theorem 1.1]. (Or see [7].) (The fact that S and the members of S are finite is not stated, but follows from the proof.) []

The following corollary is not stated in [7] or [18], and we feel it is interesting in its own right.

3.8 Corollary. Let $n \in \mathbb{N} \setminus \{1\}$. There is a set $A \subseteq \mathbb{N}$ such that

(a) Whenever \mathcal{F} is a finite partition of A there exist $B \in \mathcal{F}$ and $\langle x_t \rangle_{t=1}^n$ in \mathbb{N} with $FS(\langle x_t \rangle_{t=1}^n) \subseteq B$ and

(b) there does not exist $\langle x_t \rangle_{t=1}^{n+1}$ with $FS(\langle x_t \rangle_{t=1}^{n+1}) \subseteq A$.

Proof. Pick by Theorem 3.7 a sequence $\langle S_r \rangle_{r=1}^{\infty}$ such that

(i) for each $r \in \mathbb{N}$, S_r is a finite set of finite nonempty subsets of \mathbb{N} and $\max(\bigcup S_r) < \min(\bigcup S_{r+1})$;

(ii) for each $r \in \mathbb{N}$, whenever $S_r = \bigcup_{i=1}^r \mathcal{B}_i$, there exist $i \in \{1, 2, \dots, r\}$ and pairwise disjoint F_1, F_2, \dots, F_n in S_r with $FU(\langle F_t \rangle_{t=1}^n) \subseteq \mathcal{B}_i$ and

(iii) for each $r \in \mathbb{N}$, there do not exist pairwise disjoint $F_1, F_2, \ldots, F_{n+1}$ with $FU(\langle F_t \rangle_{t=1}^{n+1}) \subseteq S_r$.

Let $\mathcal{S} = \bigcup_{r=1}^{\infty} \mathcal{S}_r$. Then

(iv) whenever \mathcal{F} is a finite partition of \mathcal{S} , there exist $\mathcal{B} \in \mathcal{F}$ and pairwise disjoint $F_1, F_2, ..., F_n$ in \mathcal{S} with $FU(\langle F_t \rangle_{t=1}^n) \subseteq \mathcal{B}$, and

(v) there do not exist pairwise disjoint $F_1, F_2, \ldots, F_{n+1}$ in Swith $FU(\langle F_t \rangle_{t=1}^{n+1}) \subseteq S$.

Indeed, (iv) is immediate since if r = |F| one has $S_r \subseteq S$. To verify (v), suppose we have pairwise disjoint $F_1, F_2, \ldots, F_{n+1}$ in S with $FU(\langle F_t \rangle_{t=1}^{n+1}) \subseteq S$. Observe that, given any $r \in \mathbb{N}$ and any $G \in S$, $G \in S_r$ if and only if $\min(\bigcup S_r) \leq \min G$ and $\max G \leq \max(\bigcup S_r)$. Pick $r \in \mathbb{N}$ with $F_1 \in S_r$. If any $F_t \notin S_r$ we have by the above observation that $F_1 \cup F_t \notin S$. Thus each $F_t \in S_r$ so, again using the observation, $FU(\langle F_t \rangle_{t=1}^{n+1}) \subseteq S_r$, contradicting (iii). Now let $A = \{\sum_{t \in F} 3^t : F \in S\}$. Given a finite partition \mathcal{F} of A and $B \in \mathcal{F}$, let $\mathcal{G}(B) = \{F \in S : \sum_{t \in F} 3^t \in B\}$. Then $\{\mathcal{G}(B) : B \in \mathcal{F}\}$ is a finite partition of S so by (iv), pick $B \in \mathcal{F}$ and pairwise disjoint F_1, F_2, \ldots, F_n in S with $FU(\langle F_t \rangle_{t=1}^n) \subseteq \mathcal{G}(B)$. For $t \in \{1, 2, \ldots, n\}$, let $x_t = \sum_{i \in F_t} 3^i$. Then $FS(\langle x_t \rangle_{t=1}^n) \subseteq B$, so (a) holds.

To verify (b), suppose we have $x_1, x_2, \ldots, x_{n+1}$ in \mathbb{N} with $FS(\langle x_t \rangle_{t=1}^{n+1}) \subseteq A$. For each $t \in \{1, 2, \ldots, n+1\}$, pick F_t such that $x_t = \sum_{i \in F_t} 3^i$. We claim that the sets $F_1, F_2, \ldots, F_{n+1}$ are pairwise disjoint (so that $FU(\langle F_t \rangle_{t=1}^{n+1}) \subseteq S$, contradicting (v)). Suppose instead we have $t \neq s$ with $F_t \cap F_s \neq \emptyset$. Then $x_t + x_s = \sum_{i \in F_t \Delta F_s} 3^i + \sum_{i \in F_t \cap F_s} 2 \cdot 3^i$. But $x_t + x_s \in A$ so for some G, $x_t + x_s = \sum_{i \in G} 3^i$, contradicting the uniqueness of ternary expansions.

3.9 **Theorem**. Let $n \in \mathbb{N} \setminus \{1\}$. Then $S_{n+1} \underset{\neq}{\subseteq} S_n$.

Proof. Pick A as guaranteed by Corollary 3.8. By (b), $(c\ell A) \cap S_{n+1} = \emptyset$ while by (a) and Theorem 2.7, $(c\ell A) \cap S_n \neq \emptyset$.

Now we need to show that $C \neq S_2$. We will utilize $\beta \mathbb{Z}$. We brush aside the distinction between ultrafilters on \mathbb{Z} with \mathbb{N} as a member and ultrafilters on \mathbb{N} , and thus pretend that $\beta \mathbb{N} \subseteq \beta \mathbb{Z}$. Given $p \in \beta \mathbb{N}$ we let $-p = \{-A : A \in p\}$ and note that $-p \in \beta \mathbb{Z}$. (But be cautioned that unless $p \in \mathbb{N}, -p + p \neq 0$; in fact $\beta \mathbb{N} \setminus \mathbb{N}$ is a left ideal of $\beta \mathbb{Z}$ so if $p \in \beta \mathbb{N} \setminus \mathbb{N}$ then also $-p + p \in \beta \mathbb{N} \setminus \mathbb{N}$.)

3.10 Lemma. Let φ be a homomorphism from $\beta \mathbb{Z}$ to the circle group \mathbb{T} and let $p \in \beta \mathbb{N}$. Then $\varphi(-p) = -\varphi(p)$.

Proof. Note that the function $f : \beta \mathbb{N} \longrightarrow \beta \mathbb{Z}$ defined by f(p) = -p is continuous. For all $n \in \mathbb{N}$, $\varphi(-n) = -\varphi(n)$ (since $\varphi|_{\mathbb{Z}}$ is a group homomorphism). Thus $\varphi \circ f$ and $-\varphi$ are continuous functions agreeing on \mathbb{N} , hence on $\beta \mathbb{N}$.

3.11 Lemma. Let $\langle x_n \rangle_{n=1}^{\infty}$ be any increasing sequence in \mathbb{N} and let A and B be infinite subsets of \mathbb{N} . Let $D = \{x_n + x_m - x_r - x_s : n > m+3 > m > r+3 > r > s+3 \text{ and } n, s \in A \text{ and } m, r \in B\}$ and let $p, q \in \beta \mathbb{N} \setminus \mathbb{N}$ with $\{x_n : n \in A\} \in p$ and $\{x_n : n \in B\} \in q$. Then $D \in -p + -q + q + p$ and $-p + -q + q + p \in C$. In particular D is a rational approximation set.

Proof. To see that $-p + -q + q + p \in C$ it suffices (as is well known and explained in the introduction to [1]) to let φ be a homomorphism from $\beta \mathbb{N}$ to \mathbb{T} and show that $\varphi(-p+-q+q+p) = [0]$. To this end let such φ be given. Define $\tau : \mathbb{Z} \longrightarrow \mathbb{T}$ by $\tau(0) = [0]$, and $\tau(n) = \varphi(n)$ and $\tau(-n) = -\varphi(n)$ for $n \in \mathbb{N}$. Then the continuous extension τ^{β} of τ to $\beta \mathbb{Z}$ is a homomorphism and τ^{β} agrees with φ on $\beta \mathbb{N}$. Thus, using Lemma 3.10, we have $\varphi(-p + -q + q + p) = \tau(-p + -q + q + p) = \tau(-p) + \tau(-q) + \tau(q) + \tau(p) = -\tau(p) - \tau(q) + \tau(q) + \tau(p) = [0].$

It is completely routine to verify that $D \in -p + -q + q + p$. The "in particular" conclusion follows from Lemma 2.9. []

3.12 **Lemma**. Let $\langle x_n \rangle_{n=1}^{\infty}$ be a sequence in \mathbb{N} such that for each $n \in \mathbb{N}$, $x_{n+1} \ge 2x_n$. Let A and B be disjoint infinite subsets of \mathbb{N} such that for some $i, j \in \{0, 1, 2\}$ $A \subseteq \mathbb{N}3 + i$ and $B \subseteq \mathbb{N}3 + j$. Let $D = \{x_n + x_m - x_r - x_s : n > m + 3 > m > r + 3 > r > s + 3$ and $n, s \in A$ and $m, r \in B\}$. There do not exist $a, b \in D$ with $a + b \in D$.

Proof. Suppose we have $a, b \in D$ with $a + b \in D$ and pick $n_1 > m_1 + 3 > m_1 > r_1 + 3 > r_1 > s_1 + 3$, $n_2 > m_2 + 3 > m_2 > r_2 + 3 > r_2 > s_2 + 3$, and $n_3 > m_3 + 3 > m_3 > r_3 + 3 > r_3 > s_3 + 3$ such that $a = x_{n_1} + x_{m_1} - x_{r_1} - x_{s_1}$, $b = x_{n_2} + x_{m_2} - x_{r_2} - x_{s_2}$, and $a + b = x_{n_3} + x_{m_3} - x_{r_3} - x_{s_3}$ and $\{n_1, n_2, n_3, s_1, s_2, s_3\} \subseteq A$ and $\{m_1, m_2, m_3, r_1, r_2, r_3\} \subseteq B$. Then we have

$$(*) x_{n_1} + x_{m_1} + x_{n_2} + x_{m_2} + x_{r_3} + x_{s_3} = x_{n_3} + x_{m_3} + x_{r_1} + x_{s_1} + x_{r_2} + x_{s_2}.$$

We may assume without loss of generality that $n_1 \ge n_2$. We claim first that $n_1 = n_3$. Suppose $n_1 < n_3$. Then since $n_1, n_3 \in \mathbb{N}3 + i$, the left hand side of (*) is at most $x_{n_3-3} + x_{n_3-6} + x_{n_3-6} + x_{n_3-6} + x_{n_3-9} \le x_{n_3-2} + x_{n_3-5} + x_{n_3-6} + x_{n_3-9} < x_{n_3}$, a contradiction. (Observe that for each $n, x_{n+1} > \sum_{t=1}^{n} x_t$.) Similarly if we had $n_3 < n_1$ we would have that the right hand side of (*) is at most $x_{n_1-3} + x_{n_1-6} + x_{n_1-9} + x_{n_1-6} + x_{n_1-5} + x_{n_1-8} + x_{n_1-6} < x_{n_1}$. Thus $n_1 = n_3$ so we have

$$(**) x_{m_1} + x_{n_2} + x_{m_2} + x_{r_3} + x_{s_3} = x_{m_3} + x_{r_1} + x_{s_1} + x_{r_2} + x_{s_2}.$$

Now $n_2 \in A$ and $m_1 \in B$ so $n_2 \neq m_1$. We claim that $n_2 < m_1$ so suppose instead that $n_2 > m_1$. If $m_3 < n_2$ we have (since $n_2 > m_1 > r_1 + 3$) that the right hand side of (**) is at most $x_{n_2-1} + x_{n_2-4} + x_{n_2-7} + x_{n_2-6} + x_{n_2-9} < x_{n_2}$, a contradiction. If $m_3 > n_2$ (> m_1) we have that the left hand side of (**) is at most $x_{m_3-3} + x_{m_3-1} + x_{m_3-4} + x_{m_3-3} + x_{m_3-6} \le x_{m_3-1} + x_{m_3-2} + x_{m_3-4} + x_{m_3-6} < x_{m_3}$, a contradiction. Thus $n_2 < m_1$ as claimed.

Now we claim $m_3 = m_1$. Suppose first that $m_3 < m_1$. Then the right hand side of (**) is at most $x_{m_1-3} + x_{m_1-3} + x_{m_1-6} + x_{m_1-7} + x_{m_1-10} < x_{m_1}$, a contradiction. Similarly if $m_1 < m_3$ one has the left hand side of (**) is at most $x_{m_3-3} + x_{m_3-4} + x_{m_3-7} + x_{m_3-3} + x_{m_3-6} < x_{m_3}$, a contradiction. Thus $m_3 = m_1$ so we have

$$(***) x_{n_2} + x_{m_2} + x_{r_3} + x_{s_3} = x_{r_1} + x_{s_1} + x_{r_2} + x_{s_2}.$$

Now we claim that $n_2 < r_1$. Suppose not. Then since $n_2 \in A$ and $r_1 \in B$ we have $n_2 > r_1$ so the right hand side of (***) is at most $x_{n_2-1} + x_{n_2-4} + x_{n_2-6} + x_{n_2-9} < x_{n_2}$, a contradiction. Thus $n_2 < r_1$ as claimed.

Next we claim $r_3 = r_1$. If $r_3 < r_1$ we have the left hand side of (***) is at most $x_{r_1-1} + x_{r_1-4} + x_{r_1-3} + x_{r_1-6} < x_{r_1}$, a contradiction. If $r_3 > r_1$ (> n_2) we have the right hand side of (***) is at most $x_{r_3-3} + x_{r_3-6} + x_{r_3-10} + x_{r_3-13} < x_{r_3}$. Thus $r_3 = r_1$ so we have

$$(***) x_{n_2} + x_{m_2} + x_{s_3} = x_{s_1} + x_{r_2} + x_{s_2}.$$

Continuing in this fashion we see that if $n_2 = s_3$ then also $n_2 = s_1$ so that $x_{m_2} + x_{s_3} = x_{r_2} + x_{s_2}$ and hence that $m_2 = r_2$ which is a contradiction.

Thus one must have $n_2 \neq s_3$, and hence that $|\{n_2, m_2, s_3\}| = 3$. Now if $s_1 = s_2$ one has $s_1 = s_2 < r_2 < n_2$ so the right hand side of (****) is at most $x_{n_2-9}+x_{n_2-6}+x_{n_2-9} < x_{n_2}$, a contradiction. Thus $s_1 \neq s_2$ so $|\{s_1, r_2, s_2\}| = 3$. Since $x_{n+1} > \sum_{t=1}^n x_t$ for each n, expressions in $FS(\langle x_t \rangle_{t=1}^\infty)$ are unique. Thus from (****) we have $\{n_2, m_2, s_3\} = \{s_1, r_2, s_2\}$ so that $\{m_2\} = \{n_2, m_2, s_3\} \cap B = \{s_1, r_2, s_2\} \cap B = \{r_2\}$ while $r_2 < m_2$. This contradiction completes the proof. []

3.13 **Theorem.** Let $\langle x_n \rangle_{n=1}^{\infty}$ be a sequence in \mathbb{N} such that for each $n, x_{n+1} \geq 2x_n$. Let A and B be disjoint infinite subsets of \mathbb{N} and let $p, q \in \beta \mathbb{N} \setminus \mathbb{N}$ such that $\{x_n : n \in A\} \in p$ and $\{x_n : n \in B\} \in q$. Then $-p + -q + q + p \in C \setminus S_2$.

Proof. Pick $i, j \in \{0, 1, 2\}$ such that $\mathbb{N}3+i \in p$ and $\mathbb{N}3+j \in q$. Let $A' = A \cap (\mathbb{N}3+i)$ and $B' = B \cap (\mathbb{N}3+j)$. Let $D = \{x_n+x_m-x_r-x_s : n > m+3 > m > r+3 > r > s+3$ and $n, s \in A'$ and $m, r \in B'\}$. By Lemma 3.11, $D \in -p+-q+q \in p$ and $-p+-q+q+p \in C$. By Lemma 3.12 $-p + -q + q + p \notin S_2$.

It is natural to ask whether in lieu of -p + -q + q + p above one might be able to get by with -p + p for some suitable p. We conclude this section by showing that this is not possible.

3.14 **Theorem**. Let $p \in \beta \mathbb{N} \setminus \mathbb{N}$. Then $-p + p \in S_2$.

Proof. Let $A \in -p + p$. Then $\{x \in \mathbb{Z} : A - x \in p\} \in -p$ so $B = \{x \in \mathbb{N} : A + x \in p\} \in p$. Pick $x_1 \in B$, pick $x_2 \in B \cap (A + x_1)$, pick $x_3 \in (A + x_1) \cap (A + x_2)$. Let $y = x_2 - x_1$ and let $z = x_3 - x_2$. Then $y, z \in A$ and $y + z = x_3 - x_1 \in A$.

4. Connections with other structures. The interaction of the operations + and \cdot on $\beta \mathbb{N}$ has been a very useful combinatorial tool. (See [3] for an example where this interaction is utilized several times in succession.)

Recall that, given p and q in $\beta \mathbb{N}$ and $A \subseteq \mathbb{N}$, $A \in p \cdot q$ if and only if $\{x \in \mathbb{N} : A/x \in q\} \in p$ where $A/x = \{y \in \mathbb{N} : y \cdot x \in A\}$.

It is not generally true that for $n \in \mathbb{N}$ and $p \in \beta \mathbb{N}$ one has $n \cdot p = p + p + ... + p$ (*n*-times). (For example one sees easily that if $n \neq 1$ then $n \cdot p \neq p$ while if p = p + p, then p = p + p + ... + p (*n*-times).) On the other hand we do have the following lemma. Recall that, given $p \in \beta \mathbb{N}$ and a sequence $\langle x_n \rangle_{n=1}^{\infty}$ in a topological space X, one has $p-\lim_{n \in \mathbb{N}} x_n = y$ if and only if for each neighbourhood U of y, $\{n \in \mathbb{N} : x_n \in U\} \in p$.

4.1 Lemma. Let (G, +) be a compact topological group, let $\varphi : \beta \mathbb{N} \longrightarrow G$ be a continuous homomorphism, let $p \in \beta \mathbb{N}$, and let $n \in \mathbb{N}$. Then $\varphi(n \cdot p) = n \cdot \varphi(p)$, where $n \cdot \varphi(p) = \varphi(p) + \ldots + \varphi(p)$ (*n*-times).

Proof. Recall that the function λ_n defined by $\lambda_n(p) = n \cdot p$ is continuous since $n \in \mathbb{N}$. Recall further that by the joint continuity of addition in G, we have $n \cdot p-\lim_{m \in \mathbb{N}} \varphi(m) = p-\lim_{m \in \mathbb{N}} n \cdot \varphi(m)$. Thus we have $\varphi(n \cdot p) = \varphi(n \cdot p-\lim_{m \in \mathbb{N}} m) = p-\lim_{m \in \mathbb{N}} \varphi(n \cdot m) = p-\lim_{m \in \mathbb{N}} n \cdot \varphi(m) = n \cdot p-\lim_{m \in \mathbb{N}} \varphi(m) = n \cdot \varphi(p-\lim_{m \in \mathbb{N}} m) = n \cdot \varphi(p)$.

4.2 **Theorem.** C is a two sided ideal of $(\beta \mathbb{N}, \cdot)$.

Proof. Let G be a compact topological group with identity 0 and let $\varphi : \beta \mathbb{N} \longrightarrow G$ be a homomorphism. Let $p \in C$ and let $q \in \beta \mathbb{N}$. Pick nets $\langle x_{\eta} \rangle_{\eta \in D}$ and $\langle y_{\tau} \rangle_{\tau \in E}$ in \mathbb{N} converging to p and q respectively.

Then $\varphi(q \cdot p) = \varphi((\lim_{\tau \in E} y_{\tau}) \cdot p) = \lim_{\tau \in E} \varphi(y_{\tau} \cdot p) = \lim_{\tau \in E} (y_{\tau} \cdot \varphi(p)) = \lim_{\tau \in E} (y_{\tau} \cdot 0) = 0.$

Now let $z = \varphi(q)$ and define $\tau : \mathbb{N} \longrightarrow G$ by $\tau(n) = n \cdot z$. Then the continuous extension $\tau^{\beta} : \beta \mathbb{N} \longrightarrow G$ is a homomorphism. Thus $\varphi(p \cdot q) = \varphi((\lim_{\eta \in D} x_{\eta}) \cdot q) = \lim_{\eta \in D} \varphi(x_{\eta} \cdot q) = \lim_{\eta \in D} (x_{\eta} \cdot \varphi(q)) = \lim_{\eta \in D} \tau(x_{\eta}) = \lim_{\eta \in D} \tau^{\beta}(x_{\eta}) = \tau^{\beta}(\lim_{\eta \in D} x_{\eta}) = \tau^{\beta}(p) = 0.$

4.3 **Theorem**. For each $n \in \mathbb{N} \setminus \{1\}$, S_n is a two sided ideal of $(\beta \mathbb{N}, \cdot)$.

Proof. Let $n \in \mathbb{N}$, let $p \in S_n$ and let $q \in \beta \mathbb{N}$.

To see that $q \cdot p \in S_n$, let $A \in q \cdot p$ and pick $y \in \mathbb{N}$ such that $A/y \in p$. Pick $\langle x_t \rangle_{t=1}^n$ with $FS(\langle x_t \rangle_{t=1}^n) \subseteq A/y$. Then $FS(\langle y \cdot x_t \rangle_{t=1}^n) \subseteq A$.

To see that $p \cdot q \in S_n$, let $A \in p \cdot q$ and pick $\langle x_t \rangle_{t=1}^n$ such that $FS(\langle x_t \rangle_{t=1}^n) \subseteq \{y \in \mathbb{N} : A/z \in q\}$. Pick $y \in \bigcap \{A/z : z \in FS(\langle x_t \rangle_{t=1}^n)\}$. Then $FS(\langle y \cdot x_t \rangle_{t=1}^n) \subseteq A$.

In the process of our study of the semigroup C, we were led to the following result (and its fortuitous corollary). By a divisible sequence $\langle x_n \rangle_{n=1}^{\infty}$ in \mathbb{N} we simply mean an increasing sequence with the property that each x_n divides x_{n+1} .

Recall that we are representing the circle group \mathbb{T} as \mathbb{R}/\mathbb{Z} . By $\mathbb{T}^{\mathbb{T}}$ we mean the set of all functions from \mathbb{T} to \mathbb{T} with the product topology (= "topology of pointwise convergence").

4.4 **Theorem.** Define $h : \mathbb{N} \longrightarrow \mathbb{T}^{\mathbb{T}}$ by $h(n)(\alpha) = n \cdot \alpha$ and let h^{β} be the continuous extension of h to $\beta \mathbb{N}$. Let $\langle x_n \rangle_{n=1}^{\infty}$ be any divisible sequence in \mathbb{N} . Then h^{β} is one-to-one on $c\ell\{x_n : n \in \mathbb{N}\}$.

Proof. Let p and q be distinct elements of $c\ell\{x_n : n \in \mathbb{N}\}$. Pick disjoint Aand B contained in \mathbb{N} such that $\{x_n : n \in A\} \in p$ and $\{x_n : n \in B\} \in q$. Since $\{x_n : n \in \mathbb{N}\} = \bigcup_{i=0}^2 \{x_n : n \equiv i \pmod{3}\}$ we may presume we have some $i \in \{0, 1, 2\}$ such that for all $n, m \in A$, $n \equiv m \pmod{3}$. As a consequence, if $n, m \in A$ and n < mthen $n+3 \leq m$ so $x_m \geq x_{n+3} \geq 8 \cdot x_n$. Now let $t = \sum_{n \in A} \lfloor x_{n+1}/(2x_n) \rfloor / x_{n+1}$, where $\lfloor \rfloor$ denotes the greatest integer function. (Since $\langle x_n \rangle_{n=1}^{\infty}$ is a divisible sequence we have each $x_n \geq 2^{n-1}$ so $\lfloor x_{n+1}/(2x_n) \rfloor / x_{n+1} \leq 1/(2x_n) \leq 1/2^n$ so the series defining t converges (and 0 < t < 1). As before write $[t] = t + \mathbb{Z}$. We show that $h^{\beta}(p)([t]) \neq h^{\beta}(q)([t])$.

Let $D = \{[s] : 1/3 \le s \le 4/7\}$ and let $E = \{[s] : 0 \le s \le 9/28\}$. Then D and E are disjoint closed subsets of T. We show that if $n \in A$ then $h(x_n)([t]) \in D$ and if $n \in B$ then $h(x_n)([t]) \in E$. As a consequence we will have that $h^{\beta}(p)([t]) \in D$ and $h^{\beta}(q)([t]) \in E$.

To this end we first observe that given any $n \in \mathbb{N}$, $\sum\{(\lfloor x_{k+1}/(2x_k) \rfloor/x_{k+1}) \cdot x_n : k \in A \text{ and } k \ge n+3\} \le 1/14$. Indeed, given the first $k \in A$ with $k \ge n+3$ one has $(\lfloor x_{k+1}/(2x_k) \rfloor/x_{k+1}) \cdot x_n \le x_n/(2x_k) \le 1/16$. Given $k, m \in A$ with m > k > n+3, one has $x_m \ge x_{k+3} \ge 8 \cdot x_k$. Consequently $\sum\{(\lfloor x_{k+1}/(2x_k) \rfloor/x_{k+1}) \cdot x_n : k \in A \text{ and } k \ge n+3\} \le (1/2) \sum_{k=1}^{\infty} 1/8^k = 1/14$.

Now let $n \in A$. Then $h(x_n)([t]) = x_n \cdot [t] = [x_n \cdot t]$. Now $x_n \cdot t = \sum\{(\lfloor x_{k+1}/(2x_k) \rfloor/x_{k+1}) \cdot x_n : k \in A \text{ and } k < n\} + (\lfloor x_{n+1}/(2x_n) \rfloor/x_{n+1}) \cdot x_n + \sum\{(\lfloor x_{k+1}/(2x_k) \rfloor/x_{k+1}) \cdot x_n : k \in A \text{ and } k \ge n+3\}$. The first of these sums is some integer ℓ and the last of these is at most 1/14. Now consider the middle term. We have $(\lfloor x_{n+1}/(2x_n) \rfloor/x_{n+1}) \cdot x_n \le 1/2$ and equality holds if x_{n+1}/x_n is even. If x_{n+1}/x_n is odd we have $x_{n+1} \ge 3x_n$ so $(\lfloor x_{n+1}/(2x_n) \rfloor/x_{n+1}) \cdot x_n = (x_{n+1}/(2x_n) - 1/2) \cdot x_n/x_{n+1} = 1/2 - 1/2 \cdot (x_n/x_{n+1}) \ge 1/2 - 1/6 = 1/3$. Thus $\ell + 1/3 \le x_n \cdot t \le \ell + 1/2 + 1/14$ so $[x_n \cdot t] \in D$ as required.

Finally let $n \in B$. Then $x_n \cdot t = \sum \{(\lfloor x_{k+1}/(2x_k) \rfloor/x_{k+1}) \cdot x_n : k \in A \text{ and } k < n \} + \sum \{(\lfloor x_{k+1}/(2x_k) \rfloor/x_{k+1}) \cdot x_n : k \in A \text{ and } n < k < n+3\} + \sum \{(\lfloor x_{k+1}/(2x_k) \rfloor/x_{k+1}) \cdot x_n : k \in A \text{ and } n < k < n+3\} + \sum \{(\lfloor x_{k+1}/(2x_k) \rfloor/x_{k+1}) \cdot x_n : k \in A \text{ and } k < n+3\}$. Again the first sum is some integer ℓ and the last is

at most 1/14. The middle sum has at most one term which is at most 1/4. Thus $\ell \leq x_n \cdot t \leq \ell + 1/4 + 1/14$ so $[x_n \cdot t] \in E$ as required. []

We obtain as a corollary the following result communicated to us by Kenneth Berg. For extensions of this result see [2]. Recall that, given $f : \mathbb{T} \longrightarrow \mathbb{T}$, the enveloping semigroup of f is the closure in $\mathbb{T}^{\mathbb{T}}$ of $\{f^n : n \in \mathbb{N}\}$.

4.5 Corollary. Define $f : \mathbb{T} \longrightarrow \mathbb{T}$ by $f(\alpha) = 2 \cdot \alpha$. Then the enveloping semigroup of f can be identified with $\beta \mathbb{N}$.

Proof. Note that $f^n(\alpha) = 2^n \cdot \alpha$ so if h is defined as in Theorem 4.4, one has for each $n \in \mathbb{N}$, $h(2^n) = f^n$. Thus the enveloping semigroup of f is $h[c\ell\{2^n : n \in \mathbb{N}\}]$. Since h is one-to-one on this closure, it is a homeomorphism on $c\ell\{2^n : n \in \mathbb{N}\}$.

It was shown in [16] that if p is a right cancellable element of $\beta \mathbb{N}$, then every element of $c\ell\{p, p+p, p+p+p+p, \ldots\}$ is right cancellable. As a consequence, any such semigroup has a closure which misses the set of idempotents. We show next that one can get semigroups in $\beta \mathbb{N}$ whose closure is reasonably far removed from the idempotents. (In particular the closure cannot be a semigroup.)

4.6 **Theorem.** Let $\langle x_n \rangle_{n=1}^{\infty}$ be any divisible sequence in \mathbb{N} and let $p \in (c\ell\{x_n : n \in \mathbb{N}\}) \setminus \mathbb{N}$. Then $c\ell\{p, p+p, p+p+p, \ldots\}) \cap T = \emptyset$.

Proof. We may presume $x_1 = 1$. (If $x_1 > 1$, let $y_1 = 1$ and $y_{n+1} = x_n$ for $n \in \mathbb{N}$. Then $(c\ell\{y_n : n \in \mathbb{N}\}) \setminus \mathbb{N} = (c\ell\{x_n : n \in \mathbb{N}\}) \setminus \mathbb{N}$.) For each $n \in \mathbb{N}$ let $a_n = x_{n+1}/x_n$. Then each $m \in \mathbb{N}$ has a unique expression of the form $\sum_{t \in F} b_t \cdot x_t$ where for each $t \in F$, $b_t \in \{1, 2, \ldots, a_t - 1\}$. Further x_n divides m if and only if $\min F \ge n$. Given $m \in \mathbb{N}$, define c(m) = |F| where $m = \sum_{t \in F} b_t \cdot x_t$ as above. Let $c^\beta : \beta \mathbb{N} \longrightarrow \beta \mathbb{N}$ be the continuous extension of c. Since c is constantly equal to 1 on $\{x_n : n \in \mathbb{N}\}$ we have $c^\beta(p) = 1$.

Let $X = (\bigcap_{n=1}^{\infty} c\ell(\mathbb{N}x_n)) \cap (\bigcap_{n=1}^{\infty} c\ell\{m \in \mathbb{N} : c(m) > n\})$. We observe that the idempotents are all in X. We have $C \subseteq \bigcap_{n=1}^{\infty} c\ell(\mathbb{N}x_n)$. To see that the idempotents are contained in $\bigcap_{n=1}^{\infty} c\ell\{m \in \mathbb{N} : c(m) > n\}$, let e = e + e and suppose that for some $n, \{m \in \mathbb{N} : c(m) \leq n\} \in e$. Then, since e is an ultrafilter one has in fact that for some $n, \{m \in \mathbb{N} : c(m) = n\} \in e$. Let $A = \{m \in \mathbb{N} : c(m) = n\}$ and pick $m \in A$ such that $A - m \in e$. Pick t such that $x_t > m$ and pick $k \in \mathbb{N}x_t \cap (A - m)$. Then c(k+m) = c(k) + c(m) > n so $k + m \notin A$, a contradiction.

Now suppose $(c\ell\{p, p+p, p+p+p, \ldots\}) \cap T \neq \emptyset$. By Theorem 2.4, $T = c\ell \bigcup \{\mathbb{N} + e : e \in \beta\mathbb{N} \text{ and } e + e = e\}$, so $T \subseteq c\ell(\bigcup_{n=1}^{\infty} n + X)$. Thus $c\ell\{p, p+p, p+p+p, \ldots\} \cap$

 $c\ell(\bigcup_{n=1}^{\infty} n+X) \neq \emptyset \text{ so by Lemma 1.3 either } c\ell\{p,p+p,p+p+p,\dots\} \cap (\bigcup_{n=1}^{\infty} n+X) \neq \emptyset \text{ or } \{p,p+p,p+p+p+p,\dots\} \cap c\ell(\bigcup_{n=1}^{\infty} n+X) \neq \emptyset. \text{ But } c\ell\{p,p+p,p+p+p+p,\dots\} \subseteq \bigcap_{n=1}^{\infty} c\ell(\mathbb{N}x_n) \text{ and } \bigcap_{n=1}^{\infty} c\ell(\mathbb{N}x_n) \cap (\bigcup_{n=1}^{\infty} n+X) = \emptyset. \text{ Thus we have some } q \in \{p,p+p,p+p+p+p,\dots\} \cap c\ell(\bigcup_{n=1}^{\infty} n+X). \text{ Now } q = p+p+\dots+p \text{ (}m\text{-times) so } c^{\beta}(q) = m. \text{ Let } A = \{y \in \mathbb{N} : c(y) = m\}. \text{ Then } A \in q \text{ so } c\ell A \cap (\bigcup_{n=1}^{\infty} n+X) \neq \emptyset, \text{ so pick } n \in \mathbb{N} \text{ with } c\ell A \cap (n+X) \neq \emptyset \text{ and pick } r \in c\ell A \cap (n+X). \text{ Pick } k \in \mathbb{N} \text{ such that } x_k > n. \text{ Now } r-n \in X \subseteq c\ell(\mathbb{N}x_k) \cap c\ell(\{y \in \mathbb{N} : c(y) > m\}) \text{ so } \mathbb{N}x_k \cap \{y \in \mathbb{N} : c(y) > m\} \cap (A-n) \neq \emptyset. \text{ Pick } y \in \mathbb{N}x_k \cap \{y \in \mathbb{N} : c(y) > m\} \cap (A-n). \text{ Since } y \in \mathbb{N}x_k \text{ and } x_k > n \text{ we have } c(y+n) = c(y) + c(n) > m \text{ so } y + n \notin A, \text{ a contradiction. } \end{bmatrix}$

On the other hand, we see that no semigroup can get too far removed from the idempotents.

4.7 **Theorem.** Let S be any subsemigroup of $\beta \mathbb{N}$. Then $(c\ell S) \cap \bigcap_{n=2}^{\infty} S_n \neq \emptyset$.

Proof. Pick any $p \in S$. Define $\varphi : \mathbb{N} \longrightarrow \beta \mathbb{N}$ by $\varphi(n) = p + p + ... + p$ (*n* times) and let φ^{β} be the continuous extension to $\beta \mathbb{N}$. Note that $\varphi^{\beta} : \beta \mathbb{N} \longrightarrow \beta \mathbb{N}$ is a homomorphism. Pick any $q \in \bigcap_{n=2}^{\infty} S_n$. Then $\varphi^{\beta}(q) \in c\ell S$. We claim that $\varphi^{\beta}(q) \in \bigcap_{n=2}^{\infty} S_n$.

We show first that for any $A \in \varphi^{\beta}(q)$ and any $n \in \mathbb{N} \setminus \{1\}$, there exist r_1, r_2, \ldots, r_n in $c\ell A$ that commute with each other with $FS(\langle r_t \rangle_{t=1}^n) \subseteq c\ell A$. (The fact that r_1, r_2, \ldots, r_n commute with each other is not really relevant except that we do not need to spell out the order of the sums in $FS(\langle r_t \rangle_{t=1}^n)$.) To see this let $A \in \varphi^{\beta}(q)$ and pick $B \in q$ such that $\varphi^{\beta}[c\ell B] \subseteq cl$ A. Now let $n \in \mathbb{N} \setminus \{1\}$ and (since $q \in S_n$) pick x_1, x_2, \ldots, x_n in B with $FS(\langle x_t \rangle_{t=1}^n) \subseteq B$. For each $t \in \{1, 2, \ldots, n\}$, let $r_t = \varphi(x_t)$.

To complete the proof we show by induction on $n \in \mathbb{N}$ that given $A \subseteq \mathbb{N}$, if there exist commuting r_1, r_2, \ldots, r_n with $FS(\langle r_t \rangle_{t=1}^n) \subseteq c\ell A$, then there exist x_1, x_2, \ldots, x_n with $FS(\langle x_t \rangle_{t=1}^n) \subseteq A$. The case n = 1 is trivial, so let $n \in \mathbb{N}$ and assume the statement is true for n and let $r_1, r_2, \ldots, r_{n+1}$ be commuting elements of $c\ell A$ with $FS(\langle r_t \rangle_{t=1}^{n+1}) \subseteq$ $c\ell A$. Let $D = \{x \in \mathbb{N} : A - x \in r_{n+1}\}$. Now given any nonempty $F \subseteq \{1, 2, \ldots, n\}$ we have $A \in \sum_{t \in F} r_t + r_{n+1}$ so $D \in \sum_{t \in F} r_t$. That is $FS(\langle r_t \rangle_{t=1}^n) \subseteq c\ell D$. Since also $FS(\langle r_t \rangle_{t=1}^n) \subseteq c\ell A$ we have $FS(\langle r_t \rangle_{t=1}^n) \subseteq c\ell (A \cap D)$ so by the induction hypothesis choose $\langle x_t \rangle_{t=1}^n$ with $FS(\langle x_t \rangle_{t=1}^n) \subseteq A \cap D$. Now $A \in r_{n+1}$ and for each nonempty $F \subseteq \{1, 2, \ldots, n\}, A - \sum_{t \in F} x_t \in r_{n+1}$ so pick $x_{n+1} \in A \cap \bigcap \{A - \sum_{t \in F} x_t : \emptyset \neq F \subseteq \{1, 2, \ldots, n\}\}$. Then $FS(\langle x_t \rangle_{t=1}^{n+1}) \subseteq A$.

References

1. J. Baker, N. Hindman, and J. Pym, *Elements of finite order in Stone-Čech compactifications*, Proc. Edinburgh Math. Soc. **36** (1992), 498-54.

 K. Berg, D. Gove, and K. Haddad, On the connection between beta compactifications and enveloping semigroups of subshifts, Abstracts Amer. Math. Soc. 15 (1994), 320.

3. V. Bergelson and N. Hindman, A combinatorially large cell of a partition of \mathbb{N} , J. Comb. Theory (Series A) **48** (1988), 39-52.

4. J. Berglund, H. Junghenn, and P. Milnes, <u>Analysis on Semigroups</u>, Wiley, New York, 1989.

5. W. Comfort, *Ultrafilters: some old and some new results*, Bull. Amer. Math. Soc. **83** (1977), 417-455.

6. R. Ellis, <u>Lectures on topological dynamics</u>, Benjamin, New York, 1969.

7. P. Frankl, R. Graham, and V. Rödl, *Induced restricted Ramsey theorems for spaces*, J. Comb. Theory (Series A) **44** (1987), 120-128.

8. R. Graham, B. Rothschild, and J. Spencer, <u>Ramsey Theory</u>, Wiley, New York, 1990.

9. N. Hindman, *Partitions and sums and products of integers*, Trans. Amer. Math. Soc. **247** (1979), 227-245.

N. Hindman, Summable ultrafilters and finite sums, in Logic and Combinatorics,
 S. Simpson ed., Contemporary Math. 65 (1987), 263-274.

11. N. Hindman, The semigroup $\beta \mathbb{N}$ and its applications to number theory, in <u>The Analytical and Topological Theory of Semigroups – Trends and Developments</u>, K. Hofmann, J. Lawson, and J. Pym eds., de Gruyter Expositions in Math. **1** (1990), 347-360.

 N. Hindman, Ultrafilters and Ramsey Theory – an update, in <u>Set Theory and</u> <u>its Applications</u>, J. Steprāns and S. Watson eds., Lecture Notes in Math. **1401** (1989), 97-118.

13. N. Hindman and J. Pym, *Free groups and semigroups in* $\beta \mathbb{N}$, Semigroup Forum **30** (1984), 177-193.

14. N. Hindman and D. Strauss, *Cancellation in the Stone-Čech compactification of a discrete semigroup*, Proc. Edinburgh Math. Soc. **37** (1994), 379-397.

15. N. Hindman and W. Woan, Central sets in semigroups and partition regularity of systems of linear equations, Mathematika **40** (1993), 169-186.

16. A. El-Mabhouh, J. Pym, and D. Strauss, *Subsemigroups of* $\beta \mathbb{N}$, Topology and Appl., to appear.

17. P. Milnes, *Compactifications of topological semigroups*, J. Australian Math. Soc. **15** (1973), 488-503.

18. J. Nešetřil and V. Rödl, *Finite union theorem with restrictions*, Graphs and Comb. **2** (1986), 357-361.