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Abstract. The space βN is the Stone-Čech compactification of the discrete space of positive

integers. The set of elements of βN which are in the kernel of every continuous homomorphism from

βN to a topological group is a compact semigroup containing the idempotents. At first glance it would
seem a good candidate for the smallest such semigroup. We produce an infinite nested sequence of

smaller such semigroups, all defined naturally in terms of addition on N.

1. Introduction. Given a discrete semigroup (S, ·) the operation can be extended
to the Stone-Čech compactification βS of S so that (βS, ·) is a compact right topological
semigroup. (See [12] for an elementary construction of this extension, with the caution
that there βS is left rather than right topological.) As a compact right topological
semigroup βS has idempotents [6, Corollary 2.10]. The existence of these idempotents,
especially idempotents in the smallest ideal of βS, has important combinatorial conse-
quences (See [11] and [15], for example.)

Of special interest are the semigroups (N,+) and (N, ·), where N is the set of
positive integers. Let E = {p ∈ βN : p + p = p} and let Γ = c`E. It turns out that
Γ is a right ideal of (βN, ·). This fact provided the first (and for a long time only)
proof of the following result: If N is partitioned into finitely many cells, then there exist
sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 such that FS(〈xn〉∞n=1) ∪ FP (〈yn〉∞n=1) is contained in
one cell of the partition [9, Theorem 2.6]. (Here FS(〈xn〉∞n=1) = {

∑
n∈F xn : F is a

finite nonempty subset of N} and FP (〈yn〉∞n=1) = {Πn∈F yn : F is a finite nonempty
subset of N}).

It is an intriguing fact that Γ is defined additively, is a right ideal, in particular
a subsemigroup, of (βN, ·), and yet is not a subsemigroup of (βN,+). In fact there
exist idempotents p and q in (βN,+) such that p + q /∈ Γ. (See Section 3 for the easy
proof of this latter assertion.) An intriguing and potentially useful problem then arises:
Characterize the smallest compact subsemigroup of (βN,+) which contains the set E

of idempotents.

1 This author gratefully acknowledges support received from the National Science
Foundation via grant DMS 90-25025.
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We take the points of βN to be the ultrafilters on N. The reader is referred to
[12] for background material. We will often use the fact that A ∈ p + q if and only if
{x ∈ N : A− x ∈ q} ∈ p, where A− x = {y ∈ N : y + x ∈ A}. (And similarly A ∈ p · q if
and only if {x ∈ N : A/x ∈ q} ∈ p, where A/x = {y ∈ N : y · x ∈ A}.)

Homomorphisms to other algebraic structures are a useful tool for investigating the
algebraic structure of βN. For example, such homomorphisms were used in [13] to show
that the maximal groups in the smallest ideal of (βN,+) contain copies of the free group
on 2c generators. Now given any continuous homomorphism from (βN,+) to a compact
topological group the kernel necessarily contains E. (It also must contain any element
of finite order [1, Corollary 2.3]. Whether any such exist besides the idempotents is a
difficult open problem.)

Let C be the intersection of the kernels of all continuous homomorphisms from
(βN,+) to arbitrary compact topological groups. (We use “C” for kernel because K

standardly represents the smallest ideal.) Then C is a compact semigroup containing
E and at first glance seems like a good candidate for the smallest such. This turns out
to fail badly, as we shall see.

The set Γ = c`E can be characterized as follows [11, Lemma 2.3(a)]: Let p ∈
βN. Then p ∈ Γ if and only if for every A ∈ p there is a sequence 〈xn〉∞n=1 with
FS(〈xn〉∞n=1) ⊆ A. In a similar fashion we define sets Sn ⊆ βN for each n ∈ N\{1} as
follows: Let p ∈ βN. Then p ∈ Sn if and only if for each A ∈ p, there is a sequence
〈xt〉nt=1 with FS(〈xt〉nt=1) ⊆ A. (Given an index set J , FS(〈xi〉i∈J) = {

∑
i∈F xi : F is

a finite nonempty subset of J.}.) In a similar vein define T and M by agreeing that,
given p ∈ βN, p ∈ T if and only if whenever A ∈ p, there exist some a and some 〈yt〉∞t=1

with a + FS(〈yt〉∞t=1) ⊆ A and that p ∈ M if and only if whenever A ∈ p and n ∈ N,
there exist 〈xt〉nt=1 and 〈yt〉∞t=1 such that FS(〈xt〉nt=1) + FS(〈yt〉∞t=1) ⊆ A. It will be
shown in Theorem 2.4 that T is the smallest closed left ideal of (βN,+) containing the
idempotents.

Let I be the semigroup generated by the set E of idempotents and let SI be the
smallest compact subsemigroup of (βN,+) containing E. In Section 2 we investigate
each of the objects defined above, show that all (except Γ and c`I) are semigroups and
show that the following pattern of inclusions holds:

Γ ⊆
c`I ⊆ SI ⊆ M ⊆ T ∩

⋂∞
n=2 Sn ⊆

⋂∞
n=2 Sn ⊆ . . . S3 ⊆ S2 ⊆ C.

I ⊆

In Section 3 we show that Γ\I 6= ∅, I\Γ 6= ∅, T\
⋂∞

n=1 Sn 6= ∅,
⋂∞

n=1 Sn\T 6= ∅, and
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that all but one of the inclusions displayed above (including “...”) is proper. (We have
been unable to decide whether M = T ∩

⋂∞
n=2 Sn.) In Section 4 we present relationships

between these sets and other structures.

We would like to thank the referee for a very helpful and detailed report.

We conclude this introduction by displaying some results which we will utilise later.

1.1 Lemma. (a) Let p ∈ E and let A ∈ p. There exists 〈xn〉∞n=1 such that
FS(〈xn〉∞n=1) ⊆ A.

(b) Let 〈xn〉∞n=1 be a sequence in N. There exist p ∈ E such that for all m ∈ N,
FS(〈xn〉∞n=m) ∈ p.

Proof. (a) This is what is show in the Galvin-Glazer proof of the Finite Sum
Theorem. See [5, Theorem 10.3] or [12].

(b) [10, Lemma 2.4 and Theorem 2.5]. []

1.2 Lemma. Let n and r be in N. There is some m ∈ N such that whenever 〈yt〉mt=1

is a sequence in N and D1, D2, . . . , Dr are subsets of N with FS(〈yt〉mt=1) ⊆
⋃r

i=1 Di,
there exist i ∈ {1, 2, . . . , r} and 〈xt〉nt=1 with FS(〈xt〉nt=1) ⊆ Di.

Proof. By the finite version of the Finite Unions Theorem [8, p. 82] pick m ∈ N
such that whenever the finite nonempty subsets of {1, 2, . . . ,m} are covered by r cells,
there will exist pairwise disjoint B1, B2, . . . , Bn with all sets of the form

⋃
t∈F Bt in the

same cell of the cover (for ∅ 6= F ⊆ {1, 2, . . . , n}).
Next let 〈yt〉mt=1 and 〈Di〉ri=1 be given with FS(〈yt〉mt=1) ⊆

⋃r
i=1 Di. For each

i ∈ {1, 2, . . . , r}, let Hi = {F ⊆ {1, 2, . . . ,m} : F 6= ∅ and
∑

t∈F yt ∈ Di}. Pick
i ∈ {1, 2, . . . , r} and pairwise disjoint B1, B2, . . . , Bn with

⋃
j∈F Bj ∈ Hi whenever

∅ 6= F ⊆ {1, 2, . . . , n}. Let xj =
∑

t∈Bj
yt for j ∈ {1, 2, . . . , n}. Then given ∅ 6=

F ⊆ {1, 2, . . . , n},
∑

j∈F xj =
∑

j∈F

∑
t∈Bj

yt. Since
⋃

j∈F Bj ∈ Hi one has that∑
j∈F xt ∈ Di. []

The following lemma is apparently originally due to Froĺık.

1.3 Lemma. Let X and Y be σ-compact subsets of βN. If c`X ∩ c`Y 6= ∅, then
X ∩ c`Y 6= ∅ or Y ∩ c`X 6= ∅.

Proof. See [14, Lemma 1.1]. []

2. Inclusions among semigroups containing the idempotents. We begin by
displaying the definitions of the objects we are studying. Recall that E = {p ∈ βN :
p + p = p}.
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2.1 Definition. (a) C = {p ∈ βN : for any compact topological group G and any
continuous homomorphism ϕ from (βN,+) to G, ϕ(p) is the identity of G}.

(b) For n ∈ N\{1}, Sn = {p ∈ βN : for all A ∈ p there exists 〈xt〉nt=1 such that
FS(〈xt〉nt=1) ⊆ A}.

(c) T = {p ∈ βN : for all A ∈ p there exist a ∈ N and 〈yt〉∞t=1 such that a +
FS(〈yt〉∞t=1) ⊆ A}.

(d) M = {p ∈ βN : for all A ∈ p and all n ∈ N there exist 〈xt〉nt=1 and 〈yt〉∞t=1 such
that FS(〈xt〉nt=1) + FS(〈yt〉∞t=1) ⊆ A}.

(e) SI =
⋂
{S : S is a compact subsemigroup of (βN,+) and E ⊆ S}.

(f) I =
⋂
{S : S is a semigroup of (βN,+) and E ⊆ S}.

(g) Γ = {p ∈ βN : for all A ∈ p there exists 〈yt〉∞t=1 such that FS(〈yt〉∞t=1) ⊆ A}.

2.2 Lemma. Each of the objects defined in Definition 2.1 contains E and all except
I are compact.

Proof. The idempotents are contained in Γ by Lemma 1.1(a). Clearly Γ is con-
tained in each of M,T , and Sn (for n ∈ N\{1}). The idempotents are contained in I

and SI by definition and are contained in C by elementary algebra.

That SI and C are compact follows from elementary topology. The others all have
definitions which begin “for all A ∈ p” (and refer no more to p). If a point p is not in
the specified set it has a member A failing the definition. Then c`A is a neighborhood
of p missing the specified set. []

We will see in the next section that I is not closed when we show that the inclusion
I ⊆ c`I is proper.

2.3 Lemma. Each of the objects defined in Definition 2.1 except Γ is a semigroup.

Proof. That C, I, and SI are semigroups follows by elementary algebra.

Let n ∈ N\{1} and let p, q ∈ Sn. To see that p + q ∈ Sn, let A ∈ p + q. Then
{x ∈ N : A − x ∈ q} ∈ p so pick 〈xt〉nt=1 such that FS(〈xt〉nt=1) ⊆ {x ∈ N : A − x ∈ q}.
Now FS(〈xt〉nt=1) is finite so if B =

⋂
{A − a : a ∈ FS(〈xt〉nt=1)} we have B ∈ q. Pick

〈yt〉nt=1 such that FS(〈yt〉nt=1) ⊆ B. We claim FS(〈xt + yt〉nt=1) ⊆ A. To see this let
∅ 6= F ⊆ {1, 2, . . . , n}. Then

∑
t∈F yt ∈ B ⊆ A−

∑
t∈F xt so

∑
t∈F (xt + yt) ∈ A.

That T is a semigroup follows from the fact that it is a left ideal which we will
present in Theorem 2.4. To see that M is a semigroup, let p, q ∈ M and let A ∈
p + q. Let B = {x ∈ N : A − x ∈ q}. Then B ∈ p so pick 〈xt〉nt=1 and 〈yt〉∞t=1

such that FS(〈xt〉nt=1) + FS(〈yt〉∞t=1) ⊆ B. In particular FS(〈xt + yt〉nt=1) ⊆ B. Let
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D = ∩{A − a : a ∈ FS(〈xt + yt〉nt=1)}. Then D ∈ q so pick 〈zt〉nt=1 and 〈wt〉∞t=1 such
that FS(〈zt〉nt=1) + FS(〈wt〉∞t=1) ⊆ D. Then FS(〈zt + xt + yt〉nt=1) + FS(〈wt〉∞t=1) ⊆ A.
[]

We shall see in Theorem 2.11 that Γ is not a semigroup.

2.4 Theorem. T is the smallest closed left ideal of (βN,+) which contains the
idempotents and T = c`

⋃
{βN + p : p ∈ E} = c`

⋃
{N + p : p ∈ E}.

Proof. By Lemma 2.2 T is closed and contains the idempotents. To see that S is
a left ideal let p ∈ βN and q ∈ T . Let A ∈ p + q. Then {x ∈ N : A− x ∈ q} ∈ p so pick
x such that A − x ∈ q. Pick a and 〈yt〉∞t=1 such that a + FS(〈yt〉∞t=1) ⊆ A − x. Then
x + a + FS(〈yt〉∞t=1) ⊆ A.

As a closed left ideal containing the idempotents, T ⊇ c`
⋃
{βN + p : p ∈ E}. To

complete the proof, we show T ⊆ c`
⋃
{βN + p : p ∈ E}. To this end let q ∈ T and let

A ∈ q. Pick a and 〈yt〉∞t=1 such that a + FS(〈yt〉∞t=1) ⊆ A. Pick by Lemma 1.1 p ∈ E

with FS(〈yt〉∞t=1) ∈ p. Then A ∈ a + p so (c`A) ∩ (N + p) 6= ∅. []

2.5 Theorem. (a) Γ ⊆ c`I

(b) c`I ⊆ SI

(c) SI ⊆ M

(d) M ⊆ T ∩
⋂∞

n=2 Sn

(e) For each n ∈ N\{1}, Sn+1 ⊆ Sn.
(f) S2 ⊆ C.

Proof. Statements (b), (d), and (e) are trivial and (c) follows immediately from
the fact that M is a compact subsemigroup of βN containing the idempotents. By [11,
Lemma 2.3], Γ = c`E so (a) holds.

To verify (f), let p ∈ S2 and let ϕ be a continuous homomorphism from (βN,+) to a
topological group (G, +) with identity 0. Suppose that ϕ(p) = a 6= 0. Then a 6= a+a so
pick a neighborhood V of a such that V ∩(V +V ) = ∅. Pick A ∈ p such that ϕ[c`A] ⊆ V

and pick x1 and x2 with {x1, x2, x1 + x2} ⊆ A. Then ϕ(x1 + x2) ∈ V ∩ (V + V ), a
contradiction. []

The following simple result allows us to tell when a set A has closure intersecting
various of our special semigroups. For example, it tells us that for A ⊆ N and n ∈ N\{1},
c`A ∩ Sn 6= ∅ if and only if whenever F is a finite partition of A there exist B ∈ F and
〈xt〉nt=1 with FS(〈xt〉nt=1) ⊆ B. (Let G = {FS(〈xt〉nt=1) : 〈xt〉nt=1 is an n-term sequence
in N}. Then Sn = {p ∈ βN : for each A ∈ p there exists G ∈ G with G ⊆ A}.)
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2.6 Theorem. Let X be a discrete space, let A ⊆ X, and let G ⊆ P(X). The
following statements are equivalent.

(a) There exists p ∈ c`A such that for every B ∈ p there exists G ∈ G with G ⊆ B.

(b) Whenever F is a finite partition of A there exist B ∈ F and G ∈ G with G ⊆ B.

(c) When F is finite and
⋃
F = A, there exist B ∈ F and G ∈ G with G ⊆ B.

Proof. That (a) implies (b) and (b) implies (c) is trivial.
To see that (c) implies (a), it suffices to show that {A} ∪ {N\B : B ⊆ N and for all

G ∈ G, G\B 6= ∅} has the finite intersection property, since any ultrafilter p extending
this family is as required by (a). But a failure of the finite intersection property would
make A =

⋃
F where F is finite and for each B ∈ F , one has no G ∈ G with G ⊆ B,

contradicting (c).[]

2.7 Theorem. Let A ⊆ N. Then (c`A) ∩
⋂∞

n=2 Sn 6= ∅ if and only if for every
n ∈ N there exists 〈xt〉nt=1 with FS(〈xt〉nt=1) ⊆ A.

Proof. The necessity is an immediate consequence of Theorem 2.6.
Sufficiency. We have by Lemma 2.2 and Theorem 2.5 that {(c`A)∩Sn : n ∈ N\{1}}

is a nested collection of closed sets so it suffices to show that (c`A) ∩ Sn 6= ∅ for each
n ∈ N\{1}. To this end let n ∈ N\{1} and let F be a finite partition of A. Let r = |F|
and pick m as guaranteed by Lemma 1.2 for n and r. Pick 〈yt〉mt=1 with FS(〈yt〉mt=1) ⊆ A.
By Lemma 1.2 pick B ∈ F and 〈xt〉nt=1 with FS(〈xt〉nt=1) ⊆ B. []

The following notion, used to characterize members of C, is of independent interest.

2.8 Definition. Let A ⊆ N. Then A is a rational approximation set if and only if
whenever F is a finite nonempty subset of R and ε > 0, there exists some n ∈ A such
that for each x ∈ F there exists m ∈ Z with |x−m/n| < ε/n.

2.9 Lemma. Let p ∈ βN. The following statements are equivalent.
(a) p ∈ C;
(b) for each A ∈ p, A is a rational approximation set;
(c) for each A ∈ p, each x ∈ R, and each ε > 0 there exist n ∈ A and m ∈ Z with

|x−m/n| < ε/n.

Proof. To see that (a) implies (b), let A ∈ p and let finite nonempty F ⊆ R be
given. Write F = {x1, x2, . . . , xk}. We view the circle group T as R/Z, denoting by [x]
the equivalence class x + Z. Define h : N −→ 〉〈ki=1T by h(n) = ([nx1], [nx2], . . . , [nxk]).
Then h is a homomorphism so the continuous extension hβ : βN −→ 〉〈ki=1T is a homo-
morphism, as was observed by Milnes [17]. Since p ∈ C, hβ(p) = ([0], [0], . . . , [0]) so pick
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B ∈ p such that hβ [c`B] ⊆ {([y1], [y2], . . . , [yk]) : for each i ∈ {1, 2, . . . , k}, −ε < yi < ε}.
Pick n ∈ B ∩ A. Since n ∈ B, pick for each i ∈ {1, 2, . . . , k} some yi with −ε < yi < ε

such that [nxi] = [yi]. Given i ∈ {1, 2, . . . , k}, pick mi ∈ Z such that nxi = yi + mi

then −ε < nxi −mi < ε so |xi −mi/n| < ε/n.

That (b) implies (c) is trivial.

To see that (c) implies (a), observe that it suffices to show that given any continuous
homomorphism ϕ : βN −→ T one has ϕ(p) = [0]. (See for example the introduction to
[1].) So let such ϕ be given and pick x ∈ R with [x] = ϕ(1). Suppose that ϕ(p) 6= [0]
and pick ε > 0 such that ϕ(p) /∈ {[y] : −ε ≤ y ≤ ε}. Pick A ∈ p such that ϕ[c`A]∩ {[y] :
−ε ≤ y ≤ ε} = ∅. Pick n ∈ A and m ∈ Z such that |x−m/n| < ε/n and let y = nx−m.
Then ϕ(n) = [y] and −ε < y < ε, a contradiction. []

2.10 Theorem. Let A ⊆ N. Then c`A ∩ C 6= ∅ if and only if A is a rational
approximation set.

Proof. Necessity. Pick p ∈ c`A∩C. By Lemma 2.9, A is a rational approximation
set.

Sufficiency. Let G = {B ⊆ N : B is a rational approximation set.} It is an easy
consequence of the definition of rational approximation sets that whenever F is a finite
partition of A, one has F ∩ G 6= ∅. Thus by Theorem 2.6 there is some p ∈ c`A such
that for every B ∈ p there is some G ∈ G with G ⊆ B (and hence B ∈ G). Then by
Lemma 2.9 p ∈ C. []

2.11 Theorem. Γ is not a semigroup. In fact (E + E)\Γ 6= ∅.

Proof. Pick by Lemma 1.1(b) idempotents p and q such that FS(〈22t〉∞t=m) ∈ p

and FS(〈22t+1〉∞t=m) ∈ q for each m ∈ N. Let A = {
∑

t∈F 22t +
∑

t∈G 22t+1 : F and G

are finite nonempty subsets of N and maxF < minG}. We claim that A ∈ p + q. To
see this it suffices to show that FS(〈22t〉∞t=1) ⊆ {x ∈ N : A− x ∈ q} so let F be a finite
nonempty subset of N and let m = max F + 1. Then FS(〈22t+1〉∞t=m) ⊆ A−

∑
t∈F 22t

so A−
∑

t∈F 22t ∈ q.

Now suppose p + q ∈ Γ. Then pick a sequence 〈yt〉∞t=1 with FS(〈yt〉∞t=1) ⊆ A.
Pick F1 and G1 with maxF1 < minG1 such that y1 =

∑
t∈F1

22t +
∑

t∈G1
22t+1. Let

m = max G1 + 1. Pick nonempty H ⊆ N\{1} such that 22m divides
∑

t∈H yt. (Take
any 2m elements with all yt in the same congruence class mod 22m.) Pick F2 and
G2 with max F2 < minG2 such that

∑
t∈H yt =

∑
t∈F2

22t +
∑

t∈G2
22t+1. Since 22m

divides
∑

t∈H yt we have min F2 ≥ m. Thus y1 +
∑

t∈H yt =
∑

t∈F1
22t +

∑
t∈G1

22t+1 +
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∑
t∈F2

22t +
∑

t∈G2
22t+1 where maxF1 < minG1 < max G1 < minF2 < max F2 <

minG2 so by uniqueness of binary expansion, y1 +
∑

t∈H yt /∈ A, a contradiction. []

Our proof that c`I is not a semigroup is in some respects similar to the proof that
Γ is not a semigroup. However, instead of the binary expansion of integers we use the
factorial expansion, x =

∑
t∈F at · t! where each at ∈ {1, 2, . . . , t}. In the proof we also

utilize in an incidental fashion the semigroup (βN, ·).

2.12 Theorem. c`I is not a semigroup. In fact (E + Γ)\c`I 6= ∅.

Proof. Since Γ ⊆ c`I, the second statement implies the first. Let A = {
∑

n∈F n!+∑
n∈G k · n! : F and G are finite nonempty subsets of N and max F < minG and k ∈ N

and k ≤ minG}. Define g : N −→ N by g(x) = a` where x =
∑

t∈F at · t!, each
at ∈ {1, 2, . . . , t}, and ` = max F . That is g(x) is the leftmost nonzero digit in the
factorial expansion of x. Denote also by g its continuous extension from βN to βN.

We claim that:

(1) If q ∈
⋂∞

n=1 c`(Nn), then g(p + q) = g(q) for all p ∈ βN.

To see this, suppose instead there is some B ⊆ N with g(p + q) ∈ c`B and g(q) ∈
c`(N\B). Pick C ∈ p + q and D ∈ q with g[c`C] ⊆ c`B and g[c`D] ⊆ c`(N\B). Since
C ∈ p + q pick x ∈ N with C − x ∈ q. Pick y ∈ (C − x) ∩D ∩ Nx!. Then y + x ∈ C so
g(y + x) ∈ B. But g(y + x) = g(y) ∈ N\B, a contradiction.

Next we claim:

(2) If q ∈ E and c`A ∩ (βN + q) 6= ∅, then g(q) ∈ N.

To see this suppose that g(q) /∈ N, so that for each k, Dk = {m ∈ N : g(m) > k} ∈ q.
Pick p ∈ βN with p + q ∈ c`A. Let B = {m + n : m,n ∈ N and g(n) > g(m) > 1 and
n ∈ Nm!}. We show that B ∈ p + q which will be a contradiction since B ∩ A = ∅.
We claim in fact that for all x ∈ N, B − x ∈ q. For this, since q = q + q, it suffices
to show that (Nx!) ∩ D1 ⊆ {m ∈ N : (B − x) − m ∈ q} so let m ∈ (Nx!) ∩ D1. Then
Dg(m) ∩ Nm! ⊆ (B − x)−m (since g(m + x) = g(m)) so (B − x)−m ∈ q.

Next we claim:

(3) If p ∈ c`(FS(〈n!〉∞n=1)) ∩
⋂∞

n=1 c`(Nn) and r ∈ βN, then g(r · p) = r.

To see this it suffices to show that for all n ∈ N, g(n · p) = n, so let n ∈ N be given.
Let B = {

∑
t∈F t! : F is a finite nonempty subset of N and minF ≥ n}. Then B ∈ p so

n ·B ∈ n · p and g[n ·B] = {n}. Now by Lemma 1.1 pick p ∈ E ∩ c`FS(〈n!〉∞n=1) and let
r ∈ βN\N. Now for each x ∈ N, x · p ∈ E so r · p ∈ Γ. Let s = p + r · p . We show that
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s /∈ c`I. Suppose instead that s ∈ c`I. Observe that A ∈ s. Indeed FS(〈n!〉∞n=1) ⊆ {x ∈
N : A − x ∈ r · p}. (Given

∑
n∈F n! one sees that N\{1} ⊆ {k : (A −

∑
n∈F n!)/k ∈ p}

by noting that {
∑

n∈G n! : minG > max F and min G ≥ k} ⊆ (A−
∑

n∈F n!)/k.)
We claim that s ∈ c`

⋃∞
k=1(I ∩ g−1[{k}]). To see this, let B ∈ s. Since s ∈ c`I, we

have c`(A∩B)∩I 6= ∅ so we may pick ` ∈ N and q1, q2, . . . , q` ∈ E with q1+q2+ ...+q` ∈
c`(A ∩ B). We may presume ` ≥ 2. Now by (2) we have g(q`) ∈ N. Let k = g(q`). By
(1), g(q1 + q2 + ... + q`) = k so c`B ∩ (I ∩ g−1[{k}]) 6= ∅.

Now also s ∈ c`(N+r ·p) so c`(N+r ·p)∩c`
⋃∞

k=1 c`(I∩g−1[{k}]) 6= ∅ so by Lemma
1.3 either one has some n ∈ N with n+ r ·p ∈ c`

⋃∞
k=1 c`(I ∩ g−1[{k}]) ⊆

⋂∞
m=1 c`(Nm))

or one has some q ∈ βN and some k ∈ N with q + r · p ∈ c`(I ∩ g−1[{k}]) ⊆ g−1[{k}].
The first possibility would imply that n ∈

⋂∞
m=1 c`(Nm). The second would imply that

g(q + r · p) = k while by (1) and (3) g(q + r · p) = g(r · p) = r /∈ N. []

3. The inclusions are proper. We show in this section that the objects men-
tioned in Theorem 2.5 are all distinct (except that we have been unable to determine
whether M = T ∩

⋂∞
n=2 Sn). We proceed from the left in the inclusion diagram from

the introduction.

3.1 Theorem. I\Γ 6= ∅ and Γ\I 6= ∅.

Proof. That I\Γ 6= ∅ follows from Theorem 2.11. That Γ\I 6= ∅ follows from
Theorem 2.12 since E + I ⊆ I. []

In the following theorem (and the rest of this section) the inclusions hold by The-
orem 2.5 (or are completely trivial). We concentrate on establishing the inequalities.

3.2 Theorem. Γ ⊂
6= c`I, I ⊂

6= c`I, and c`I ⊂
6= SI .

Proof. That Γ 6= c`I follows from the fact from Theorem 3.1 that I\Γ 6= ∅.
The remaining two conclusions follow from the fact (Theorem 2.12) that c`I is not a
semigroup. []

We produce in the following lemma another closed subsemigroup of βN containing
the idempotents. It was not included in those discussed in Section 2 because its definition
is less natural than those defined there. When we write

∑
t∈F at · t!, we shall assume F

is finite and nonempty and each at ∈ {1, 2, . . . , t}.

3.3 Lemma. Let B = {
∑

t∈F at · t! : (1) F is a finite nonempty subset of N; (2) for
each t ∈ F , at ∈ {1, 2, . . . , t}; (3) there exists t ∈ F such that at > 1; and (4) whenever
n, t ∈ F with t < n either at = an = 1 or at > an}. Then (

⋂∞
n=1 c`Nn)\c`B is a closed

subsemigroup of (βN,+) containing the idempotents.

9



Proof. To see that it is a semigroup, let p, q ∈ (
⋂∞

n=1 c`Nn)\c`B. Then p + q ∈⋂∞
n=1 c`Nn so we only need to show that N\B ∈ p + q. To this end and we let x ∈ N\B

and show that (N\B) − x ∈ q. Write x =
∑

t∈F at · t! and let m = maxF + 1. We
show that Nm! ⊆ (N\B) − x, so let y ∈ Nm! and write y =

∑
t∈G bt · t! and note that

minG ≥ m.

Now x /∈ B. Assume first that for all t ∈ F , at = 1. If for all t ∈ G, bt = 1, we
have y + x /∈ B so assume for some n ∈ G, bn > 1. Pick any t ∈ F . Then t < n and
at = 1 < bn so again y + x /∈ B. Now assume we have t < n in F with at ≤ an and it
is not the case that at = an = 1. Then directly we have y + x fails to satisfy (4) of the
definition so y + x /∈ B.

Now let p ∈ E. Then p ∈
⋂∞

n=1 c`Nn so we show that N\B ∈ p. Suppose instead
that B ∈ p and let D = {

∑
t∈F t! : F is a finite nonempty subset of N}. Then D ⊆ N\B

so if D ∈ p we are done. Assume D /∈ p.
Assume that for some k ≥ 2, {

∑
t∈F at · t! : minF ≥ k and {at : t ∈ F} ⊆

{1, 2, . . . , k}} ∈ p. Since p = p + p + ... + p (k times) and p ∈
⋂∞

n=1 c`Nn we have that
{
∑

t∈F at · t! : |F | ≥ k} ∈ p. Let E = B ∩ {
∑

t∈F at · t! : min F ≥ k and |F | ≥ k

and {at : t ∈ F} ⊆ {1, 2, . . . , k}}. Then E ∈ p so pick x ∈ E such that E − x ∈ p.
Write x =

∑
t∈F at · t! and let m = maxF + 1. Pick y ∈ Nm! ∩ (E − x), and write

y =
∑

t∈G bt · t!. Since x ∈ B and |F | ≥ k and each at ≤ k, there is some t ∈ F with
at = 1. Since y ∈ E, y ∈ B so y /∈ D so there is some n ∈ G with bn > 1. But then
t < n and at < bn so y + x /∈ B so y + x /∈ E a contradiction.

Thus it must be the case that for all k ∈ N, Ek = {
∑

t∈F at · t! : {at : t ∈
F}\{1, 2, . . . , k} 6= ∅} ∈ p. Since B ∈ p, pick x such that B − x ∈ p and write x =∑

t∈F at·t! . Let k = max{at : t ∈ F} and let m = maxF +1. Pick y ∈ Nm!∩Ek∩(B−x)
and write y =

∑
t∈G bt · t!. Pick n ∈ G such that bn > k and pick any t ∈ F . Then

t < n and bn > at so y + x /∈ B, a contradiction. []

3.4 Theorem. SI
⊂
6= M .

Proof. Let B be as in Lemma 3.3 and let H = {
∑

t∈F at · t! : whenever n, t ∈ F

with t < n one has at > an}. Observe that given any n ∈ N there exists 〈xt〉nt=1 with
FS(〈xt〉nt=1) ⊆ H. (For example let xt = (n+1− t) · (n+ t)! .) Thus by Theorem 2.7 we
may pick p ∈ c`H ∩

⋂∞
n=2 Sn. By Lemma 1.1 pick q = q + q ∈

⋂∞
m=1 c`(FS(〈t!〉∞t=m)).

We claim that p + q ∈ M ∩ c`B (so that by Lemma 3.3, p + q ∈ M\SI).
To see that p+ q ∈ M , let A ∈ p+ q and let n ∈ N be given. Since {x ∈ N : A−x ∈

q} ∈ p and p ∈ Sn, pick 〈xt〉nt=1 with FS(〈xt〉nt=1) ⊆ {x ∈ N : A − x ∈ q}. Let D =⋂
{A − z : z ∈ FS(〈xt〉nt=1)}. Since D ∈ q = q + q pick 〈yt〉∞t=1 with FS(〈yt〉∞t=1) ⊆ D.
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Then FS(〈xt〉nt=1) + FS(〈yt〉∞t=1) ⊆ A.

To see that B ∈ p + q we show that H ⊆ {x ∈ N : B − x ∈ q}. So let x ∈ H and
write x =

∑
t∈F at · t! . Let m = maxF + 1. Then FS(〈t!〉∞t=m) ⊆ B−x so B−x ∈ q. []

As we have remarked, we do not know whether M = T ∩
⋂∞

n=2 Sn. It is trivial
that T\

⋂∞
n=2 Sn 6= ∅, indeed that T\S2 6= ∅. In fact by Theorem 2.5 S2 ⊆ C and

trivially C ⊆
⋂∞

n=1 c`(Nn) while, given any idempotent p we have by Theorem 2.4 that
1 + p ∈ c`(N2 + 1) ∩ T . This suggests replacing T by T ∩

⋂∞
n=1 c`(Nn).

3.5 Theorem.
⋂∞

n=2 Sn\T 6= ∅, (T ∩
⋂∞

n=1 c`(Nn))\S2 6= ∅, and T ∩
⋂∞

n=2 Sn
⊂
6=⋂∞

n=2 Sn.

Proof. For the first statement, let A =
⋃∞

n=1 FS(〈22n+i〉ni=1). By Theorem 2.7,
(c`A) ∩

⋂∞
n=2 Sn 6= ∅. It is easy to see however that one cannot get any t ∈ N and

any sequence 〈xn〉∞n=1 with t + FS(〈xn〉∞n=1) ⊆ A (since all elements of A have binary
expansions with support restricted to a small segment of N). Thus (c`A) ∩ T = ∅.

Now let B =
⋃∞

k=4(2 · (k!) + FS(〈n!〉∞n=k+1)), so that B consists of all numbers
whose rightmost nonzero factorial digit is a 2, occurring at position 4 or above and all
other nonzero digits are 1. Then there do not exist x, y ∈ B with x + y ∈ B. (Given
x, y ∈ B either the rightmost digit of x + y is 4 or there are two digits in the expansion
of x + y which are greater than 1.) Thus (c`B) ∩ S2 = ∅.

Now pick by Lemma 1.1 p = p + p with p ∈
⋂∞

m=1 c`(FS(〈n!〉∞n=m)) and pick
q ∈ βN\N with {2 · (k!) : k ∈ N} ∈ q. Then p, q ∈

⋂∞
n=1 c`(Nn) so q + p ∈

⋂∞
n=1 c`(Nn).

By Theorem 2.4, q + p ∈ T . Since {2 · (k!) : k ∈ N and k ≥ 4} ⊆ {x ∈ N : B − x ∈ p},
one has q + p ∈ c`B.

The last conclusion of the theorem follows from the first. []

The following result is a special case of Theorem 3.9, but its proof is much simpler
so we present it separately.

3.6 Theorem. S3
⊂
6= S2.

Proof. Let A = {22m−22n : m,n ∈ N and m > n}. It is easy to see that one cannot
get any x1, x2, x3 ∈ A with {x1 + x2, x1 + x3, x2 + x3} ⊆ A. Thus (c`A) ∩ S3 = ∅ . To
see that (c`A)∩S2 6= ∅ we use Theorem 2.6. So let F be a finite partition of A. For each
F ∈ F , let B(F ) = {{n, m} : n, m ∈ N and m > n and 22m − 22n ∈ F}. By Ramsey’s
Theorem [8, p. 7] pick F ∈ F and n < m < r in N with {{n, m}, {n, r}, {m, r}} ⊆ B(F ).
Let x1 = 22m−22n and x2 = 22r−22m. Then x1+x2 = 22r−22n so {x1, x2, x1+x2} ⊆ F .
[]
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For our proof of Theorem 3.9 we need the following result. Given a sequence
〈Ft〉nt=1 of sets we write FU(〈Ft〉nt=1) = {

⋃
t∈G Ft : G is a (finite) nonempty subset of

{1, 2, . . . , n}}.

3.7 Theorem. (Nešetřil and Rödl). Let r, n ∈ N. There is a finite set S of finite
nonempty sets such that:

(a) Whenever S =
⋃r

i=1 Bi, there exist i ∈ {1, 2, . . . , r} and pairwise disjoint
F1, F2, . . . , Fn in S with FU(〈Ft〉nt=1) ⊆ Bi and

(b) there do not exist pairwise disjoint F1, F2, . . . , Fn+1 in S with FU(〈Ft〉n+1
t=1 ) ⊆ S.

Proof. [18, Theorem 1.1]. (Or see [7].) (The fact that S and the members of S
are finite is not stated, but follows from the proof.) []

The following corollary is not stated in [7] or [18], and we feel it is interesting in its
own right.

3.8 Corollary. Let n ∈ N\{1}. There is a set A ⊆ N such that

(a) Whenever F is a finite partition of A there exist B ∈ F and 〈xt〉nt=1 in N with
FS(〈xt〉nt=1) ⊆ B and

(b) there does not exist 〈xt〉n+1
t=1 with FS(〈xt〉n+1

t=1 ) ⊆ A.

Proof. Pick by Theorem 3.7 a sequence 〈Sr〉∞r=1 such that

(i) for each r ∈ N, Sr is a finite set of finite nonempty subsets of N and max(
⋃
Sr) <

min(
⋃
Sr+1);

(ii) for each r ∈ N, whenever Sr =
⋃r

i=1 Bi, there exist i ∈ {1, 2, . . . , r} and pairwise
disjoint F1, F2, . . . , Fn in Sr with FU(〈Ft〉nt=1) ⊆ Bi and

(iii) for each r ∈ N, there do not exist pairwise disjoint F1, F2, . . . , Fn+1 with
FU(〈Ft〉n+1

t=1 ) ⊆ Sr.

Let S =
⋃∞

r=1 Sr. Then

(iv) whenever F is a finite partition of S, there exist B ∈ F and pairwise disjoint
F1, F2, ..., Fn in S with FU(〈Ft〉nt=1) ⊆ B, and

(v) there do not exist pairwise disjoint F1, F2, . . . , Fn+1 in Swith FU(〈Ft〉n+1
t=1 ) ⊆ S.

Indeed, (iv) is immediate since if r = |F | one has Sr ⊆ S. To verify (v), suppose
we have pairwise disjoint F1, F2, . . . , Fn+1 in S with FU(〈Ft〉n+1

t=1 ) ⊆ S. Observe that,
given any r ∈ N and any G ∈ S, G ∈ Sr if and only if min(

⋃
Sr) ≤ minG and

max G ≤ max(
⋃
Sr). Pick r ∈ N with F1 ∈ Sr. If any Ft /∈ Sr we have by the above

observation that F1 ∪ Ft /∈ S. Thus each Ft ∈ Sr so, again using the observation,
FU(〈Ft〉n+1

t=1 ) ⊆ Sr, contradicting (iii).
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Now let A = {
∑

t∈F 3t : F ∈ S}. Given a finite partition F of A and B ∈ F , let
G(B) = {F ∈ S :

∑
t∈F 3t ∈ B}. Then {G(B) : B ∈ F} is a finite partition of S so by

(iv), pick B ∈ F and pairwise disjoint F1, F2, . . . , Fn in S with FU(〈Ft〉nt=1) ⊆ G(B).
For t ∈ {1, 2, . . . , n}, let xt =

∑
i∈Ft

3i. Then FS(〈xt〉nt=1) ⊆ B, so (a) holds.
To verify (b), suppose we have x1, x2, . . . , xn+1 in N with FS(〈xt〉n+1

t=1 ) ⊆ A. For
each t ∈ {1, 2, . . . , n + 1}, pick Ft such that xt =

∑
i∈Ft

3i. We claim that the sets
F1, F2, . . . , Fn+1 are pairwise disjoint (so that FU(〈Ft〉n+1

t=1 ) ⊆ S, contradicting (v)).
Suppose instead we have t 6= s with Ft ∩ Fs 6= ∅. Then xt + xs =

∑
i∈Ft∆Fs

3i +∑
i∈Ft∩Fs

2 · 3i. But xt + xs ∈ A so for some G, xt + xs =
∑

i∈G 3i, contradicting the
uniqueness of ternary expansions. []

3.9 Theorem. Let n ∈ N\{1}. Then Sn+1
⊂
6= Sn.

Proof. Pick A as guaranteed by Corollary 3.8. By (b), (c`A) ∩ Sn+1 = ∅ while by
(a) and Theorem 2.7, (c`A) ∩ Sn 6= ∅. []

Now we need to show that C 6= S2. We will utilize βZ. We brush aside the
distinction between ultrafilters on Z with N as a member and ultrafilters on N, and
thus pretend that βN ⊆ βZ. Given p ∈ βN we let −p = {−A : A ∈ p} and note that
−p ∈ βZ. (But be cautioned that unless p ∈ N, −p + p 6= 0; in fact βN\N is a left ideal
of βZ so if p ∈ βN\N then also −p + p ∈ βN\N.)

3.10 Lemma. Let ϕ be a homomorphism from βZ to the circle group T and let
p ∈ βN. Then ϕ(−p) = −ϕ(p).

Proof. Note that the function f : βN −→ βZ defined by f(p) = −p is continuous.
For all n ∈ N, ϕ(−n) = −ϕ(n) (since ϕ|Z is a group homomorphism). Thus ϕ ◦ f and
−ϕ are continuous functions agreeing on N, hence on βN. []

3.11 Lemma. Let 〈xn〉∞n=1 be any increasing sequence in N and let A and B be
infinite subsets of N. Let D = {xn+xm−xr−xs : n > m+3 > m > r+3 > r > s+3 and
n, s ∈ A and m, r ∈ B} and let p, q ∈ βN\N with {xn : n ∈ A} ∈ p and {xn : n ∈ B} ∈ q.
Then D ∈ −p + −q + q + p and −p + −q + q + p ∈ C. In particular D is a rational
approximation set.

Proof. To see that −p+−q + q + p ∈ C it suffices (as is well known and explained
in the introduction to [1]) to let ϕ be a homomorphism from βN to T and show that
ϕ(−p+−q+q+p) = [0]. To this end let such ϕ be given. Define τ : Z −→ T by τ(0) = [0],
and τ(n) = ϕ(n) and τ(−n) = −ϕ(n) for n ∈ N. Then the continuous extension τβ of
τ to βZ is a homomorphism and τβ agrees with ϕ on βN. Thus, using Lemma 3.10,
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we have ϕ(−p + −q + q + p) = τ(−p + −q + q + p) = τ(−p) + τ(−q) + τ(q) + τ(p) =
−τ(p)− τ(q) + τ(q) + τ(p) = [0].

It is completely routine to verify that D ∈ −p + −q + q + p. The “in particular”
conclusion follows from Lemma 2.9. []

3.12 Lemma. Let 〈xn〉∞n=1 be a sequence in N such that for each n ∈ N, xn+1 ≥ 2xn.
Let A and B be disjoint infinite subsets of N such that for some i, j ∈ {0, 1, 2} A ⊆ N3+i

and B ⊆ N3 + j. Let D = {xn + xm − xr − xs : n > m + 3 > m > r + 3 > r > s + 3 and
n, s ∈ A and m, r ∈ B}. There do not exist a, b ∈ D with a + b ∈ D.

Proof. Suppose we have a, b ∈ D with a + b ∈ D and pick n1 > m1 + 3 >

m1 > r1 + 3 > r1 > s1 + 3, n2 > m2 + 3 > m2 > r2 + 3 > r2 > s2 + 3, and
n3 > m3 + 3 > m3 > r3 + 3 > r3 > s3 + 3 such that a = xn1 + xm1 − xr1 − xs1 ,
b = xn2 +xm2−xr2−xs2 , and a+b = xn3 +xm3−xr3−xs3 and {n1, n2, n3, s1, s2, s3} ⊆ A

and {m1,m2,m3, r1, r2, r3} ⊆ B. Then we have

(*) xn1 + xm1 + xn2 + xm2 + xr3 + xs3 = xn3 + xm3 + xr1 + xs1 + xr2 + xs2 .

We may assume without loss of generality that n1 ≥ n2. We claim first that
n1 = n3. Suppose n1 < n3. Then since n1, n3 ∈ N3+i, the left hand side of (*) is at most
xn3−3 +xn3−6 +xn3−3 +xn3−6 +xn3−6 +xn3−9 ≤ xn3−2 +xn3−5 +xn3−6 +xn3−9 < xn3 ,
a contradiction. (Observe that for each n, xn+1 >

∑n
t=1 xt.) Similarly if we had n3 < n1

we would have that the right hand side of (*) is at most xn1−3+xn1−6+xn1−6+xn1−9+
xn1−6 + xn1−9 ≤ xn1−3 + xn1−5 + xn1−8 + xn1−6 < xn1 . Thus n1 = n3 so we have

(**) xm1 + xn2 + xm2 + xr3 + xs3 = xm3 + xr1 + xs1 + xr2 + xs2 .

Now n2 ∈ A and m1 ∈ B so n2 6= m1. We claim that n2 < m1 so suppose
instead that n2 > m1. If m3 < n2 we have (since n2 > m1 > r1 + 3) that the
right hand side of (**) is at most xn2−1 + xn2−4 + xn2−7 + xn2−6 + xn2−9 < xn2 , a
contradiction. If m3 > n2 (> m1) we have that the left hand side of (**) is at most
xm3−3 + xm3−1 + xm3−4 + xm3−3 + xm3−6 ≤ xm3−1 + xm3−2 + xm3−4 + xm3−6 < xm3 ,
a contradiction. Thus n2 < m1 as claimed.

Now we claim m3 = m1. Suppose first that m3 < m1. Then the right hand side
of (**) is at most xm1−3 + xm1−3 + xm1−6 + xm1−7 + xm1−10 < xm1 , a contradiction.
Similarly if m1 < m3 one has the left hand side of (**) is at most xm3−3 + xm3−4 +
xm3−7 + xm3−3 + xm3−6 < xm3 , a contradiction. Thus m3 = m1 so we have

(***) xn2 + xm2 + xr3 + xs3 = xr1 + xs1 + xr2 + xs2 .
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Now we claim that n2 < r1. Suppose not. Then since n2 ∈ A and r1 ∈ B we have
n2 > r1 so the right hand side of (***) is at most xn2−1 +xn2−4 +xn2−6 +xn2−9 < xn2 ,
a contradiction. Thus n2 < r1 as claimed.

Next we claim r3 = r1. If r3 < r1 we have the left hand side of (***) is at most
xr1−1 + xr1−4 + xr1−3 + xr1−6 < xr1 , a contradiction. If r3 > r1 (> n2) we have the
right hand side of (***) is at most xr3−3 +xr3−6 +xr3−10 +xr3−13 < xr3 . Thus r3 = r1

so we have

(****) xn2 + xm2 + xs3 = xs1 + xr2 + xs2 .

Continuing in this fashion we see that if n2 = s3 then also n2 = s1 so that xm2 +
xs3 = xr2 + xs2 and hence that m2 = r2 which is a contradiction.

Thus one must have n2 6= s3, and hence that |{n2,m2, s3}| = 3. Now if s1 = s2 one
has s1 = s2 < r2 < n2 so the right hand side of (****) is at most xn2−9+xn2−6+xn2−9 <

xn2 , a contradiction. Thus s1 6= s2 so |{s1, r2, s2}| = 3. Since xn+1 >
∑n

t=1 xt for each
n, expressions in FS(〈xt〉∞t=1) are unique. Thus from (****) we have {n2,m2, s3} =
{s1, r2, s2} so that {m2} = {n2,m2, s3} ∩ B = {s1, r2, s2} ∩ B = {r2} while r2 < m2.
This contradiction completes the proof. []

3.13 Theorem. Let 〈xn〉∞n=1 be a sequence in N such that for each n, xn+1 ≥ 2xn.
Let A and B be disjoint infinite subsets of N and let p, q ∈ βN\N such that {xn : n ∈
A} ∈ p and {xn : n ∈ B} ∈ q. Then −p +−q + q + p ∈ C\S2.

Proof. Pick i, j ∈ {0, 1, 2} such that N3+i ∈ p and N3+j ∈ q. Let A′ = A∩(N3+i)
and B′ = B∩(N3+j). Let D = {xn+xm−xr−xs : n > m+3 > m > r+3 > r > s+3 and
n, s ∈ A′ and m, r ∈ B′}. By Lemma 3.11, D ∈ −p+−q+q ∈ p and −p+−q+q+p ∈ C.
By Lemma 3.12 −p +−q + q + p /∈ S2. []

It is natural to ask whether in lieu of −p +−q + q + p above one might be able to
get by with −p + p for some suitable p. We conclude this section by showing that this
is not possible.

3.14 Theorem. Let p ∈ βN\N. Then −p + p ∈ S2.

Proof. Let A ∈ −p + p. Then {x ∈ Z : A− x ∈ p} ∈ −p so B = {x ∈ N : A + x ∈
p} ∈ p. Pick x1 ∈ B, pick x2 ∈ B ∩ (A + x1), pick x3 ∈ (A + x1) ∩ (A + x2). Let
y = x2 − x1 and let z = x3 − x2. Then y, z ∈ A and y + z = x3 − x1 ∈ A. []

4. Connections with other structures. The interaction of the operations +
and · on βN has been a very useful combinatorial tool. (See [3] for an example where
this interaction is utilized several times in succession.)
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Recall that, given p and q in βN and A ⊆ N, A ∈ p · q if and only if {x ∈ N : A/x ∈
q} ∈ p where A/x = {y ∈ N : y · x ∈ A}.

It is not generally true that for n ∈ N and p ∈ βN one has n · p = p + p + ... + p

(n-times). (For example one sees easily that if n 6= 1 then n · p 6= p while if p = p + p,
then p = p + p + ... + p (n-times).) On the other hand we do have the following lemma.
Recall that, given p ∈ βN and a sequence 〈xn〉∞n=1 in a topological space X, one has
p-limn∈N xn = y if and only if for each neighbourhood U of y, {n ∈ N : xn ∈ U} ∈ p.

4.1 Lemma. Let (G, +) be a compact topological group, let ϕ : βN −→ G be a
continuous homomorphism, let p ∈ βN, and let n ∈ N. Then ϕ(n · p) = n · ϕ(p), where
n · ϕ(p) = ϕ(p) + ... + ϕ(p) (n-times).

Proof. Recall that the function λn defined by λn(p) = n · p is continuous since
n ∈ N. Recall further that by the joint continuity of addition in G, we have n ·
p-limm∈N ϕ(m) = p-limm∈N n · ϕ(m). Thus we have ϕ(n · p) = ϕ(n · p-limm∈N m) =
p-limm∈N ϕ(n ·m) = p-limm∈N n · ϕ(m) = n · p-limm∈N ϕ(m) = n · ϕ(p-limm∈N m) =
n · ϕ(p).[]

4.2 Theorem. C is a two sided ideal of (βN, ·).
Proof. Let G be a compact topological group with identity 0 and let ϕ : βN −→ G

be a homomorphism. Let p ∈ C and let q ∈ βN. Pick nets 〈xη〉η∈D and 〈yτ 〉τ∈E in N
converging to p and q respectively.

Then ϕ(q · p) = ϕ((limτ∈E yτ ) · p) = limτ∈E ϕ(yτ · p) = limτ∈E (yτ · ϕ(p)) =
limτ∈E (yτ · 0) = 0.

Now let z = ϕ(q) and define τ : N −→ G by τ(n) = n · z. Then the continu-
ous extension τβ : βN −→ G is a homomorphism. Thus ϕ(p · q) = ϕ((limη∈D xη) ·
q) = limη∈D ϕ(xη · q) = limη∈D (xη · ϕ(q)) = limη∈D τ(xη) = limη∈D τβ(xη) =
τβ(limη∈D xη) = τβ(p) = 0.[]

4.3 Theorem. For each n ∈ N\{1}, Sn is a two sided ideal of (βN, ·).

Proof. Let n ∈ N, let p ∈ Sn and let q ∈ βN.

To see that q · p ∈ Sn, let A ∈ q · p and pick y ∈ N such that A/y ∈ p. Pick 〈xt〉nt=1

with FS(〈xt〉nt=1) ⊆ A/y. Then FS(〈y · xt〉nt=1) ⊆ A.

To see that p · q ∈ Sn, let A ∈ p · q and pick 〈xt〉nt=1 such that FS(〈xt〉nt=1) ⊆ {y ∈
N : A/z ∈ q). Pick y ∈

⋂
{A/z : z ∈ FS(〈xt〉nt=1)}. Then FS(〈y · xt〉nt=1) ⊆ A. []

In the process of our study of the semigroup C, we were led to the following result
(and its fortuitous corollary). By a divisible sequence 〈xn〉∞n=1 in N we simply mean an
increasing sequence with the property that each xn divides xn+1.
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Recall that we are representing the circle group T as R/Z. By TT we mean the
set of all functions from T to T with the product topology (= “topology of pointwise
convergence”).

4.4 Theorem. Define h : N −→ TT by h(n)(α) = n ·α and let hβ be the continuous
extension of h to βN. Let 〈xn〉∞n=1 be any divisible sequence in N. Then hβ is one-to-one
on c`{xn : n ∈ N}.

Proof. Let p and q be distinct elements of c`{xn : n ∈ N}. Pick disjoint A

and B contained in N such that {xn : n ∈ A} ∈ p and {xn : n ∈ B} ∈ q. Since
{xn : n ∈ N} =

⋃2
i=0{xn : n ≡ i(mod3)} we may presume we have some i ∈ {0, 1, 2}

such that for all n, m ∈ A, n ≡ m(mod3). As a consequence, if n, m ∈ A and n < m

then n+3 ≤ m so xm ≥ xn+3 ≥ 8 ·xn. Now let t =
∑

n∈Abxn+1/(2xn)c/xn+1, where b c
denotes the greatest integer function. (Since 〈xn〉∞n=1 is a divisible sequence we have each
xn ≥ 2n−1 so bxn+1/(2xn)c/xn+1 ≤ 1/(2xn) ≤ 1/2n so the series defining t converges
(and 0 < t < 1). As before write [t] = t + Z. We show that hβ(p)([t]) 6= hβ(q)([t]).

Let D = {[s] : 1/3 ≤ s ≤ 4/7} and let E = {[s] : 0 ≤ s ≤ 9/28}. Then D and
E are disjoint closed subsets of T . We show that if n ∈ A then h(xn)([t]) ∈ D and if
n ∈ B then h(xn)([t]) ∈ E. As a consequence we will have that hβ(p)([t]) ∈ D and
hβ(q)([t]) ∈ E.

To this end we first observe that given any n ∈ N,
∑
{(bxk+1/(2xk)c/xk+1) · xn :

k ∈ A and k ≥ n + 3} ≤ 1/14. Indeed, given the first k ∈ A with k ≥ n + 3 one has
(bxk+1/(2xk)c/xk+1) · xn ≤ xn/(2xk) ≤ 1/16. Given k, m ∈ A with m > k > n + 3,
one has xm ≥ xk+3 ≥ 8 · xk. Consequently

∑
{(bxk+1/(2xk)c/xk+1) · xn : k ∈ A and

k ≥ n + 3} ≤ (1/2)
∑∞

k=1 1/8k = 1/14.

Now let n ∈ A. Then h(xn)([t]) = xn · [t] = [xn · t]. Now xn · t =∑
{(bxk+1/(2xk)c/xk+1) · xn : k ∈ A and k < n} + (bxn+1/(2xn)c/xn+1) · xn +∑
{(bxk+1/(2xk)c/xk+1) · xn : k ∈ A and k ≥ n + 3}. The first of these sums is some

integer ` and the last of these is at most 1/14. Now consider the middle term. We have
(bxn+1/(2xn)c/xn+1) · xn ≤ 1/2 and equality holds if xn+1/xn is even. If xn+1/xn is
odd we have xn+1 ≥ 3xn so (bxn+1/(2xn)c/xn+1) ·xn = (xn+1/(2xn)−1/2) ·xn/xn+1 =
1/2 − 1/2 · (xn/xn+1) ≥ 1/2 − 1/6 = 1/3. Thus ` + 1/3 ≤ xn · t ≤ ` + 1/2 + 1/14 so
[xn · t] ∈ D as required.

Finally let n ∈ B. Then xn · t =
∑
{(bxk+1/(2xk)c/xk+1) · xn : k ∈ A and k <

n}+
∑
{(bxk+1/(2xk)c/xk+1)·xn : k ∈ A and n < k < n+3}+

∑
{(bxk+1/(2xk)c/xk+1)·

xn : k ∈ A and k ≥ n + 3}. Again the first sum is some integer ` and the last is
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at most 1/14. The middle sum has at most one term which is at most 1/4. Thus
` ≤ xn · t ≤ ` + 1/4 + 1/14 so [xn · t] ∈ E as required. []

We obtain as a corollary the following result communicated to us by Kenneth
Berg. For extensions of this result see [2]. Recall that, given f : T −→ T, the enveloping
semigroup of f is the closure in TT of {fn : n ∈ N}.

4.5 Corollary. Define f : T −→ T by f(α) = 2 ·α. Then the enveloping semigroup
of f can be identified with βN.

Proof. Note that fn(α) = 2n · α so if h is defined as in Theorem 4.4, one has for
each n ∈ N, h(2n) = fn. Thus the enveloping semigroup of f is h[c`{2n : n ∈ N}]. Since
h is one-to-one on this closure, it is a homeomorphism on c`{2n : n ∈ N}. []

It was shown in [16] that if p is a right cancellable element of βN, then every element
of c`{p, p + p, p + p + p, . . .} is right cancellable. As a consequence, any such semigroup
has a closure which misses the set of idempotents. We show next that one can get
semigroups in βN whose closure is reasonably far removed from the idempotents. (In
particular the closure cannot be a semigroup.)

4.6 Theorem. Let 〈xn〉∞n=1 be any divisible sequence in N and let p ∈ (c`{xn : n ∈
N})\N. Then c`{p, p + p, p + p + p, . . .}) ∩ T = ∅.

Proof. We may presume x1 = 1. (If x1 > 1, let y1 = 1 and yn+1 = xn for n ∈ N.
Then (c`{yn : n ∈ N})\N = (c`{xn : n ∈ N})\N.) For each n ∈ N let an = xn+1/xn.
Then each m ∈ N has a unique expression of the form

∑
t∈F bt · xt where for each

t ∈ F , bt ∈ {1, 2, . . . , at − 1}. Further xn divides m if and only if minF ≥ n. Given
m ∈ N, define c(m) = |F | where m =

∑
t∈F bt · xt as above. Let cβ : βN −→ βN be

the continuous extension of c. Since c is constantly equal to 1 on {xn : n ∈ N} we have
cβ(p) = 1.

Let X = (
⋂∞

n=1 c`(Nxn)) ∩ (
⋂∞

n=1 c`{m ∈ N : c(m) > n}). We observe that the
idempotents are all in X. We have C ⊆

⋂∞
n=1 c`(Nxn). To see that the idempotents

are contained in
⋂∞

n=1 c`{m ∈ N : c(m) > n}, let e = e + e and suppose that for some
n, {m ∈ N : c(m) ≤ n} ∈ e. Then, since e is an ultrafilter one has in fact that for
some n, {m ∈ N : c(m) = n} ∈ e. Let A = {m ∈ N : c(m) = n} and pick m ∈ A

such that A − m ∈ e. Pick t such that xt > m and pick k ∈ Nxt ∩ (A − m). Then
c(k + m) = c(k) + c(m) > n so k + m /∈ A, a contradiction.

Now suppose (c`{p, p+p, p+p+p, . . .})∩T 6= ∅. By Theorem 2.4, T = c`
⋃
{N+e :

e ∈ βN and e + e = e}, so T ⊆ c`(
⋃∞

n=1 n + X). Thus c`{p, p + p, p + p + p, . . .} ∩
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c`(
⋃∞

n=1 n+X) 6= ∅ so by Lemma 1.3 either c`{p, p+p, p+p+p, . . .}∩(
⋃∞

n=1 n+X) 6= ∅ or
{p, p+p, p+p+p, . . .}∩c`(

⋃∞
n=1 n+X) 6= ∅. But c`{p, p+p, p+p+p, . . .} ⊆

⋂∞
n=1 c`(Nxn)

and
⋂∞

n=1 c`(Nxn) ∩ (
⋃∞

n=1 n + X) = ∅. Thus we have some q ∈ {p, p + p, p + p +
p, . . .} ∩ c`(

⋃∞
n=1 n + X). Now q = p + p + ... + p (m-times) so cβ(q) = m. Let

A = {y ∈ N : c(y) = m}. Then A ∈ q so c`A ∩ (
⋃∞

n=1 n + X) 6= ∅, so pick n ∈ N with
c`A ∩ (n + X) 6= ∅ and pick r ∈ c`A ∩ (n + X). Pick k ∈ N such that xk > n. Now
r−n ∈ X ⊆ c`(Nxk)∩c`({y ∈ N : c(y) > m}) so Nxk∩{y ∈ N : c(y) > m}∩(A−n) 6= ∅.
Pick y ∈ Nxk ∩ {y ∈ N : c(y) > m} ∩ (A − n). Since y ∈ Nxk and xk > n we have
c(y + n) = c(y) + c(n) > m so y + n /∈ A, a contradiction. []

On the other hand, we see that no semigroup can get too far removed from the
idempotents.

4.7 Theorem. Let S be any subsemigroup of βN. Then (c`S) ∩
⋂∞

n=2 Sn 6= ∅.

Proof. Pick any p ∈ S. Define ϕ : N −→ βN by ϕ(n) = p + p + ... + p (n
times) and let ϕβ be the continuous extension to βN. Note that ϕβ : βN −→ βN
is a homomorphism. Pick any q ∈

⋂∞
n=2 Sn. Then ϕβ(q) ∈ c`S. We claim that

ϕβ(q) ∈
⋂∞

n=2 Sn.

We show first that for any A ∈ ϕβ(q) and any n ∈ N\{1}, there exist r1, r2, . . . , rn in
c`A that commute with each other with FS(〈rt〉nt=1) ⊆ c`A. (The fact that r1, r2, . . . , rn

commute with each other is not really relevant except that we do not need to spell out
the order of the sums in FS(〈rt〉nt=1).) To see this let A ∈ ϕβ(q) and pick B ∈ q such
that ϕβ [c`B] ⊆ cl A. Now let n ∈ N\{1} and (since q ∈ Sn) pick x1, x2, . . . , xn in B

with FS(〈xt〉nt=1) ⊆ B. For each t ∈ {1, 2, . . . , n}, let rt = ϕ(xt).
To complete the proof we show by induction on n ∈ N that given A ⊆ N, if there

exist commuting r1, r2, . . . , rn with FS(〈rt〉nt=1) ⊆ c`A, then there exist x1, x2, . . . , xn

with FS(〈xt〉nt=1) ⊆ A. The case n = 1 is trivial, so let n ∈ N and assume the statement
is true for n and let r1, r2, . . . , rn+1 be commuting elements of c`A with FS(〈rt〉n+1

t=1 ) ⊆
c`A. Let D = {x ∈ N : A − x ∈ rn+1}. Now given any nonempty F ⊆ {1, 2, . . . , n}
we have A ∈

∑
t∈F rt + rn+1 so D ∈

∑
t∈F rt. That is FS(〈rt〉nt=1) ⊆ c`D. Since also

FS(〈rt〉nt=1) ⊆ c`A we have FS(〈rt〉nt=1) ⊆ c`(A ∩ D) so by the induction hypothesis
choose 〈xt〉nt=1 with FS(〈xt〉nt=1) ⊆ A ∩ D. Now A ∈ rn+1 and for each nonempty
F ⊆ {1, 2, . . . , n}, A −

∑
t∈F xt ∈ rn+1 so pick xn+1 ∈ A ∩

⋂
{A −

∑
t∈F xt : ∅ 6= F ⊆

{1, 2, . . . , n}}. Then FS(〈xt〉n+1
t=1 ) ⊆ A. []
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