This paper was published in Proc. Edinburgh Math. Soc. 39 (1996), 291-307. To the best of my knowledge, this is the final version as it was submitted to the publisher.-NH

Compact Subsemigroups of $(\beta \mathbb{N},+)$

Containing the Idempotents

Neil Hindman ${ }^{1}$
and
Dona Strauss

Abstract

The space $\beta \mathbb{N}$ is the Stone-Čech compactification of the discrete space of positive integers. The set of elements of $\beta \mathbb{N}$ which are in the kernel of every continuous homomorphism from $\beta \mathbb{N}$ to a topological group is a compact semigroup containing the idempotents. At first glance it would seem a good candidate for the smallest such semigroup. We produce an infinite nested sequence of smaller such semigroups, all defined naturally in terms of addition on \mathbb{N}.

1. Introduction. Given a discrete semigroup (S, \cdot) the operation can be extended to the Stone-Čech compactification βS of S so that $(\beta S, \cdot \cdot)$ is a compact right topological semigroup. (See [12] for an elementary construction of this extension, with the caution that there βS is left rather than right topological.) As a compact right topological semigroup βS has idempotents [6 , Corollary 2.10]. The existence of these idempotents, especially idempotents in the smallest ideal of βS, has important combinatorial consequences (See [11] and [15], for example.)

Of special interest are the semigroups $(\mathbb{N},+)$ and (\mathbb{N}, \cdot), where \mathbb{N} is the set of positive integers. Let $E=\{p \in \beta \mathbb{N}: p+p=p\}$ and let $\Gamma=c \ell E$. It turns out that Γ is a right ideal of $(\beta \mathbb{N}, \cdot)$. This fact provided the first (and for a long time only) proof of the following result: If \mathbb{N} is partitioned into finitely many cells, then there exist sequences $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ and $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ such that $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \cup F P\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right)$ is contained in one cell of the partition [9, Theorem 2.6]. (Here $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\sum_{n \in F} x_{n}: F\right.$ is a finite nonempty subset of $\mathbb{N}\}$ and $F P\left(\left\langle y_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\Pi_{n \in F} y_{n}: F\right.$ is a finite nonempty subset of $\mathbb{N}\}$).

It is an intriguing fact that Γ is defined additively, is a right ideal, in particular a subsemigroup, of $(\beta \mathbb{N}, \cdot)$, and yet is not a subsemigroup of $(\beta \mathbb{N},+)$. In fact there exist idempotents p and q in $(\beta \mathbb{N},+)$ such that $p+q \notin \Gamma$. (See Section 3 for the easy proof of this latter assertion.) An intriguing and potentially useful problem then arises: Characterize the smallest compact subsemigroup of ($\beta \mathbb{N},+$) which contains the set E of idempotents.
${ }^{1}$ This author gratefully acknowledges support received from the National Science Foundation via grant DMS 90-25025.

We take the points of $\beta \mathbb{N}$ to be the ultrafilters on \mathbb{N}. The reader is referred to [12] for background material. We will often use the fact that $A \in p+q$ if and only if $\{x \in \mathbb{N}: A-x \in q\} \in p$, where $A-x=\{y \in \mathbb{N}: y+x \in A\}$. (And similarly $A \in p \cdot q$ if and only if $\{x \in \mathbb{N}: A / x \in q\} \in p$, where $A / x=\{y \in \mathbb{N}: y \cdot x \in A\}$.)

Homomorphisms to other algebraic structures are a useful tool for investigating the algebraic structure of $\beta \mathbb{N}$. For example, such homomorphisms were used in [13] to show that the maximal groups in the smallest ideal of $(\beta \mathbb{N},+)$ contain copies of the free group on 2^{c} generators. Now given any continuous homomorphism from $(\beta \mathbb{N},+)$ to a compact topological group the kernel necessarily contains E. (It also must contain any element of finite order [1, Corollary 2.3]. Whether any such exist besides the idempotents is a difficult open problem.)

Let C be the intersection of the kernels of all continuous homomorphisms from $(\beta \mathbb{N},+)$ to arbitrary compact topological groups. (We use " C " for kernel because K standardly represents the smallest ideal.) Then C is a compact semigroup containing E and at first glance seems like a good candidate for the smallest such. This turns out to fail badly, as we shall see.

The set $\Gamma=c \ell E$ can be characterized as follows [11, Lemma 2.3(a)]: Let $p \in$ $\beta \mathbb{N}$. Then $p \in \Gamma$ if and only if for every $A \in p$ there is a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ with $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq A$. In a similar fashion we define sets $S_{n} \subseteq \beta \mathbb{N}$ for each $n \in \mathbb{N} \backslash\{1\}$ as follows: Let $p \in \beta \mathbb{N}$. Then $p \in S_{n}$ if and only if for each $A \in p$, there is a sequence $\left\langle x_{t}\right\rangle_{t=1}^{n}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq A$. (Given an index set $J, F S\left(\left\langle x_{i}\right\rangle_{i \in J}\right)=\left\{\sum_{i \in F} x_{i}: F\right.$ is a finite nonempty subset of J.$\} .) In a similar vein define T$ and M by agreeing that, given $p \in \beta \mathbb{N}, p \in T$ if and only if whenever $A \in p$, there exist some a and some $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ with $a+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$ and that $p \in M$ if and only if whenever $A \in p$ and $n \in \mathbb{N}$, there exist $\left\langle x_{t}\right\rangle_{t=1}^{n}$ and $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right)+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$. It will be shown in Theorem 2.4 that T is the smallest closed left ideal of $(\beta \mathbb{N},+)$ containing the idempotents.

Let I be the semigroup generated by the set E of idempotents and let S_{I} be the smallest compact subsemigroup of $(\beta \mathbb{N},+)$ containing E. In Section 2 we investigate each of the objects defined above, show that all (except Γ and $c \ell I$) are semigroups and show that the following pattern of inclusions holds:

$$
\begin{aligned}
& \Gamma \subseteq \\
& I \subseteq
\end{aligned} \quad c l I \subseteq S_{I} \subseteq M \subseteq T \cap \bigcap_{n=2}^{\infty} S_{n} \subseteq \bigcap_{n=2}^{\infty} S_{n} \subseteq \ldots S_{3} \subseteq S_{2} \subseteq C .
$$

In Section 3 we show that $\Gamma \backslash I \neq \emptyset, I \backslash \Gamma \neq \emptyset, T \backslash \bigcap_{n=1}^{\infty} S_{n} \neq \emptyset, \bigcap_{n=1}^{\infty} S_{n} \backslash T \neq \emptyset$, and
that all but one of the inclusions displayed above (including "...") is proper. (We have been unable to decide whether $M=T \cap \bigcap_{n=2}^{\infty} S_{n}$.) In Section 4 we present relationships between these sets and other structures.

We would like to thank the referee for a very helpful and detailed report.
We conclude this introduction by displaying some results which we will utilise later.
1.1 Lemma. (a) Let $p \in E$ and let $A \in p$. There exists $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ such that $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq A$.
(b) Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be a sequence in \mathbb{N}. There exist $p \in E$ such that for all $m \in \mathbb{N}$, $F S\left(\left\langle x_{n}\right\rangle_{n=m}^{\infty}\right) \in p$.

Proof. (a) This is what is show in the Galvin-Glazer proof of the Finite Sum Theorem. See [5, Theorem 10.3] or [12].
(b) [10, Lemma 2.4 and Theorem 2.5].]
1.2 Lemma. Let n and r be in \mathbb{N}. There is some $m \in \mathbb{N}$ such that whenever $\left\langle y_{t}\right\rangle_{t=1}^{m}$ is a sequence in \mathbb{N} and $D_{1}, D_{2}, \ldots, D_{r}$ are subsets of \mathbb{N} with $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{m}\right) \subseteq \bigcup_{i=1}^{r} D_{i}$, there exist $i \in\{1,2, \ldots, r\}$ and $\left\langle x_{t}\right\rangle_{t=1}^{n}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq D_{i}$.

Proof. By the finite version of the Finite Unions Theorem [8, p. 82] pick $m \in \mathbb{N}$ such that whenever the finite nonempty subsets of $\{1,2, \ldots, m\}$ are covered by r cells, there will exist pairwise disjoint $B_{1}, B_{2}, \ldots, B_{n}$ with all sets of the form $\bigcup_{t \in F} B_{t}$ in the same cell of the cover (for $\emptyset \neq F \subseteq\{1,2, \ldots, n\}$).

Next let $\left\langle y_{t}\right\rangle_{t=1}^{m}$ and $\left\langle D_{i}\right\rangle_{i=1}^{r}$ be given with $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{m}\right) \subseteq \bigcup_{i=1}^{r} D_{i}$. For each $i \in\{1,2, \ldots, r\}$, let $H_{i}=\left\{F \subseteq\{1,2, \ldots, m\}: F \neq \emptyset\right.$ and $\left.\sum_{t \in F} y_{t} \in D_{i}\right\}$. Pick $i \in\{1,2, \ldots, r\}$ and pairwise disjoint $B_{1}, B_{2}, \ldots, B_{n}$ with $\bigcup_{j \in F} B_{j} \in H_{i}$ whenever $\emptyset \neq F \subseteq\{1,2, \ldots, n\}$. Let $x_{j}=\sum_{t \in B_{j}} y_{t}$ for $j \in\{1,2, \ldots, n\}$. Then given $\emptyset \neq$ $F \subseteq\{1,2, \ldots, n\}, \sum_{j \in F} x_{j}=\sum_{j \in F} \sum_{t \in B_{j}} y_{t}$. Since $\bigcup_{j \in F} B_{j} \in H_{i}$ one has that $\sum_{j \in F} x_{t} \in D_{i}$.]

The following lemma is apparently originally due to Frolík.
1.3 Lemma. Let X and Y be σ-compact subsets of $\beta \mathbb{N}$. If $c \ell X \cap c \ell Y \neq \emptyset$, then $X \cap c \ell Y \neq \emptyset$ or $Y \cap c \ell X \neq \emptyset$.

Proof. See [14, Lemma 1.1].]
2. Inclusions among semigroups containing the idempotents. We begin by displaying the definitions of the objects we are studying. Recall that $E=\{p \in \beta \mathbb{N}$: $p+p=p\}$.
2.1 Definition. (a) $C=\{p \in \beta \mathbb{N}$: for any compact topological group G and any continuous homomorphism φ from $(\beta \mathbb{N},+)$ to $G, \varphi(p)$ is the identity of $G\}$.
(b) For $n \in \mathbb{N} \backslash\{1\}, S_{n}=\left\{p \in \beta \mathbb{N}\right.$: for all $A \in p$ there exists $\left\langle x_{t}\right\rangle_{t=1}^{n}$ such that $\left.F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq A\right\}$.
(c) $T=\left\{p \in \beta \mathbb{N}\right.$: for all $A \in p$ there exist $a \in \mathbb{N}$ and $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ such that $a+$ $\left.F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A\right\}$.
(d) $M=\left\{p \in \beta \mathbb{N}\right.$: for all $A \in p$ and all $n \in \mathbb{N}$ there exist $\left\langle x_{t}\right\rangle_{t=1}^{n}$ and $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ such that $\left.F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right)+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A\right\}$.
(e) $S_{I}=\bigcap\{S: S$ is a compact subsemigroup of $(\beta \mathbb{N},+)$ and $E \subseteq S\}$.
(f) $I=\bigcap\{S: S$ is a semigroup of $(\beta \mathbb{N},+)$ and $E \subseteq S\}$.
(g) $\Gamma=\left\{p \in \beta \mathbb{N}\right.$: for all $A \in p$ there exists $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ such that $\left.F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A\right\}$.
2.2 Lemma. Each of the objects defined in Definition 2.1 contains E and all except I are compact.

Proof. The idempotents are contained in Γ by Lemma 1.1(a). Clearly Γ is contained in each of M, T, and S_{n} (for $n \in \mathbb{N} \backslash\{1\}$). The idempotents are contained in I and S_{I} by definition and are contained in C by elementary algebra.

That S_{I} and C are compact follows from elementary topology. The others all have definitions which begin "for all $A \in p$ " (and refer no more to p). If a point p is not in the specified set it has a member A failing the definition. Then $c \ell A$ is a neighborhood of p missing the specified set. []

We will see in the next section that I is not closed when we show that the inclusion $I \subseteq c \ell I$ is proper.
2.3 Lemma. Each of the objects defined in Definition 2.1 except Γ is a semigroup.

Proof. That C, I, and S_{I} are semigroups follows by elementary algebra.
Let $n \in \mathbb{N} \backslash\{1\}$ and let $p, q \in S_{n}$. To see that $p+q \in S_{n}$, let $A \in p+q$. Then $\{x \in \mathbb{N}: A-x \in q\} \in p$ so pick $\left\langle x_{t}\right\rangle_{t=1}^{n}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq\{x \in \mathbb{N}: A-x \in q\}$. Now $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right)$ is finite so if $B=\bigcap\left\{A-a: a \in F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right)\right\}$ we have $B \in q$. Pick $\left\langle y_{t}\right\rangle_{t=1}^{n}$ such that $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{n}\right) \subseteq B$. We claim $F S\left(\left\langle x_{t}+y_{t}\right\rangle_{t=1}^{n}\right) \subseteq A$. To see this let $\emptyset \neq F \subseteq\{1,2, \ldots, n\}$. Then $\sum_{t \in F} y_{t} \in B \subseteq A-\sum_{t \in F} x_{t}$ so $\sum_{t \in F}\left(x_{t}+y_{t}\right) \in A$.

That T is a semigroup follows from the fact that it is a left ideal which we will present in Theorem 2.4. To see that M is a semigroup, let $p, q \in M$ and let $A \in$ $p+q$. Let $B=\{x \in \mathbb{N}: A-x \in q\}$. Then $B \in p$ so pick $\left\langle x_{t}\right\rangle_{t=1}^{n}$ and $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right)+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq B$. In particular $F S\left(\left\langle x_{t}+y_{t}\right\rangle_{t=1}^{n}\right) \subseteq B$. Let
$D=\cap\left\{A-a: a \in F S\left(\left\langle x_{t}+y_{t}\right\rangle_{t=1}^{n}\right)\right\}$. Then $D \in q$ so pick $\left\langle z_{t}\right\rangle_{t=1}^{n}$ and $\left\langle w_{t}\right\rangle_{t=1}^{\infty}$ such that $F S\left(\left\langle z_{t}\right\rangle_{t=1}^{n}\right)+F S\left(\left\langle w_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq D$. Then $F S\left(\left\langle z_{t}+x_{t}+y_{t}\right\rangle_{t=1}^{n}\right)+F S\left(\left\langle w_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$.]

We shall see in Theorem 2.11 that Γ is not a semigroup.
2.4 Theorem. T is the smallest closed left ideal of $(\beta \mathbb{N},+)$ which contains the idempotents and $T=c \ell \bigcup\{\beta \mathbb{N}+p: p \in E\}=c \ell \bigcup\{\mathbb{N}+p: p \in E\}$.

Proof. By Lemma 2.2 T is closed and contains the idempotents. To see that S is a left ideal let $p \in \beta \mathbb{N}$ and $q \in T$. Let $A \in p+q$. Then $\{x \in \mathbb{N}: A-x \in q\} \in p$ so pick x such that $A-x \in q$. Pick a and $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ such that $a+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A-x$. Then $x+a+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$.

As a closed left ideal containing the idempotents, $T \supseteq c \bigcup \bigcup\{\beta \mathbb{N}+p: p \in E\}$. To complete the proof, we show $T \subseteq c \ell \bigcup\{\beta \mathbb{N}+p: p \in E\}$. To this end let $q \in T$ and let $A \in q$. Pick a and $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ such that $a+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$. Pick by Lemma $1.1 p \in E$ with $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \in p$. Then $A \in a+p$ so $(c \ell A) \cap(\mathbb{N}+p) \neq \emptyset$. 】
2.5 Theorem. (a) $\Gamma \subseteq c \ell I$
(b) $c l I \subseteq S_{I}$
(c) $S_{I} \subseteq M$
(d) $M \subseteq T \cap \bigcap_{n=2}^{\infty} S_{n}$
(e) For each $n \in \mathbb{N} \backslash\{1\}, S_{n+1} \subseteq S_{n}$.
(f) $S_{2} \subseteq C$.

Proof. Statements (b), (d), and (e) are trivial and (c) follows immediately from the fact that M is a compact subsemigroup of $\beta \mathbb{N}$ containing the idempotents. By [11, Lemma 2.3], $\Gamma=c \ell E$ so (a) holds.

To verify (f), let $p \in S_{2}$ and let φ be a continuous homomorphism from ($\beta \mathbb{N},+$) to a topological group $(G,+)$ with identity 0 . Suppose that $\varphi(p)=a \neq 0$. Then $a \neq a+a$ so pick a neighborhood V of a such that $V \cap(V+V)=\emptyset$. Pick $A \in p$ such that $\varphi[c \ell A] \subseteq V$ and pick x_{1} and x_{2} with $\left\{x_{1}, x_{2}, x_{1}+x_{2}\right\} \subseteq A$. Then $\varphi\left(x_{1}+x_{2}\right) \in V \cap(V+V)$, a contradiction. []

The following simple result allows us to tell when a set A has closure intersecting various of our special semigroups. For example, it tells us that for $A \subseteq \mathbb{N}$ and $n \in \mathbb{N} \backslash\{1\}$, $c \ell A \cap S_{n} \neq \emptyset$ if and only if whenever F is a finite partition of A there exist $B \in F$ and $\left\langle x_{t}\right\rangle_{t=1}^{n}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq B$. (Let $\mathcal{G}=\left\{F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right):\left\langle x_{t}\right\rangle_{t=1}^{n}\right.$ is an n-term sequence in $\mathbb{N}\}$. Then $S_{n}=\{p \in \beta \mathbb{N}$: for each $A \in p$ there exists $G \in \mathcal{G}$ with $G \subseteq A\}$.)
2.6 Theorem. Let X be a discrete space, let $A \subseteq X$, and let $\mathcal{G} \subseteq \mathcal{P}(X)$. The following statements are equivalent.
(a) There exists $p \in c \ell A$ such that for every $B \in p$ there exists $G \in \mathcal{G}$ with $G \subseteq B$.
(b) Whenever \mathcal{F} is a finite partition of A there exist $B \in \mathcal{F}$ and $G \in \mathcal{G}$ with $G \subseteq B$.
(c) When \mathcal{F} is finite and $\bigcup \mathcal{F}=A$, there exist $B \in \mathcal{F}$ and $G \in \mathcal{G}$ with $G \subseteq B$.

Proof. That (a) implies (b) and (b) implies (c) is trivial.
To see that (c) implies (a), it suffices to show that $\{A\} \cup\{\mathbb{N} \backslash B: B \subseteq \mathbb{N}$ and for all $G \in \mathcal{G}, G \backslash B \neq \emptyset\}$ has the finite intersection property, since any ultrafilter p extending this family is as required by (a). But a failure of the finite intersection property would make $A=\bigcup \mathcal{F}$ where \mathcal{F} is finite and for each $B \in \mathcal{F}$, one has no $G \in \mathcal{G}$ with $G \subseteq B$, contradicting (c).】
2.7 Theorem. Let $A \subseteq \mathbb{N}$. Then $(c \not A) \cap \bigcap_{n=2}^{\infty} S_{n} \neq \emptyset$ if and only if for every $n \in \mathbb{N}$ there exists $\left\langle x_{t}\right\rangle_{t=1}^{n}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq A$.

Proof. The necessity is an immediate consequence of Theorem 2.6.
Sufficiency. We have by Lemma 2.2 and Theorem 2.5 that $\left\{(c \ell A) \cap S_{n}: n \in \mathbb{N} \backslash\{1\}\right\}$ is a nested collection of closed sets so it suffices to show that $(c \ell A) \cap S_{n} \neq \emptyset$ for each $n \in \mathbb{N} \backslash\{1\}$. To this end let $n \in \mathbb{N} \backslash\{1\}$ and let \mathcal{F} be a finite partition of A. Let $r=|\mathcal{F}|$ and pick m as guaranteed by Lemma 1.2 for n and r. Pick $\left\langle y_{t}\right\rangle_{t=1}^{m}$ with $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{m}\right) \subseteq A$. By Lemma 1.2 pick $B \in \mathcal{F}$ and $\left\langle x_{t}\right\rangle_{t=1}^{n}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq B$.]

The following notion, used to characterize members of C, is of independent interest.
2.8 Definition. Let $A \subseteq \mathbb{N}$. Then A is a rational approximation set if and only if whenever F is a finite nonempty subset of \mathbb{R} and $\epsilon>0$, there exists some $n \in A$ such that for each $x \in F$ there exists $m \in \mathbb{Z}$ with $|x-m / n|<\epsilon / n$.
2.9 Lemma. Let $p \in \beta \mathbb{N}$. The following statements are equivalent.
(a) $p \in C$;
(b) for each $A \in p, A$ is a rational approximation set;
(c) for each $A \in p$, each $x \in \mathbb{R}$, and each $\epsilon>0$ there exist $n \in A$ and $m \in \mathbb{Z}$ with $|x-m / n|<\epsilon / n$.

Proof. To see that (a) implies (b), let $A \in p$ and let finite nonempty $F \subseteq \mathbb{R}$ be given. Write $F=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. We view the circle group \mathbb{T} as \mathbb{R} / \mathbb{Z}, denoting by $[x]$ the equivalence class $x+\mathbb{Z}$. Define $h: \mathbb{N} \longrightarrow X_{i=1}^{k} \mathbb{T}$ by $h(n)=\left(\left[n x_{1}\right],\left[n x_{2}\right], \ldots,\left[n x_{k}\right]\right)$. Then h is a homomorphism so the continuous extension $h^{\beta}: \beta \mathbb{N} \longrightarrow X_{i=1}^{k} \mathbb{T}$ is a homomorphism, as was observed by Milnes [17]. Since $p \in C, h^{\beta}(p)=([0],[0], \ldots,[0])$ so pick
$B \in p$ such that $h^{\beta}[c l B] \subseteq\left\{\left(\left[y_{1}\right],\left[y_{2}\right], \ldots,\left[y_{k}\right]\right):\right.$ for each $\left.i \in\{1,2, \ldots, k\},-\epsilon<y_{i}<\epsilon\right\}$. Pick $n \in B \cap A$. Since $n \in B$, pick for each $i \in\{1,2, \ldots, k\}$ some y_{i} with $-\epsilon<y_{i}<\epsilon$ such that $\left[n x_{i}\right]=\left[y_{i}\right]$. Given $i \in\{1,2, \ldots, k\}$, pick $m_{i} \in \mathbb{Z}$ such that $n x_{i}=y_{i}+m_{i}$ then $-\epsilon<n x_{i}-m_{i}<\epsilon$ so $\left|x_{i}-m_{i} / n\right|<\epsilon / n$.

That (b) implies (c) is trivial.
To see that (c) implies (a), observe that it suffices to show that given any continuous homomorphism $\varphi: \beta \mathbb{N} \longrightarrow \mathbb{T}$ one has $\varphi(p)=[0]$. (See for example the introduction to [1].) So let such φ be given and pick $x \in \mathbb{R}$ with $[x]=\varphi(1)$. Suppose that $\varphi(p) \neq[0]$ and pick $\epsilon>0$ such that $\varphi(p) \notin\{[y]:-\epsilon \leq y \leq \epsilon\}$. Pick $A \in p$ such that $\varphi[c \ell A] \cap\{[y]$: $-\epsilon \leq y \leq \epsilon\}=\emptyset$. Pick $n \in A$ and $m \in \mathbb{Z}$ such that $|x-m / n|<\epsilon / n$ and let $y=n x-m$. Then $\varphi(n)=[y]$ and $-\epsilon<y<\epsilon$, a contradiction.]
2.10 Theorem. Let $A \subseteq \mathbb{N}$. Then $c \not A \cap C \neq \emptyset$ if and only if A is a rational approximation set.

Proof. Necessity. Pick $p \in c \not A \cap C$. By Lemma 2.9, A is a rational approximation set.

Sufficiency. Let $\mathcal{G}=\{B \subseteq \mathbb{N}: B$ is a rational approximation set. $\}$ It is an easy consequence of the definition of rational approximation sets that whenever \mathcal{F} is a finite partition of A, one has $\mathcal{F} \cap \mathcal{G} \neq \emptyset$. Thus by Theorem 2.6 there is some $p \in c \ell A$ such that for every $B \in p$ there is some $G \in \mathcal{G}$ with $G \subseteq B$ (and hence $B \in \mathcal{G}$). Then by Lemma $2.9 p \in C$.]
2.11 Theorem. Γ is not a semigroup. In fact $(E+E) \backslash \Gamma \neq \emptyset$.

Proof. Pick by Lemma 1.1(b) idempotents p and q such that $F S\left(\left\langle 2^{2 t}\right\rangle_{t=m}^{\infty}\right) \in p$ and $F S\left(\left\langle 2^{2 t+1}\right\rangle_{t=m}^{\infty}\right) \in q$ for each $m \in \mathbb{N}$. Let $A=\left\{\sum_{t \in F} 2^{2 t}+\sum_{t \in G} 2^{2 t+1}: F\right.$ and G are finite nonempty subsets of \mathbb{N} and $\max F<\min G\}$. We claim that $A \in p+q$. To see this it suffices to show that $F S\left(\left\langle 2^{2 t}\right\rangle_{t=1}^{\infty}\right) \subseteq\{x \in \mathbb{N}: A-x \in q\}$ so let F be a finite nonempty subset of \mathbb{N} and let $m=\max F+1$. Then $F S\left(\left\langle 2^{2 t+1}\right\rangle_{t=m}^{\infty}\right) \subseteq A-\sum_{t \in F} 2^{2 t}$ so $A-\sum_{t \in F} 2^{2 t} \in q$.

Now suppose $p+q \in \Gamma$. Then pick a sequence $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ with $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$. Pick F_{1} and G_{1} with $\max F_{1}<\min G_{1}$ such that $y_{1}=\sum_{t \in F_{1}} 2^{2 t}+\sum_{t \in G_{1}} 2^{2 t+1}$. Let $m=\max G_{1}+1$. Pick nonempty $H \subseteq \mathbb{N} \backslash\{1\}$ such that $2^{2 m}$ divides $\sum_{t \in H} y_{t}$. (Take any 2^{m} elements with all y_{t} in the same congruence class mod $2^{2 m}$.) Pick F_{2} and G_{2} with $\max F_{2}<\min G_{2}$ such that $\sum_{t \in H} y_{t}=\sum_{t \in F_{2}} 2^{2 t}+\sum_{t \in G_{2}} 2^{2 t+1}$. Since $2^{2 m}$ divides $\sum_{t \in H} y_{t}$ we have $\min F_{2} \geq m$. Thus $y_{1}+\sum_{t \in H} y_{t}=\sum_{t \in F_{1}} 2^{2 t}+\sum_{t \in G_{1}} 2^{2 t+1}+$
$\sum_{t \in F_{2}} 2^{2 t}+\sum_{t \in G_{2}} 2^{2 t+1}$ where $\max F_{1}<\min G_{1}<\max G_{1}<\min F_{2}<\max F_{2}<$ $\min G_{2}$ so by uniqueness of binary expansion, $y_{1}+\sum_{t \in H} y_{t} \notin A$, a contradiction.]

Our proof that $c \ell I$ is not a semigroup is in some respects similar to the proof that Γ is not a semigroup. However, instead of the binary expansion of integers we use the factorial expansion, $x=\sum_{t \in F} a_{t} \cdot t$! where each $a_{t} \in\{1,2, \ldots, t\}$. In the proof we also utilize in an incidental fashion the semigroup ($\beta \mathbb{N}, \cdot)$.
2.12 Theorem. $c \ell I$ is not a semigroup. In fact $(E+\Gamma) \backslash c \nmid I \neq \emptyset$.

Proof. Since $\Gamma \subseteq c \ell I$, the second statement implies the first. Let $A=\left\{\sum_{n \in F} n!+\right.$ $\sum_{n \in G} k \cdot n!: F$ and G are finite nonempty subsets of \mathbb{N} and $\max F<\min G$ and $k \in \mathbb{N}$ and $k \leq \min G\}$. Define $g: \mathbb{N} \longrightarrow \mathbb{N}$ by $g(x)=a_{\ell}$ where $x=\sum_{t \in F} a_{t} \cdot t$!, each $a_{t} \in\{1,2, \ldots, t\}$, and $\ell=\max F$. That is $g(x)$ is the leftmost nonzero digit in the factorial expansion of x. Denote also by g its continuous extension from $\beta \mathbb{N}$ to $\beta \mathbb{N}$.

We claim that:

$$
\begin{equation*}
\text { If } q \in \bigcap_{n=1}^{\infty} c \ell(\mathbb{N} n) \text {, then } g(p+q)=g(q) \text { for all } p \in \beta \mathbb{N} . \tag{1}
\end{equation*}
$$

To see this, suppose instead there is some $B \subseteq \mathbb{N}$ with $g(p+q) \in c \ell B$ and $g(q) \in$ $c \ell(\mathbb{N} \backslash B)$. Pick $C \in p+q$ and $D \in q$ with $g[c \ell C] \subseteq c \ell B$ and $g[c \ell D] \subseteq c \ell(\mathbb{N} \backslash B)$. Since $C \in p+q$ pick $x \in \mathbb{N}$ with $C-x \in q$. Pick $y \in(C-x) \cap D \cap \mathbb{N} x$!. Then $y+x \in C$ so $g(y+x) \in B$. But $g(y+x)=g(y) \in \mathbb{N} \backslash B$, a contradiction.

Next we claim:

$$
\begin{equation*}
\text { If } q \in E \text { and } c \not A \cap(\beta \mathbb{N}+q) \neq \emptyset \text {, then } g(q) \in \mathbb{N} \text {. } \tag{2}
\end{equation*}
$$

To see this suppose that $g(q) \notin \mathbb{N}$, so that for each $k, D_{k}=\{m \in \mathbb{N}: g(m)>k\} \in q$. Pick $p \in \beta \mathbb{N}$ with $p+q \in c \ell A$. Let $B=\{m+n: m, n \in \mathbb{N}$ and $g(n)>g(m)>1$ and $n \in \mathbb{N} m!\}$. We show that $B \in p+q$ which will be a contradiction since $B \cap A=\emptyset$. We claim in fact that for all $x \in \mathbb{N}, B-x \in q$. For this, since $q=q+q$, it suffices to show that $(\mathbb{N} x!) \cap D_{1} \subseteq\{m \in \mathbb{N}:(B-x)-m \in q\}$ so let $m \in(\mathbb{N} x!) \cap D_{1}$. Then $D_{g(m)} \cap \mathbb{N} m!\subseteq(B-x)-m$ (since $\left.g(m+x)=g(m)\right)$ so $(B-x)-m \in q$.

Next we claim:

$$
\begin{equation*}
\text { If } p \in c \ell\left(F S\left(\langle n!\rangle_{n=1}^{\infty}\right)\right) \cap \bigcap_{n=1}^{\infty} c \ell(\mathbb{N} n) \text { and } r \in \beta \mathbb{N} \text {, then } g(r \cdot p)=r \tag{3}
\end{equation*}
$$

To see this it suffices to show that for all $n \in \mathbb{N}, g(n \cdot p)=n$, so let $n \in \mathbb{N}$ be given. Let $B=\left\{\sum_{t \in F} t!: F\right.$ is a finite nonempty subset of \mathbb{N} and $\left.\min F \geq n\right\}$. Then $B \in p$ so $n \cdot B \in n \cdot p$ and $g[n \cdot B]=\{n\}$. Now by Lemma 1.1 pick $p \in E \cap c \ell F S\left(\langle n!\rangle_{n=1}^{\infty}\right)$ and let $r \in \beta \mathbb{N} \backslash \mathbb{N}$. Now for each $x \in \mathbb{N}, x \cdot p \in E$ so $r \cdot p \in \Gamma$. Let $s=p+r \cdot p$. We show that
$s \notin c \ell I$. Suppose instead that $s \in c \nmid$. Observe that $A \in s$. Indeed $F S\left(\langle n!\rangle_{n=1}^{\infty}\right) \subseteq\{x \in$ $\mathbb{N}: A-x \in r \cdot p\}$. (Given $\sum_{n \in F} n!$ one sees that $\mathbb{N} \backslash\{1\} \subseteq\left\{k:\left(A-\sum_{n \in F} n!\right) / k \in p\right\}$ by noting that $\left\{\sum_{n \in G} n!: \min G>\max F\right.$ and $\left.\min G \geq k\right\} \subseteq\left(A-\sum_{n \in F} n!\right) / k$.)

We claim that $s \in c \ell \bigcup_{k=1}^{\infty}\left(I \cap g^{-1}[\{k\}]\right)$. To see this, let $B \in s$. Since $s \in c \ell I$, we have $c \ell(A \cap B) \cap I \neq \emptyset$ so we may pick $\ell \in \mathbb{N}$ and $q_{1}, q_{2}, \ldots, q_{\ell} \in E$ with $q_{1}+q_{2}+\ldots+q_{\ell} \in$ $c \ell(A \cap B)$. We may presume $\ell \geq 2$. Now by (2) we have $g\left(q_{\ell}\right) \in \mathbb{N}$. Let $k=g\left(q_{\ell}\right)$. By (1), $g\left(q_{1}+q_{2}+\ldots+q_{\ell}\right)=k$ so $c \ell B \cap\left(I \cap g^{-1}[\{k\}]\right) \neq \emptyset$.

Now also $s \in c \ell(\mathbb{N}+r \cdot p)$ so $c \ell(\mathbb{N}+r \cdot p) \cap c \ell \bigcup_{k=1}^{\infty} c \ell\left(I \cap g^{-1}[\{k\}]\right) \neq \emptyset$ so by Lemma 1.3 either one has some $n \in \mathbb{N}$ with $\left.n+r \cdot p \in c \ell \bigcup_{k=1}^{\infty} c \ell\left(I \cap g^{-1}[\{k\}]\right) \subseteq \bigcap_{m=1}^{\infty} c \ell(\mathbb{N} m)\right)$ or one has some $q \in \beta \mathbb{N}$ and some $k \in \mathbb{N}$ with $q+r \cdot p \in c \ell\left(I \cap g^{-1}[\{k\}]\right) \subseteq g^{-1}[\{k\}]$. The first possibility would imply that $n \in \bigcap_{m=1}^{\infty} c \ell(\mathbb{N} m)$. The second would imply that $g(q+r \cdot p)=k$ while by (1) and (3) $g(q+r \cdot p)=g(r \cdot p)=r \notin \mathbb{N}$.]
3. The inclusions are proper. We show in this section that the objects mentioned in Theorem 2.5 are all distinct (except that we have been unable to determine whether $M=T \cap \bigcap_{n=2}^{\infty} S_{n}$). We proceed from the left in the inclusion diagram from the introduction.
3.1 Theorem. $I \backslash \Gamma \neq \emptyset$ and $\Gamma \backslash I \neq \emptyset$.

Proof. That $I \backslash \Gamma \neq \emptyset$ follows from Theorem 2.11. That $\Gamma \backslash I \neq \emptyset$ follows from Theorem 2.12 since $E+I \subseteq I$.]

In the following theorem (and the rest of this section) the inclusions hold by Theorem 2.5 (or are completely trivial). We concentrate on establishing the inequalities.
3.2 Theorem. $\Gamma \nsubseteq c \ell I, I \nsubseteq c \ell I$, and $c \ell I \varsubsetneqq S_{I}$.

Proof. That $\Gamma \neq c \ell I$ follows from the fact from Theorem 3.1 that $I \backslash \Gamma \neq \emptyset$. The remaining two conclusions follow from the fact (Theorem 2.12) that $c \ell I$ is not a semigroup. []

We produce in the following lemma another closed subsemigroup of $\beta \mathbb{N}$ containing the idempotents. It was not included in those discussed in Section 2 because its definition is less natural than those defined there. When we write $\sum_{t \in F} a_{t} \cdot t$!, we shall assume F is finite and nonempty and each $a_{t} \in\{1,2, \ldots, t\}$.
3.3 Lemma. Let $B=\left\{\sum_{t \in F} a_{t} \cdot t\right.$! : (1) F is a finite nonempty subset of \mathbb{N}; (2) for each $t \in F, a_{t} \in\{1,2, \ldots, t\}$; (3) there exists $t \in F$ such that $a_{t}>1$; and (4) whenever $n, t \in F$ with $t<n$ either $a_{t}=a_{n}=1$ or $\left.a_{t}>a_{n}\right\}$. Then $\left(\bigcap_{n=1}^{\infty} c \ell \mathbb{N} n\right) \backslash c \ell B$ is a closed subsemigroup of $(\beta \mathbb{N},+)$ containing the idempotents.

Proof. To see that it is a semigroup, let $p, q \in\left(\bigcap_{n=1}^{\infty} c \nmid \mathbb{N} n\right) \backslash c \ell B$. Then $p+q \in$ $\bigcap_{n=1}^{\infty} c \backslash \mathbb{N} n$ so we only need to show that $\mathbb{N} \backslash B \in p+q$. To this end and we let $x \in \mathbb{N} \backslash B$ and show that $(\mathbb{N} \backslash B)-x \in q$. Write $x=\sum_{t \in F} a_{t} \cdot t$! and let $m=\max F+1$. We show that $\mathbb{N} m!\subseteq(\mathbb{N} \backslash B)-x$, so let $y \in \mathbb{N} m!$ and write $y=\sum_{t \in G} b_{t} \cdot t!$ and note that $\min G \geq m$.

Now $x \notin B$. Assume first that for all $t \in F, a_{t}=1$. If for all $t \in G, b_{t}=1$, we have $y+x \notin B$ so assume for some $n \in G, b_{n}>1$. Pick any $t \in F$. Then $t<n$ and $a_{t}=1<b_{n}$ so again $y+x \notin B$. Now assume we have $t<n$ in F with $a_{t} \leq a_{n}$ and it is not the case that $a_{t}=a_{n}=1$. Then directly we have $y+x$ fails to satisfy (4) of the definition so $y+x \notin B$.

Now let $p \in E$. Then $p \in \bigcap_{n=1}^{\infty} c \ell \mathbb{N} n$ so we show that $\mathbb{N} \backslash B \in p$. Suppose instead that $B \in p$ and let $D=\left\{\sum_{t \in F} t!: F\right.$ is a finite nonempty subset of $\left.\mathbb{N}\right\}$. Then $D \subseteq \mathbb{N} \backslash B$ so if $D \in p$ we are done. Assume $D \notin p$.

Assume that for some $k \geq 2,\left\{\sum_{t \in F} a_{t} \cdot t!: \min F \geq k\right.$ and $\left\{a_{t}: t \in F\right\} \subseteq$ $\{1,2, \ldots, k\}\} \in p$. Since $p=p+p+\ldots+p$ (k times) and $p \in \bigcap_{n=1}^{\infty} c \notin \mathbb{N} n$ we have that $\left\{\sum_{t \in F} a_{t} \cdot t!:|F| \geq k\right\} \in p$. Let $E=B \cap\left\{\sum_{t \in F} a_{t} \cdot t!: \min F \geq k\right.$ and $|F| \geq k$ and $\left.\left\{a_{t}: t \in F\right\} \subseteq\{1,2, \ldots, k\}\right\}$. Then $E \in p$ so pick $x \in E$ such that $E-x \in p$. Write $x=\sum_{t \in F} a_{t} \cdot t!$ and let $m=\max F+1$. Pick $y \in \mathbb{N} m!\cap(E-x)$, and write $y=\sum_{t \in G} b_{t} \cdot t$!. Since $x \in B$ and $|F| \geq k$ and each $a_{t} \leq k$, there is some $t \in F$ with $a_{t}=1$. Since $y \in E, y \in B$ so $y \notin D$ so there is some $n \in G$ with $b_{n}>1$. But then $t<n$ and $a_{t}<b_{n}$ so $y+x \notin B$ so $y+x \notin E$ a contradiction.

Thus it must be the case that for all $k \in \mathbb{N}, E_{k}=\left\{\sum_{t \in F} a_{t} \cdot t!:\left\{a_{t}: t \in\right.\right.$ $F\} \backslash\{1,2, \ldots, k\} \neq \emptyset\} \in p$. Since $B \in p$, pick x such that $B-x \in p$ and write $x=$ $\sum_{t \in F} a_{t} \cdot t!$. Let $k=\max \left\{a_{t}: t \in F\right\}$ and let $m=\max F+1$. Pick $y \in \mathbb{N} m!\cap E_{k} \cap(B-x)$ and write $y=\sum_{t \in G} b_{t} \cdot t$!. Pick $n \in G$ such that $b_{n}>k$ and pick any $t \in F$. Then $t<n$ and $b_{n}>a_{t}$ so $y+x \notin B$, a contradiction.]
3.4 Theorem. $S_{I} \nRightarrow M$.

Proof. Let B be as in Lemma 3.3 and let $H=\left\{\sum_{t \in F} a_{t} \cdot t!:\right.$ whenever $n, t \in F$ with $t<n$ one has $\left.a_{t}>a_{n}\right\}$. Observe that given any $n \in \mathbb{N}$ there exists $\left\langle x_{t}\right\rangle_{t=1}^{n}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq H$. (For example let $x_{t}=(n+1-t) \cdot(n+t)!$.) Thus by Theorem 2.7 we may pick $p \in c \ell H \cap \bigcap_{n=2}^{\infty} S_{n}$. By Lemma 1.1 pick $q=q+q \in \bigcap_{m=1}^{\infty} c \ell\left(F S\left(\langle t!\rangle_{t=m}^{\infty}\right)\right)$. We claim that $p+q \in M \cap c \ell B$ (so that by Lemma 3.3, $p+q \in M \backslash S_{I}$).

To see that $p+q \in M$, let $A \in p+q$ and let $n \in \mathbb{N}$ be given. Since $\{x \in \mathbb{N}: A-x \in$ $q\} \in p$ and $p \in S_{n}$, pick $\left\langle x_{t}\right\rangle_{t=1}^{n}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq\{x \in \mathbb{N}: A-x \in q\}$. Let $D=$ $\bigcap\left\{A-z: z \in F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right)\right\}$. Since $D \in q=q+q$ pick $\left\langle y_{t}\right\rangle_{t=1}^{\infty}$ with $F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq D$.

Then $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right)+F S\left(\left\langle y_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$.
To see that $B \in p+q$ we show that $H \subseteq\{x \in \mathbb{N}: B-x \in q\}$. So let $x \in H$ and write $x=\sum_{t \in F} a_{t} \cdot t$!. Let $m=\max F+1$. Then $F S\left(\langle t!\rangle_{t=m}^{\infty}\right) \subseteq B-x$ so $B-x \in q$.]

As we have remarked, we do not know whether $M=T \cap \bigcap_{n=2}^{\infty} S_{n}$. It is trivial that $T \backslash \bigcap_{n=2}^{\infty} S_{n} \neq \emptyset$, indeed that $T \backslash S_{2} \neq \emptyset$. In fact by Theorem $2.5 S_{2} \subseteq C$ and trivially $C \subseteq \bigcap_{n=1}^{\infty} c \ell(\mathbb{N} n)$ while, given any idempotent p we have by Theorem 2.4 that $1+p \in c \ell(\mathbb{N} 2+1) \cap T$. This suggests replacing T by $T \cap \bigcap_{n=1}^{\infty} c \ell(\mathbb{N} n)$.
3.5 Theorem. $\bigcap_{n=2}^{\infty} S_{n} \backslash T \neq \emptyset,\left(T \cap \bigcap_{n=1}^{\infty} c \ell(\mathbb{N} n)\right) \backslash S_{2} \neq \emptyset$, and $T \cap \bigcap_{n=2}^{\infty} S_{n} \subsetneq$ $\bigcap_{n=2}^{\infty} S_{n}$.

Proof. For the first statement, let $A=\bigcup_{n=1}^{\infty} F S\left(\left\langle 2^{2^{n}+i}\right\rangle_{i=1}^{n}\right)$. By Theorem 2.7, $(c \ell A) \cap \bigcap_{n=2}^{\infty} S_{n} \neq \emptyset$. It is easy to see however that one cannot get any $t \in \mathbb{N}$ and any sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ with $t+F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq A$ (since all elements of A have binary expansions with support restricted to a small segment of $\mathbb{N})$. Thus $(c \nmid A) \cap T=\emptyset$.

Now let $B=\bigcup_{k=4}^{\infty}\left(2 \cdot(k!)+F S\left(\langle n!\rangle_{n=k+1}^{\infty}\right)\right)$, so that B consists of all numbers whose rightmost nonzero factorial digit is a 2 , occurring at position 4 or above and all other nonzero digits are 1 . Then there do not exist $x, y \in B$ with $x+y \in B$. (Given $x, y \in B$ either the rightmost digit of $x+y$ is 4 or there are two digits in the expansion of $x+y$ which are greater than 1.) Thus $(c \ell B) \cap S_{2}=\emptyset$.

Now pick by Lemma $1.1 p=p+p$ with $p \in \bigcap_{m=1}^{\infty} c \ell\left(F S\left(\langle n!\rangle_{n=m}^{\infty}\right)\right)$ and pick $q \in \beta \mathbb{N} \backslash \mathbb{N}$ with $\{2 \cdot(k!): k \in \mathbb{N}\} \in q$. Then $p, q \in \bigcap_{n=1}^{\infty} c \ell(\mathbb{N} n)$ so $q+p \in \bigcap_{n=1}^{\infty} c \ell(\mathbb{N} n)$. By Theorem 2.4, $q+p \in T$. Since $\{2 \cdot(k!): k \in \mathbb{N}$ and $k \geq 4\} \subseteq\{x \in \mathbb{N}: B-x \in p\}$, one has $q+p \in c \ell B$.

The last conclusion of the theorem follows from the first.]
The following result is a special case of Theorem 3.9, but its proof is much simpler so we present it separately.
3.6 Theorem. $S_{3} \varsubsetneqq S_{2}$.

Proof. Let $A=\left\{2^{2 m}-2^{2 n}: m, n \in \mathbb{N}\right.$ and $\left.m>n\right\}$. It is easy to see that one cannot get any $x_{1}, x_{2}, x_{3} \in A$ with $\left\{x_{1}+x_{2}, x_{1}+x_{3}, x_{2}+x_{3}\right\} \subseteq A$. Thus $(c \nmid A) \cap S_{3}=\emptyset$. To see that $(c \ell A) \cap S_{2} \neq \emptyset$ we use Theorem 2.6. So let \mathcal{F} be a finite partition of A. For each $F \in \mathcal{F}$, let $B(F)=\left\{\{n, m\}: n, m \in \mathbb{N}\right.$ and $m>n$ and $\left.2^{2 m}-2^{2 n} \in F\right\}$. By Ramsey's Theorem [8, p. 7] pick $F \in \mathcal{F}$ and $n<m<r$ in \mathbb{N} with $\{\{n, m\},\{n, r\},\{m, r\}\} \subseteq B(F)$. Let $x_{1}=2^{2 m}-2^{2 n}$ and $x_{2}=2^{2 r}-2^{2 m}$. Then $x_{1}+x_{2}=2^{2 r}-2^{2 n}$ so $\left\{x_{1}, x_{2}, x_{1}+x_{2}\right\} \subseteq F$. !

For our proof of Theorem 3.9 we need the following result. Given a sequence $\left\langle F_{t}\right\rangle_{t=1}^{n}$ of sets we write $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{n}\right)=\left\{\bigcup_{t \in G} F_{t}: G\right.$ is a (finite) nonempty subset of $\{1,2, \ldots, n\}\}$.
3.7 Theorem. (Nešetřil and Rödl). Let $r, n \in \mathbb{N}$. There is a finite set \mathcal{S} of finite nonempty sets such that:
(a) Whenever $\mathcal{S}=\bigcup_{i=1}^{r} \mathcal{B}_{i}$, there exist $i \in\{1,2, \ldots, r\}$ and pairwise disjoint $F_{1}, F_{2}, \ldots, F_{n}$ in \mathcal{S} with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{n}\right) \subseteq \mathcal{B}_{i}$ and
(b) there do not exist pairwise disjoint $F_{1}, F_{2}, \ldots, F_{n+1}$ in \mathcal{S} with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{n+1}\right) \subseteq \mathcal{S}$.

Proof. [18, Theorem 1.1]. (Or see [7].) (The fact that \mathcal{S} and the members of \mathcal{S} are finite is not stated, but follows from the proof.)]

The following corollary is not stated in [7] or [18], and we feel it is interesting in its own right.
3.8 Corollary. Let $n \in \mathbb{N} \backslash\{1\}$. There is a set $A \subseteq \mathbb{N}$ such that
(a) Whenever \mathcal{F} is a finite partition of A there exist $B \in \mathcal{F}$ and $\left\langle x_{t}\right\rangle_{t=1}^{n}$ in \mathbb{N} with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq B$ and
(b) there does not exist $\left\langle x_{t}\right\rangle_{t=1}^{n+1}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n+1}\right) \subseteq A$.

Proof. Pick by Theorem 3.7 a sequence $\left\langle\mathcal{S}_{r}\right\rangle_{r=1}^{\infty}$ such that
(i) for each $r \in \mathbb{N}, \mathcal{S}_{r}$ is a finite set of finite nonempty subsets of \mathbb{N} and $\max \left(\bigcup \mathcal{S}_{r}\right)<$ $\min \left(\bigcup \mathcal{S}_{r+1}\right)$;
(ii) for each $r \in \mathbb{N}$, whenever $\mathcal{S}_{r}=\bigcup_{i=1}^{r} \mathcal{B}_{i}$, there exist $i \in\{1,2, \ldots, r\}$ and pairwise disjoint $F_{1}, F_{2}, \ldots, F_{n}$ in \mathcal{S}_{r} with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{n}\right) \subseteq \mathcal{B}_{i}$ and
(iii) for each $r \in \mathbb{N}$, there do not exist pairwise disjoint $F_{1}, F_{2}, \ldots, F_{n+1}$ with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{n+1}\right) \subseteq \mathcal{S}_{r}$.

Let $\mathcal{S}=\bigcup_{r=1}^{\infty} \mathcal{S}_{r}$. Then
(iv) whenever \mathcal{F} is a finite partition of \mathcal{S}, there exist $\mathcal{B} \in \mathcal{F}$ and pairwise disjoint $F_{1}, F_{2}, \ldots, F_{n}$ in \mathcal{S} with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{n}\right) \subseteq \mathcal{B}$, and
(v) there do not exist pairwise disjoint $F_{1}, F_{2}, \ldots, F_{n+1}$ in \mathcal{S} with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{n+1}\right) \subseteq \mathcal{S}$.

Indeed, (iv) is immediate since if $r=|F|$ one has $\mathcal{S}_{r} \subseteq \mathcal{S}$. To verify (v), suppose we have pairwise disjoint $F_{1}, F_{2}, \ldots, F_{n+1}$ in \mathcal{S} with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{n+1}\right) \subseteq \mathcal{S}$. Observe that, given any $r \in \mathbb{N}$ and any $G \in \mathcal{S}, G \in \mathcal{S}_{r}$ if and only if $\min \left(\bigcup \mathcal{S}_{r}\right) \leq \min G$ and $\max G \leq \max \left(\bigcup \mathcal{S}_{r}\right)$. Pick $r \in \mathbb{N}$ with $F_{1} \in \mathcal{S}_{r}$. If any $F_{t} \notin \mathcal{S}_{r}$ we have by the above observation that $F_{1} \cup F_{t} \notin \mathcal{S}$. Thus each $F_{t} \in \mathcal{S}_{r}$ so, again using the observation, $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{n+1}\right) \subseteq \mathcal{S}_{r}$, contradicting (iii).

Now let $A=\left\{\sum_{t \in F} 3^{t}: F \in \mathcal{S}\right\}$. Given a finite partition \mathcal{F} of A and $B \in \mathcal{F}$, let $\mathcal{G}(B)=\left\{F \in \mathcal{S}: \sum_{t \in F} 3^{t} \in B\right\}$. Then $\{\mathcal{G}(B): B \in \mathcal{F}\}$ is a finite partition of \mathcal{S} so by (iv), pick $B \in \mathcal{F}$ and pairwise disjoint $F_{1}, F_{2}, \ldots, F_{n}$ in \mathcal{S} with $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{n}\right) \subseteq \mathcal{G}(B)$. For $t \in\{1,2, \ldots, n\}$, let $x_{t}=\sum_{i \in F_{t}} 3^{i}$. Then $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq B$, so (a) holds.

To verify (b), suppose we have $x_{1}, x_{2}, \ldots, x_{n+1}$ in \mathbb{N} with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n+1}\right) \subseteq A$. For each $t \in\{1,2, \ldots, n+1\}$, pick F_{t} such that $x_{t}=\sum_{i \in F_{t}} 3^{i}$. We claim that the sets $F_{1}, F_{2}, \ldots, F_{n+1}$ are pairwise disjoint (so that $F U\left(\left\langle F_{t}\right\rangle_{t=1}^{n+1}\right) \subseteq \mathcal{S}$, contradicting (v)). Suppose instead we have $t \neq s$ with $F_{t} \cap F_{s} \neq \emptyset$. Then $x_{t}+x_{s}=\sum_{i \in F_{t} \Delta F_{s}} 3^{i}+$ $\sum_{i \in F_{t} \cap F_{s}} 2 \cdot 3^{i}$. But $x_{t}+x_{s} \in A$ so for some $G, x_{t}+x_{s}=\sum_{i \in G} 3^{i}$, contradicting the uniqueness of ternary expansions.]
3.9 Theorem. Let $n \in \mathbb{N} \backslash\{1\}$. Then $S_{n+1} \nsubseteq S_{n}$.

Proof. Pick A as guaranteed by Corollary 3.8. By (b), $(c \ell A) \cap S_{n+1}=\emptyset$ while by (a) and Theorem 2.7, $(c \nmid A) \cap S_{n} \neq \emptyset$. 】

Now we need to show that $C \neq S_{2}$. We will utilize $\beta \mathbb{Z}$. We brush aside the distinction between ultrafilters on \mathbb{Z} with \mathbb{N} as a member and ultrafilters on \mathbb{N}, and thus pretend that $\beta \mathbb{N} \subseteq \beta \mathbb{Z}$. Given $p \in \beta \mathbb{N}$ we let $-p=\{-A: A \in p\}$ and note that $-p \in \beta \mathbb{Z}$. (But be cautioned that unless $p \in \mathbb{N},-p+p \neq 0$; in fact $\beta \mathbb{N} \backslash \mathbb{N}$ is a left ideal of $\beta \mathbb{Z}$ so if $p \in \beta \mathbb{N} \backslash \mathbb{N}$ then also $-p+p \in \beta \mathbb{N} \backslash \mathbb{N}$.)
3.10 Lemma. Let φ be a homomorphism from $\beta \mathbb{Z}$ to the circle group \mathbb{T} and let $p \in \beta \mathbb{N}$. Then $\varphi(-p)=-\varphi(p)$.

Proof. Note that the function $f: \beta \mathbb{N} \longrightarrow \beta \mathbb{Z}$ defined by $f(p)=-p$ is continuous. For all $n \in \mathbb{N}, \varphi(-n)=-\varphi(n)$ (since $\left.\varphi\right|_{\mathbb{Z}}$ is a group homomorphism). Thus $\varphi \circ f$ and $-\varphi$ are continuous functions agreeing on \mathbb{N}, hence on $\beta \mathbb{N}$.
3.11 Lemma. Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be any increasing sequence in \mathbb{N} and let A and B be infinite subsets of \mathbb{N}. Let $D=\left\{x_{n}+x_{m}-x_{r}-x_{s}: n>m+3>m>r+3>r>s+3\right.$ and $n, s \in A$ and $m, r \in B\}$ and let $p, q \in \beta \mathbb{N} \backslash \mathbb{N}$ with $\left\{x_{n}: n \in A\right\} \in p$ and $\left\{x_{n}: n \in B\right\} \in q$. Then $D \in-p+-q+q+p$ and $-p+-q+q+p \in C$. In particular D is a rational approximation set.

Proof. To see that $-p+-q+q+p \in C$ it suffices (as is well known and explained in the introduction to [1]) to let φ be a homomorphism from $\beta \mathbb{N}$ to \mathbb{T} and show that $\varphi(-p+-q+q+p)=[0]$. To this end let such φ be given. Define $\tau: \mathbb{Z} \longrightarrow \mathbb{T}$ by $\tau(0)=[0]$, and $\tau(n)=\varphi(n)$ and $\tau(-n)=-\varphi(n)$ for $n \in \mathbb{N}$. Then the continuous extension τ^{β} of τ to $\beta \mathbb{Z}$ is a homomorphism and τ^{β} agrees with φ on $\beta \mathbb{N}$. Thus, using Lemma 3.10,
we have $\varphi(-p+-q+q+p)=\tau(-p+-q+q+p)=\tau(-p)+\tau(-q)+\tau(q)+\tau(p)=$ $-\tau(p)-\tau(q)+\tau(q)+\tau(p)=[0]$.

It is completely routine to verify that $D \in-p+-q+q+p$. The "in particular" conclusion follows from Lemma 2.9.]
3.12 Lemma. Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be a sequence in \mathbb{N} such that for each $n \in \mathbb{N}$, $x_{n+1} \geq 2 x_{n}$. Let A and B be disjoint infinite subsets of \mathbb{N} such that for some $i, j \in\{0,1,2\} A \subseteq \mathbb{N} 3+i$ and $B \subseteq \mathbb{N} 3+j$. Let $D=\left\{x_{n}+x_{m}-x_{r}-x_{s}: n>m+3>m>r+3>r>s+3\right.$ and $n, s \in A$ and $m, r \in B\}$. There do not exist $a, b \in D$ with $a+b \in D$.

Proof. Suppose we have $a, b \in D$ with $a+b \in D$ and pick $n_{1}>m_{1}+3>$ $m_{1}>r_{1}+3>r_{1}>s_{1}+3, n_{2}>m_{2}+3>m_{2}>r_{2}+3>r_{2}>s_{2}+3$, and $n_{3}>m_{3}+3>m_{3}>r_{3}+3>r_{3}>s_{3}+3$ such that $a=x_{n_{1}}+x_{m_{1}}-x_{r_{1}}-x_{s_{1}}$, $b=x_{n_{2}}+x_{m_{2}}-x_{r_{2}}-x_{s_{2}}$, and $a+b=x_{n_{3}}+x_{m_{3}}-x_{r_{3}}-x_{s_{3}}$ and $\left\{n_{1}, n_{2}, n_{3}, s_{1}, s_{2}, s_{3}\right\} \subseteq A$ and $\left\{m_{1}, m_{2}, m_{3}, r_{1}, r_{2}, r_{3}\right\} \subseteq B$. Then we have

$$
\begin{equation*}
x_{n_{1}}+x_{m_{1}}+x_{n_{2}}+x_{m_{2}}+x_{r_{3}}+x_{s_{3}}=x_{n_{3}}+x_{m_{3}}+x_{r_{1}}+x_{s_{1}}+x_{r_{2}}+x_{s_{2}} . \tag{*}
\end{equation*}
$$

We may assume without loss of generality that $n_{1} \geq n_{2}$. We claim first that $n_{1}=n_{3}$. Suppose $n_{1}<n_{3}$. Then since $n_{1}, n_{3} \in \mathbb{N} 3+i$, the left hand side of $\left({ }^{*}\right)$ is at most $x_{n_{3}-3}+x_{n_{3}-6}+x_{n_{3}-3}+x_{n_{3}-6}+x_{n_{3}-6}+x_{n_{3}-9} \leq x_{n_{3}-2}+x_{n_{3}-5}+x_{n_{3}-6}+x_{n_{3}-9}<x_{n_{3}}$, a contradiction. (Observe that for each $n, x_{n+1}>\sum_{t=1}^{n} x_{t}$.) Similarly if we had $n_{3}<n_{1}$ we would have that the right hand side of $\left(^{*}\right)$ is at most $x_{n_{1}-3}+x_{n_{1}-6}+x_{n_{1}-6}+x_{n_{1}-9}+$ $x_{n_{1}-6}+x_{n_{1}-9} \leq x_{n_{1}-3}+x_{n_{1}-5}+x_{n_{1}-8}+x_{n_{1}-6}<x_{n_{1}}$. Thus $n_{1}=n_{3}$ so we have

$$
\begin{equation*}
x_{m_{1}}+x_{n_{2}}+x_{m_{2}}+x_{r_{3}}+x_{s_{3}}=x_{m_{3}}+x_{r_{1}}+x_{s_{1}}+x_{r_{2}}+x_{s_{2}} . \tag{**}
\end{equation*}
$$

Now $n_{2} \in A$ and $m_{1} \in B$ so $n_{2} \neq m_{1}$. We claim that $n_{2}<m_{1}$ so suppose instead that $n_{2}>m_{1}$. If $m_{3}<n_{2}$ we have (since $n_{2}>m_{1}>r_{1}+3$) that the right hand side of $\left({ }^{* *}\right)$ is at most $x_{n_{2}-1}+x_{n_{2}-4}+x_{n_{2}-7}+x_{n_{2}-6}+x_{n_{2}-9}<x_{n_{2}}$, a contradiction. If $m_{3}>n_{2}\left(>m_{1}\right)$ we have that the left hand side of $(* *)$ is at most $x_{m_{3}-3}+x_{m_{3}-1}+x_{m_{3}-4}+x_{m_{3}-3}+x_{m_{3}-6} \leq x_{m_{3}-1}+x_{m_{3}-2}+x_{m_{3}-4}+x_{m_{3}-6}<x_{m_{3}}$, a contradiction. Thus $n_{2}<m_{1}$ as claimed.

Now we claim $m_{3}=m_{1}$. Suppose first that $m_{3}<m_{1}$. Then the right hand side of $\left({ }^{* *}\right)$ is at most $x_{m_{1}-3}+x_{m_{1}-3}+x_{m_{1}-6}+x_{m_{1}-7}+x_{m_{1}-10}<x_{m_{1}}$, a contradiction. Similarly if $m_{1}<m_{3}$ one has the left hand side of $\left({ }^{* *}\right)$ is at most $x_{m_{3}-3}+x_{m_{3}-4}+$ $x_{m_{3}-7}+x_{m_{3}-3}+x_{m_{3}-6}<x_{m_{3}}$, a contradiction. Thus $m_{3}=m_{1}$ so we have

$$
\begin{equation*}
x_{n_{2}}+x_{m_{2}}+x_{r_{3}}+x_{s_{3}}=x_{r_{1}}+x_{s_{1}}+x_{r_{2}}+x_{s_{2}} . \tag{***}
\end{equation*}
$$

Now we claim that $n_{2}<r_{1}$. Suppose not. Then since $n_{2} \in A$ and $r_{1} \in B$ we have $n_{2}>r_{1}$ so the right hand side of $\left({ }^{* * *}\right)$ is at most $x_{n_{2}-1}+x_{n_{2}-4}+x_{n_{2}-6}+x_{n_{2}-9}<x_{n_{2}}$, a contradiction. Thus $n_{2}<r_{1}$ as claimed.

Next we claim $r_{3}=r_{1}$. If $r_{3}<r_{1}$ we have the left hand side of $\left({ }^{* * *)}\right.$ is at most $x_{r_{1}-1}+x_{r_{1}-4}+x_{r_{1}-3}+x_{r_{1}-6}<x_{r_{1}}$, a contradiction. If $r_{3}>r_{1}\left(>n_{2}\right)$ we have the right hand side of $\left({ }^{* * *}\right)$ is at most $x_{r_{3}-3}+x_{r_{3}-6}+x_{r_{3}-10}+x_{r_{3}-13}<x_{r_{3}}$. Thus $r_{3}=r_{1}$ so we have

$$
\begin{equation*}
x_{n_{2}}+x_{m_{2}}+x_{s_{3}}=x_{s_{1}}+x_{r_{2}}+x_{s_{2}} . \tag{****}
\end{equation*}
$$

Continuing in this fashion we see that if $n_{2}=s_{3}$ then also $n_{2}=s_{1}$ so that $x_{m_{2}}+$ $x_{s_{3}}=x_{r_{2}}+x_{s_{2}}$ and hence that $m_{2}=r_{2}$ which is a contradiction.

Thus one must have $n_{2} \neq s_{3}$, and hence that $\left|\left\{n_{2}, m_{2}, s_{3}\right\}\right|=3$. Now if $s_{1}=s_{2}$ one has $s_{1}=s_{2}<r_{2}<n_{2}$ so the right hand side of $(* * * *)$ is at most $x_{n_{2}-9}+x_{n_{2}-6}+x_{n_{2}-9}<$ $x_{n_{2}}$, a contradiction. Thus $s_{1} \neq s_{2}$ so $\left|\left\{s_{1}, r_{2}, s_{2}\right\}\right|=3$. Since $x_{n+1}>\sum_{t=1}^{n} x_{t}$ for each n, expressions in $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)$ are unique. Thus from (****) we have $\left\{n_{2}, m_{2}, s_{3}\right\}=$ $\left\{s_{1}, r_{2}, s_{2}\right\}$ so that $\left\{m_{2}\right\}=\left\{n_{2}, m_{2}, s_{3}\right\} \cap B=\left\{s_{1}, r_{2}, s_{2}\right\} \cap B=\left\{r_{2}\right\}$ while $r_{2}<m_{2}$. This contradiction completes the proof.]
3.13 Theorem. Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be a sequence in \mathbb{N} such that for each $n, x_{n+1} \geq 2 x_{n}$. Let A and B be disjoint infinite subsets of \mathbb{N} and let $p, q \in \beta \mathbb{N} \backslash \mathbb{N}$ such that $\left\{x_{n}: n \in\right.$ $A\} \in p$ and $\left\{x_{n}: n \in B\right\} \in q$. Then $-p+-q+q+p \in C \backslash S_{2}$.

Proof. Pick $i, j \in\{0,1,2\}$ such that $\mathbb{N} 3+i \in p$ and $\mathbb{N} 3+j \in q$. Let $A^{\prime}=A \cap(\mathbb{N} 3+i)$ and $B^{\prime}=B \cap(\mathbb{N} 3+j)$. Let $D=\left\{x_{n}+x_{m}-x_{r}-x_{s}: n>m+3>m>r+3>r>s+3\right.$ and $n, s \in A^{\prime}$ and $\left.m, r \in B^{\prime}\right\}$. By Lemma 3.11, $D \in-p+-q+q \in p$ and $-p+-q+q+p \in C$. By Lemma $3.12-p+-q+q+p \notin S_{2}$.]

It is natural to ask whether in lieu of $-p+-q+q+p$ above one might be able to get by with $-p+p$ for some suitable p. We conclude this section by showing that this is not possible.
3.14 Theorem. Let $p \in \beta \mathbb{N} \backslash \mathbb{N}$. Then $-p+p \in S_{2}$.

Proof. Let $A \in-p+p$. Then $\{x \in \mathbb{Z}: A-x \in p\} \in-p$ so $B=\{x \in \mathbb{N}: A+x \in$ $p\} \in p$. Pick $x_{1} \in B$, pick $x_{2} \in B \cap\left(A+x_{1}\right)$, pick $x_{3} \in\left(A+x_{1}\right) \cap\left(A+x_{2}\right)$. Let $y=x_{2}-x_{1}$ and let $z=x_{3}-x_{2}$. Then $y, z \in A$ and $y+z=x_{3}-x_{1} \in A$.]
4. Connections with other structures. The interaction of the operations + and \cdot on $\beta \mathbb{N}$ has been a very useful combinatorial tool. (See [3] for an example where this interaction is utilized several times in succession.)

Recall that, given p and q in $\beta \mathbb{N}$ and $A \subseteq \mathbb{N}, A \in p \cdot q$ if and only if $\{x \in \mathbb{N}: A / x \in$ $q\} \in p$ where $A / x=\{y \in \mathbb{N}: y \cdot x \in A\}$.

It is not generally true that for $n \in \mathbb{N}$ and $p \in \beta \mathbb{N}$ one has $n \cdot p=p+p+\ldots+p$ (n-times). (For example one sees easily that if $n \neq 1$ then $n \cdot p \neq p$ while if $p=p+p$, then $p=p+p+\ldots+p$ (n-times).) On the other hand we do have the following lemma. Recall that, given $p \in \beta \mathbb{N}$ and a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in a topological space X, one has $p-\lim _{n \in \mathbb{N}} x_{n}=y$ if and only if for each neighbourhood U of $y,\left\{n \in \mathbb{N}: x_{n} \in U\right\} \in p$.
4.1 Lemma. Let $(G,+)$ be a compact topological group, let $\varphi: \beta \mathbb{N} \longrightarrow G$ be a continuous homomorphism, let $p \in \beta \mathbb{N}$, and let $n \in \mathbb{N}$. Then $\varphi(n \cdot p)=n \cdot \varphi(p)$, where $n \cdot \varphi(p)=\varphi(p)+\ldots+\varphi(p)(n$-times $)$.

Proof. Recall that the function λ_{n} defined by $\lambda_{n}(p)=n \cdot p$ is continuous since $n \in \mathbb{N}$. Recall further that by the joint continuity of addition in G, we have n. $p-\lim _{m \in \mathbb{N}} \varphi(m)=p-\lim _{m \in \mathbb{N}} n \cdot \varphi(m)$. Thus we have $\varphi(n \cdot p)=\varphi\left(n \cdot p-\lim _{m \in \mathbb{N}} m\right)=$ $p-\lim _{m \in \mathbb{N}} \varphi(n \cdot m)=p-\lim _{m \in \mathbb{N}} n \cdot \varphi(m)=n \cdot p-\lim _{m \in \mathbb{N}} \varphi(m)=n \cdot \varphi\left(p-\lim _{m \in \mathbb{N}} m\right)=$ $n \cdot \varphi(p)$.】
4.2 Theorem. C is a two sided ideal of $(\beta \mathbb{N}, \cdot)$.

Proof. Let G be a compact topological group with identity 0 and let $\varphi: \beta \mathbb{N} \longrightarrow G$ be a homomorphism. Let $p \in C$ and let $q \in \beta \mathbb{N}$. Pick nets $\left\langle x_{\eta}\right\rangle_{\eta \in D}$ and $\left\langle y_{\tau}\right\rangle_{\tau \in E}$ in \mathbb{N} converging to p and q respectively.

Then $\varphi(q \cdot p)=\varphi\left(\left(\lim _{\tau \in E} y_{\tau}\right) \cdot p\right)=\lim _{\tau \in E} \varphi\left(y_{\tau} \cdot p\right)=\lim _{\tau \in E}\left(y_{\tau} \cdot \varphi(p)\right)=$ $\lim _{\tau \in E}\left(y_{\tau} \cdot 0\right)=0$.

Now let $z=\varphi(q)$ and define $\tau: \mathbb{N} \longrightarrow G$ by $\tau(n)=n \cdot z$. Then the continuous extension $\tau^{\beta}: \beta \mathbb{N} \longrightarrow G$ is a homomorphism. Thus $\varphi(p \cdot q)=\varphi\left(\left(\lim _{\eta \in D} x_{\eta}\right)\right.$. $q)=\lim _{\eta \in D} \varphi\left(x_{\eta} \cdot q\right)=\lim _{\eta \in D}\left(x_{\eta} \cdot \varphi(q)\right)=\lim _{\eta \in D} \tau\left(x_{\eta}\right)=\lim _{\eta \in D} \tau^{\beta}\left(x_{\eta}\right)=$ $\tau^{\beta}\left(\lim _{\eta \in D} x_{\eta}\right)=\tau^{\beta}(p)=0$.】
4.3 Theorem. For each $n \in \mathbb{N} \backslash\{1\}, S_{n}$ is a two sided ideal of $(\beta \mathbb{N}, \cdot)$.

Proof. Let $n \in \mathbb{N}$, let $p \in S_{n}$ and let $q \in \beta \mathbb{N}$.
To see that $q \cdot p \in S_{n}$, let $A \in q \cdot p$ and pick $y \in \mathbb{N}$ such that $A / y \in p$. Pick $\left\langle x_{t}\right\rangle_{t=1}^{n}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq A / y$. Then $F S\left(\left\langle y \cdot x_{t}\right\rangle_{t=1}^{n}\right) \subseteq A$.

To see that $p \cdot q \in S_{n}$, let $A \in p \cdot q$ and pick $\left\langle x_{t}\right\rangle_{t=1}^{n}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq\{y \in$ $\mathbb{N}: A / z \in q)$. Pick $y \in \bigcap\left\{A / z: z \in F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right)\right\}$. Then $F S\left(\left\langle y \cdot x_{t}\right\rangle_{t=1}^{n}\right) \subseteq A$.]

In the process of our study of the semigroup C, we were led to the following result (and its fortuitous corollary). By a divisible sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in \mathbb{N} we simply mean an increasing sequence with the property that each x_{n} divides x_{n+1}.

Recall that we are representing the circle group \mathbb{T} as \mathbb{R} / \mathbb{Z}. By $\mathbb{T}^{\mathbb{T}}$ we mean the set of all functions from \mathbb{T} to \mathbb{T} with the product topology (= "topology of pointwise convergence").
4.4 Theorem. Define $h: \mathbb{N} \longrightarrow \mathbb{T}^{\mathbb{T}}$ by $h(n)(\alpha)=n \cdot \alpha$ and let h^{β} be the continuous extension of h to $\beta \mathbb{N}$. Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be any divisible sequence in \mathbb{N}. Then h^{β} is one-to-one on $c \ell\left\{x_{n}: n \in \mathbb{N}\right\}$.

Proof. Let p and q be distinct elements of $c \ell\left\{x_{n}: n \in \mathbb{N}\right\}$. Pick disjoint A and B contained in \mathbb{N} such that $\left\{x_{n}: n \in A\right\} \in p$ and $\left\{x_{n}: n \in B\right\} \in q$. Since $\left\{x_{n}: n \in \mathbb{N}\right\}=\bigcup_{i=0}^{2}\left\{x_{n}: n \equiv i(\bmod 3)\right\}$ we may presume we have some $i \in\{0,1,2\}$ such that for all $n, m \in A, n \equiv m(\bmod 3)$. As a consequence, if $n, m \in A$ and $n<m$ then $n+3 \leq m$ so $x_{m} \geq x_{n+3} \geq 8 \cdot x_{n}$. Now let $t=\sum_{n \in A}\left\lfloor x_{n+1} /\left(2 x_{n}\right)\right\rfloor / x_{n+1}$, where \rfloor denotes the greatest integer function. (Since $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is a divisible sequence we have each $x_{n} \geq 2^{n-1}$ so $\left\lfloor x_{n+1} /\left(2 x_{n}\right)\right\rfloor / x_{n+1} \leq 1 /\left(2 x_{n}\right) \leq 1 / 2^{n}$ so the series defining t converges (and $0<t<1$). As before write $[t]=t+\mathbb{Z}$. We show that $h^{\beta}(p)([t]) \neq h^{\beta}(q)([t])$.

Let $D=\{[s]: 1 / 3 \leq s \leq 4 / 7\}$ and let $E=\{[s]: 0 \leq s \leq 9 / 28\}$. Then D and E are disjoint closed subsets of T. We show that if $n \in A$ then $h\left(x_{n}\right)([t]) \in D$ and if $n \in B$ then $h\left(x_{n}\right)([t]) \in E$. As a consequence we will have that $h^{\beta}(p)([t]) \in D$ and $h^{\beta}(q)([t]) \in E$.

To this end we first observe that given any $n \in \mathbb{N}, \sum\left\{\left(\left\lfloor x_{k+1} /\left(2 x_{k}\right)\right\rfloor / x_{k+1}\right) \cdot x_{n}\right.$: $k \in A$ and $k \geq n+3\} \leq 1 / 14$. Indeed, given the first $k \in A$ with $k \geq n+3$ one has $\left(\left\lfloor x_{k+1} /\left(2 x_{k}\right)\right\rfloor / x_{k+1}\right) \cdot x_{n} \leq x_{n} /\left(2 x_{k}\right) \leq 1 / 16$. Given $k, m \in A$ with $m>k>n+3$, one has $x_{m} \geq x_{k+3} \geq 8 \cdot x_{k}$. Consequently $\sum\left\{\left(\left\lfloor x_{k+1} /\left(2 x_{k}\right)\right\rfloor / x_{k+1}\right) \cdot x_{n}: k \in A\right.$ and $k \geq n+3\} \leq(1 / 2) \sum_{k=1}^{\infty} 1 / 8^{k}=1 / 14$.

Now let $n \in A$. Then $h\left(x_{n}\right)([t])=x_{n} \cdot[t]=\left[x_{n} \cdot t\right]$. Now $x_{n} \cdot t=$ $\sum\left\{\left(\left\lfloor x_{k+1} /\left(2 x_{k}\right)\right\rfloor / x_{k+1}\right) \cdot x_{n}: k \in A\right.$ and $\left.k<n\right\}+\left(\left\lfloor x_{n+1} /\left(2 x_{n}\right)\right\rfloor / x_{n+1}\right) \cdot x_{n}+$ $\sum\left\{\left(\left\lfloor x_{k+1} /\left(2 x_{k}\right)\right\rfloor / x_{k+1}\right) \cdot x_{n}: k \in A\right.$ and $\left.k \geq n+3\right\}$. The first of these sums is some integer ℓ and the last of these is at most $1 / 14$. Now consider the middle term. We have $\left(\left\lfloor x_{n+1} /\left(2 x_{n}\right)\right\rfloor / x_{n+1}\right) \cdot x_{n} \leq 1 / 2$ and equality holds if x_{n+1} / x_{n} is even. If x_{n+1} / x_{n} is odd we have $x_{n+1} \geq 3 x_{n}$ so $\left(\left\lfloor x_{n+1} /\left(2 x_{n}\right)\right\rfloor / x_{n+1}\right) \cdot x_{n}=\left(x_{n+1} /\left(2 x_{n}\right)-1 / 2\right) \cdot x_{n} / x_{n+1}=$ $1 / 2-1 / 2 \cdot\left(x_{n} / x_{n+1}\right) \geq 1 / 2-1 / 6=1 / 3$. Thus $\ell+1 / 3 \leq x_{n} \cdot t \leq \ell+1 / 2+1 / 14$ so $\left[x_{n} \cdot t\right] \in D$ as required.

Finally let $n \in B$. Then $x_{n} \cdot t=\sum\left\{\left(\left\lfloor x_{k+1} /\left(2 x_{k}\right)\right\rfloor / x_{k+1}\right) \cdot x_{n}: k \in A\right.$ and $k<$ $n\}+\sum\left\{\left(\left\lfloor x_{k+1} /\left(2 x_{k}\right)\right\rfloor / x_{k+1}\right) \cdot x_{n}: k \in A\right.$ and $\left.n<k<n+3\right\}+\sum\left\{\left(\left\lfloor x_{k+1} /\left(2 x_{k}\right)\right\rfloor / x_{k+1}\right)\right.$. $x_{n}: k \in A$ and $\left.k \geq n+3\right\}$. Again the first sum is some integer ℓ and the last is
at most $1 / 14$. The middle sum has at most one term which is at most $1 / 4$. Thus $\ell \leq x_{n} \cdot t \leq \ell+1 / 4+1 / 14$ so $\left[x_{n} \cdot t\right] \in E$ as required.]

We obtain as a corollary the following result communicated to us by Kenneth Berg. For extensions of this result see [2]. Recall that, given $f: \mathbb{T} \longrightarrow \mathbb{T}$, the enveloping semigroup of f is the closure in $\mathbb{T}^{\mathbb{T}}$ of $\left\{f^{n}: n \in \mathbb{N}\right\}$.
4.5 Corollary. Define $f: \mathbb{T} \longrightarrow \mathbb{T}$ by $f(\alpha)=2 \cdot \alpha$. Then the enveloping semigroup of f can be identified with $\beta \mathbb{N}$.

Proof. Note that $f^{n}(\alpha)=2^{n} \cdot \alpha$ so if h is defined as in Theorem 4.4, one has for each $n \in \mathbb{N}, h\left(2^{n}\right)=f^{n}$. Thus the enveloping semigroup of f is $h\left[c \ell\left\{2^{n}: n \in \mathbb{N}\right\}\right]$. Since h is one-to-one on this closure, it is a homeomorphism on $c \ell\left\{2^{n}: n \in \mathbb{N}\right\}$.]

It was shown in [16] that if p is a right cancellable element of $\beta \mathbb{N}$, then every element of $c \ell\{p, p+p, p+p+p, \ldots\}$ is right cancellable. As a consequence, any such semigroup has a closure which misses the set of idempotents. We show next that one can get semigroups in $\beta \mathbb{N}$ whose closure is reasonably far removed from the idempotents. (In particular the closure cannot be a semigroup.)
4.6 Theorem. Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be any divisible sequence in \mathbb{N} and let $p \in\left(c \ell\left\{x_{n}: n \in\right.\right.$ $\mathbb{N}\}) \backslash \mathbb{N}$. Then $c \ell\{p, p+p, p+p+p, \ldots\}) \cap T=\emptyset$.

Proof. We may presume $x_{1}=1$. (If $x_{1}>1$, let $y_{1}=1$ and $y_{n+1}=x_{n}$ for $n \in \mathbb{N}$. Then $\left(c \ell\left\{y_{n}: n \in \mathbb{N}\right\}\right) \backslash \mathbb{N}=\left(c \ell\left\{x_{n}: n \in \mathbb{N}\right\}\right) \backslash \mathbb{N}$.) For each $n \in \mathbb{N}$ let $a_{n}=x_{n+1} / x_{n}$. Then each $m \in \mathbb{N}$ has a unique expression of the form $\sum_{t \in F} b_{t} \cdot x_{t}$ where for each $t \in F, b_{t} \in\left\{1,2, \ldots, a_{t}-1\right\}$. Further x_{n} divides m if and only if $\min F \geq n$. Given $m \in \mathbb{N}$, define $c(m)=|F|$ where $m=\sum_{t \in F} b_{t} \cdot x_{t}$ as above. Let $c^{\beta}: \beta \mathbb{N} \longrightarrow \beta \mathbb{N}$ be the continuous extension of c. Since c is constantly equal to 1 on $\left\{x_{n}: n \in \mathbb{N}\right\}$ we have $c^{\beta}(p)=1$.

Let $X=\left(\bigcap_{n=1}^{\infty} c \ell\left(\mathbb{N} x_{n}\right)\right) \cap\left(\bigcap_{n=1}^{\infty} c \ell\{m \in \mathbb{N}: c(m)>n\}\right)$. We observe that the idempotents are all in X. We have $C \subseteq \bigcap_{n=1}^{\infty} c l\left(\mathbb{N} x_{n}\right)$. To see that the idempotents are contained in $\bigcap_{n=1}^{\infty} c \ell\{m \in \mathbb{N}: c(m)>n\}$, let $e=e+e$ and suppose that for some $n,\{m \in \mathbb{N}: c(m) \leq n\} \in e$. Then, since e is an ultrafilter one has in fact that for some $n,\{m \in \mathbb{N}: c(m)=n\} \in e$. Let $A=\{m \in \mathbb{N}: c(m)=n\}$ and pick $m \in A$ such that $A-m \in e$. Pick t such that $x_{t}>m$ and pick $k \in \mathbb{N} x_{t} \cap(A-m)$. Then $c(k+m)=c(k)+c(m)>n$ so $k+m \notin A$, a contradiction.

Now suppose $(c \ell\{p, p+p, p+p+p, \ldots\}) \cap T \neq \emptyset$. By Theorem 2.4, $T=c \ell \bigcup\{\mathbb{N}+e$: $e \in \beta \mathbb{N}$ and $e+e=e\}$, so $T \subseteq c \ell\left(\bigcup_{n=1}^{\infty} n+X\right)$. Thus $c \ell\{p, p+p, p+p+p, \ldots\} \cap$
$c \ell\left(\bigcup_{n=1}^{\infty} n+X\right) \neq \emptyset$ so by Lemma 1.3 either $c \ell\{p, p+p, p+p+p, \ldots\} \cap\left(\bigcup_{n=1}^{\infty} n+X\right) \neq \emptyset$ or $\{p, p+p, p+p+p, \ldots\} \cap c \ell\left(\bigcup_{n=1}^{\infty} n+X\right) \neq \emptyset$. But $c \ell\{p, p+p, p+p+p, \ldots\} \subseteq \bigcap_{n=1}^{\infty} c \ell\left(\mathbb{N} x_{n}\right)$ and $\bigcap_{n=1}^{\infty} c \ell\left(\mathbb{N} x_{n}\right) \cap\left(\bigcup_{n=1}^{\infty} n+X\right)=\emptyset$. Thus we have some $q \in\{p, p+p, p+p+$ $p, \ldots\} \cap c \ell\left(\bigcup_{n=1}^{\infty} n+X\right)$. Now $q=p+p+\ldots+p(m$-times $)$ so $c^{\beta}(q)=m$. Let $A=\{y \in \mathbb{N}: c(y)=m\}$. Then $A \in q$ so $c \not A \cap\left(\bigcup_{n=1}^{\infty} n+X\right) \neq \emptyset$, so pick $n \in \mathbb{N}$ with $c \ell A \cap(n+X) \neq \emptyset$ and pick $r \in c \ell A \cap(n+X)$. Pick $k \in \mathbb{N}$ such that $x_{k}>n$. Now $r-n \in X \subseteq c \ell\left(\mathbb{N} x_{k}\right) \cap c \ell(\{y \in \mathbb{N}: c(y)>m\})$ so $\mathbb{N} x_{k} \cap\{y \in \mathbb{N}: c(y)>m\} \cap(A-n) \neq \emptyset$. Pick $y \in \mathbb{N} x_{k} \cap\{y \in \mathbb{N}: c(y)>m\} \cap(A-n)$. Since $y \in \mathbb{N} x_{k}$ and $x_{k}>n$ we have $c(y+n)=c(y)+c(n)>m$ so $y+n \notin A$, a contradiction. 【

On the other hand, we see that no semigroup can get too far removed from the idempotents.
4.7 Theorem. Let S be any subsemigroup of $\beta \mathbb{N}$. Then $(c l S) \cap \bigcap_{n=2}^{\infty} S_{n} \neq \emptyset$.

Proof. Pick any $p \in S$. Define $\varphi: \mathbb{N} \longrightarrow \beta \mathbb{N}$ by $\varphi(n)=p+p+\ldots+p(n$ times) and let φ^{β} be the continuous extension to $\beta \mathbb{N}$. Note that $\varphi^{\beta}: \beta \mathbb{N} \longrightarrow \beta \mathbb{N}$ is a homomorphism. Pick any $q \in \bigcap_{n=2}^{\infty} S_{n}$. Then $\varphi^{\beta}(q) \in c l S$. We claim that $\varphi^{\beta}(q) \in \bigcap_{n=2}^{\infty} S_{n}$.

We show first that for any $A \in \varphi^{\beta}(q)$ and any $n \in \mathbb{N} \backslash\{1\}$, there exist $r_{1}, r_{2}, \ldots, r_{n}$ in $c \ell A$ that commute with each other with $F S\left(\left\langle r_{t}\right\rangle_{t=1}^{n}\right) \subseteq c \ell A$. (The fact that $r_{1}, r_{2}, \ldots, r_{n}$ commute with each other is not really relevant except that we do not need to spell out the order of the sums in $F S\left(\left\langle r_{t}\right\rangle_{t=1}^{n}\right)$.) To see this let $A \in \varphi^{\beta}(q)$ and pick $B \in q$ such that $\varphi^{\beta}[c l B] \subseteq c l A$. Now let $n \in \mathbb{N} \backslash\{1\}$ and (since $q \in S_{n}$) pick $x_{1}, x_{2}, \ldots, x_{n}$ in B with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq B$. For each $t \in\{1,2, \ldots, n\}$, let $r_{t}=\varphi\left(x_{t}\right)$.

To complete the proof we show by induction on $n \in \mathbb{N}$ that given $A \subseteq \mathbb{N}$, if there exist commuting $r_{1}, r_{2}, \ldots, r_{n}$ with $F S\left(\left\langle r_{t}\right\rangle_{t=1}^{n}\right) \subseteq c \ell A$, then there exist $x_{1}, x_{2}, \ldots, x_{n}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq A$. The case $n=1$ is trivial, so let $n \in \mathbb{N}$ and assume the statement is true for n and let $r_{1}, r_{2}, \ldots, r_{n+1}$ be commuting elements of $c \ell A$ with $F S\left(\left\langle r_{t}\right\rangle_{t=1}^{n+1}\right) \subseteq$ $c \ell A$. Let $D=\left\{x \in \mathbb{N}: A-x \in r_{n+1}\right\}$. Now given any nonempty $F \subseteq\{1,2, \ldots, n\}$ we have $A \in \sum_{t \in F} r_{t}+r_{n+1}$ so $D \in \sum_{t \in F} r_{t}$. That is $F S\left(\left\langle r_{t}\right\rangle_{t=1}^{n}\right) \subseteq c \ell D$. Since also $F S\left(\left\langle r_{t}\right\rangle_{t=1}^{n}\right) \subseteq c \ell A$ we have $F S\left(\left\langle r_{t}\right\rangle_{t=1}^{n}\right) \subseteq c \ell(A \cap D)$ so by the induction hypothesis choose $\left\langle x_{t}\right\rangle_{t=1}^{n}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n}\right) \subseteq A \cap D$. Now $A \in r_{n+1}$ and for each nonempty $F \subseteq\{1,2, \ldots, n\}, A-\sum_{t \in F} x_{t} \in r_{n+1}$ so pick $x_{n+1} \in A \cap \bigcap\left\{A-\sum_{t \in F} x_{t}: \emptyset \neq F \subseteq\right.$ $\{1,2, \ldots, n\}\}$. Then $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{n+1}\right) \subseteq A$.]

References

1. J. Baker, N. Hindman, and J. Pym, Elements of finite order in Stone-Čech compactifications, Proc. Edinburgh Math. Soc. 36 (1992), 498-54.
2. K. Berg, D. Gove, and K. Haddad, On the connection between beta compactifications and enveloping semigroups of subshifts, Abstracts Amer. Math. Soc. 15 (1994), 320.
3. V. Bergelson and N. Hindman, A combinatorially large cell of a partition of \mathbb{N}, J. Comb. Theory (Series A) 48 (1988), 39-52.
4. J. Berglund, H. Junghenn, and P. Milnes, Analysis on Semigroups, Wiley, New York, 1989.
5. W. Comfort, Ultrafilters: some old and some new results, Bull. Amer. Math. Soc. 83 (1977), 417-455.
6. R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969.
7. P. Frankl, R. Graham, and V. Rödl, Induced restricted Ramsey theorems for spaces, J. Comb. Theory (Series A) 44 (1987), 120-128.
8. R. Graham, B. Rothschild, and J. Spencer, Ramsey Theory, Wiley, New York, 1990.
9. N. Hindman, Partitions and sums and products of integers, Trans. Amer. Math. Soc. 247 (1979), 227-245.
10. N. Hindman, Summable ultrafilters and finite sums, in Logic and Combinatorics, S. Simpson ed., Contemporary Math. 65 (1987), 263-274.
11. N. Hindman, The semigroup $\beta \mathbb{N}$ and its applications to number theory, in The Analytical and Topological Theory of Semigroups - Trends and Developments, K. Hofmann, J. Lawson, and J. Pym eds., de Gruyter Expositions in Math. 1 (1990), 347-360.
12. N. Hindman, Ultrafilters and Ramsey Theory - an update, in Set Theory and its Applications, J. Steprāns and S. Watson eds., Lecture Notes in Math. 1401 (1989), 97-118.
13. N. Hindman and J. Pym, Free groups and semigroups in $\beta \mathbb{N}$, Semigroup Forum 30 (1984), 177-193.
14. N. Hindman and D. Strauss, Cancellation in the Stone-Čech compactification of a discrete semigroup, Proc. Edinburgh Math. Soc. 37 (1994), 379-397.
15. N. Hindman and W. Woan, Central sets in semigroups and partition regularity of systems of linear equations, Mathematika 40 (1993), 169-186.
16. A. El-Mabhouh, J. Pym, and D. Strauss, Subsemigroups of $\beta \mathbb{N}$, Topology and Appl., to appear.
17. P. Milnes, Compactifications of topological semigroups, J. Australian Math. Soc. 15 (1973), 488-503.
18. J. Nešetřil and V. Rödl, Finite union theorem with restrictions, Graphs and Comb. 2 (1986), 357-361.
