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Abstract. We show that if a set B of positive integers has positive upper density, then its

difference set D(B) has extremally rich combinatorial structure, both additively and multiplicatively.

If on the other hand only the density of D(B) rather than B is assumed to be positive one is not

guaranteed any multiplicative structure at all and is guaranteed only a modest amount of additive

structure.

1. Introduction. Given a subset B of the set N of positive integers, denote by
D(B) its “difference set”. That is D(B) = {x − y : x, y ∈ B and x > y}. We are
concerned here with difference sets which are “large” in one of two senses. That is, we
ask either that d(B) > 0 or that d(D(B)) > 0 where

d(B) = lim sup
n→∞

|A ∩ {1, 2, . . . , n}|/n.

We show in Section 2 that if d(B) > 0, then D(B) has an incredibly rich algebraic
structure. We show for example that given any function f : N −→ N, there must exist
a sequence 〈xn〉∞n=1 so that {

∑
n∈F an · xn : F is a finite nonempty subset of N and for

each n ∈ F , 1 ≤ an ≤ f(n)} ∪ {
∏

n∈F xan
n : F is a finite nonempty subset of N and for

each n ∈ F , 1 ≤ an ≤ f(n)} ⊆ D(B).
With no sort of largeness assumptions at all (beyond the requirement that B should

have at least three members) one must always be able to get some a and b with {a, b, a+
b} ⊆ D(B). (Given x < y < z in B, let a = y − x and b = z − y.) Infiniteness
by itself doesn’t help much. Indeed, it is easy to see that if B = {2n : n ∈ N},
then for no a, b, and c is {a, b, c, a + b, a + c, b + c, a + b + c} ⊆ D(B). On the other
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hand, we show in Section 3 that if d(D(B)) > 0, one can always find a, b, and c with
{a, b, c, a + b, a + c, b + c, a + b + c} ⊆ D(B).

We have not been able to determine whether D(B) (where d(D(B)) > 0) must
contain some 4 elements with all of their sums. However, we do show in Section 3 that
one can find sets B with d(D(B)) arbitrarily close to 1/2 such that D(B) contains no
five elements and all of their sums. We also show that we can find sets B with d(D(B))
arbitrarily close to 1 such that D(B) does not contain any {a, b, a ·b}.

2. The difference set of a set of positive density. We show here that if
d(B) > 0, then D(B) has a rich additive and multiplicative structure. Many of the
results in this section are from the dissertation of the first author [2]. We begin by
stating a well known result about sets of positive upper density, whose proof we leave
as an exercise.

2.1 Lemma. Let A ⊆ N such that d(A) > 0 and let k ∈ N such that 1/k <

d(A). Then given any t1, t2, . . . , tk in N there exist some i < j in {1, 2, . . . , k} with
d((A− ti) ∩ (A− tj)) > 0.

Note by way of contrast that it is easy to get two disjoint sets both with upper
density equal to 1. It is an immediate consequence of Lemma 2.1 that if d(B) > 0,
then D(B) is an IP∗−set. That is, given any sequence 〈xn〉∞n=1 in N there is some
finite nonempty subset F of N such that

∑
n∈F xn ∈ D(B). (To see this, for each

i, let ai =
∑i

n=1 xn and pick i < j such that d((B − ai) ∩ (B − aj)) > 0. Then∑j
n=i+1 xn ∈ D(B).) Therefore, by [4, Theorem 2.6] there is some sequence 〈xn〉∞n=1

with {
∑

n∈F xn : F is a finite nonempty subset of N}∪{
∏

n∈F xn : F is a finite nonempty
subset of N} ⊆ D(B). We show in Theorem 2.6 below that a stronger conclusion holds,
(without invoking any results from [4]).

We shall utilize in our proofs two results from ergodic theory. The first of these
is Furstenberg’s famous correspondence principle which was first used in his proof
of Szemerédi’s Theorem [6]. Recall that a measure preserving system is a quadruple
(X,B, µ, T ) where X is a nonempty set, B is a σ-algebra of subsets of X, µ is a nonneg-
ative σ-additive measure defined on B with µ(X) = 1 (so that (X,B, µ) is a probability
measure space), and T is an invertible measure preserving transformation of X. (That
is, T is continuous, and whenever B ∈ B, T−1B ∈ B and µ(T−1B) = µ(B).)

2.2 Theorem (Furstenberg). Let B ⊆ N with d(B) > 0. There exist a measure
preserving system (X,B, µ, T ) and a set A ∈ B such that µ(A) = d(B) and for all n ∈ N,
d(B ∩ (B − n)) ≥ µ(A ∩ TnA).
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Proof. [6, Theorem 1.1].[]

Given measure preserving systems (X1,B1, µ1, T1) and (X2,B2, µ2, T2) we follow
standard practice and denote by (X1 ×X2,B1 ×B2, µ1 ×µ2, T1 × T2) the system where
X1×X2 is the cartesian product, B1×B2is the σ-algebra generated by sets of the form
A1 ×A2 for A1 ∈ B1 and A2 ∈ B2, µ1 × µ2 is the measure on B1 × scrb2 determined by
(µ1×µ2)(A1×A2) = µ1(A1)·µ2(A2) and T1×T2 is the measure preserving transformation
defined by (T1 × T2)((x1, x2)) = (T1(x1), T2(x2)).

2.3 Theorem. Let T1, T2, . . . , Tk be invertible commuting transformations of a
probability measure space (X,B, µ). Assume that p1(n), p2(n), . . . , pk(n) are polynomials
with integer coefficients such that pi(0) = 0 for i ∈ {1, 2, . . . , k}. Let A ∈ B with
µ(A) > 0. Then there exists n ∈ N such that µ(A ∩ T

p1(n)
1 T

p2(n)
2 . . . T

pk(n)
k A) > 0.

Proof. This is exactly [3, Theorem 4.2] except that the conclusion there has
n ∈ Z\{0}. To derive this version we utilize the product space (X×X,B×B, µ×µ). For
i ∈ {1, 2, . . . , k}, let Si = Ti× ι, where ι is the identity. For i ∈ {k +1, k +2, . . . , 2k}, let
Si = ι× Ti−k and let pi(n) = pi−k(−n). Then S1, S2, . . . , S2k are invertible commuting
transformations of (X × X,B × B, µ × µ) and (µ × µ)(A × A) > 0 so pick (using [3,
Theorem 4.2]) n ∈ Z\{0} such that (µ×µ)((A×A)∩S

p1(n)
1 S

p2(n)
2 . . . S

p2k(n)
2k (A×A)) > 0.

If n > 0 we see from the first coordinate that µ(A ∩ T
p1(n)
1 T

p2(n)
2 . . . T

pk(n)
k A) > 0. If

n < 0 we see from the second coordinate that µ(A∩T
p1(−n)
1 T

p2(−n)
2 ... T

pk(−n)
k A) > 0. []

We shall see in Theorem 2.6 that whenever d(B) > 0, d(B) contains sums and
products from a sequence where terms are allowed to repeat a restricted number of
times. We present first a special case so we may introduce the proof in a relatively
uncomplicated setting.

2.4 Theorem. Let B ⊆ N with d(B) > 0. Then there is some sequence 〈xn〉∞n=1

such that {
∑

n∈F anxn : F is a finite nonempty subset of N and for each n ∈ F ,
an ∈ {1, 2}} ∪ {

∏
n∈F xan

n : F is a finite nonempty subset of N and for each n ∈ F ,
an ∈ {1, 2}} ⊆ D(B).

Proof. Pick by Theorem 2.2 a measure preserving system (X,B, µ, T ) and some
A ∈ B such that µ(A) = d(B) and for each n ∈ N, d(B ∩ (B − n)) ≥ µ(A ∩ TnA).
Observe that {n ∈ N : µ(A ∩ TnA) > 0} ⊆ D(B). For m ∈ N and a sequence 〈xn〉mn=1

in N let E(〈xn〉mn=1) = {
∑

n∈F anxn : F is a nonempty subset of {1, 2, . . . ,m} and for
each n ∈ F , an ∈ {1, 2}} and let C(〈xn〉mn=1) = {

∏
n∈F xan

n : F is a nonempty subset
of {1, 2, . . . ,m} and for each n ∈ F, an ∈ {1, 2}}. We construct a sequence 〈xn〉∞n=1 by
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induction so that for each m, E(〈xn〉mn=1) ∪ C(〈xn〉mn=1) ⊆ {n ∈ N : µ(A ∩ TnA) > 0}
which will suffice by our observation.

To ground the induction consider the measure space (X×X×X,B×B×B, µ×µ×µ),
let S1 = (T × ι × ι), S2 = (ι × T × ι), S3 = (ι × ι × T ), p1(n) = n, p2(n) = 2n, and
p3(n) = n2. (Recall that ι is the identity.) Pick by Theorem 2.3 some x1 ∈ N such
that (µ × µ × µ)((A × A × A) ∩ S

p1(x1)
1 S

p2(x1)
2 S

p3(x1)
3 (A × A × A)) > 0. From the

first coordinate we see that µ(A ∩ T x1
1 A) > 0, from the second coordinate we see that

µ(A ∩ T 2x1
1 A) > 0, and from the third coordinate we see that µ(A ∩ T

x2
1

1 A) > 0. Since
E(〈xn〉1n=1) = {x1, 2x1} and C(〈xn〉1n=1) = {x1, x

2
1}, the grounding is complete.

Now let m ∈ N be given and assume we have chosen 〈xn〉m−1
n=1 with E(〈xn〉m−1

n=1 ) ∪
C(〈xn〉m−1

n=1 ) ⊆ {n ∈ N : µ(A ∩ TnA) > 0}. Let b = 3m−1 and enumerate (with
repetitions if need be) {0} ∪ E(〈xn〉m−1

n=1 ) as 〈yj〉bj=1 and enumerate {1} ∪ C(〈xn〉m−1
n=1 )

as 〈zj〉bj=1. Now consider the measure space (〉〈4b
j=1X, 〉〈4b

j=1B, 〉〈4b
j=1µ). Let H = 〉〈bj=1((A∩

T yj A)× (A ∩ T yj A)×A×A), let µ = 〉〈4b
j=1µ, and note that µ(H) > 0. (Our induction

hypothesis tells us that each µ(A ∩ T yj A) > 0.) Let S1 = 〉〈bj=1(T × ι × ι × ι), S2 =
〉〈bj=1(ι × T × ι × ι), S3 = 〉〈bj=1(ι × ι × T zj × ι), and S4 = 〉〈bj=1(ι × ι × ι × T zj ). Let
p1(n) = n, p2(n) = 2n, p3(n) = n, and p4(n) = n2. Pick by Theorem 2.2, some xm ∈ N
such that µ(H ∩ S

p1(xm)
1 S

p2(xm)
2 S

p3(xm)
3 S

p4(xm)
4 H) > 0.

To see that E(〈xn〉mn=1) ⊆ {n ∈ N : µ(A ∩ TnA) > 0}, let ∅ 6= F ⊆ {1, 2, . . . ,m}
and for each n ∈ F , let an ∈ {1, 2}. If m /∈ F , then

∑
n∈F anxn ∈ E(〈xn〉m−1

n=1 ), so we
assume m ∈ F . Pick j ∈ {1, 2, . . . , b} such that

∑
n∈F anxn = yj + amxm. If am = 1,

we see by looking at coordinate 4j − 3 that µ(A ∩ T yj A ∩ T xm(A ∩ T yj A)) > 0; in
particular µ(A ∩ T yj+xm) > 0. If am = 2, we see by looking at coordinate 4j − 2 that
µ(A ∩ T yj A ∩ T 2xm(A ∩ T yj A)) > 0; in particular µ(A ∩ T yj+2xmA) > 0.

To see that C(〈xn〉mn=1) ⊆ {n ∈ N : µ(A ∩ TnA) > 0}, let ∅ 6= F ⊆ {1, 2, . . . ,m}
and for each n ∈ F , let an ∈ {1, 2}. If m /∈ F , then

∏
n∈F xan

n ∈ C(〈xn〉m−1
n=1 ), so we

assume m ∈ F . Pick j ∈ {1, 2, . . . , b} such that
∏

n∈F xan
n = zj · xam

x . If am = 1, we see
by looking at coordinate 4b− 1 that µ(A ∩ (T zj )xmA) > 0 so that µ(A ∩ T zjxmA) > 0.
If am = 2, we see by looking at coordinate 4b that µ(A ∩ (T zj )x2

mA) > 0 so that
µ(A ∩ T zjx2

mA) > 0. []

We observe in fact that if one has sets B1, B2, . . . , Bn with each d(Bi) > 0, then the
conclusion of Theorem 2.4 applies to

⋂n
i=1 D(B1). To see this one simply starts with

the product system (〉〈ni=1Xi, 〉〈ni=1Bi, 〉〈ni=1µi, 〉〈ni=1Ti) where (Xi,Bi, µi, Ti) is the system
given by Theorem 2.2 for Bi.

Recall that a set B ⊆ N is an IP∗ set if and only if whenever 〈xn〉∞n=1 is a sequence
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in N , one has FS(〈xn〉∞n=1) ∩ B 6= ∅. We pause now to observe that neither of the
conclusions of Theorem 2.4 follow from the fact that D(B) is an IP∗ set.

2.5 Theorem. There is an IP∗ set A such that for no sequence 〈xn〉∞n=1 is
{
∑

n∈F anxn : F is a finite nonempty subset of N and for each n ∈ N, an ∈ {1, 2}} ⊆ A

and for no sequence 〈yn〉∞n=1 is {
∏

n∈F yan
n : F is a finite nonempty subset of N and for

each n ∈ N, an ∈ {1, 2}} ⊆ A.

Proof. Let B = N\{x2 : x ∈ N}. Since one clearly cannot get any sequence
〈xn〉∞n=1 with {

∑
n∈F xn : F is a finite nonempty subset of N} ⊆ {x2 : x ∈ N}, one has

that B is an IP∗ set. And no sequence 〈yn〉∞n=1 has any y2
n ∈ B.

Now by [5, Theorem 3.14], there is a partition N = C1∪C2 such that for no sequence
〈xn〉∞n=1 is {

∑
n∈F xn : F is a finite nonempty subset of N} ⊆ C1 and for no sequence

〈yn〉∞n=1 is {
∑

n∈F1
yn +

∑
n∈F2

2yn : F1 and F2 are finite nonempty subsets of N and
max F1 < min F2} ⊆ C2. Then C2 is an IP∗ set. Let A = B∩C2. Since the intersection
of two IP∗ sets is again an IP∗ set (see [4]), we have that A is as required. []

The next theorem is our major result of this section. Considerably stronger state-
ments are in fact available with the same proof. However, we are trying to keep the
results easily comprehensible.

2.6 Theorem. Let B ⊆ N with d(B) > 0 and let f : N → N. Then there is some
sequence 〈xn〉∞n=1 such that {

∑
n∈F anxn : F is a finite nonempty subset of N and for

each n ∈ F , an ∈ {1, 2, . . . , f(n)}} ∪ {
∏

n∈F xan
n : F is a finite nonempty subset of N

and for each n ∈ F , an ∈ {1, 2, . . . , f(n))} ⊆ D(B).

Proof. We describe how to modify the proof of Theorem 2.3. First define
E(〈xn〉mn=1) and C(〈xn〉mn=1) analogously. At the grounding level one takes the measure
space (〉〈2f(1)−1

i=1 X, 〉〈2f(1)−1
i=1 B, 〉〈2f(1)−1

i=1 µ). One lets pi(n) = i · n for i ∈ {1, 2, . . . , f(1)}
and lets pi(n) = ni−f(1)−1 for i ∈ {f(1) + 1, f(1) + 2, . . . , 2f(1) − 1}.

At the induction stage, one lets b =
∏m−1

i=1 (f(i) + 1) and enumerates E(〈xn〉m−1
n=1 )∪

{0} as 〈yj〉bj=1 and enumerates {1}∪C(〈xn〉m−1
n=1 ) as 〈zj〉bj=1. Then one uses the measure

space (〉〈b·2·f(m)
j=1 X, 〉〈b·2·f(m)

j=1 B, 〉〈b·2·f(m)
j=1 µ), and lets H = 〉〈bj=1(〉〈f(m)

i=1 (A∩T yj A)×〉〈f(m)
i=1 A).

Using the obvious definitions of S1, S2, . . . , S2·f(m) and p1, p2, . . . , p2·f(m) one completes
the proof. []

3. Additive structure in dense difference sets. For the remainder of the
paper we look at difference sets D(B) where we no longer require that d(B) > 0, but
only that d(D(B)) > 0.
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Because difference sets are defined additively one would not necessarily expect them
to have any multiplicative structure. On the other hand, Theorem 2.6 might make one
suspect that they would have some multiplicative structure. We begin this section by
showing that they need not.

3.1 Theorem. Let ε > 0. There is a set B such that d(D(B)) > 1 − ε and there
do not exist a and b in N with {a, b, a · b} ⊆ D(B).

Proof. Pick α ∈ N such that 1/2α < ε. Define a sequence 〈f(r)〉∞r=0 by f(0) = 2+α

and f(r+1) = 2(f(r)+α)+1. Let 〈xn〉∞n=1 enumerate
⋃∞

r=0{2f(r), 2f(r)+1, . . . , 2f(r)+α−
1} in increasing order and note that for all n in N , xn < 2f(n). Let B = {2f(n) : n ∈
N} ∪ {2f(n) + xn : n ∈ N}. Then D(B) = {xn : n ∈ N} ∪ {2f(n) + xn − 2f(m) : m,n ∈ N
and m < n}∪{2f(n)−2f(m) : m,n ∈ N and m < n}∪{2f(n)+xn−2f(m)−xm : m,n ∈ N
and m < n}∪{2f(n)−2f(m)−xm : m,n ∈ N and m < n}. Now given any r ∈ N we have
|{xn : n ∈ N} ∩ {1, 2, . . . , 2f(r)+α}| > 2f(r)+α − 2f(r) so d(D(B)) ≥ 1 − 1/2α > 1 − ε.

If a = xn, then for some r ∈ N∪{0}, we have 2f(r) ≤ a < 2f(r)+α. If a ∈ D(B)\{xn :
n ∈ N} then there exist m and n in N with m < n such that 2f(n) − 2f(m) − xm ≤
a ≤ 2f(n) + xn − 2f(n). Since 2f(n) − 2f(m) − xm > 2f(n)−1 we conclude that for any
a ∈ D(B) there is some n ∈ N ∪ {0} with 2f(n)−1 < a < 2f(n)+α. Now suppose we
have a ≤ b in D(B) such that a · b ∈ D(B). Pick m ≤ n ≤ r in N ∪ {0} such that
2f(m)−1 < a < 2f(m)+α, 2f(n)−1 < b < 2f(n)+α, and af(r)−1 < a · b < 2f(r)+α. If n < r

we have 2f(n)−1 < a·b < 2f(m)+f(n)+2α so f(r) ≤ f(m)+f(n)+2α ≤ 2f(n)+2α < f(r),
a contradiction. Thus n = r so that 2f(m)+f(n)−2 < a · b < 2f(r)+α = 2f(n)+α. Then
f(m) < α + 2 = f(0) ≤ f(m), a contradiction. []

3.2 Theorem. Let B ⊆ N and assume d(D(B)) > 0. There exist a, b, c in N such
that {a, b, c, a + b, a + c, b + c, a + b + c} ⊆ D(B).

Proof. If d(B) > 0 we are done by Theorem 2.6 so we assume d(B) = 0. Enumerate
B in order as 〈xn〉∞n=1. The result of this theorem is almost free. That is given any
r > s > n > k, if we let a = xr − xs, b = xs − xn, and c = xn − xk, then a + b =
xr − xn, b + c = xs − xk, and a + b + c = xr − xk. The only problem then is to find
r > s > n > k such that xr − xs + xn − xk ∈ D(B).

Let α = d(D(B)) and pick ` ∈ N such that 1/` < α. For each t we have d(B− t) =
d(B) = 0. Let E = D(B)\

⋃`
k=1(B − xk). Then E = {xr − xs : r, s ∈ N and r > s > `}

and d(E) = α. Pick by Lemma 2.1 some k < n ≤ ` such that d((E−xk)∩(E−xn)) > 0.
In particular (E − xk) ∩ (E − xn) 6= ∅ so pick r > s > ` and t > m > ` such that
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xr − xs − xk = xt − xm − xn. Then r > s > ` ≥ n > k and xr − xs + xn − xk = xt − xm

as required. []

We now set out to show that we can produce sets B with d(D(B)) arbitrarily close
to 1/2 such that D(B) does not contain FS(〈an〉5n=1) for any a1, a2, a3, a4, a5. (Here
FS(〈an〉mn=1) = {

∑
n∈F an : ∅ 6= F ⊆ {1, 2, . . . ,m}}.) We first introduce the sets B

(whose dependence on α is suppressed).

3.3 Definition. Fix α ∈ N with α > 4. Let 〈xn〉∞n=1 enumerate in increasing order
(N2+1)∩(

⋃∞
t=0{2αt+2, 2αt+2+1, . . . , 2αt+α−2−1}). Let B = {2αn : n ∈ N}∪{2αn+xn :

n ∈ N}.

One sees immediately that one can get a1, a2, a3, and a4 with FS(〈an〉4n=1) ⊆ D(B).
Indeed let s < m be given, pick ` and r such that 2αr+2 < x` < x`+2αm−2αs < 2αr+α−2,
let xk = x` + 2αm − 2αs, and pick v and t such that 2αt+2 < xv < xv + 2αk − 2αs <

2αt+α−2. Then let a1 = 2αm − 2αs = xk − x` , a2 = 2α` − 2αm, a3 = 2αk − 2α`, and
a4 = xv. Then FS(〈an〉4n=1) ⊆ D(B). In fact, one can show that any sequence of
length 4 with its sums contained in D(B) must fit this description. The computations
are longer and more painful than those on which we are embarking, so we omit them.

3.4 Definition. Let α and 〈xn〉∞n=1 be as in Definition 3.3. Then A1 = {xn : n ∈
N}, A2 = {2αn + xn − 2αm : n, m ∈ N and m < n}, A3 = {2αn − 2αm − xm : n, m ∈ N
and m < n}, A4 = {2αn−2αm : n, m ∈ N and m < n}, and A5 = {2αn +xn−2αm−xm :
n, m ∈ N and m < n}.

Observe that D(B) =
⋃5

i=1 Ai.

We next prove two lemmas to aid in our computations.

3.5 Lemma. Let n1, n2,m1,m2 ∈ N and let γ1, γ2, δ1, δ2 ∈ {0, 1} with n2 ≥ n1 and
m2 ≥ m1. If 2αn2 + 2αn1 + γ2xn2 + γ1xn1 = 2αm2 + 2αm1 + δ2xm2 + δ1xm1 , then

(1) (n2, n1, γ2, γ1) = (m2,m1, δ2, δ1) or
(2) n2 = n1 and (n2, n1, γ2, γ1) = (m2,m1, δ1, δ2).

Proof. We assume without loss of generality that n2 ≥ m2. If we had n2 >

m2 we would have 2αm2 + 2αm1 + δ2xm2 + δ1xm1 < 4 · 2αm2 = 2αm2+2 < 2αn2 <

2αn2 + 2αn1 + γ2xn2 + γ1xn1 , a contradiction. Thus n2 = m2. Assume first that
γ2 6= δ2 and assume without loss of generality that γ2 = 1 and δ2 = 0. Then xn2 =
2αm1 − 2αn1 + δ1xm1 − γ1xn1 . We claim m1 = n1. If we had m1 < n1 we would
have xn2 ≤ 2αm1 − 2αn1 + δ1xm1 < 2 · 2αm1 − 2αn1 < 0. Suppose now m1 > n1. Then
xn2 < 2αm1+δ1xm1 < 2αm1+1 and xn2 ≥ 2αm1−2αn1−γ1xn1 > 2αm1−2·2αn1 > 2αm1−1.
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But for some r we have 2αr+2 < xn2 < 2αr+α−2, a contradiction. Thus m1 = n1 so
xn2 = (δ1 − γ1) ·xn1 and hence δ1 = 1, γ1 = 0 and n1 = n2 so that conclusion (2) holds.

Now assume γ2 = δ2. Then we have 2αm1 + γ1n1 = 2αm1 + δ1m1. As in the first
paragraph we see n1 = m1 so γ1n1 = δ1n1 so γ1 = δ1. []

3.6 Lemma. Let n1, n2, n3,m1,m2,m3 ∈ N and let γ1, γ2, γ3, δ1, δ2, δ3 ∈ {0, 1}
with n3 ≥ n2 ≥ n1 and m3 ≥ m2 ≥ m1. Assume 2αn3 + 2αn2 + 2αn1 + γ3xn3 +
γ2xn2 + γ1xn1 = 2αm3 + 2αm2 + 2αm1 + δ3xm3 + δ2xm2 + δ1xm1 . Then some one of
the following conclusions holds. In any event we have γ1 + γ2 + γ3 = δ1 + δ2 + δ3 and
max{n1, n2, n3} = max{m1,m2,m3}.

(1) (n3, n2, n1, γ3, γ2, γ1) = (m3,m2,m1, δ3, δ2, δ1)
(2) n2 = n1 and (n3, n2, n1, γ3, γ2, γ1) = (m3,m2,m1, δ3, δ1, δ2)
(3) n3 = n2 and (n3, n2, n1, γ3, γ2, γ1) = (m3,m2,m1, δ2, δ3, δ1)
(4) n3 = n2 = n1 and (n3, n2, n1, γ3, γ2, γ1) = (m3,m2,m1, δ1, δ2, δ3)
(5) (n3, n2, γ3, γ2, γ1) = (m3,m2, δ2, δ3, δ1) and γ3 6= γ2 and n1 6= m1.

Proof. We assume without loss of generality that n3 ≥ m3. If we had n3 > m3

we would have 2αm3 + 2αm2 + 2αm1 + δ3xm3 + δ2xm2 + δ1xm1 < 6 · 2αm3 < 2αn3 <

2αn3 +2αn2 +2αn1 +γ3xn3 +γ2xn2 +γ1xn1 , a contradiction. Thus we must have n3 = m3.
If also γ3 = δ3 we have 2αn2 + 2αn1 + γ2xn2 + γ1xn1 = 2αm2 + 2αm1δ2xm2 + δ1xm1 so
Lemma 3.5 applies and yields conclusion (1) or conclusion (2).

Thus we assume γ3 6= δ3 and assume without loss of generality that γ3 = 1 and
δ3 = 0. Then xn3 = 2αm2 − 2αn2 + 2αm1 − 2αn1 + δ2xm2 − γ2xn2 + δ1xm1 − γ1xn1 . We
observe that if we had m2 < n2 we would have xn3 < 4 ·2αm2 −2αn2 < 0. Consequently
m2 ≥ n2. We claim in fact m2 = n2 so suppose instead that m2 > n2. Then xn3 <

4 · 2αm2 = 2αm2+2 and xn3 > 2αm2 − 4 · 2αn2 > 2αm2−1. But there is some r ∈ N such
that 2αr+2 < xn3 < 2αr+α−2, a contradiction. Thus m2 = n2 as claimed. Consequently
we have xn3 = 2αm1 − 2αn1 + (δ2 − γ2)xn2 + δ1xm1 − γ1xn1 .

Case 1. δ2 = γ2. Then we have xn3 = 2αm1 − 2αn1 + δ2xm1 − γ1xn1 . Reasoning as
above we conclude m1 = n1. Then xn3 = (δ1 − γ1) · xn1 so δ1 = 1, γ1 = 0, and n3 = n1.
Then conclusion (4) holds.

Case 2. δ2 6= γ2. We claim that we must have δ2 = 1 and γ2 = 0. To see this
suppose instead δ2 = 0 and γ2 = 1. Then xn3 = 2αm1 − 2αn1 − xn2 + δ1xm1 − γ1xn1 .
One cannot have n1 > m1 for then one would have xn3 < 0. If we had n1 = m1 we
would have xn3 = −xn2 + (δ1 − γ1)xn1 . Since xn3 > 0 one would have to have δ1 = 1
and γ1 = 0. But then one would have xn3 + xn2 = xn1 forcing xn1 to be even. Thus
one must have n1 < m1.
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Now we claim that xn2 > 2αm1−1. Suppose instead that xn2 < 2αm1−1. Now
xn3 < 2 · 2αm1 and for some r 2αr+2 < xn3 < 2αr+α−2 so xn3 < 2αm1−2. That is
2αm1 − 2αn1 − xn2 + δ1xm1 − γ1xn1 < 2αm1−2 so 2αm1 + δ1xm1 < 2αm1−2 + 2αn1 +
xn2 + γ1xn1 < 2αm1−2 + 2αm1−2 + 2αm1−1 = 2αm1 , a contradiction. Thus we have
xn2 > 2αm1−1.

But now for some s we have 2αs+2 < xn2 < 2αs+α−2 so xn2 > 2αm1+2. But then
we have xn3 = 2αm1 − 2αn1 − xn2 + δ1xm1 − γ1xn1 < 2αm1 + δ1xm1 − 2αm1+2 < 0 , a
contradiction. Thus we have established that δ2 = 1 and γ2 = 0.

Then we have that xn3 = 2αm1 − 2αn1 + xm2 + δ1xm1 −γ1xn1 . Since xn3 , xm2 , xm1 ,
and xn1 are all odd we conclude δ1 = γ1. If also m1 = n1 we conclude that xn3 = xm2

so n3 = m2 = n2 and conclusion (3) holds. Thus we assume m1 6= n1. In this case
conclusion (5) holds. []

We now begin an embarrassingly long sequence of computational lemmas.

3.7 Lemma. If a, b ∈ A1 ∪A2 then a + b /∈ D(B).

Proof. Suppose a, b ∈ A1 ∪ A2 and a + b ∈ D(B). Then a + b is even so a + b ∈
A4∪A5. Pick s < r and δ ∈ {0, 1} such that a+b = 2αr−2αs +δ(xr−xs). We consider
3 cases.

Case 1. a, b ∈ A1. Pick n, m ∈ N such that a = xn and b = xm. Then xn + xm +
2αs + δxs = 2αr + δxr so adding 2αn + 2αm to both sides we get by Lemma 3.6 that
1 + 1 + δ = δ, a contradiction.

Case 2. a, b ∈ A2. Pick m < n and ` < k such that a = 2αn + xn − 2αm and
b = 2αk + xk − 2α`. Then 2αn + xn − 2αm + 2αk + xk − 2α` = 2αr − 2αs + δ(xr − xs) so
2αn +2αk +2αs +xn +xk + δxs = 2αr +2αm +2α` + δxr so by Lemma 3.6, 1+1+ δ = δ,
a contradiction.

Case 3. Not case 1 or case 2. Without loss of generality a ∈ A1 and b ∈ A2. Pick n

such that a = xn and pick ` < k such that b = 2αk +xk−2α`. Then xn+2αk +xk−2α` =
2αr − 2αs + δ(xr − xs) so we again get a contradiction using Lemma 3.6. []

3.8 Lemma. If a, b ∈ A3, then a + b /∈ D(B).

Proof. Pick n > m and k > ` such that a = 2αn−2αm−xm and b = 2αk−2α`−x`.
Suppose a + b ∈ D(B), in which case since it is even, a + b ∈ A4 ∪ A5. Pick δ ∈ {0, 1}
and s < r such that a + b = 2αr − 2αs + δ(xr − xs). Then 2αn + 2αk + 2αs + δxs =
2αr + 2αm + 2α` +x` +xm + δxr so that by Lemma 3.6, δ = 1 + 1 + δ, a contradiction. []

3.9 Lemma. Let m < n and ` < k be given and let a = 2αn − 2αm − xm and
b = 2αk − 2α`. If a + b ∈ D(B), then ` = n.
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Proof. Since a+ b is odd we have a+ b ∈ A1 or a+ b ∈ A2 or a+ b ∈ A3. We show
first that the first two possibilities cannot hold. Indeed if we had a + b ∈ A1, then for
some r, 2αn − 2αm − xm + 2αk − 2α` = xr so that 2αn + 2αk + 2αr = 2αm + 2α` + 2αr +
xm + xr so that by Lemma 3.6, 1 + 1 = 0. A similar contradiction is obtained from the
assumption that a + b ∈ A2. Thus we may pick s < r such that a + b = 2αr − 2αs − xs.
Then 2αn + 2αk + 2αs + xs = 2αr + 2αm + 2α` + xm. By Lemma 3.6 we have that
max{n, k, s} = max{r, m, `}. Since ` < k ≤ max{n, k, s} we have ` 6= max{r, m, `}.
Similarly m 6= max{r, m, `} and s 6= max{n, k, s}. Thus max{r, m, `} = r. Assume first,
k ≤ n. Then n = max{n, k, s} so n = r so 2αk + 2αs +xs = 2αm +2α` +xm. By Lemma
3.5 we have max{k, s} = max{m, `}. Since ` < k we have ` 6= max{m, `} so ` < m so
conclusion (2) of Lemma 3.5 cannot hold. If we had k ≤ s we would have (m, `) = (s, k),
while ` < k. Thus s < k so (k, s, 0, 1) = (m, `, 1, 0), a contradiction. Thus we have n < k

so that k = max{n, k, s} and hence k = r. Then 2αn + 2αs + xs = 2αm + 2α` + xm.
By Lemma 3.5 max{n, s} = max{m, `}. Since m < n we have m 6= max{m, `} so
(`,m) = (n, s) or (`,m) = (s, n). The latter is impossible since m < n so in particular
n = `. []

3.10 Lemma. Let ` < k and m < n in N be given with k ≥ n and let µ, τ ∈ {0, 1}.
Let a = 2αk − 2α` + τ(xk − x`) and let b = 2αn − 2αm + µ(xn − xm) and assume that
a + b ∈ D(B). Then some one of the following holds:

(1) n = ` and µ = τ ;
(2) n = ` and µ = 0 and τ = 1 and there is some v < m such that xk − x` =

2αm − 2αv;
(3) n ≤ ` and µ = 1 and τ = 0 and there is some v > m such that xk − x` =

2αv − 2αm + xv − xm; if n < `, then v = n; or
(4) n ≤ ` and µ = τ = 0 and xk − x` = 2αn − 2αm.

Proof. Since a + b is even we must have a + b ∈ A4 ∪ A5. So pick r > s in N and
ν ∈ {0, 1} such that a+b = 2αr−2αs+ν(xr−xs). Then 2αk+2αn+2αs+τxk+µxn+νxs =
2αr + 2α` + 2αm + νxr + τx` + µxm. By Lemma 3.6, max{k, n, s} = max{r, `, m}. Since
` < k,m < n, and s < r we have max{r, `, m} = r and s 6= max{k, n, s}. Since k ≥ n,
k = max{k, n, s}.

Case 1. n ≥ s. If we had m ≥ ` we would then have k ≥ n ≥ s and r > m ≥ ` so
that by Lemma 3.6 we would have (k, n) = (r, m) while m < n. Thus ` > m. We then
have k ≥ n ≥ s and r > ` > m so by Lemma 3.6 some one of the following holds:

(a) (k, n, s, τ, µ, ν) = (r, `, m, ν, τ, µ),
(b) n = s and (k, n, s, τ, µ, ν) = (r, `, m, ν, µ, τ),
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(c) k = n and (k, n, s, τ, µ, ν) = (r, `, m, τ, ν, µ),
(d) k = n = s and (k, n, s, τ, µ, ν) = (r, `, m, µ, τ, ν), or
(e) (k, n, τ, µ, ν) = (r, `, τ, ν, µ) and τ 6= µ and s 6= m.
If µ = τ we have that conclusion (1) of the current lemma holds. So assume µ 6= τ .

This eliminates (a) and (d) above. The fact that m < ` eliminates (b) above. The fact
that ` < k eliminates (c) above. Thus we have (e) must hold. Observe also that τ 6= ν.
(If so one would have 2αn +2αs +µxn +νxs = 2α` +2αm +τx` +µxm so that by Lemma
3.5 one would have m = s, which is forbidden by (e).)

There are thus two possibilities. First one could have µ = ν = 0 and τ = 1. In this
case 2αs + xk = 2αm + x` so 2αm − 2αs = xk − x` > 0 so s < m and conclusion (2) of
the current lemma holds. Second one could have µ = ν = 1 and τ = 0. In this case
2αs + x` + xs = 2αm + xk + xm so that xk − x` = 2αs − 2αm + xs − xm and conclusion
(3) of the current lemma holds.

Case 2. n < s. Since s < r = k we have then k > s > n. By Lemma 3.6 we
then have that (k, s) = (r, `) or (k, s) = (r, m). Since m < n, the latter alternative is
impossible and hence m < `. Also ` < k = r so we have r > ` > m. Since n 6= m we have
only one possibility from Lemma 3.6, namely that (k, s, τ, ν, µ) = (r, `, τ, ν, µ) and τ 6= ν.
Since k = r and s = ` we then have 2αn + τxk + µxn + νx` = 2αm + νxk + τx` + µxm.
Suppose τ = 1. Then we have ν = 0 so xk − x` = 2αm − 2αn + µ(xm − xn) < 0, which
is impossible. Thus τ = 0 and ν = 1 and hence xk − x` = 2αn − 2αm + µ(xn − xm). If
µ = 1 this gives conclusion (3) of the current lemma while if µ = 0 it gives conclusion
(4). []

3.11 Lemma. Assume a ≥ b ≥ c and {a, b, c} ⊆ A4 ∪ A5 and {a + b, a + c, b +
c, a + b + c} ⊆ D(B). Then there exist k > ` > m > s in N such that a = 2αk − 2α`,
b = 2α` − 2αm, and c = 2αm − 2αs = xk − x`.

Proof. Since a, b, and c are in A4 ∪A5 we have k > ` ,n > m, and r > s in N and
τ, µ, ν in {0, 1} such that a = 2αk − 2α` + τ · (xk − x`), b = 2αn − 2αm + µ · (xn − xm)
and c = 2αr − 2αs + ν · (xr − xs). Since a ≥ b ≥ c we have k ≥ n ≥ r. Applying Lemma
3.10 to a + b we have one of:

(1) n = ` and µ = τ ;
(2) n = ` and µ = 0 and τ = 1 and there is some v < m such that xk − x` =

2αm − 2αv;
(3) n ≤ ` and µ = 1 and τ = 0 and there is some v > m such that xk − x` =

2αv − 2αm + xv − xm; if n < `, then v = n; or
(4) n < ` and µ = τ = 0 and xk − x` = 2αn − 2αm.
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Applying Lemma 3.10 to b + c we have one of:

(1)′ r = m and ν = µ;

(2)′ r = m and ν = 0 and µ = 1 and there is some t < s such that xn − xm =
2αs − 2αt;

(3)′ r ≤ m and ν = 1 and µ = 0 and there is some t > s such that xn − xm =
2αt − 2αs + xt − xs; if r < m, then t = r; or

(4)′ r < m and ν = µ = 0 and xn − xm = 2αr − 2αs.

Now from (1)′, (2)′,(3)′ and (4)′ we see that in any event r ≤ m and from (1), (2),
(3) and (4) we see that n ≤ `. Thus r ≤ m < n ≤ `. Thus applying Lemma 3.10 to
a + c we have one of:

(3)* r < ` and ν = 1 and τ = 0 and xk − x` = 2αr − 2αs + xr − xs; or

(4)* r < ` and ν = τ = 0 and xk − x` = 2αr − 2αs.

We show first that (1) must hold. From (3)* or (4)* we conclude τ = 0 so (2)
cannot hold.

Now suppose that (3) or (4) holds and pick v > m and γ ∈ {0, 1} such that
xk − x` = 2αv − 2αm + γ · (xv − xm). Since (3)* or (4)* holds pick λ ∈ {0, 1} such that
xk−x` = 2αr−2αs +λ · (xr−xs). Then 2αv +2αs +γxv +λxs = 2αr +2αm +λxr +γxs.
Since s < r and m < v we conclude from Lemma 3.5 that (v, s) = (r, m). But we have
already observed that r ≤ m so r ≤ m = s < r, a contradiction.

We have thus established that (1) holds. In particular we know µ = τ from (1) and
τ = 0 from (3)* or (4)* so µ = τ = 0. We now show that (1)′ holds. Since µ = 0 we
know (2)′ cannot hold.

Since (1) holds we know that a = 2αk − 2α` and b = 2α` − 2αm so that a + b + c =
2αk − 2αm + 2αr − 2αs + ν · (xr − xs). Also a + b + c ∈ A4 ∪A5 so pick w > u in N and
ρ ∈ {0, 1} such that a+b+c = 2αw−2αu+ρ·(xw−xu). Then 2αk+2αr+2αu+νxr+ρxu =
2αw + 2αm + 2αs + ρxw + νxs. Now max{k, r, u} = max{w,m, s} and m < k and s < r

so w = max{w,m, s}. Also m ≥ r > s so we have w > m > s. Since r ≤ m < k

and u < w we have k = max{k, r, u}. Thus k = w. We suppose (3)′ or (4)′ holds and
consider two cases.

Case 1. m = r. Then (4)′ cannot hold so (3)′ holds and hence ν = 1. We also
conclude that r ≥ u. (For if r < u then by Lemma 3.6 we have (k, u) = (w,m) so
m = u > r = m.) Now since w > m > s the only possibilities in Lemma 3.6 are for
conclusion (1) or (5) to hold. If conclusion (1) held we would have (k, r, u, 0, 1, ρ) =
(w,m, s, ρ, 0, 1) which is impossible. Thus (k, r, 0, 1, ρ) = (w,m, 0, ρ, 1) so ρ = 1. Thus
we have 2αu + xm + xu = 2αs + xk + xs so xk − xm = 2αu − 2αs + xu − xs and hence
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u > s. Also by (3)′ pick t > s such that xn − xm = 2αt − 2αs + xt − xs. Since
ν = 1, (3)* holds so we have xk − x` = 2αr − 2αs + xr − xs. Since ` = n we then
have xk − xm = 2αt + 2αr − 2 · 2αs + xt + xr − 2 · xs. Thus 2αu − 2αs + xu − xs =
2αt + 2αr − 2 · 2αs + xt + xr − 2 · xs so that 2αu + 2αs + xu + xs = 2αt + 2αr + xt + xr.
Thus by Lemma 3.5 we have (u, s) = (t, r) or (u, s) = (r, t). But r > s and t > s, a
contradiction.

Case 2. m > r. Then from (3)′ or (4)′ we have that xn−xm = 2αr−2αs+ν ·(xr−xs).
Now w > m > s and (w,m) 6= (k, r) so by Lemma 3.6 we must have k > u > r. Since
s < r we must then have conclusion (5) of Lemma 3.6 must hold and consequently ρ 6= 0,
i.e. ρ = 1. Thus 2αr +νxr +xm = 2αs+νxs+xk so that xk−xm = 2αr−2αs+ν ·(xr−xs)
so xk − xm = xn − xm and hence k = n. Since n = ` < k, this is a contradiction.

Thus we have established that (1)′ holds. Thus µ = τ = ν so (3)* does not hold
so (4)* holds. The conjunction of (1), (1)′, and (4)* is precisely the conclusion of this
lemma. []

3.12 Lemma. Let a1, a2, a3, and a4 in N be given such that FS(〈an〉4n=1) ⊆ D(B).
Then there is some i ∈ {1, 2, 3, 4} such that ai ∈ A1 ∪ A2 and {aj : j ∈ {1, 2, 3, 4} and
j 6= i} ⊆ A4 ∪A5.

Proof. Suppose first that {a1, a2, a3, a4} ⊆ A4 ∪ A5 and assume without loss of
generality that a1 ≥ a2 ≥ a3 ≥ a4. Applying Lemma 3.11 to a1, a2, and a3 we pick
k > ` > m > s in N such that a1 = 2αk − 2α`, a2 = 2α` − 2αm, and a3 = 2αm − 2αs.
Applying Lemma 3.11 to a1, a3, and a4 we conclude that m = `, a contradiction.

Now by Lemma 3.7 at most one i has ai ∈ A1 ∪A2 and by Lemma 3.8 at most one
i has ai ∈ A3 so to complete the proof it suffices to show that no ai ∈ A3. Suppose we
have some ai ∈ A3 and assume without loss of generality that a1 ∈ A3.

Case 1. Some j has aj ∈ A1∪A2. Without loss of generality a2 ∈ A1∪A2. We may
further assume without loss of generality that a3 ≥ a4. Since FS(< a1 + a2, a3, a4 >

) ⊆ A4 ∪A5 we have by Lemma 3.11 some k > ` ≥ m > s such that a3 = 2αk − 2α` and
a4 = 2αm − 2αs. (If a1 + a2 is between a3 and a4 we have ` > m. Otherwise equality
holds). Pick u > v in N such that a1 = 2αu − 2αv − xv. Since a1 + a3 ∈ D(B) we have
by Lemma 3.9 that ` = u. Since a1 + a4 ∈ D(B) we have by Lemma 3.9 that s = u.
But s < `, a contradiction.

Case 2. {a2, a3, a4} ⊆ A4 ∪ A5. Without loss of generality a2 ≥ a3 ≥ a4. Then by
Lemma 3.11 we have some k ≥ ` > m > s such that a2 = 2αk−2α`, a3 = 2α`−2αm, and
a4 = 2αm − 2αs. Applying Lemma 3.9 to (a1, a2) and (a1, a4) we again get ` = u = s, a
contradiction. []
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We temporarily abandon our assumption that α has a fixed value in order to state
the next theorem.

3.13 Theorem. Let ε > 0 be given. There is a set B ⊆ N with d(D(B)) > 1/2 − ε

such that no a1, a2, a3, a4, and a5 have FS(〈an〉5n=1) ⊆ D(X).

Proof. Pick α ∈ N such that 1/2α−5 < ε. Define B as in Definition 3.3. Ob-
serve that A1 ⊆ D(B) and d(A1) ≥ 1/2 − 1/2α−5 since |A1 ∩ {1, 2, . . . , 2αt+α−2}| ≥
1
2 ((2αt+α−2 − 2αt+2)).

Suppose now one has a1, a2 , a3, a4, and a5 with FS(〈an〉5n=1) ⊆ D(B). Applying
Lemma 3.12 first to a1, a2, a3, and a4 one has without loss of generality that a1 ∈ A1∪A2

and {a2, a3, a4} ⊆ A4 ∪ A5. Applying Lemma 3.12 to a2, a3, a4, and a5 one sees that
a5 ∈ A1 ∪A2. Then applying Lemma 3.7 to a1 and a5 one obtains a contradiction. []

We close with two questions which are raised by Theorems 3.2 and 3.13.

3.14 Question. If B ⊆ N and d(D(B)) > 0, must there exist a1, a2, a3, and a4 in
N with FS(〈an〉4n=1) ⊆ D(B)?

Since always d(B ∩ (B − t)) ≥ 2 · d(B) − 1, one easily sees that if d(D(X)) >

1− 1/2m−1, there will exist a1, a2, . . . , am with FS(〈ai〉mi=1) ⊆ D(X). (See [8, Theorem
4.5].) To utilize this to obtain FS(〈an〉5n=1) one needs d(D(X)) > 1 − 1/16.

3.15 Question. If d(D(X)) = 1/2 or even if d(D(X)) > 1/2 must there exist a1,
a2, a3, a4, and a5 in N with FS(〈an〉5n=1) ⊆ D(X)?
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