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Density in Arbitrary Semigroups

Neil Hindman1

and

Dona Strauss

Abstract. We introduce some notions of density in an arbitrary semigroup S which
extend the usual notions in countable left amenable semigroups in which density is
based on Følner sequences. The new notions are based on nets of finite sets. We show
that under certain conditions on the nets and on S these notions relate nicely to some
established notions of size in S such as central , syndetic, and piecewise syndetic. And
we investigate the conditions under which these notions have other desirable proper-
ties such as translation invariance. We obtain new information about the algebraic
structure of the Stone-Čech compactification βS of S and derive generalizations of
some known Ramsey Theoretic results, including Bergelson’s density version of Schur’s
Theorem.

1. Introduction

Our starting point is various notions of size in the set N of positive integers. One of
the earliest of these (whose origin is lost in antiquity) is the notion of upper asymptotic
density which is defined by

d(A) = lim sup
n→∞

|A ∩ {1, 2, . . . , n}|
n

.

This notion has some nice properties. It is partition regular in the sense that if
d(A ∪ B) > 0, then either d(A) > 0 or d(B) > 0. (More generally, a family of
subsets of a set S is partition regular for S if and only if whenever S is partitioned
into finitely many cells, one of these cells must contain a member of the given family.)
And it is translation invariant in the sense that d(x + A) = d(A) = d(−x + A) for all
x ∈ N (where −x + A = {y ∈ N : x + y ∈ A}). And, while d is not additive, it is
for translations of a given set. That is if x, y ∈ N and d

(
(x + A) ∩ (y + A)

)
= 0, then

d
(
(x + A) ∪ (y + A)

)
= d(x + A) + d(y + A).

The related notion of lower asymptotic density , defined by

d(A) = lim inf
n→∞

|A ∩ {1, 2, . . . , n}|
n

,

1This author acknowledges support received from the National Science Foundation (USA) via
grants DMS-0243586 and DMS-0554803.
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is not as nicely behaved, although sets for which d(A) = d(A) are of considerable
interest.

Another notion of density for subsets of N was introduced by Polya [20] in 1929:

d∗(A) = sup
{

α : (∀m ∈ N)(∃n ≥ m)(∃x ∈ N)(
|A ∩ {x + 1, x + 2, . . . , x + n}|

n
≥ α

}
.

This notion is also partition regular, translation invariant, and additive for translations.

Now let us consider several other notions of size, whose origins come from topolog-
ical dynamics. (Given a set X we write Pf (X) for the set of finite nonempty subsets of
X.)

1.1 Definition. Let A ⊆ N.

(a) A is thick if and only if for every n ∈ N there exists x ∈ N such that
{x + 1, x + 2, . . . , x + n} ⊆ A.

(b) A is syndetic if and only if there exists n ∈ N such that for every x ∈ N,
{x + 1, x + 2, . . . , x + n} ∩A 6= ∅.

(c) A is piecewise syndetic if and only if there exists b ∈ N such that
⋃b

t=1(−t + A) is
thick.

(d) A is a ∆-set if and only if there exists a sequence 〈xn〉∞n=1 in N such that {xm−xn :
n < m} ⊆ A.

(e) A is an IP-set if and only if there exists a sequence 〈xn〉∞n=1 in N such that
FS(〈xn〉∞n=1) = {

∑
n∈F xn : F ∈ Pf (N)} ⊆ A.

Another important notion of size was introduced by Furstenberg in [13], namely
that of central sets. These sets are most easily defined in terms of the algebraic structure
of the semigroup (βN,+) so we will postpone the definition until we have discussed that
structure.

Several of these notions have important applications in Ramsey Theory. For exam-
ple, any piecewise syndetic set contains arbitrarily long arithmetic progressions and any
central set in N contains a solution set for any partition regular system of homogeneous
linear equations. See [16, Part III] for details and many more examples.

Finally, given any notion of size, say P , there is the corresponding notion P ∗. A
set A is a P ∗-set if and only if it has nonempty intersection with every P -set. (Notice
that a thick set is the same as a syndetic* set.) We abbreviate (piecewise syndetic)* by
PS*.

One has then that the following relationships among these notions hold for subsets
of N and none of the missing implications is valid. Once we have introduced algebraic
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characterizations of these notions, most of the implications become trivial. Examples
establishing that none of the missing implications hold are provided in [6, p. 24] and
[4, Theorem 2.20], the latter being an old result of Ernst Straus.

∆*
↓
IP* PS*
↘ ↙↓

central* thick←−−→ d∗ = 1

↙ ↓ ↙
syndetic central
↙ ↓ ↙ ↘

d > 0 piecewise IP
↓ ↓

d > 0 ∆
↘

d∗ > 0

syndetic
|
↓

Figure 1

All of the notions above except the ones involving density make sense in any semi-
group. Here are the extensions of the notions defined in Definition 1.1. In a semigroup
(S, ·), if A ⊆ S and x ∈ S, then x−1A = {y ∈ S : xy ∈ A}.

1.2 Definition. Let (S, ·) be a semigroup and let A ⊆ S.

(a) A is thick if and only if for every F ∈ Pf (S) there exists x ∈ S such that Fx ⊆ A.

(b) A is syndetic if and only if there exists H ∈ Pf (S) such that S =
⋃

t∈H t−1A.

(c) A is piecewise syndetic if and only if there exists H ∈ Pf (S) such that
⋃

t∈H t−1A

is thick.

(d) A is a ∆-set if and only if there exists a sequence 〈xn〉∞n=1 in S such that for all
n < m, xm ∈ xn ·A.

(e) A is an IP-set if and only if there exists a sequence 〈xn〉∞n=1 in S such that
FP (〈xn〉∞n=1) = {

∏
n∈F xn : F ∈ Pf (N)} ⊆ A, where the products are taken

in increasing order of indices.

Since we are not assuming that S is commutative, the above notions all have left-
right switches.
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Notice that “thick” is equivalent to an apparently stronger notion. That is, a subset
A of S is thick if and only if for each F ∈ Pf (S) there exists x ∈ A such that Fx ⊆ A.
To see this, pick y ∈ S such that Fy ⊆ A and pick z ∈ S such that (Fy ∪ {y})z ⊆ A.

Given an infinite semigroup (S, ·) there is an extension of the operation to the
Stone-Čech compactification βS of S such that (βS, ·) is a right topological semigroup
(meaning that for all p ∈ βS, the function ρp : βS → βS defined by ρp(q) = q · p is
continuous) with S contained in its topological center (meaning that for all x ∈ S, the
function λx : βS → βS defined by λx(p) = x · p is continuous). We take the points of
βS to be the ultrafilters on S, identifying the points of S with the principal ultrafilters.
Given A ⊆ S and p ∈ βS, p ∈ c`A if and only if A ∈ p. Given p, q ∈ βS and A ⊆ S,
A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p.

Any compact Hausdorff right topological semigroup T has a smallest two sided
ideal K(T ) which is the union of all minimal right ideals and is the union of all minimal
left ideals. The intersection of any minimal right ideal with any minimal left ideal is a
group. In particular, there are idempotents in K(T ). Such an idempotent is said to be
minimal . (An idempotent p in T is in K(T ) if and only if it is minimal with respect to
the ordering of idempotents which has p ≤ q if and only if p = p · q = q · p.) See [16] for
proofs of the above assertions as well as any other unfamiliar algebraic facts mentioned
in this paper.

We can now provide the simple definition of central sets and simple algebraic char-
acterizations of most of the other notions defined above. (There are algebraic charac-
terizations of ∆-sets and ∆∗-sets, but they are not particularly simple. See [6, Lemma
1.9].)

1.3 Definition. Let (S, ·) be a semigroup and let A ⊆ S. Then A is central if and only
if there is a minimal idempotent p in βS such that p ∈ c`A.

1.4 Lemma. Let (S, ·) be a semigroup and let A ⊆ S.

(a) A is an IP-set if and only if there is some idempotent of βS in c`A.

(b) A is piecewise syndetic if and only if c`A ∩K(βS) 6= ∅.
(c) A is syndetic if and only if for every left ideal L of βS, L ∩ c`A 6= ∅.
(d) A is thick if and only if there is some left ideal of βS contained in c`A.

(e) A is a central*-set if and only if every minimal idempotent of βS is in c`A.

(f) A is a PS*-set if and only if K(βS) ⊆ c`A.

(g) A is an IP*-set if and only if every idempotent of βS is in c`A.
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Proof. Statement (a) is [16, Theorem 5.12]. Statement (b) is [16, Theorem 4.40].
Statement (c) is [7, Theorem 2.9(d)]. Statements (d), (f), and (g) follow from statements
(c), (b), and (a) respectively (using the fact that “thick” is syndetic*) and statement
(e) follows from the definition of central.

All of the implications in Figure 1 among the notions of largeness that do not involve
density follow immediately from Lemma 1.4 and the fact that if FP (〈xn〉∞n=1) ⊆ A and
yn =

∏n
t=1 xt, then whenever n < m, ym ∈ yn · A, so any IP-set is a ∆-set and any

∆∗-set is an IP*-set.

In (N,+) if n ∈ N and for every x ∈ N, {x + 1, x + 2, . . . , x + n} ∩ A 6= ∅, then
d(A) ≥ 1

n . That A is thick if and only if d∗(A) = 1 is routine. It is also relatively easy
to establish that if A is piecewise syndetic, then d∗(A) > 0. However that statement
also follows from the fact that the set D* defined below is a two sided ideal of (βN,+)
[16, Theorems 20.5 and 20.6]. By contrast, the sets D and βN \ (N ∪D) are both left
ideals of (βN,+) [16, Theorems 6.79 and 6.80], so that D is far from being a right ideal.
(We customarily use the notations ∆∗ and ∆ for D* and D, but do not wish to cause
confusion here with the notions of ∆∗-set and ∆-set.)

1.5 Definition.

(a) D* = {p ∈ βN : (∀A ∈ p)(d∗(A) > 0)}.
(b) D = {p ∈ βN : (∀A ∈ p)(d(A) > 0)}.

By way of contrast with the notions of thick, central, syndetic, piecewise syndetic,
IP, and ∆ and their duals, the various notions of density appear to only have been
studied in a limited class of semigroups, namely those which contain a Følner sequence,
a proper subclass of the left amenable semigroups.

A semigroup S is left amenable if and only if there exists a left invariant mean µ

on the space of bounded real (or complex) valued functions on S under the supremum
norm. That is µ is a positive linear functional, the norm of µ is 1, and for every bounded
f : S → R and every x ∈ S, µ(f ◦ λs) = µ(f). Right amenable semigroups are defined
similarly. For groups left and right amenability are equivalent and such groups are
called simply amenable.

In [11] Følner showed that any amenable group S satisfies a condition which we de-
note (FC) (for Følner Condition) and Frey [12] showed that any left amenable semigroup
satisfies (FC). (For a simplified proof see [18].)

(FC)
(
∀H ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ H

)(
|sK \K| < ε · |K|

)
.
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In [1] Argabright and Wilde introduced a Strong Følner Condition and showed that any
semigroup satisfying (SFC) is left amenable. In particular, if S is left cancellative, then
left amenability, (FC), and (SFC) are equivalent. They also showed that all commutative
semigroups satisfy (SFC). In [17] Klawe showed that certain semidirect products of
semigroups satisfying (SFC) also satisfy (SFC). We shall have more to say about these
products in Section 4, including some details.

(SFC)
(
∀H ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ H

)(
|K \ sK| < ε · |K|

)
.

Notice that (using an argument borrowed from [19]) for any K ∈ Pf (S) and any
s ∈ S, |K \sK| = |K|−|K∩sK| and |sK \K| = |sK|−|K∩sK| so |K \sK|−|sK \K| =
|K| − |sK| ≥ 0 so |K \ sK| ≥ |sK \K|. Thus one has directly that (SFC) implies (FC)
and that (SFC) may be restated in the following apparently stronger form.

(SFC)
(
∀H ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ H

)(
|K 4 sK| < ε · |K|

)
.

If S is countable, it is easy to see that (SFC) is equivalent to the existence of a left
Følner sequence in Pf (S).

1.6 Definition. Let S be a semigroup. A left Følner sequence in Pf (S) is a sequence

〈Fn〉∞n=1 in Pf (S) such that for each s ∈ S, lim
n→∞

|sFn 4 Fn|
|Fn|

= 0.

Given a left Følner sequence F = 〈Fn〉∞n=1 in S, there is a natural notion of upper
density associated with F , namely

dF (A) = lim sup
n→∞

|A ∩ Fn|
|Fn|

.

The first specific mention of this density that we can find in the literature is in [10] by
P. Feit. (Følner sequences in Zn are defined by Furstenberg in [13].) This density shares
with the densities d and d∗ in (N,+) the property of partition regularity and, if S is
left cancellative, it is also left translation invariant and left inverse translation invariant
and additive for translates.

Of course, if S does not satisfy (SFC), in particular if S is not left amenable, then
one can not define density in this fashion. Also, if S is uncountable and satisfies a
very weak form of right cancellation, there do not exist any Følner sequences in S.
(Specifically, assume that |S| = κ > ω and either (i) The cofinality of κ is uncountable
and for each a, b ∈ S, |{s ∈ S : sa = b}| < κ or (ii) there exists δ < κ such that for each
a, b ∈ S, |{s ∈ S : sa = b}| ≤ δ. Then given any sequence 〈Fn〉∞n=1 in Pf (S) one can
choose x ∈ S such that xFn ∩ Fn = ∅ for all n ∈ N.)

In Section 2 of this paper we define a notion of density determined by a net in
Pf (S) and derive conditions which guarantee that this density has some or all of the
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desirable properties that we have described above. In Section 3 we consider density
determined by a net of finite products of a set of generators of S, showing that it often
provides a reasonable notion of density even in some nonamenable semigroups such
as free semigroups. In Section 4 we introduce Følner nets, the natural analogue for
uncountable semigroups of Følner sequences. Such nets exist precisely in semigroups
satisfying (SFC). We show that such semigroups have a single naturally defined notion
of density which is very well behaved. In Section 5 we present some applications to
Ramsey Theory and the structure of βS.

Several of our results require a weak form of right or left cancellation, so we intro-
duce terminology for these.

1.7 Definition. Let S be a semigroup and let b ∈ N. Then S is b-weakly left cancellative
(respectively b-weakly right cancellative) if and only if for all x, y ∈ S, |{s ∈ S : xs =
y}| ≤ b (respectively |{s ∈ S : sx = y}| ≤ b).

Recall that weakly left cancellative means that for all x, y ∈ S, {s ∈ S : xs = y} is
finite, so the above is a stronger assumption.

2. Density determined by nets in Pf(S)

Given any net in Pf (S), there are corresponding natural notions of density for subsets
of S.

2.1 Definition. Let S be a semigroup, let F = 〈Fn〉n∈D be a net in Pf (S), and let
A ⊆ S.

(a) dF (A) = sup{α : (∃m ∈ D)(∀n ≥ m)(|A ∩ Fn| ≥ α · |Fn|)}.
(b) dF (A) = sup{α : (∀m ∈ D)(∃n ≥ m)(|A ∩ Fn| ≥ α · |Fn|)}.
(c) d∗F (A) = sup{α : (∀m ∈ D)(∃n ≥ m)(∃x ∈ S ∪ {1})(|A ∩ Fnx| ≥ α · |Fn|)}.

We are not assuming that S has an identity. When we write above that
(∃x ∈ S ∪ {1})(|A ∩ (Fn · x)| ≥ α · |Fn|) this is simply an abbreviation for “either
|A ∩ Fn| ≥ α · |Fn| or (∃x ∈ S)(|A ∩ (Fn · x)| ≥ α · |Fn|).”

Notice that if S is (N,+) and F = 〈{1, 2, . . . , n}〉n∈N then dF , dF , and d∗F are
respectively d, d, and d∗ as defined in the introduction.

We shall be concerned with two subsets of βS determined by these upper densities.
Recall that in (βN,+), D∗ is a two sided ideal and D is a left ideal.
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2.2 Definition. Let S be a semigroup and let F be a net in Pf (S).

(a) DF = {p ∈ βS : (∀A ∈ p)(dF (A) > 0)}.
(b) D∗

F = {p ∈ βS : (∀A ∈ p)(d∗F (A) > 0)}.

We easily see that no extra conditions on F are required for partition regularity of
dF and d∗F .

2.3 Lemma. Let S be a semigroup and let F be a net in Pf (S). If A and B are subsets
of S, then dF (A∪B) ≤ dF (A)+dF (B) and d∗F (A∪B) ≤ d∗F (A)+d∗F (B). Consequently
if A ⊆ S and dF (A) > 0, then c`A ∩ DF 6= ∅ and if A ⊆ S and d∗F (A) > 0, then
c`A ∩D∗

F 6= ∅.

Proof. The proofs of the first two assertions are routine exercises. For the third
assertion, let R = {A ⊆ S : dF (A) > 0}. Then R is partition regular so by [16,
Theorem 3.11] there is some ultrafilter p on S with A ∈ p ⊆ R. Then p ∈ c`A ∩DF .
The proof of the fourth assertion is identical.

A weak right cancellation assumption guarantees that D∗
F is a right ideal of βS.

(We do not expect DF to be a right ideal of βS because we know D is not a right ideal
of βN.)

2.4 Theorem. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S). Assume
that there is some b ∈ N such that S is b-weakly right cancellative. Then D∗

F is a right
ideal of βS.

Proof. By Lemma 2.3, D∗
F 6= ∅. Let p ∈ D∗

F , let q ∈ βS, and let A ∈ p · q. Let
B = {t ∈ S : t−1A ∈ q}. Then B ∈ p so pick α such that d∗F (B) > α > 0. We claim
that d∗F (A) ≥ α

b . So let m ∈ D be given. Pick n ≥ m and x ∈ S ∪ {1} such that
|B ∩Fnx| ≥ α · |Fn|. Pick y ∈

⋂
{t−1A : t ∈ B ∩Fnx}. (This set is in q and is therefore

nonempty.) Then (B∩Fnx)y ⊆ A so |A∩Fnxy| ≥ |(B∩Fnx)y| ≥ 1
b ·|B∩Fnx| ≥ α

b ·|Fn|.

Other desirable properties for density are the implications of Figure 1.

2.5 Remark. Let S be a right cancellative semigroup and let F = 〈Fn〉n∈D be a net in
Pf (S). If A is a thick subset of S, then d∗F (A) = 1.

We now introduce three requirements on the net F that will guarantee certain
desirable properties of the densities determined by F .
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2.6 Definition. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S). Fol-
lowing are three properties that F might satisfy.

(∗) (∀ε > 0)(∀t ∈ S)(∃c ∈ N)(∃m ∈ D)(∀n ≥ m)(∃k ≥ n)(∃z ∈ S ∪ {1})
(|tFn \ Fkz| < ε · |Fn| and |Fk| ≤ c · |Fn|).

(∗′) (∀ε > 0)(∀t ∈ S)(∃c ∈ N)(∃m ∈ D)(∀n ≥ m)(∃k ≥ n)(|tFn \ Fk| < ε · |Fn| and
|Fk| ≤ c · |Fn|).

(∗∗)
(
∀H ∈ Pf (S)

)
(∃c ∈ N)(∃m ∈ D)(∀n ≥ m)(|Fn| ≤ c · |

⋂
a∈H a−1Fn|).

Note that (∗) is automatically satisfied for any F if S is commutative. We see that
(∗) and a weak form of left cancellation guarantee that D∗

F is a left ideal of βS.

2.7 Theorem. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S). Assume
that there is some b ∈ N such that S is b-weakly left cancellative. If F satisfies (∗),
B ⊆ S, t ∈ S, and d∗F (t−1B) > 0, then d∗F (B) > 0. In particular D∗

F is a left ideal of
βS.

Proof. Pick α > 0 such that d∗F (t−1B) > α and let ε = d∗F (t−1B) − α. Pick c ∈ N
and m ∈ D as guaranteed by (∗) for ε

2b and t. We claim that d∗F (B) ≥ α
bc . To

this end, let r ∈ D. Pick n ∈ D and x ∈ S ∪ {1} such that n ≥ r, n ≥ m, and
|t−1B∩Fnx| ≥ (α+ ε

2 ) · |Fn|. Pick k ≥ n and z ∈ S∪{1} such that |tFn \Fkz| < ε
2b · |Fn|

and |Fk| ≤ c · |Fn|. Now λt : t−1B ∩ Fnx→ B ∩ tFnx so |B ∩ tFnx| ≥ 1
b · |t

−1B ∩ Fnx|.
Also (tFnx \Fkzx) ⊆ (tFn \Fkz)x so |tFnx \Fkzx| ≤ |(tFn \Fkz)x| ≤ |tFn \Fkz|. Now
B ∩ tFnx ⊆ (B ∩ Fkzx) ∪ (tFnx \ Fkzx) so

|B ∩ tFnx| ≤ |B ∩ Fkzx|+ |tFnx \ Fkzx|

≤ |B ∩ Fkzx|+ |tFn \ Fkz| so

|B ∩ Fkzx| ≥ |B ∩ tFnx| − |tFn \ Fkz|

> 1
b · |t

−1B ∩ Fnx| − ε
2b · |Fn|

≥ α
b · |Fn|

≥ α
bc · |Fk| .

To see that D∗
F is a left ideal of βS, let p ∈ D∗

F , let q ∈ βS, and let B ∈ q ·p. Then
{t ∈ S : t−1B ∈ p} ∈ q so pick t such that t−1B ∈ p. Then d∗F (t−1B) > 0 so d∗F (B) > 0.

The proof of the following theorem is nearly identical, so we omit it.

2.8 Theorem. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S). Assume
that there is some b ∈ N such that S is b-weakly left cancellative. If F satisfies (∗′),
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B ⊆ S, t ∈ S, and dF (t−1B) > 0, then dF (B) > 0. In particular DF is a left ideal of
βS.

The condition (∗) along with weak right and left cancellation assumptions guaran-
tees another of the implications from Figure 1.

2.9 Theorem. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S). Assume
that there is some b ∈ N such that S is b-weakly left cancellative and b-weakly right
cancellative. If F satisfies (∗) and B is a piecewise syndetic subset of S, then d∗F (B) > 0.

Proof. Pick H ∈ Pf (S) such that
⋃

t∈H t−1B is thick. Given m ∈ D, pick x ∈ S such
that Fmx ⊆

⋃
t∈H t−1B. Since |Fmx| ≥ 1

b · |Fm| we conclude that d∗F (
⋃

t∈H t−1B) ≥ 1
b .

Thus by Lemma 2.3 there is some t ∈ H such that d∗F (t−1B) > 0 so by Theorem 2.7
d∗F (B) > 0.

Now we turn our attention to consequences of (∗∗), beginning with another of the
implications in Figure 1.

2.10 Theorem. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S). Assume
that there is some b ∈ N such that S is b-weakly left cancellative. If F satisfies (∗∗) and
B is syndetic, then dF (B) > 0.

Proof. Pick H ∈ Pf (S) such that S =
⋃

t∈H t−1B. Pick c ∈ N and m ∈ D as
guaranteed by (∗∗) for H. Let k = |H| and let n ≥ m. We shall show that |B ∩ Fn| ≥
1

bck · |Fn| and thus dF (B) ≥ 1
bck . Let G =

⋂
a∈H a−1Fn, so that |Fn| ≤ c · |G|. Define

τ : G→ (B ∩ Fn)×H as follows. For s ∈ G pick t ∈ H such that ts ∈ B. Since s ∈ G,
ts ∈ Fn. Let τ(s) = (ts, t). Since S is b-weakly left cancellative we have that for any
(x, y) ∈ (B ∩ Fn)×H, |τ−1[{(x, y)}]| ≤ b so |G| ≤ b · |B ∩ Fn| · |H| as required.

2.11 Theorem. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S). Assume
that there is some b ∈ N such that S is b-weakly left cancellative and b-weakly right
cancellative. If F satisfies (∗∗) and d∗F (B) = 1, then B is thick.

Proof. Suppose that B is not thick, so that S \ B is syndetic. Pick H ∈ Pf (S) such
that S =

⋃
t∈H t−1(S \B) and pick c ∈ N and m ∈ D as guaranteed by (∗∗) for H. Let

k = |H|. Since d∗F (B) > 1 − 1
b2ck pick x ∈ S ∪ {1} and n ≥ m such that |B ∩ Fnx| >

(1− 1
b2ck )·|Fn|. Let G =

⋂
a∈H a−1Fn and for each t ∈ H, let Et = {s ∈ G : tsx ∈ S\B}.

Then G =
⋃

t∈H Et and |G| ≥ 1
c · |Fn| so pick t ∈ H such that |Et| ≥ 1

ck · |Fn|. Now
tEtx ⊆ (S \B) ∩ Fnx so |B ∩ Fnx| ≤ |Fnx| − |tEtx| ≤ |Fn| − 1

b2 |Et| ≤ (1− 1
b2ck ) · |Fn|,

a contradiction.

10



2.12 Corollary. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S). As-
sume that S is right cancellative and there is some b ∈ N such that S is b-weakly left
cancellative. If F satisfies (∗∗), then B is thick if and only if d∗F (B) = 1.

Proof. Remark 2.5 and Theorem 2.11.

If the directed set D is countable and if F satisfies some very natural conditions,
then (∗∗) is exactly what is required for the conclusion of Theorem 2.11. (We do not
know whether the countability assumption is required.) In this proof we will use the
fact, noted earlier, that if a subset B of S is thick, then for any H ∈ Pf (S) there is
some x ∈ B such that Hx ⊆ B.

2.13 Theorem. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S) such
that lim

n∈D
|Fn| = ∞ and Fm ⊆ Fn whenever m ≤ n in D. Assume that D is countable

and that whenever B ⊆ S and d∗F (B) = 1, one must have that B is thick. Then F
satisfies (∗∗).

Proof. Enumerate D as 〈yn〉∞n=1. Suppose that (∗∗) fails and pick H ∈ Pf (S) such
that for all c ∈ N and all m ∈ D, there is some x ≥ m such that |Fx| > c · |Ex|,
where Ex =

⋂
a∈H a−1Fx. We inductively choose a sequence 〈xn〉∞n=1 in D. Choose

x1 ∈ D such that x1 ≥ y1 and |Ex1 | < |Fx1 |. Given n ∈ N and x1, x2, . . . , xn, choose
xn+1 ∈ D such that xn+1 ≥ xn, xn+1 ≥ yn+1, |Fxn+1 | ≥ (n + 1) · |

⋃n
t=1 HFxt |, and

|Fxn+1 | > (n+1)·|Exn+1 |. (Choose z ∈ D satisfying the first three of these requirements,
and they apply the choice of H with c = n + 1 and m = z to choose xn+1.)

Inductively define Bn for n ∈ N as follows. Let B1 = Fx1 \ Ex1 . Having defined
Bn, let Bn+1 = Fxn+1 \ (Exn+1 ∪

⋃n
t=1 HBt). Let B =

⋃∞
n=1 Bn.

We show that dF (B) = 1. Let m ∈ N be given and let z ∈ D. Pick r ∈ N such that
z = yr and let n ≥ max{m, r}. Then xn ≥ z and |B∩Fxn

| ≥ |Bn∩Fxn
| ≥ (1− 2

n ) · |Fxn
|.

Therefore B is thick so pick s ∈ B such that Hs ⊆ B. Pick the least m ∈ N such
that Hs∪{s} ⊆

⋃m
k=1 Bk. Since

⋃m
k=1 Bk ⊆ Fxm , we have that s ∈ Exm , so s /∈ Bm and

thus s ∈ Bk for some k < m. Since HBk ∩Bm = ∅, we have that Hs∪ {s} ⊆
⋃m−1

k=1 Bt,
a contradiction.

We see that the conclusion of Theorem 2.9 follows also from (∗∗). (We shall see at
the end of this section that neither of (∗) nor (∗∗) implies the other.)

2.14 Theorem. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S). Assume
that there is some b ∈ N such that S is b-weakly left cancellative and b-weakly right
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cancellative. If F satisfies (∗∗) and B is a piecewise syndetic subset of S, then d∗F (B) >

0.

Proof. Pick H ∈ Pf (S) such that
⋃

t∈H t−1B is thick. Pick c ∈ N and m ∈ D as
guaranteed for H by (∗∗). Let k = |H|. Let n ≥ m and let G =

⋂
a∈H a−1Fn. Pick

x ∈ S such that Gx ⊆
⋃

t∈H t−1B. Define τ : G → (B ∩ Fnx) ×H as follows. Given
y ∈ G, pick t ∈ H such that tyx ∈ B. Let τ(y) = (tyx, t). Then |G| ≤ b2 · |B∩Fnx| · |H|
so |B ∩ Fnx| ≥ 1

b2k · |G| ≥
1

b2ck · |Fn|.

2.15 Theorem. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S). Assume
that there is some b ∈ N such that S is b-weakly left cancellative. If B is a syndetic
subset of S and F satisfies (∗′) or (∗∗), then dF (B) > 0.

Proof. If F satisfies (∗∗), the conclusion follows immediately from Theorem 2.10 so
assume that F satisfies (∗′). Pick H ∈ Pf (S) such that S =

⋃
t∈H t−1B. Then

dF (
⋃

t∈H t−1B) = 1 so by Lemma 2.3 there is some t ∈ H such that dF (t−1B) > 0 and
thus by Theorem 2.8 dF (B) > 0.

We close this section with a discussion of the relationships among the conditions
of Definition 2.6. Trivially (∗′) implies (∗). In the semigroup (N,+), if for each n ∈ N,
Fn = {1, 2, . . . , n} ∪

{
2t : t ∈ {n + 1, n + 2, . . . , nn}

}
and F = 〈Fn〉n∈N, then F is

a sequence in (N, ·) which satisfies (∗), since (N, ·) is commutative, but not (∗′) with
ε = 1

2 and t = 2. If S is the free semigroup over the alphabet {a, b}, for each n ∈ N,
Fn = {w ∈ S : `(w) ≤ n2} (where `(w) is the length of w), and F = 〈Fn〉n∈N, then
F satisfies (∗∗) but not (∗). (To see that F satisfies (∗∗), let H ∈ Pf (S) be given
and let k = max{`(w) : w ∈ H}. If n2 ≥ k + 1, then |Fn| ≤ 2k+1 · |

⋂
w∈H w−1Fn|.

To see that F does not satisfy (∗) let ε = 1
2 and t = a. Given c, if 2n > c, then

|Fn+1| > c · |Fn| so if k ≥ n is chosen to satisfy (∗), then k = n. But then for any
z ∈ S ∪ {1}, |aFn \ Fnz| ≥ 1

2 · |Fn|.) We shall see in Theorems 3.2 and 3.3 that there
are natural examples satifying (∗′) but not (∗∗).

3. Density determined by the FP-net

Throughout this section we shall be concerned with density defined in terms of a par-
ticular net in Pf (S) determined by a set of generators of S. In many of the semigroups
with which we deal there is a natural choice for such a set of generators.

3.1 Definition. Let S be a semigroup and let Γ be a set of generators for S. Let DΓ

be the set of finite sequences in Γ and order DΓ by agreeing that ~x ≤ ~y if and only if

12



~x is a subsequence of ~y. For ~x = 〈x1, x2, . . . , xn〉 ∈ DΓ, let F~x = FP (~x) =
{ ∏

t∈F xt :
∅ 6= F ⊆ {1, 2, . . . , n}

}
. Then 〈F~x〉~x∈DΓ is the FP-net determined by Γ.

Note that the FP-net determined by Γ has the property that F~x ⊆ F~y whenever
~x ≤ ~y in D and if S is infinite, then lim

n∈D
|F~x = ∞. Notice also that in the semigroup

(N,+) with Γ = {1}, the FP-net determined by Γ is the same as 〈{1, 2, . . . , n}〉n∈N and
thus the densities determined by this net are just the ordinary ones.

3.2 Theorem. Let S be any infinite semigroup and let Γ be a set of generators of S.
Let F = 〈F~x〉~x∈DΓ be the FP-net determined by Γ. Then F satisfies (∗′), so also (∗).

Proof. Let ε > 0 and let t ∈ S. Pick ~x = 〈x1, x2, . . . , xn〉 ∈ DΓ such that t =
∏n

i=1 xi,
and let c = |F~x| + 1. Let ~y ≥ ~x and let ~w = ~x _~y. (That is, ~w is the sequence ~x

followed by the sequence ~y.) Then tF~y ⊆ F~w (so |tF~y \ F~w| < ε · |F~x|) and F~w =
F~x ∪F~y ∪ (F~x ·F~y) = F~y ∪ (F~x ·F~y). Also |F~x ·F~y| ≤ |F~x| · |F~y| so |F~w| ≤ (1+ |F~x|) · |F~y|.

On the other hand, even in a countable cancellative semigroup (∗∗) need not hold.

3.3 Theorem. Let S be the free semigroup on the alphabet Γ = {a, b} and let F =
〈F~x〉~x∈DΓ be the FP-net determined by Γ. Then F does not satisfy (∗∗).

Proof. Let H = {a}. Suppose that we have c ∈ N and ~x ∈ DΓ such that whenever
~y ≥ ~x, |F~y| ≤ c · |a−1F~y|. Let n = (c + 1) · |F~x| and let ~y be the sequence consisting of
n occurrences of b followed by ~x, then |F~y| > c · |F~x| and a−1F~y ⊆ F~x.

3.4 Theorem. Let S be an infinite commutative semigroup and let Γ be a set of gen-
erators of S. Let F = 〈F~x〉~x∈DΓ be the FP-net determined by Γ. Then F satisfies
(∗∗).

Proof. Let H ∈ Pf (S) and pick ~w ∈ DΓ such that H ⊆ F~w. Let ~x = ~w _ ~w and let
c = 1+|F~w|. Let ~y > ~x. We claim that |F~y| ≤ c·|

⋂
a∈H a−1F~y|. Since S is commutative

we may presume that ~y = ~x _~z for some ~z ∈ DΓ. Let ~v = ~w _~z. Then ~y = ~w _~v and
F~v ⊆

⋂
a∈H a−1F~y. Also F~y ⊆ F~v∪F~w ·F~v so |F~y| ≤ (1+ |F~w|) · |F~v| ≤ c · |

⋂
a∈H a−1F~y|.

As a consequence of Theorems 2.9, 2.10, 3.2, and 3.4 and Corollary 2.12 we know
that if S is commutative and cancellative, then all of the implications in Figure 1 are
valid for the densities determined by the FP-net.

We see now that weak cancellation assumptions guarantee that the density deter-
mined by the FP-net has several desirable properties.
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3.5 Theorem. Let S be an infinite semigroup and let Γ be a set of generators of S.
Assume that there is some b ∈ N such that S is b-weakly left cancellative and b-weakly
right cancellative and let F = 〈F~x〉~x∈DΓ be the FP-net determined by Γ. Then D∗

F is
a two sided ideal of βS, DF is a left ideal of βS, and all of the implications in Figure
2 below hold, except the fact that if A is thick then d∗F (A) = 1. That fact requires the
additional assumption that S is right cancellative.

Proof. The conclusions about D∗
F and DF follow from Theorems 2.4, 2.7, 2.8, and 3.2.

The implications in the diagram not involving density have already been established.
The implications involving density follow from Remark 2.5 and Theorems 2.9, 2.15, and
3.2.

∆*
↓
IP* PS*
↘ ↙↓

central* thick

↙ ↓ ↙ ↘
syndetic central d∗F = 1
↙ ↓ ↙ ↘

dF > 0 piecewise IP
syndetic

↓ ↙ ↓
d∗F > 0 ∆

Figure 2

We have not indicated the trivial fact that if d∗F (A) = 1, then d∗F (A) > 0. We do
not know whether the fact that d∗F (A) = 1 implies that A has any or all of the properties
of being central, piecewise syndetic, an IP-set, or a ∆-set.

4. Følner nets and density in uncountable semigroups

Recall that Følner sequences provide quite satisfactory notions of density. We will
primarily be interested in this section in uncountable semigroups where we know Følner
sequences do not exist.

The following is the obvious extension of the notion of a Følner sequence. Følner
nets have been used by various authors without being called such. (See for example [14,
p. 65].) They do not appear to have been used to define densities before.
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4.1 Definition. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S). Then
F is a left Følner net if and only if for each s ∈ S, the net〈

|sFn 4 Fn|
|Fn|

〉
n∈D

converges to 0. Also F is a right Følner net if and only if for each s ∈ S, the net〈
|Fns4 Fn|
|Fn|

〉
n∈D

converges to 0.

We shall be almost exclusively concerned with the left version and will write “Følner
net” rather than “left Følner net”.

4.2 Theorem. Let S be a semigroup. There exists a Følner net in Pf (S) if and only
if S satisfies (SFC).

Proof. The necessity is trivial. For the sufficiency, let D = N×Pf (S) and direct D by
agreeing that (n, H) ≤ (n′,H ′) if and only if n ≤ n′ and H ⊆ H ′. Given (n, H) ∈ D, pick
Fn,H ∈ Pf (S) such that for all s ∈ H, |sFn,H4Fn,H | < 1

n · |Fn,H |. Then 〈Fn,H〉(n,H)∈D

is a Følner net in Pf (S).

4.3 Lemma. Let S be a left cancellative semigroup and let F = 〈Fn〉n∈D be a Følner
net in Pf (S). Then for each s ∈ S, the net〈

|s−1Fn 4 Fn|
|Fn|

〉
n∈D

converges to 0.

Proof. Given s ∈ S and n ∈ D, |s−1Fn 4 Fn| ≤ |sFn 4 Fn|.

4.4 Lemma. Let S be a left cancellative semigroup, let F ∈ Pf (S), and let t, x ∈ S.
Then

∣∣|t−1A ∩ Fx| − |A ∩ Fx|
∣∣ ≤ |tF 4 F |.

Proof.

|t−1A ∩ Fx| = |A ∩ tFx|
≤ |A ∩ Fx|+ |tFx \ Fx|
≤ |A ∩ Fx|+ |tF \ F | and

|A ∩ Fx| ≤ |A ∩ tFx|+ |Fx \ tFx|
≤ |A ∩ tFx|+ |F \ tF |
= |t−1A ∩ Fx|+ |F \ tF | .
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We see that density induced by Følner nets behaves as nicely as that induced by
Følner sequences.

4.5 Theorem. Let S be an infinite left cancellative semigroup and let F = 〈Fn〉n∈D be
a Følner net in Pf (S). Then for all A ⊆ S and all s ∈ S,

(a) dF (A) = dF (sA) = dF (s−1A),

(b) dF (A) = dF (sA) = dF (s−1A), and

(c) d∗F (A) = d∗F (sA) = d∗F (s−1A).

Proof. That the densities of A and s−1A are equal follows from Lemma 4.4. Then use
the fact that A = s−1(sA).

The next two theorems are well known in the context of countable semigroups when
applied to Følner sequences.

4.6 Theorem. Let S be an infinite left cancellative semigroup, let F = 〈Fn〉n∈D be a
Følner net in Pf (S), and let A ⊆ S. There is a countably additive regular measure µ

on the set B of Borel subsets of βS such that

(1) µ( A ) = d∗F (A),

(2) for all B ⊆ S, µ( B ) ≤ d∗F (B),

(3) for all B ∈ B and all t ∈ S, µ(t−1B) = µ(B) = µ(tB), and

(4) µ(βS) ≤ 1 and if b ∈ N and S is b-weakly right cancellative, then µ(βS) ≥ 1
b .

Proof. Let α = d∗F (A). Let E = D×N and direct E by agreeing that (m, k) ≤ (m′, k′)
if and only if m ≤ m′ and k ≤ k′. For (m, k) ∈ E pick n(m, k) ∈ D and xm,k ∈ S ∪ {1}
such that n(m, k) ≥ m and |A ∩ Fn(m,k)xm,k| > (α− 1

k ) · |Fn(m,k)|.
Let C denote the Banach space of continuous complex-valued functions defined

on βS with the uniform norm. For each (m, k) ∈ E we define Tm,k : C → C by
Tm,k(f) = 1

|Fn(m,k)|
·
∑

t∈Fn(m,k)
f(txm,k). We observe that, for each A ⊆ S, Tm,k(χA) =

1
|Fn(m,k)|

· |A ∩ Fn(m,k)xm,k|. For each f ∈ C, let Cf = {z ∈ C : |z| ≤ ‖f‖}. Let
T : C→ C be a limit point of the net 〈Tm,k〉(m,k)∈E in the compact space

∏
f∈C Cf .

It is easy to establish each of the following statements:

(i) T is a continuous linear functional on C;

(ii) T (χA) = d∗(A);

(iii) T (χB) ≤ d∗(B) for every B ⊆ S.

(iv) T (χs−1B) = T (χB) for every B ⊆ S and every s ∈ S.
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By the Riesz Representation Theorem, T corresponds to a regular Borel measure
µ on βS. By (iv), µ is left invariant on the algebra of functions in C which take only
a finite number of values. It follows from the Stone-Weierstrass Theorem that µ is left
invariant.

By an identical proof, choosing in each case xm,k = 1, one has also the following
theorem.

4.7 Theorem. Let S be an infinite left cancellative semigroup, let F = 〈Fn〉n∈D be a
Følner net in Pf (S), and let A ⊆ S. There is a countably additive measure µ on the
set B of Borel subsets of βS such that

(1) µ( A ) = dF (A),

(2) for all B ⊆ S, µ( B ) ≤ dF (B),

(3) for all B ∈ B and all t ∈ S, µ(t−1B) = µ(B) = µ(tB), and

(4) µ(βS) = 1.

4.8 Corollary. Let S be an infinite left cancellative semigroup and let F = 〈Fn〉n∈D

be a Følner net in Pf (S). Let A ⊆ S and let H ∈ Pf (S).

(a) If for all a 6= b in H, dF (a−1A ∩ b−1A) = 0, then dF (
⋃

a∈H a−1A) = |H| · dF (A).

(b) If for all a 6= b in H, dF (aA ∩ bA) = 0, then dF (
⋃

a∈H aA) = |H| · dF (A).

(c) If for all a 6= b in H, d∗F (a−1A ∩ b−1A) = 0, then d∗F (
⋃

a∈H a−1A) = |H| · d∗F (A).

(d) If for all a 6= b in H, d∗F (aA ∩ bA) = 0, then d∗F (
⋃

a∈H aA) = |H| · d∗F (A).

Proof. We do part (a) only. Pick µ as guaranteed by Theorem 4.7 for A. Then for
a 6= b in H, µ( a−1A ∩ b−1A ) = 0 so µ(

⋃
a∈H a−1H ) =

∑
a∈H µ( a−1A ) so

|H| · dF (A) =
∑

a∈H dF (a−1A)

≥ dF (
⋃

a∈H a−1A)

≥ µ(
⋃

a∈H a−1A )

=
∑

a∈H µ( a−1A )

=
∑

a∈H µ( A )

= |H| · dF (A) .

We observe that if S is cancellative, F is a Følner net in Pf (S), and A ⊆ S, one
can obtain a Følner net with respect to which A has actual density equal to d∗F (A).

4.9 Theorem. Let S be an infinite cancellative semigroup, let F = 〈Fn〉n∈D be a
Følner net in Pf (S), and let A ⊆ S. There is a Følner net G in Pf (S) such that
dG(A) = dG(A) = d∗F (A) and for all B ⊆ S, dG(B) ≤ d∗F (B).
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Proof. Let α = d∗F (A). Let E = D×N and direct E by agreeing that (m, k) ≤ (m′, k′)
if and only if m ≤ m′ and k ≤ k′. For (m, k) ∈ E pick n(m, k) ∈ D and xm,k ∈ S ∪ {1}
such that n(m, k) ≥ m and |A ∩ Fn(m,k)xm,k| > (α − 1

k ) · |Fn(m,k)|. For (m, k) ∈ E let
Gm,k = Fn(m,k)xm,k and let G = 〈Gm,k〉(m,k)∈E . It is routine to verify the conclusions.

4.10 Remark. If S is a right cancellative semigroup, F = 〈Fn〉n∈D is a Følner net
in Pf (S), and for each n ∈ D, xn ∈ S ∪ {1}, then 〈Fnxn〉n∈D is also a Følner net in
Pf (S). In particular, if there exists a Følner net in Pf (S) and A is a thick subset of S,
then there is a Følner net G in Pf (S) such that dG(A) = dG(A) = 1.

We see now that Følner nets must satisfy the properties of Section 2.

4.11 Theorem. Let F = 〈Fn〉n∈D be a Følner net in a semigroup S. Then F satisfies
(∗∗) and (∗′), and therefore (∗).

Proof. It is trivial that F satisfies (∗′). Notice that, given any F ⊆ S and any a ∈ S,
we have that λa : a−1F ∩ F

onto−→F ∩ aF so

|F | = |F ∩ aF |+ |F \ aF |

≤ |a−1F ∩ F |+ |F \ aF |

= |F | − |F \ a−1F |+ |F \ aF |

and consequently |F \ a−1F | ≤ |F \ aF |.
Now let H ∈ Pf (S) be given. We shall show that there exists m ∈ D such that for

all n ≥ m, |Fn| ≤ 2 · |
⋂

a∈H a−1Fn|. Let k = |H| and for a ∈ H pick ta ∈ D such that
for all n ≥ ta, |Fn \ a−1Fn| ≤ 1

2k · |Fn|. Pick m ∈ D such that for all a ∈ H, ta ≤ m

and let n ≥ m. Then

|Fn| = |Fn ∩
⋂

a∈H a−1Fn|+ |Fn \
⋂

a∈H a−1Fn|

= |Fn ∩
⋂

a∈H a−1Fn|+ |
⋃

a∈H (Fn \ a−1Fn)|

≤ |Fn ∩
⋂

a∈H a−1Fn|+
∑

a∈H |Fn \ a−1Fn|

< |Fn ∩
⋂

a∈H a−1Fn|+ 1
2 · |Fn|

so 1
2 · |Fn| < |Fn ∩

⋂
a∈H a−1Fn| ≤ |

⋂
a∈H a−1Fn| as required.

As a consequence we see that any cancellative semigroup satisfying (SFC) has
notions of density preserving all of the relationships of Figure 1.

4.12 Corollary. Let F be a Følner net in a semigroup S and assume that S is right
cancellative and there is some b ∈ N such that S is b-weakly left cancellative. Then with
dF replacing d, all of the implications of Figure 1 are valid.
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Proof. Remark 2.5 and Theorems 2.10, 2.11, 2.14, and 4.11.

It is interesting to note that no cancellation assumptions are needed in the following
lemma.

4.13 Lemma. Let S be a semigroup and let F = 〈Fn〉n∈D be a net in Pf (S). Let
s, t ∈ S. If 〈

|sFn 4 Fn|
|Fn|

〉
n∈D

and
〈
|tFn 4 Fn|
|Fn|

〉
n∈D

converge to 0 ,

then
〈
|tsFn 4 Fn|
|Fn|

〉
n∈D

converges to 0 .

Proof. We have that tsFn 4 tFn ⊆ t(sFn 4 Fn) so |tsFn 4 tFn| ≤ |sFn 4 Fn|. Also
tsFn 4 Fn ⊆ (tsFn 4 tFn) ∪ (tFn 4 Fn).

We see in particular that FP-nets on commutative and cancellative semigroups
induce these nice density notions.

4.14 Theorem. Let S be an infinite commutative and cancellative semigroup and let
Γ be a set of generators of S. Let F = 〈F~x〉~x∈DΓ be the FP-net determined by Γ. Then
F is a Følner net.

Proof. By Lemma 4.13, it suffices to let s ∈ Γ and prove that
〈
|sF~x 4 F~x|
|F~x|

〉
~x∈DΓ

converges to 0. And, as we have already observed, for any K ∈ Pf (S), |sK \ K| ≤

|K \ sK|, so it suffices to show that
〈
|F~x \ sF~x|
|F~x|

〉
~x∈DΓ

converges to 0. To this end let

n ∈ N and let ~y be the sequence consisting of n occurrences of s. Let ~x > ~y be given.
We shall show that |F~x \sF~x| < 1

n+1 · |F~x|+1. Since S is commutative, we may presume
that we have some ~z ∈ DΓ such that ~x = ~y _~z. Let k be the length of ~x.

Let E = F~z \
⋃n

t=1 stF~z. We claim that F~x \ sF~x ⊆ E ∪ {s}. So assume that
a ∈ F~x \ sF~x. Pick nonempty H ⊆ {1, 2, . . . , k} such that a =

∏
i∈H xi. If H ⊆ {1, 2,

. . . , n}, then a ∈ {s, s2, . . . , sn}. Since {s2, s3, . . . , sn} ⊆ sF~x, we have then that a = s.
So assume that H \ {1, 2, . . . , n} 6= ∅. If H ∩{1, 2, . . . , n} 6= ∅ pick j ∈ H ∩{1, 2, . . . , n}.
Then a = s ·

∏
i∈H\{j} xi ∈ sF~x. So we have H ∩ {1, 2, . . . , n} = ∅ and thus a ∈ F~z.

Since
⋃n

t=1 stF~z ⊆ sF~x we have that a ∈ E.

We have established that |F~x \ sF~x| ≤ |E| + 1. Notice that if 0 ≤ t < j ≤ n, then
stE∩sjE = ∅. (We are not assuming that S has an identity. By s0E we mean simply E.)
Since

⋃n
j=0 sjE ⊆ F~x, we have that (n+1) · |E| ≤ |F~x|. Thus |F~x \ sF~x| ≤ 1

n+1 · |F~x|+1,
as required.
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Recall from the introduction the statement of the Strong Følner Condition:

(SFC)
(
∀H ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ H

)(
|K 4 sK| < ε · |K|

)
.

This suggests a natural definition of density in any semigroup satisfying (SFC):

4.15 Definition. If S satisifies (SFC) and A ⊆ S, then

dFø(A) = sup {α :
(
∀H ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
|A ∩K| ≥ α · |K| and(

∀s ∈ H
)(
|K 4 sK| < ε · |K|

))}
.

4.16 Theorem. Let S be a semigroup which satsifies (SFC) and let A ⊆ S. Then
dFø(A) = sup{dF (A) : F is a Følner net in Pf (S)} and there is a Følner net F such
that dFø(A) = dF (A). If S is countable, then dFø(A) = sup{dF (A) : F is a Følner
sequence in Pf (S)} and there is a Følner sequence F such that dFø(A) = dF (A).

Proof. Let γ = dFø(A). Let D = Pf (S) × N and for (H,n) and (K, m) in D, agree
that (H,n) ≤ (K, m) if and only if H ⊆ K and n ≤ m. For d = (H,n) ∈ D, pick
Kd ∈ Pf (S) such that |A ∩Kd| ≥ (γ − 1

n ) · |Kd| and (∀s ∈ H)(|Kd 4 sKd| < 1
n · |Kd|).

Then K = 〈Kd〉d∈D is a Følner net in S and γ ≤ dK(A). To complete the proof of
the first assertion, it suffices to show that sup{dF (A) : F is a Følner net in S} ≤ γ, so
suppose instead that we have α with γ < α < sup{dF (A) : F is a Følner net in S}. Pick
F ∈ Pf (S) and ε > 0 such that

(
∀K ∈ Pf (S)

)(
|A∩K| ≥ α·|K| ⇒ (∃s ∈ F )(|K4sK| ≥

ε · |K|)
)
. Pick a Følner net F = 〈Fn〉n∈D in Pf (S) such that dF (A) > α. Since F is

a Følner net, pick b ∈ D such that for all a ≥ b and all s ∈ F , |Fa 4 sFa| < ε · |Fa|.
Since dF (A) > α pick a ≥ b such that |A ∩ Fa| ≥ α · |Fa|. Then pick s ∈ F such that
|Fa 4 sFa| ≥ ε · |Fa|. This contradiction completes the proof.

Now assume that S is countable and let 〈sn〉∞n=1 enumerate S. Since each Følner
sequence is a Følner net, it suffices to show that there is a Følner sequence K = 〈Kn〉∞n=1

such that dK(A) ≥ γ. For each n ∈ N pick Kn ∈ Pf (S) such that |A∩Kn| ≥ (γ− 1
n )·|Kn|

and for all t ∈ {1, 2, . . . , n}, |Kn 4 stKn| < 1
n · |Kn|.

In [3] Bergelson established that multiplicatively large subsets of N have substantial
additive and multiplicative structure. He defined a multiplicatively large set A as one
for which there is some Følner sequence F in (N, ·) such that dF (A) > 0. By virtue of
the above theorem we see that multiplicatively large subsets of N are exactly those for
which dFø(A) > 0.

In left cancellative semigroups Følner density is left translation invariant and left
inverse translation invariant.
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4.17 Theorem. If S satisfies (SFC) and is left cancellative, then for all A ⊆ S and all
a ∈ S, dFø(A) = dFø(aA) = dFø(a−1A).

Proof. Pick by Theorem 4.16 Følner nets F , G, and H such that dFø(A) = dF (A),
dFø(aA) = dG(aA), and dFø(a−1A) = dH(a−1A). By Theorem 4.5, dF (A) = dF (aA) =
dF (a−1A), dG(A) = dG(aA) = dG(a−1A), and dH(A) = dH(aA) = dH(a−1A). Thus,
invoking Theorem 4.16 again we have

dFø(A) = dF (aA) ≤ dFø(aA) = dG(a−1A) ≤ dFø(a
−1A) = dH(A) ≤ dFø(A) .

We see that in an infinite left cancellative semigroup S with minimal right cancel-
lation assumptions, Følner density understands that sets with lower cardinality than S

are small. Notice that they hypotheses of the following theorem hold if S is not equal
to the union of λ sets of the form {s ∈ S : b = sc} with b, c ∈ S, and in particular if S

is weakly right cancellative.

4.18 Theorem. Let S be an infinite left cancellative semigroup of cardinality κ which
satisfies (SFC). Let A be an infinite subset of S with |A| = λ < κ. Assume that for all
m ∈ N there exists H ⊆ S with |H| = m such that sA ∩ tA = ∅ whenever s and t are
distinct members of H. Then dFø(A) = 0.

Proof. Suppose that dFø(A) > 0 and pick m ∈ N such that dFø(A) > 2
m . Pick H ⊆ S

with |H| = m such that sA∩tA = ∅ whenever s and t are distinct members of H and let
ε = 1

m . Pick K ∈ Pf (S) such that |A∩K| ≥ 2
m ·|K| and for all s ∈ H, |K4sK| < ε·|K|.

Given s ∈ H,
|A ∩K| ≤ |A ∩ sK|+ |K \ sK|

< |A ∩ sK|+ 1
m · |K|

so that |A ∩ sK| > |A ∩K| − 1
m · |K|. Now

⋃
s∈H (sA ∩K) ⊆ K so

|K| ≥ |
⋃

s∈H (sA ∩K)|

=
∑

s∈H |sA ∩K|

>
∑

s∈H (|A ∩K| − 1
m · |K|)

= m · |A ∩K| − |K|

so 2
m · |K| > |A ∩K|, a contradiction.

We conclude this section by showing that there are plentiful examples of uncount-
able, noncommutative, and cancellative semigroups satisfying (SFC). By Corollary 4.12
and Theorems 4.16, 4.17, and 4.18, dFø is a very satisfactory notion of density for such
semigroups.
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4.19 Definition. Let U and T be semigroups, let End(U) be the group of endomor-
phisms of U and let σ : T → End(U) be a homomorphism. The semidirect product
of U by T with respect to σ, denoted by U ×σ T , is the set U × T with operation
(a, b)(c, d) = (a · σ(b)(c), bd).

See [8] for a considerable amount of information about semidirect products. It is
routine to verify that semidirect products are semigroups and that, if U and T are right
cancellative, then U ×σ T is right cancellative. Further, if U and T are left cancellative
and σ(b) is injective for each b ∈ T , then U ×σ T is left cancellative.

4.20 Theorem (Klawe). Let U and T be semigroups, let Aut(U) be the group of
automorphisms of U and let σ : T → Aut(U) be a homomorphism. If U and T both
satisfy (SFC), then so does U ×σ T .

Proof. [17, Proposition 4.6].

Now consider the semigroups (R,+) and (R+, ·). Define σ : R+ → Aut(R) as
follows. Given b ∈ R+ and c ∈ R, σ(b)(c) = b · c. The operation in R ×σ R+ is then
given by (a, b)(c, d) = (a + bc, bd). Since (R,+) and (R+, ·) are both commutative,
they satisfy (SFC) and thus by Theorem 4.20, so does R ×σ R+. Thus R ×σ R+ is an
uncountable, noncommutative, and cancellative semigroup satisfying (SFC).

The semidirect product is a one-sided notion. We shall see in Theorem 4.22 that
a stronger version of the left-right switch of Theorem 4.20 holds. For this we need to
state the left-right switch of (SFC):

(RSFC)
(
∀H ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ H

)(
|K \Ks| < ε · |K|

)
.

4.21 Lemma. Let U and T be semigroups and let σ : T → End(U) be a homomorphism.
Let (c, d) ∈ U ×σ T , let F ∈ Pf (U), and let G ∈ Pf (T ). Then

(F ×G) \ (F ×G) · (c, d) ⊆
(
F × (G \Gd)

)
∪ {(x, bd) : b ∈ G and x ∈ F \ F · σ(b)(c)} .

Proof. Let (x, y) ∈ (F ×G) \ (F ×G) · (c, d). If y /∈ Gd, then we are done, so assume
we have b ∈ G such that y = bd. We claim that x /∈ F · σ(b)(c) so suppose instead we
have some a ∈ F such that x = a ·σ(b)(c). Then (x, y) = (a, b) · (c, d), a contradiction.

4.22 Theorem. Let U and T be semigroups and let σ : T → End(U) be a homomor-
phism. If U and T both satisfy (RSFC), then so does U ×σ T .

Proof. By the left-right switch of Theorem 4.2 pick right Følner nets 〈Fn〉n∈D in Pf (U)
and 〈Gm〉m∈E in Pf (T ). To see that U ×σ T satisfies (RSFC), let H ∈ Pf (U ×σ T ) and
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ε > 0 be given. Pick m ∈ E such that |Gm\Gm·d| < ε
2 ·|Gm|. For b ∈ Gm and (c, d) ∈ H,

pick tb,c,d ∈ D such that for all n ∈ D, if n ≥ tb,c,d, then |Fn \ Fn · σ(b)(c)| < ε
2 · |Fn|.

Pick n ∈ D such that n ≥ tb,c,d for each b ∈ Gm and each (c, d) ∈ H.

We claim that Fn ×Gm is as required for (RSFC). So let (c, d) ∈ H be given. By
Lemma 4.21 it suffices to observe that |Fn × (Gm \ Gm · d)| < ε

2 · |Fn| · |Gm| by the
choice of m and that |{(x, bd) : b ∈ Gm and x ∈ Fn \ Fn · σ(b)(c)}| < ε

2 · |Fn| · |Gm| by
the choice of n.

5. Applications

We begin by recording in Theorem 5.3 an extension of a result about density in N. In
[2] Bergelson showed that whenever N is partitioned into finitely many cells, one cell C

satisfies d({n ∈ C : d
(
C ∩ (−n + C)

)
> 0}) > 0. This was a generalization of Schur’s

Theorem (which says that whenever N is partitioned into finitely many cells one of them
contains n, m, and n + m for some n and m). This result says that there are many
n ∈ C with the property that for many m, both m and n + m are in C. We shall show
that a corresponding statement is valid in any left cancellative semigroup which has a
Følner net.

5.1 Lemma. Let S be an infinite left cancellative semigroup and let F = 〈Fn〉n∈D be
a Følner net in Pf (S). Let 〈xn〉∞n=1 be a sequence in S and let B ⊆ S. If dF (B) > 0,
then there exist k < m in N such that dF (B ∩ (

∏m
t=k+1 xt)−1B) > 0.

Proof. For each m ∈ N, let sm =
∏m

t=1 xt. Pick n ∈ N such that dF (B) > 1
n . We claim

that there exist k < m ∈ N such that dF (skB ∩ smB) > 0. By Theorem 4.5, for each
t ∈ {1, 2, . . . , n}, dF (stB) = dF (B). If some k < m in {1, 2, . . . , n} have sk = sm, then
our claim is satisfied, so we may assume that sk 6= sm whenever k < m in {1, 2, . . . , n}.
By Corollary 4.8(b), if each dF (skB ∩ smB) = 0, then dF (

⋃n
t=1 stB) ≥ n · dF (B) > 1,

so there exist k < m ∈ N such that dF (skB ∩ smB) > 0 as claimed.

Now by Theorem 4.5 again, dF
(
(sm)−1(skB ∩ smB)

)
= dF (skB ∩ smB). Since

(sm)−1(skB ∩ smB) = B ∩ (
∏m

t=k+1 xt)−1B, we are done.

The proof of the following lemma is nearly identical, so we omit it.

5.2 Lemma. Let S be an infinite left cancellative semigroup and let F = 〈Fn〉n∈D be
a Følner net in Pf (S). Let 〈xn〉∞n=1 be a sequence in S and let B ⊆ S. If d∗F (B) > 0,
then there exist k < m in N such that d∗F (B ∩ (

∏m
t=k+1 xt)−1B) > 0.
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The following theorem extends Bergelson’s result cited above to uncountable semi-
groups, using essentially the original proof.

5.3 Theorem. Let S be an infinite left cancellative semigroup and let F = 〈Fn〉n∈D be
a Følner net in Pf (S). If r ∈ N and S =

⋃r
i=1 Ci, then there exists i ∈ {1, 2, . . . , r}

such that dF ({s ∈ Ci : dF (Ci ∩ s−1Ci) > 0}) > 0.

Proof. We may assume that we have k ∈ {1, 2, . . . , r} such that for each i ∈ {1, 2, . . . ,

k}, dF (Ci) > 0 and for each i ∈ {k + 1, k + 2, . . . , r}, if any, dF (Ci) = 0. For each
i ∈ {1, 2, . . . , k}, let Ri = {s ∈ Ci : dF (Ci ∩ s−1Ci) > 0} and suppose that for each
i ∈ {1, 2, . . . , k}, dF (Ri) = 0. Then by Lemma 2.3 dF (

⋃k
i=1 Ri ∪

⋃r
i=k+1 Ci) = 0 so

DF ⊆
⋃k

i=1(Ci \Ri). By Theorem 4.11 F satisfies (∗′) so by Theorem 2.8, DF is a
left ideal of βS so by [9, Corollary 2.10] pick an idempotent p ∈ DF . Pick i ∈ {1, 2,

. . . , k} such that Ci \ Ri ∈ p and pick by [16, Theorem 5.8] a sequence 〈xn〉∞n=1 such
that FP (〈xn〉∞n=1) ⊆ Ci \ Ri. Pick by Lemma 5.1 k < m in N such that dF (Ci ∩
(
∏m

t=k+1 xt)−1Ci) > 0. Then
∏m

t=k+1 xt ∈ Ri, a contradiction.

We remark that hypotheses that guarantee that DF or D∗
F are left ideals of βS

(or even subsemigroups) guarantee that if S =
⋃r

i=1 Ci there will exist i ∈ {1, 2, . . . , r}
and the ability to chose a sequence 〈xn〉∞n=1 with FP (〈xn〉∞n=1) ⊆ Ci, and having a set
of positive density (dF or d∗F ) from which to make the choice of each xn. For a precise
description of this phenomenon, see [16, p. 292].

We shall have need of the following deep result of Furstenberg. Recall that a
measure space is a triple (X,B, µ), where X is a set, B is a σ-algebra of subsets of X,
and µ is a countably additive measure on B such that 0 < µ(X) < ∞. Recall also
that T : X → X is measure preserving provided that for each B ∈ B, T−1[B] ∈ B and
µ(T−1[B]) = µ(B).

5.4 Theorem. Let (X,B, µ) be a measure space, let k ∈ N, let T1, T2, . . ., Tk be
commuting measure preserving transformations of (X,B, µ), and let B ∈ B such that
µ(B) > 0. Then there exists d ∈ N such that

µ
(
(T1)−d[B] ∩ (T2)−d[B] ∩ . . . ∩ (Tk)−d[B]

)
> 0 .

Proof. [13, Theorem 7.15].

5.5 Theorem. Let b ∈ N and let S be an infinite left cancellative and b-weakly right
cancellative semigroup. Let F = 〈Fn〉n∈D be a Følner net in Pf (S), let s ∈ S, and
let A ⊆ S such that d∗F (A) > 0. Then for each k ∈ N there is some d ∈ N such that
d∗F

(
{b ∈ S : {sdb, s2db, . . . , skdb} ⊆ A}

)
> 0.
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Proof. Let B be the set of Borel subsets of βS. Pick by Theorem 4.6 a countably
additive measure on B such that

(1) µ( A ) = d∗F (A),

(2) for all B ⊆ S, µ( B ) ≤ d∗F (B),

(3) for all B ∈ B and all t ∈ S, µ(t−1B) = µ(B), and

(4) 1
b ≤ µ(βS) ≤ 1.

Let k ∈ N be given. For t ∈ {1, 2, . . . , k}, let Tt = λst . Since each λst is continuous
one has that (Tt)−1[B] ∈ B whenever B ∈ B and thus T1, T2, . . . , Tk are commuting
measure preserving transformations of the measure space (βS,B, µ). Since µ( A ) =
d∗F (A) > 0, pick by Theorem 5.4 some d ∈ N such that

µ
(
(T1)−d[A ] ∩ (T2)−d[A ] ∩ . . . ∩ (Tk)−d[A ]

)
> 0 .

Now (T1)−d[A ] ∩ (T2)−d[A ] ∩ . . . ∩ (Tk)−d[A ] = (sd)−1A ∩ (s2d)−1A ∩ . . . ∩ (skd)−1A

so by (2) d∗F
(
(sd)−1A ∩ (s2d)−1A ∩ . . . ∩ (skd)−1A

)
> 0.

The same proof, using Theorem 4.7 instead of Theorem 4.6 yields the following
theorem. (We no longer need the b-weakly right cancellative assumption which was
only used to guarantee that µ(βS) > 0.)

5.6 Theorem. Let S be an infinite left cancellative semigroup. Let F = 〈Fn〉n∈D be
a Følner net in Pf (S), let s ∈ S, and let A ⊆ S such that dF (A) > 0. Then for each
k ∈ N there is some d ∈ N such that dF

(
{b ∈ S : {sdb, s2db, . . . , skdb} ⊆ A}

)
> 0.

We obtain as a consequence of Theorem 5.5 a new result about piecewise syndetic
sets in left amenable semigroups.

5.7 Theorem. Let S be an infinite left amenable left cancellative semigroup and assume
that there is some b ∈ N such that S is b-weakly right cancellative. Let A be a piecewise
syndetic subset of S and let s ∈ S. For each k ∈ N there exist b ∈ S and d ∈ N such
that {b, sbd, s2db, . . . , skdb} ⊆ A.

Proof. Pick a Følner net F in Pf (S). By Theorems 2.4, 2.7, and 4.11, D∗
F is a

two sided ideal of βS so K(βS) ⊆ D∗
F . Since A ∩ K(βS) 6= ∅ we have that A ∩

D∗
F 6= ∅ and so d∗F (A) > 0. Pick by Theorem 5.5 some d ∈ N such that d∗F

(
{b ∈ S :

{sdb, s2db, . . . , s(k+1)db} ⊆ A}
)

> 0 and pick b′ ∈ S such that {sdb′, s2db′, . . . , s(k+1)db′}
⊆ A. Let b = sdb′.

Geometric progressions are commonly written in the form bsd, bs2d, . . . , bskd and
one naturally wonders whether any or all of Theorems 5.5, 5.6, or 5.7 hold in that form.
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We see now that they do not. (By Remark 4.10, if A and S are as in the following
theorem, there is a Følner net G in Pf (S) with respect to which dG(A) = 1.)

5.8 Theorem. There exist a countable cancellative semigroup S with identity, a Følner
sequence F = 〈Fn〉∞n=1 in Pf (S), and a subset A of S such that A is thick (and therefore
central and piecewise syndetic) and there is some s ∈ S such that {bsn : n ∈ N and
b ∈ S} ∩A = ∅.

Proof. Let S = ω × N with the operation defined by (a, b) · (c, d) = (c + ad, bd).
(This is the left-right switch of the semidirect product of the semigroup (ω, +) with the
semigroup (N, ·) determined by σ where σ(d)(a) = da.)

Let 〈Gn〉∞n=1 be any Følner sequence in (N, ·). Given n ∈ N, let k(n) = n2 ·max Gn

and let Fn = {0, 1, . . . , k(n)} × Gn. Then 〈Fn〉∞n=1 is a Følner sequence in S. (Given
(a, b) ∈ S and ε > 0, if n > a, |Gn \ bGn| < ε

2 , and 1
n < ε

2 , then one sees as in the proof
of Theorem 4.22 that |Fn \ (a, b) · Fn| < ε · |Fn|.)

Let A = (2 ·ω)×N. Then trivially dF (A) = dF (A) = 1
2 . Also S · (2, 2) ⊆ A so A is

thick. Let s = (1, 2). Then for each n ∈ N, sn = (2n − 1, 2n) and so for any (a, b) ∈ S,
(a, b) · sn = (2n − 1 + 2na, 2nb) /∈ A.

It was proved in [5, Lemma 2.3] that if A is a piecewise syndetic subset of an
arbitrary semigroup S and H is a partition regular family of finite subsets of S, then
there must exist t, x ∈ S and H ∈ H such that tHx ⊆ A. It was also shown by example
that both translates may be needed. (Although, of course, if S is left amenable and
left cancellative, then by Theorem 5.7 one only needs the right translate, and it may be
chosen in A.) We see now in Theorem 5.9 that in general one may require one or the
other of the translates to be in A, and in Theorem 5.10 that one cannot require both
of the translates to be in A.

5.9 Theorem. Let (S, ·) be a semigroup, let H be a partition regular family of finite
subsets of S, and let A be a piecewise syndetic subset of S. Let K be a family of finite
sets with the property that any piecewise syndetic set contains a member of K and let L
be a family of sets (finite or infinite) with the property that any piecewise syndetic set
contains a member of L. Then there exist K ∈ K, L ∈ L, H ∈ H, and x, t ∈ S such
that K ⊆ A, KHx ⊆ A, L ⊆ A, and tHL ⊆ A. Also there exist K ∈ K, H,H ′ ∈ H,
and x, t ∈ S such that K ⊆ A, tHK ⊆ A, and KH ′x ⊆ A.

Proof. Pick q ∈ βS such that for each B ∈ q there is some H ∈ H such that H ⊆ B.
(Such q exists because H is partition regular. See for example [16, Theorem 3.11].) Pick
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by Lemma 1.4 some p ∈ c`A ∩K(βS). Then there exist a minimal right ideal R and
a minimal left ideal L such that p ∈ R ∩ L = RL and RL is a group by [16, Theorems
1.51]. Also by [16, Theorem 1.31] R = pβS and L = βSp so RL = pβSβSp ⊆ pβSp ⊆
R∩L = RL so pβSp is a group to which p belongs. Now pqp is a member of this group,
so there exist u, v ∈ pβSp such that p = pqpu = vpqp. Let u′ = pu and v′ = vp.

Now A ∈ pqu′ = v′qp so {s ∈ S : s−1A ∈ qu′} ∈ p and {t ∈ S : t−1A ∈ qp} ∈ v′.
Pick t ∈ S such that t−1A ∈ qp. Then {s ∈ S : s−1(t−1A) ∈ p} ∈ q. Pick K ∈ K
such that K ⊆ {s ∈ A : s−1A ∈ qu′} and let B =

⋂
s∈K s−1A. Then B ∈ qu′ so

{s ∈ S : s−1B ∈ u′} ∈ q. Pick H ∈ H such that

H ⊆ {s ∈ S : s−1(t−1A) ∈ p} ∩ {s ∈ S : s−1B ∈ u′} .

Pick L ∈ L such that L ⊆ A∩
⋂

s∈H s−1(t−1A). Pick x ∈
⋂

s∈H s−1B. Then KHx ⊆ A

and tHL ⊆ A.

Now, as above, pick t ∈ S such that t−1A ∈ qp. Then {s ∈ S : s−1(t−1A) ∈ p} ∈ q

so pick H ∈ H such that H ⊆ {s ∈ S : s−1(t−1A) ∈ p}. Pick K ∈ K such that
K ⊆ {s ∈ A : s−1A ∈ qu′} ∩

⋂
s∈H s−1(t−1A). Let C =

⋂
s∈K s−1A. Then

{y ∈ S : y−1C ∈ u′} ∈ q

so pick H ′ ∈ H such that H ′ ⊆ {y ∈ S : y−1C ∈ u′} and pick x ∈
⋂

y∈H′ y−1C. Then
KH ′x ⊆ A and tHK ⊆ A.

Notice that if S is any semigroup, s ∈ S, and n ∈ N, and H =
{
{sn}

}
then H is

a partition regular family of finite subsets of S, so the following result shows that one
cannot extend Theorem 5.9 by requiring in any of the conclusions that either x ∈ A or
t ∈ A.

5.10 Theorem. Let S be the free semigroup on the set of generators {a, b}. There exist
a central subset A of S and s ∈ S such that there do not exist u and v in A and n ∈ N
with usnv ∈ A.

Proof. Let A = {bwb : w ∈ S and w has an even number of blocks of a’s}. We have
that c`(bS) is a right ideal of βS and c`(Sb) is a left ideal of βS by [16, Theorem 4.17]
so there is a minimal idempotent p ∈ c`(bS) ∩ c`(Sb). Since p = pp, {bwb : w ∈ S and
w has an odd number of blocks of a’s} /∈ p so A ∈ p. That is A is central. Let s = a.
Given any u, v ∈ A and any n ∈ N, usnv /∈ A.

We know from Theorem 3.5 that it is common for D∗
F to be a two sided ideal of

βS. However, this fact may well be trivial. For example, if D = Pf (S) and for H ∈ D,

27



FH = H, then F = 〈FH〉H∈D is a net in Pf (S). However for B ⊆ S, d∗F (B) > 0 if and
only if B is infinite (in which case dF (B) = 1) and so D∗

F = βS \ S, which is an ideal
of βS if and only if S is both weakly left cancellative and weakly right cancellative by
[16, Theorem 4.36]. The following theorem, which has not been noted before even for
N, shows that D∗

F can indeed be quite small.

5.11 Theorem. Let S be an infinite cancellative semigroup, let F = 〈Fn〉n∈D be a
Følner net in Pf (S), and let E = {p ∈ βS : p · p = p}. Then D∗

F ⊆ c`(E ·D∗
F ). In fact,

given any B ⊆ S with d∗F (B) > 0, {p ∈ E : B∩p ·D∗
F 6= ∅} is dense in E. Consequently

D∗
F = c`(E ·D∗

F ).

Proof. Let B ⊆ S with d∗F (B) > 0, let r ∈ E, and let C ∈ r. We need to show
that C ∩ {p ∈ E : B ∩ p · D∗

F 6= ∅} 6= ∅. Pick by [16, Theorem 5.8] a sequence
〈xn〉∞n=1 with FP (〈xn〉∞n=1) ⊆ C. Let B0 = B. Pick by Lemma 5.2 k1 ≤ m1 in N
such that d∗F (B0 ∩ (

∏m1
t=k1

xt)−1B0) > 0. Let y1 =
∏m1

t=k1
xt and let B1 = B0 ∩ y1

−1B0.
Inductively, given Bn−1 and kn−1 ≤ mn−1 pick kn ≤ mn in N with kn > mn−1 such that
d∗F (Bn−1∩(

∏mn

t=kn
xt)−1Bn−1) > 0. Let yn =

∏mn

t=kn
xt and let Bn = Bn−1∩yn

−1Bn−1.

Note that FP (〈yn〉∞n=1) ⊆ FP (〈xn〉∞n=1). We claim that for each H ∈ Pf (S), if
n = maxH, then Bn ⊆ (

∏
l∈H yl)−1B. We establish this by induction on |H|. If

H = {n} we have Bn ⊆ yn
−1Bn−1 ⊆ yn

−1B. So assume |H| > 1, let K = H \ {n} and
let v = max K. Then Bv ⊆ (

∏
l∈K yl)−1B so Bn ⊆ yn

−1Bv ⊆ yn
−1(

∏
l∈K yl)−1B =

(
∏

l∈H yl)−1B.

Pick by [16, Lemma 5.11] some p ∈ E such that FP (〈yn〉∞n=1) ∈ p and pick by
Lemma 2.3 and [16, Theorem 3.11] some q ∈ D∗

F such that {Bn : n ∈ N} ⊆ q. Then as
we have shown in the paragraph above, FP (〈yn〉∞n=1) ⊆ {z ∈ S : z−1B ∈ q} so B ∈ p · q
as required.

For the final conclusion note that by Theorem 4.11 F satisfies (∗) so by Theorem
2.7 D∗

F is a left ideal of βS and so E ·D∗
F ⊆ D∗

F and the latter set is closed.
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