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Density and Invariant Means in
Left Amenable Semigroups

Neil Hindman!
and
Dona Strauss

Abstract. A left cancellative and left amenable semigroup S satisfies the Strong Falner
Condition. That is, given any finite subset H of S and any € > 0, there is a finite
nonempty subset F' of S such that for each s € H, |sF A F| < €-|F|. This condition is
useful in defining a very well behaved notion of density, which we call Fglner density,
via the notion of a left Fglner net, that is a net (Fo)qaep of finite nonempty subsets
of S such that for each s € S, (|sFo A Fuol)/|Fa| converges to 0. Motivated by a desire
to show that this density behaves as it should on cartesian products, we were led to
consider the set LIMy(S) which is the set of left invariant means which are weak™®
limits in lo(S)* of left Fglner nets. We show that the set of all left invariant means
is the weak™® closure of the convex hull of LIMy(S). (If S is a left amenable group,
this is a relatively old result of C. Chou.) We obtain our desired density result as
a corollary. We also show that the set of left invariant means on (N, +) is actually
equal to LIMp(N).We also derive some properties of the extreme points of the set of
left invariant means on S, regarded as measures on 8S, and investigate the algebraic
implications of the assumption that there is a left invariant mean on S which is non-zero
on some singleton subset of 3S.

1. Introduction

If E is a Banach space, its dual, the space of continuous linear functionals defined on
E, will be denoted by E*. We recall that E* is a Banach space with norm defined by
IfI = sup({[f(z)| : x € E, |lz|| <1}) for f € E.

Throughout this paper, S will denote a discrete semigroup. We shall use [ (S) to
denote the real Banach space of bounded real valued functions on S with the supremum
norm, denoted by || ||co. A mean on S is a member p of [ (S)* such that ||u|lec =1
and p(g) > 0 whenever g € 1(S) and for all s € S g(s) > 0. A left invariant mean
on S is a mean p such that for all s € S and all g € 1o(5), u(s-g) = u(g), where
s-g=goAsand A\s : S — S is defined by A\s(t) = st.

1.1 Definition. Let S be a discrete semigroup. Then MN (S) is the set of means on S
and LIM(S) is the set of left invariant means on S. A semigroup S is left amenable if
and only if LIM(S) # 0.
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For any set X, let P;(X) be the set of finite nonempty subsets of X. In [1]
Argabright and Wilde showed that a left cancellative semigroup S is left amenable if

and only if it satisfies the strong Folner condition:
(SFC) (VH € P(S)) (Ve > O)(EIF € Pf(S))(‘v’s e H)(|F\sF|<e-|F|)

(See [17, page 145] for the short proof that this version is equivalent to the version
stated in the abstract.) They also showed that any commutative semigroup satisfies
SFC. In particular, any commutative semigroup is left amenable.

If F'\ sF is replaced by sF'\ F in the statement of SFC, one obtains the original
Fglner condition (FC). In [5] Fglner showed that any amenable group S satisfies (FC)
and Frey [6] showed that any left amenable semigroup satisfies (FC). (For a simplified
proof see [16, Theorem 3.5].)

The strong Fglner condition corresponds naturally to the notion of a left Fglner

net.

1.2 Definition. Let S be a semigroup and let (F,,)acp be a net in Py(S). Then
(Fuo)aep is a left Folner net if and only if for each s € S, the net

<\3FCY AN F,| >
‘Fa’ aED

Equivalently, (Fy)aecp is a left Folner net if and only if for each s € S, the net

< |Fo \ sFq|
| Fal
The notion of a left Fglner net in turn leads naturally to a very well behaved notion

converges to 0.

> converges to 0.
aeD

of density in any semigroup which satisfies SFC. We remark that the concept of density
is significant in Ramsey Theory. For example Szemerédi’s Theorem ([19], [7]) says that
any subset A of N with d(A) > 0 contains arbitrarily long arithmetic progressions.
1.3 Definition. Let S be a semigroup which satisifies SFC and let A C S. Then
d(A) = sup {a: (VH € Ps(S)) (Ve > 0) (3K € Ps(5)) (|A NK|>a-|K| and
(Vs € H)(|K AsK| < e |K|))} .

See [11, Section 4] for verification of the niceness of this notion of density. In

particular, we have the following.



1.4 Theorem. Let S be a semigroup which satisifies SFC and let A C S. There exists
a left Folner net (Fa)aep in Pr(S) such that

Proof. [11, Theorem 4.16]. 0

In recent research involving small sets satisfying a version of the Central Sets The-
orem, we wanted to know that if S and 7" are left amenable left cancellative semigroups,
A C S, BCT, and either d(4) = 0 or d(B) = 0, then d(A x B) = 0. In fact we
suspected that d(A x B) = d(A) - d(B). The desire to prove that fact provided the
initial motivation for this paper. It is easy to prove in an entirely elementary fashion
that d(A x B) > d(A) - d(B). (See Lemma 3.1.) The proof of the reverse inequality

leads us back into the world of invariant means.

1.5 Definition. Let S be a discrete semigroup and let F' € P¢(S). Then pr € loo(S)*
is defined by pr(g) = ‘—}' Y ier 9(t) for every g € 1o (S).

Notice that each up is a mean on S.

We remind the reader that, for any Banach space F with dual E*, the weak topology
on E is the topology for which a net (z4)aep in E converges to x € E if and only if
(f(xa))aep converges to f(x) for every f € E*. The weak* topology on E* is the
topology for which a net (f,)aep in E* converges to f € E* if and only if (f(z4))acD
converges to f(z) for every x € E. Equivalently, the weak™ topology is the restriction
to B of the product topology on X ;cg R.

We shall need to use the following well-known theorem.

1.6 Theorem. If E is any Banach space, the unit ball of E* is compact in the weak™
topology.

Proof. See [13, 17.4]. 0

1.7 Definition. Let S be a discrete semigroup. Then LIMy(S) = {n € loo(S)* : there
exists a left Folner net (F,)qep in Pr(S) such that (ur,)aep weak™ converges to n}.

It is routine to show that LIMy(S) C LIM(S) and that LIM(S) is convex and
weak* closed. C. Chou showed in [3, Theorem 3.2(a)] that if G is a countable left
amenable discrete group, then LIM(G) is the weak™ closed convex hull of LIMy(G).
(He actually dealt with o-compact locally compact topological groups. Also, in groups

left amenability implies the existence of a two sided invariant mean. See [17, Section
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0.17].) This result was extended to an arbitrary left amenable group by A. Patterson in
[17, Theorem 4.17]. (Again, he actually dealt with locally compact topological groups.)
The proofs of these results strongly use algebraic properties of groups, and do not apply
directly to semigroups. In Section 2, we show that for any left cancellative left amenable
semigroup S, LIM (S) is the weak™* closed convex hull of LIM(S5).

In Section 3 we use the above result to show that if S and T are left cancellative
left amenable semigroups, A C S, and B C T', then d(A x B) = d(A) - d(B).

The question naturally arises whether LIM(S) properly contains LIMy(S). We
cannot answer this question in general, but we do show in Section 4 that LIM (N, +) =
LIMy(N,+).

In Section 5 we derive some properties of the extreme points of LIM (S) where S

is a left cancellative and left amenable semigroup.

In Section 6 we consider the implications for the algebra of 3S of the assumption
that there exists u € LIM (S), regarded as a measure on 35, and an element x € S for
which p({z}) > 0. A. T.-M. Lau proved in [15] that this assumption holds if and only if
every minimal left ideal of 5.5 is a finite group. We include a proof of this fact because
our terminology and methods of proof differ significantly from those used in [15]. The

papers [14] and [8] also contain results relevant to Section 6.

2. The weak™ closed convex hull of LIM(S)

We use [;(5) to denote the Banach space of mappings f : S — Rsuch that ) ¢ |f(s)| <
oo, with norm || f|[1 = > g |f(s)| for f € 11(S). Of course, I (S) is the dual of [1(5),
the duality being defined by (g, f) = > _,cq 9(t)f(t) for g € lc and f € [1(S5).

Given ACSandse S, s tA={ueS:suec A}

2.1 Definition. Let S be a semigroup.
(a) Define 7 :11(S) — I (S)* by 7(f)(g9) = (g, f) for f € 141(S) and g € 1. (S5).
(b) For s € S and f €11(S5), s- f € li(S) is defined by (s- [)(t) = >, cs-1 0y (W)

Thus 7 : 11(S5) — l(5)* is the natural embedding of ;(.5) in its second dual. It is

an injective linear map and an isometry.
flu) ifsu=t

Note that if s is left cancelable, then (s - f)(t) = { 0 ift¢sS

2.2 Lemma. Let S be a semigroup, let s € S, and let f € [1(S). Then1(s-f) = s-7(f).
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Proof. Let A= {(t,u):t € S and su =t} and let g € [,o(S). Then

(
(s-7()(9) = Xues 9(su) f(u)
=2 (tuyea 9 f(u)
=71(s-f)(g). O

We shall need the following two well-known results.

2.3 Lemma. Let E be a real locally convex topological vector space, let C' be a closed
convex subset of E and let v € E'\ C. Then there is a continuous linear functional T
on E for which f(x) < inf T[C].

Proof. [9, B26]. O

2.4 Lemma. Let E be a real normed linear space and let C' be a convex subset of E.

Then the weak closure of C' and the norm closure of C' are equal.
Proof. [13, 17.1]. 0

2.5 Definition. Let S be a semigroup. Then ® = ®(S) is the set of all f € [;(.S) such
that

(1) (Vs € S)(f(s) 2 0),

(2) {s€ S : f(s) >0} is finite, and

3) I[fll = 1.

Note that if f € ®, then 7(f) is a mean, called a finite mean.

The following lemma is also well known. We give a short proof because we do not

have an explicit reference.
2.6 Lemma. Let p € MN(S). Then p is in the weak™ closure of T[®].

Proof. If u € MN(S) were not in the weak* closed convex hull of 7[®], there would
be a weak® continuous linear functional 7" on [, (S)* and a real number a for which
T(p) > a and T(7(¢)) < a for every ¢ € ®, by Lemma 2.3. Now there exists g € lo(S5)
such that (T,v) = (v, g) for every v € I(5)*, by [13, 17.6]. Since (7(¢),g) < a for
every ¢ € ®, g(s) < a for every s € S and so g < a- 1, where 1 denotes the function
constantly equal to 1 on S. This implies that (i, g) < (u,a-1) = a — a contradiction. [

The following lemma was proved in [16] with a left-right switch.
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2.7 Lemma. Let S be an arbitrary semigroup. Let ¢ € ®. Then ¢ can be written in
the form ¢ = >_""_ | cipa, where, for each i € {1,2,...,n}, ¢; € [0,1], A; € P¢(S) and
i, ¢ = 1. Furthermore, for every s € S, ||s- ¢ — |1 > >y ¢+ %.

Proof. [16, Lemma 3.3]. O

2.8 Definition. Let S be a semigroup and let A € P(S). We define py € ® by
HA = ﬁXF-
We omit the routine proof of the following lemma.

2.9 Lemma. Let S be a left cancellative semigroup, let ' € Ps(S), and let s € S.

Then
|sF' A F|

||
2.10 Lemma. Let S be a left cancellative semigroup, let A € P¢(S) and let s € S.
Then |sA\ A| = |A\ sA|.

s - pr —prlh =

Proof. We have |F'\ sF| = |F|—|FNsF|, |sF\F| = |sF|—|FNsF|and |F| = |sF|. U

The proof of the following lemma is essentially the same as the elegant proof of
Theorem 2.2 in [16].

2.11 Lemma. Let S be a left cancellative and left amenable semigroup. Let p €
LIM(S), let W be a convex weak* neighborhood of p, and let U = ® N1 1[W], let F €
P¢(S) and let 6 > 0. Then there exists f € U such that for each s € F, ||s- f — f|[1 < 0.

Proof. Let F = {s1,50,...,5,}, let E = X, ,11(S), and for € E, let ||Z]| =
max {||:cl|]1 e {l,2,... ,n}} Then the weak topology on E is the product of the weak
topologies on the coordinate spaces [13, 17.13]. By Lemma 2.6, there is a net (fa)aep

*

in U for which (7(fa))aep converges to p in the weak™ topology of I (S)*. For each
s € S, the mapping v — s - v is a weak™® continuous mapping from [, (5)* to itself. So
(s'T(fa))aecp converges to s-pu = pand (s-7(fo) —7(fa))acp converges to 0 in the weak*
topology. Since the weak* topology on 7[l1(S)] corresponds to the weak topology on
[1(S), it follows that (s- fo — fa)aep converges to 0 in the weak topology of 11(S). Thus
the net (s1- fo— fa, 82  fa—fas- -+ Sn-fa— fa))aecp converges to 0 in the weak topology
of E. So 0 is in the weak closure of the subset {(s1-f—f,s2-f—f,....8n-f—f): f €U}
of E. By Lemma 2.4, 0 is in the norm closure of this set. So there exists f € U such

that ||s- f — f]|1 < d for every s € F. O

2.12 Theorem. Let S be left cancellative and left amenable. Then LIM(S) is the
weak™ closed convex hull of LIMy(S).



Proof. Let C denote the weak™ closed convex hull of LIM,(S) and assume that there
exists p € LIM(S)\ C. By Lemma 2.3, there is a weak* continuous linear functional T
on I (S5)* and b € R such that T'(x) < b < inf T[C].

For each F' € P;(S) and each § > 0, put
O(F,0)={fe®:|s-f—fllh<dforalseF}.

We claim that there exists Fy € Py(S) and o > 0 such that T'(7(f)) > b for every
f € ®(Fp,dp). To see this assume that, on the contrary, there exists f(F,d) € ®(F,J)
for every F' € P¢(S) and every § > 0 such that T(T(f(F7 5))) < b. We give Pr(S) x RT
a directed set ordering by putting (F1,d1) < (Fs,d2) if F; C Fy and 61 > d2. Then every
limit point v of the net (7(f(F,9)))(r.s5)ep,(s)xRr is in LIMy(S) and satisfies T'(v) < b,
a contradiction.

Let U = {v € l(S)* : T(v) < b}. Since U is a weak™ convex neighbourhood of u,
it follows from Lemmas 2.10 and 2.11 that there exists f in the convex hull of ®(Fy, dg)
for which 7(f) € U. This is a contradiction because T'(7(f)) > b for every f in the
convex hull of ®(Fy, dp). O

We remark that Theorem 2.12 does not hold if the assumption of left cancellativity
is deleted. Every right cancellative left amenable semigroup which is not left cancellative
does not satisfy SFC and so has no Fglner nets [17, p.145].

2.13 Corollary. If S is left cancellative and left amenable, LIMy(S) contains all the
extreme points of LIM(S).

Proof. [13, Theorem 15.2]. 0

2.14 Theorem. Suppose that S is a semigroup which satisfies SFC. Then, for every
ACS, d(A) <sup{u(A):pue LIM(S)}. If LIM(S) is the weak™® closed convex hull of
LIMy(S) then, for every subset A of S, d(A) = sup({u(Xa) : p € LIM(S)}).

Proof. By Theorem 1.4, there is a Fglner net (F,)ncp such that d(A) = limpup, (Xa).
If p is any weak™ limit point of the net (ug, )aep, then p € LIMy(S) and u(X4) = d(A).
So d(A) < sup{u(Xa): p € LIM(S)}.

Now {p € LIM(S) : n(Xa) < d(A)} is a weak™® closed convex subset of LIM(S)
which contains LIM(S). It therefore contains LIM(S) if LIM(S) is the weak™ closed
convex hull of LIM;(S). 0



3. Density of products

We show in this section that for semigroups S satisfying SFC such that LIM(S) is
the weak* closed convex hull of LIMy(S), density in cartesian products behaves as it
should. We first record the very simple elementary proof of one desired inequality. For

this one does not need any special assumptions (beyond, of course, the assumption of
SFC, which is needed for density to be defined).

3.1 Lemma. Let S and T be semigroups which satisfy SFC, let A C S and B C T.
Then S x T satisfies SFC and d(A x B) > d(A) - d(B).

Proof. Pick by Lemma 1.4 a left Fglner net (F,)oecp in Pr(S) and a left Fglner net

ANE, B
(Gs)ser in Py(T) such that d(4) = lim % and d(B) = lim | |256|¥5|

D x E by (a,0) < (o/,¢") if and only if o < o' and § < ¢'. Then (Fy X Gs)(a,6)cDxE

Ax B)N (Fa
is  loft Folner net in Py (S x 7) and d(4) -d(B) = lm (4 x |f2am><( G5|X @)l o

. Direct

3.2 Definition. Let S be a semigroup. C(S) = {X4 : A C S} and &(95), the set of

simple functions on S, is the linear span of C(S5).

3.3 Lemma. Let S be an arbitrary semigroup. Assume v : C(S) — [0,1] such that
v(Xs) = 1, v(Xaup) = v(Xa) + v(XB) whenever A and B are disjoint subsets of S,
and v(X4-14) = v(X4) whenever A C S and s € S. Then v extends to a member of
LIM(S).

Proof. Let f € &(S) be written as f = >_."| a;Xa, where aj,az,...,a, € R and
Aq,As, ..., A, €S0 We claim that the number 221 a;v(X 4,) is uniquely determined
by f.
We first consider the case in which we also have f = Z?Zl bjXp,, where (B, Ba,
.., By) is a disjoint partition of S and, for every i and j, B; C A; or B, N A; = 0.
We observe that, for every j and every s € Bj, f(s) =b; = > {a; : BjNA; # 0}. So
bjv(Xg,) = > {aiv(Xp,) : BiNAi # 0} = 3", aiv(Xa;np;). So 35—, bjv(Xp,) =
2?21 > i aiv(Xa,nB,) = > i Z;L:1 av(A; N By) =300 av(4;).
Now suppose that f can also be written as f = >\, a}X A7- We then we have
>oig aiv(Xa,) = Y5, ajv(Xar) because we can choose a disjoint partition (By, Ba,
.., Byp) of S such that, for every j € {1,2,...,n}, every i € {1,2,...,m} and every
ke{l,2,...,r}, Bj CAjor BijNA; =0 and B; C A} or B;N A}, = 0.
Thus we can extend v to &(S) by putting v(f) = >~ a;v(Xa,).
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It is obvious that v is linear on &(S) and that |v(f)| < || f|le for every f € &(S).
So v can be extended to a continuous linear functional defined on /o (S) because &(5)
is uniformly dense in [ (S). It is clear that v is a mean. Given s € S and A C S, we
have X4 0 Ay = X,-14 and so v(s- f) = v(f) for every f € &(S5). Consequently v is left

invariant on I (.5). 0

3.4 Theorem. Let S and T be semigroups satisfying SFC and assume that LIM(S) is
the weak™ closed convex hull of LIMy(S). For every A C S and B C T, d(A x B) =
d(A)d(B).

Proof. By Lemma 3.1, S x T satisfies SFC and d(A x B) > d(A)d(B).

By Theorem 2.14, d(A x B) < sup{p(Xaxp) : p € LIM(S x T)}. So the reverse
inequality will follow from the claim that p(Xaxp) < d(A)d(B) for every p € LIM (S x
T). To prove this, we may clearly suppose that p(Xaxp) > 0.

We define functions p and v on C(S) and C(T') respectively by putting u(Xx) =
p(X x T) for every X C S and v(Y) = % for every Y C T. We clearly have
w(Xs) = v(Xr) =1, u(Xx,ux,) = #(Xx,) + #(Xx,) whenever X; and X, are disjoint
subsets of S and v(Xy,uy,) = ¥(Xy, ) + ¥(Xy,) whenever Y; and Ys are disjoint subsets
of T'. Furthermore, we claim that p and v are left invariant. To see this, observe that

for every a € S and every b € T, we have pu(Xx) = p(X(ap)-1(x x1)) = pP(Xa-1xx7) for

X, -
every X C S and v(Xy) = il (;(’%Al(;‘)xy)) for every Y C T. So u(Xq-1x) = u(Xx) and,
_ P(X(a,b)*l(Axrly)) _ p(X(a,tb)*l(AxY)) _
for every t € T, v(Xy-1y ) = SCar) = X =v(Xy).
It now follows from Theorem 2.14 and Lemma 3.3 that u(X4) < d(A) and v(Xp) <
d(B). Since u(Xa)v(Xg) = p(Xaxn), we have that p(Xaxp) < d(A)d(B). O

4. LIM(N) is convex

We let N be the semigroup of positive integers under addition. It is easy to see that for
any left amenable left cancellative semigroup S, LIMy(S) is weak™ closed. Therefore,
by Theorem 2.12, to see that LIM (N) = LIMy(N), it suffices to show that LIM(N) is

convex.

We write N{O7 1} for the set of sequences in {0, 1}.

4.1 Lemma. Let € LIMy(N), let lm € N, let K € Py (N{o,l}), and let € > 0.
There exists F' € Py(N) such that

(a) min F' > [,

(b) F is the union of blocks each of length an integer multiple of m, and
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(c) forall g € K, |ur(g) —n(g)| <e.

Proof. Pick a left Fglner net (Hy)qaep in Py(N) such that (1, )aep converges to n in
the weak* topology on I, B(N)*. Pick w € N such that w > £ and let

L={xeN:(Ja>)(ze{a,a+1,a+2,...,a+wm} C H)}.

Note that for any o« € D, (1 + H,) \ Hy # 0 and so limyep |Ho| = 00. Pick v € D
such that for all « € D, if o > =, then |H,| > 172l and for all i € {1,2,...,wm},
((i4+Ha)\ Ho| < 55— - |Hqo| and note that |[Hy \ (—i+Hy)| = |(i+ Ho) \ Ho|. Ifa > v,
then Ho, \ L C{1,2,..., 1} UU;" (Ha \ (i + Hy) so |[Hy \ L] <145 - |Ha| < & |Hygl.

Pick 6 € D such that whenever o € D and a > ¢, one has that for each g € K,
\nm, (9) —n(9)] < 5. Pick a € D such that a > 7 and a > 4.

Pick 7 € N, {a;)7_;, and (s;)7_; such that L = J;_,{a; + 1,a; +2,...,a; + s;}
where for j € {1,2,...,r}, s; >wm, and if j <7, aj +s; < ajy1. For j € {1,2,...,r},
let tj = [72]. Let F = Uj_{a; +1,a; +2,...,a; +mt;}. Then |L| > rwm and so
L\ F|<rm < 1.|L| <& |Hy| Therefore, |Hy \ F| < § - |Hy|. Let g € K. We have
that |, (9) — n(g)] < € so it suffices to show that |up(g) — pm, (9)] < 4. We have
that

. (9) — pr(g)| = ZtGHQ g(t) — Ztng(t) n Ztepg(t) B Ztng(t)

| Ho| | Ho| ||
ZtGHa\F l9(2)] dier l9(t)] _ |Ho| — | F]
- | Ho| || | Ha|
[Ho \ F| | |[Ha \ F]|
~ |Hd | Ho|
€ € 2
< 3 + 37 3¢ O

4.2 Lemma. Let n € LIMy(N), let € > 0, let K € Py (N{O, 1}), and let n € N. There
ezists By € N such that for alll € N and all B € N with B > By, there exists G € P¢(N)
such that

(a) minG > [,

(b) G is the union of blocks each of length at least n,

(¢) |G| = Bn, and

(d) forall g € K, |pa(g) —n(g)| <e.

21X
Proof. LetX:K{O L 2" 1} and pick By € N such that By > | | Let l € N

Y n?

€
and B > By be given. Let m = 2Bn and pick by Lemma 4.1, F' € P;(N) such that
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min F' > [, F' is the union of blocks each of length an integer multiple of m, and for all
ge K, |pr(g9) —u(g) < 5. Let v = % (so v > 2B) and choose an increasing sequence
(x4)7_q such that F =J,_{@z + 1,2, +2,...,2¢ + n}.

For g€ K and t € {1,2,...,v}, let fi(g) = & Y19+ ) € {0,1,2 .. 1}
For ¢ € X, let Hy ={t € {1,2,...,v}: fy =1}. Note that 3 y [Hy|=v.

We now claim that we can choose (a)yex in w such that

(1) for all ¢ € X, ay < [Hyl,

(2) for all ¥ € X, w-1<a¢<w+l, and

(3) Xyex ayp = B.
Indeed, we shall always have either a, = {w-‘ or ay = LB'|H7”|J, so (2) will hold.

If one always chooses a, = [MW’ then > cyv apy > B> cx % = B and if one
such choices so that >,y ay = B. To see that (1) holds, let ¢ € X. If Hy = 0, then
ay = 0. Otherwise, let k = |Hy|. Then w < % <ksoay < {w-‘ < k.

For each ¢ € X, pick Gy, € [Hy]* and let

always chooses a,, = LMJ, then > v ay <B->  cx @ = B so one may make

G:U'([)EXUtGGw{xt+17xt+27""xt+n}'

Then |G| = }_,c x nay = Bn.
To complete the proof, let g € K. We shall show that |uc(g9) — pr(g)| < § so that
luc(g) — ulg)| < € as required. Now F'=Uyex Usen, {2e + L e +2,...,2¢ +n} so

_ ZweX ZtGHw nft(g) _ Zd;eX ZtGHw ft(g) _ Zwex |H¢|¢(g)

vn (Y (%

pr(g)
Also |G| = Bn and

B Zq/;eX Zter nfi(g) B ZweX Zter ft(g) B Zwex ayp(g)
hals) = < _ £ = Zvex V9)
B-|Hy|

ay _ |Hy|

Now = -

—1<a¢<w+1. So

1
< 35 Hence

1 _ Xl

B =

- Bl T vt

ur(9) = pa(9)l < Xyex ¥(9) - |5

O

DO ™

Recall that MN(N) is the space of all means on N. The next lemma says that the
topology on MN (N) is determined by sequences in {0, 1}.

4.3 Lemma. Letn € MN(N) and let U be a weak™ neighborhood of n in MN (N). There
exist K € Py (N{O, 1}) and € > 0 such that (), {v € MN(N) : [n(g) —v(g)| <€} CU.
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Proof. It suffices to assume that U is a subbasic neighborhood of 7 in MN (N) so pick
f €ls(N) and 6 > 0 such that U = {v € MN(N) : [n(f) —v(f)| < é}. Let b > ||f|| and
choose n € N such that n > %. Let e = %. Forie€{0,1,...,2n} let ¢; = —b+ % and
for i € {0,1,...,2n — 1} let g; be the characteristic function of f~![[¢;,c;11)]. Then
Ilf — 22220_1 cgil] < L < %. Consequently, given any v € MN(N), since ||v|| = 1,
v(f =i eig)| < §

Assume now that v € MN(N) and for each i € {0,1,...,2n—1}, [n(g:) —v(g:)| < e.
Then [v(f) — (312" cigi)l < § and |n(f) — (X725 cigi)| < §. Finally

(2 eigs) — (7 g = | 7 ei(v(g) —n(9))]
< S0 el - v(gi) — n(gi)| < 2nbe = 8

Thus |v(f) —n(f)] <9. O

4.4 Lemma. Let n € MN(N). If for each K € Py (N{O, 1}), each n € N, and each
€ > 0, there exists F' € Pr(N) such that F' is the union of blocks, each of length at least
n, and for each g € K, |ur(g) —n(g)| <€, then n € LIMy(N).

Proof. Let D = Py (N{O, 1}) x RT x N and order D by (K,¢,n) < (K',¢,n’) if and
only if K C K', ¢ > ¢, and n < n/. For each (K,e,n) € D, pick F(K,e,n) € Ps(N)
such that F'(K,e,n) is the union of blocks, each of length at least n, and for each g € K,
\p(K,en)(g) —n(g)| < e. Then by Lemma 4.3, (ip(k,en)) (K en)ep converges to n in
the weak™ topology on MN(N) so it suffices to show that (F(K,€,n))(k cn)ep is a left
Fglner net in P¢(N). To see this note that, given any k € N and any (K,¢e,n) € D, if
F=F(K,e,n) and n >k, then |F\ (k+ F)| < £ |F|. O

4.5 Theorem. LIMy(N) is convex.

Proof. Since LIM(N) is weak™ closed and the dyadic rationals are dense in [0, 1], it
suffices to let p,v € LIMy(N) and show that n = p+ v € LIMy(N). Let € > 0, let
K € Py <N{O, 1}), and let n € N. By Lemma 4.4 it suffices to produce H € P;(N)
such that H is the union of blocks each of length at least n and for each g € K,
| (9) = n(g)l <e

Pick By in N as guaranteed by Lemma 4.2 for u, ¢, K and n and pick By in N as
guaranteed by Lemma 4.2 for v, €, K and n. Let B = max{By, B1}. Pick F' € P;(N)
such that F' is the union of blocks each of length at least n, |F| = Bn, and for all
g€ K, |ur(g) —p(g)] < e Let ] = maxF and pick G € P¢(N) such that minG > I,
G is the union of blocks each of length at least n, |G| = Bn, and for all ¢ € K,
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luc(g) —v(g)] < e. Let H=FUG. Then pg = spup + spc and so for any g € K,
s (9) = n(9)] < 3lur(g) — 1(g)l + 5luc(e) — vig)l <e O

4.6 Corollary. LIM(N) = LIMy(N).

Proof. By Theorem 2.12; LIM(N) is the weak™® closed convex hull of LIMy(N). Also
LIMy(N) is weak* closed and by Theorem 4.5 LIM,(N) is convex. O

5. Further properties of left invariant means

We shall explore some of the connections between invariant means and the algebra of the
Stone-Cech compactification 85 of a discrete left amenable semigroup S. Since o (.S)
can be identified with C(8S), the Banach space of continuous real-valued functions
defined on 35, it follows from the Riesz Representation Theorem that a mean on S
corresponds to a regular Borel probability measure on 3S. More precisely, for every
€ LIM(S), there exists a unique regular Borel probability measure i on 55 for which
w(f)y=[ fdpi for every f € lso(S), where f : BS — R denotes the continuous extension
of f. In particular, fi( A) = u(X4) for every A C S. It follows easily from the regularity
of u that fi(s™1B) = u(B) for every s € S and every Borel subset B of 3S.

In the remainder of this paper, we shall regard LIM (S) as the space of left invariant
regular Borel probability measures defined on 3S. We shall use a symbol such as u to
denote an element of LIM(S), in preference to the more cumbersome p used in the
preceding paragraph.

We regard 3S as the space of ultrafilters on S, with the points of S identified with
the principle ultrafilters. The topology of 85 is defined by choosing the sets of the form
A={peBS:Acp}, where A denotes a subset of S, as a base for the open sets. A is
then a clopen subset of 8S, with A = clgs(A), and all the clopen subsets of 3S are of
this form.

We shall need to use the well-known fact that the semigroup operation of S can
be extended to 65 and that 3S is then a right topological semigroup with S contained
in its topological center. This means that, for every x € 4S5, the map p, : 65 — 3S
defined by p,(y) = yz is continuous and, for every s € S, the map A, : S — (5 defined
by As(y) = sy is continuous. Given p,q € 5S and A C S, one has that A € pq if and
only if {s€ S:s7 1A ecq}ep.

The fact that 8S is a compact right topological semigroup has important algebraic
consequences. Among these is the fact that 55 contains a smallest ideal K (35) which is

the union of all the minimal left ideals of 3.5, as well as the union of all the minimal right
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ideals of 4S. Any two minimal left ideals of 35 are isomorphic, as are any two minimal
right ideals. The intersection of any minimal left ideal and any minimal right ideal of
BS is a group, and every minimal left ideal of 35S is closed. See [10] for derivations of
these facts and further information.

Most of the statements in the following theorem are well-known. We give proofs

rather than references because the proofs are so simple.

5.1 Theorem. Let S be a discrete left amenable semigroup and let p € LIM(S). Then

the following statements hold:

(a) For every Borel subset B of 8S, every s € S and every p € LIM(S), if sB is
a Borel subset of 3S, u(sB) > u(B). In the case in which S is left cancellative,
u(sB) = u(B).

(b) The support of p is a left ideal of 5S;

(c) Every minimal left ideal of BS is the support of a measure in LIM(S);

(d) If L is a minimal left ideal of 35S, then sL = L for every s € S;

(e) If R is a right ideal of S, u(R) = 1;

(f) u(({R: R is a right ideal of S}) = 1;

(9) K(BS) C({R: R is a right ideal of S}.

Proof. (a) In any semigroup S, B C s~ 'sB. In the case in which S is left cancellative,
s~ 1sB = B.

(b) Let C denote the support of uu. For every s € S, u(s™*C) =1andso C C s~ 1C.
Hence, for every x € C, Sz C C and therefore (3S)z = Sz C C.

(c) Let L be a minimal left ideal in 58S and let p € L. We can define a a left
invariant Borel measure v on 8S by putting v(B) = u(p, ' [B]) for every Borel subset
B of 8S. To see that v is regular, let B be a Borel subset of 55 and let ¢ > 0.
We can choose a compact subset C' of p;!'[B] for which u(p,'[B]\ C) < e. Since
pp B\ pplC]] C p,t[B]\ C, it follows that v(B\ pp[C]) < e. So v € LIM(S). Now
pp t[BS\ L] = 0, and thus the support of v is contained in L. By (b), the support of
v is a left ideal and is therefore equal to L. (d) By (c), L is the support of a measure
p € BS. By (a), u(sL) =1. So L C sL and hence sL = L.

(e) Choose s € R. Since R is a right ideal of 85 by [10, Corollary 4.18], 3S C s~ 'R.

(f) Since p is regular, for any downward directed family C of compact subsets of
BS, u(NC) =inf({u(C) : C € C}). So (f) follows from (e).

(g) This follows from (d), the fact that K(8S) is the union of the minimal left
ideals of 3S, and the fact already mentioned that if R is a right ideal of S, then R is a
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right ideal of 3S. U

A semigroup S is said to be weakly left cancellative provided that for all u,v € S,
{z € S :uzx = v} is finite.

5.2 Corollary. Let S be an infinite discrete left amenable semigroup. If S is weakly

IS

left cancellative, then |LIM(S)| = 22" .

Proof. This follows from Theorem 5.1(c) and the fact that 35 has 22! Joft ideals ([10,
Theorem 6.42]). 0

We shall now derive some properties of the extreme points of LIM(S). An inter-

esting characterisation of these points is given in [4].

5.3 Lemma. Let S be a discrete left amenable semigroup and let p,v € LIM(S). If
v = vy + vy where vy is absolutely continuous with respect to p and v is singular with

respect to u, then v1 and vy are left invariant.

Proof. Let s € S. We shall show that s - v is absolutely continuous with respect to
i and that s - v, is singular with respect to p. It will follow from the uniqueness of v
and v, that v;1 = s-v7 and that vy = s - vs.

If B is a Borel subset of 35 for which u(B) = 0, then u(s7'B) = 0. So v1(s7!B) =
0. Thus s - vy is absolutely continuous with respect to p.

Now we can write 35 as the union of two disjoint Borel subsets, By and Bs, for
which p(B1) = v2(B3) = 0. Then v1(s7'B;) = v1(B) = 0. So va(s™1By) = v(s™1By) =
v(B1) = va(By). Since 0 = v3(Bs) = 1 —15(B1) = 1 — 1a(s71B1) = 1e(s™1By), it

follows that s - 5 is singular with respect to pu. U

5.4 Lemma. Let S be a discrete left amenable semigroup and let v be an extreme point
of LIM(S). For every p € LIM(S), either v is singular with respect to p or absolutely

continuous with respect to L.

Proof. We write v = v1 +v5, where v is absolutely continuous with respect to p and v,
is singular with respect to p. If v1 and v, are both non-zero, we obtain a contradicition
are

by writing v = HV1H”Z—1” + ||V2HHZ—§” and noting that, by Lemma 5.3, iy and 22

in LIM(S). O

5.5 Definition. Let S be a discrete left amenable semigroup and let i be a non-negative
Borel measure on 3S. We shall say that a Borel subset B of 55 is u left invariant if
u(s7!B A B) =0 for every s € S.
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5.6 Lemma. Let S be a discrete left amenable semigroup and let u € LIM(S). Suppose
that S is left cancellative. Let v be an extreme point of LIM(S). If v is absolutely
continuous with respect to , then there is a p-left invariant Borel subset E of 35 such

that v(B) = “(B(g) ) for every Borel subset B of 3S.

Proof. Let f: 35S — R be a Borel measurable function with the property that v(B) =
[ fdu for every Borel subset B of 3S. We claim that, for every given s € S, f(st) =
f(t) for every t in the complement of some p-null subset Ny of 35S.

—1x is well defined on

To see this, note that, for every x € s35, the mapping x +— s
sBS (by [10, Lemma 8.1]) and is easily seen to be continuous. We note that u(ssS) =1
by Theorem 5.1(e). Let B be a Borel subset of s35. We have [ f(s™'¢) XB( Ydu(t) =
JFOXp(st)du(t) = [ fO)Xpt)du(t) = v(s™'B) = v(B) = [ f{t)Xs(t)du(t). It
follows that there exists a p-null subset Ng of £S such that f(s7) = f (t) for every
t € BS\ N,. We then have f(t) = f(s 1st) = f(st) for every t € s71Nj.

Let Uy and Us be disjoint subsets of R which partition R and let By = f~![U;] and
By = f7Us]. Then By and Bs are disjoint Borel subsets of 35 which partition 3S.
They are p-left invariant because, for every s € S, s7'1B; A By and s !By A By are
contained in Ny. For i € {1, 2}, define a measure v; by putting v;(B) = meB fdu. We
claim that v; is left invariant. To see this, observe that, for every Borel subset B of 3S

and every s € S,

B) = [ Puxs,dy
- / f(st)Xp(st)Xp, (st)dpu(t)

— [ £OXnOX, @autt
= v;(s *1B
We have v = v; + . If v; and vy are both non-zero, v = HV1H||Z_1|| + HV2H||Z_§”,
contradicting the assumption that v is an extreme point of LIM(S). Sov; = 0 or v, = 0.
It follows that pu(B1) = 0 or u(Bz2) = 0. Thus there exists a unique number ¢ € R such
that u(f~1[U]) > 0 for every open neighbourhood U of ¢, So u(f~1[R \ {c}]) = 0 and

f = c except on a p-null set.

Our claim is now established with E = f~![{c}]. O

5.7 Theorem. Let S be a discrete left amenable semigroup. If S is left cancellative,

any two distinct extreme points of LIM (S) are mutually singular.
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Proof. Let p and v be extreme points of LIM (S). If they are not mutually singular,
then each is absolutely continuous with respect to the other by Lemma 5.4. By Lemma
5.6, there exist Borel subsets B and C' of #S such that u(FE) = % and v(F) =
“(f(—g)@ for every Borel subset E of 8S. This implies that u(3S \ B) =0 = v(3S \ B).
So u(B) = v(B) = 1. Similarly, u(C) = v(C) = 1. So uw(F) = v(F) if E is a Borel
subset of BN C or if F is a Borel subset of 85\ (BN C). It follows that pu = v. O

We conclude this section with some results about the algebra of 35.
5.8 Definition. Let S be a semigroup which satisfies SFC.
A*(S) = {p € BS : (VA € p)(d(A) > 0)}.

Recall that by Theorems 2.12 and 2.14 the hypotheses of the following theorem are

satisfied by any left cancellative left amenable semigroup.

5.9 Theorem. Let S be a semigroup which satisfies SFC. If for every A C S, d(A) =
sup{u( A) : u € LIM(S)}, then A*(S) is a closed two sided ideal of 3S.

Proof. It is immediate that A*(S) is closed. To see that it is a left ideal, let p € A*(.5).
We show that that Sp C A*(S) and hence that ¢lggSp = 8Sp C A*(S). To this end,
let s € S and let A € sp. Then s71A4 € p and so d(s7*A) > 0. Therefore there is some
p € LIM(S) such that pu(s=1A) > 0. Since u(A) = pu(s=1A), one has d(A4) > 0 as
required.

Now to see that A*(S) is a right ideal, let p € A*(S), let ¢ € 55, and let A € pq.
Let B={s€S:s'A€q}. Then B € pso d(B) > 0 and therefore there is some
p € LIM(S) such that u(B) > 0. Note that B = p,'[A]. Define v € LIM(S) by
v(X) = p(p;'[X]) for every Borel subset X of 35. Then v(A) > 0 so d(A) > 0. O

Recall that a set A C S is thick provided that for each F' € P¢(S) there exists t € S
such that F't C A. The final result of this section is about the concept of weakly thick
sets, introduced in [12], where it was used in determining which products of central

subsets of semigroups are central.

5.10 Definition. Let A be a subset of a semigroup S. A is said to be weakly thick if
there exists s € S such that s~ A is thick.

We remark that being weakly thick is trivially equivalent to being thick in a com-
mutative semigroup, but that these two concepts are not equivalent in general. For
example, if S is the free semigroup on two generators a and b, aS is weakly thick but
not thick.
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5.11 Theorem. Let S be a discrete left amenable semigroup. If A C S is weakly thick,
then A is thick.

Proof. Suppose that A is weakly thick. Then s~1A4 is thick for some s € S. By [2,
Theorem 2.9(c)], a subset T of S is thick if and only if T' contains a left ideal. So there
is a minimal left ideal L of 3S for which L C s—1A. Then sL C A. By Theorem 5.1(d),
sL = L and so A is thick. O

6. Semigroups S for which S has

finite minimal left ideals

In the context of the current paper, we were interested in the possibility that one might
have some p € LIM(S) and some z € 3S such that p({z}) > 0. It was shown by A.
T.-M. Lau in [15] that this is equivalent to the statement that the minimal left ideals
of S are finite groups. In this section, we derive characterizations of semigroups with
some pu € LIM(S) and some z € 35 such that u({z}) > 0 and of those with some
w € LIM(S) and some x € S such that p({z}) > 0. We shall see that, if any such point
x exists, {x € BS : u({z}) > 0 for some p € LIM(S)} = K(BS). We shall then turn
our attention to showing that there is a rich class of semigroups, occurring naturally in

mathematics, which have this property.

6.1 Lemma. Let S be a semigroup, assume that some minimal left ideal L of (S is
finite and that R = K((3S) is a minimal right ideal of S. Any idempotent in R is a
left identity for R. Let p be an idempotent in L and let E = {s € S : sp = p}. Then
for every idempotent ¢ in R, E = {s € S : sq = q}, E € q, and for each s € E,
{uesS:su=u}eq.

Proof. Let ¢ be an idempotent in R. Then ¢ is a left identity for R. (We have ¢gR = R
so given any x € R, x = qy for some y € R so qz = qqy = qy = x.) Thus if s € S we
have that sp = p if and only if s¢ = gso E = {x € S : sq = q}. To see that E € g,
pick A C S such that ANL = {p}. Then Acp=gqgpso{sec S:s1Acp}ecq It
suffices to show that {s € S: s 1A € p} C E so let s € S such that s7'A € p. Then
sp € ANL so sp=p. Now, given s € E one has that \,(¢) = ¢ and so by [10, Theorem
3.35], {ue S:su=u} €q. O

The following theorem is purely topological-algebraic; it does not involve means,
invariant or otherwise. Recall that a subset E of S is a central* set if and only if F

is a member of every idempotent in K(3S). When we say that objects A and B are
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topologically isomorphic we mean that there is a function from A to B which is both an
isomorphism and a homeomorphism. A semigroup S is a right zero semigroup if and
only if ab = b for all @ and b in S.

6.2 Theorem. Let S be a semigroup and assume that some minimal left ideal of BS is

finite (and thus every minimal left ideal of 3S is finite). Statements (a) through (i) are

equivalent and imply statement (j).

(a) BS has a unique minimal right ideal R = K(35).

(b) K(BS) is a compact minimal right ideal of (5S.

(¢) Each minimal left ideal of BS is a group.

(d) For each s € S and each minimal left ideal L of BS, As 1 is injective.

(e) For each s € S and some minimal left ideal L of 3S, A\ 1 is injective.

(f) If L is a minimal left ideal of K(BS) and T = {z € K(8S) : zz = z}, then L
is a finite group, T is a compact right zero semigroup, and K(3S) is topologically

tsomorphic to L x T'.

(9) There exist a finite group G and a compact right zero semigroup T such that K(3S)
is topologically isomorphic to G x T.

(h) There is a central® subset E of S such that for each s € E, Uy ={u € S : su = u}
is non-empty and therefore, being a right ideal in S, satisfies K(3S) C Us.

(i) There exist a central® subset E of S and an idempotent p € K(3S) such that for
eachs € E, {u € S:su=u} €p.

(G) If L is a minimal left ideal of 5S and p is an idempotent in L, then the function
s+ sp is a homomorphism from S onto L. If G € Py(S) and if V is a subset of

S for which V N K(BS) # 0, then there exists v € V such that sv = tv whenever
s,t € G and sp = tp.

Proof. That (a) and (c) are equivalent follows immediately from the fact that the
intersection of any minimal left ideal and any minimal right ideal is a group (and
distinct minimal right ideals are disjoint).

Trivially (b) implies (a). To see that (a) implies (b), let p be an idempotent in
R = K(8S). Let L = gSp and let E = {s € S : sp = p}. By Lemma 6.1 E € p.
Note that for any s € S, {z € S : sz = z} is closed. It thus suffices to show that
R = (N,eplr € BS : sx = z}. Indeed, if z € R and s € E, then x = pr = spr = sz.
Conversely, if z € 85 and for all s € E, sz = x, then p, is constantly equal to x on F

and therefore pxr = x so ¢ € R.
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To see that (a) implies (d), let L be a minimal left ideal of S5, let =,y € L, and
assume that sz = sy. Let p be the identity of L. Let A = {a € S : ax = ay}. Then
A is a left ideal of S so A is a left ideal of 8S. Pick a minimal left ideal L’ of 8S
such that L’ C A and let p’ be the identity of L’. Then for all a € A, azp’ = ayp’
and so pz, and py,y agree on a member of p’ and therefore p'zp’ = p'yp’. Since p’
is a left identity for R = K(BS), we have that zp’ = p'xp’ = p'yp’ = yp’ and so
z=xp=ap'p=yp'p=yp=y.

Trivially (d) implies (e). To see that (e) implies (a), pick a minimal left ideal L of
BS such that for each s € S, Ay is injective. Suppose that S has distinct minimal
left ideals R and R’. Let p be the identity of L N R and let p’ be the identity of L N R’.
Pick A C S such that AN L = {p}. Since pp =p, {s € S:s7 1A € p} € p. Since p’ is
a right identity for L, pp’ = p and so {s € S : s71A € p'} € p. Pick s € S such that
sT'Acpand s tAecp’. Then sp e ANL and sp’ € ANL so sp=sp’ = p. Since A, is
injective on L, p = p’, a contradiction.

Trivially (f) implies (g). To see that (g) implies (c), note that the minimal left
ideals of G x T are the sets of the form G x {a} for a € T'. It follows quickly from [10,
Lemma 1.43(c)] that L is a minimal left ideal of 58S if and only if L is a minimal left
ideal of K(35).

To see that (b) implies (f) note that each member of T is a left identity for R =
K((3S), and in particular T is a right zero semigroup. Also, T = {z € R: zx = x
for all z € R} so T = (\,cr (RN p;'[{z}]) and thus T is compact. Since (b) implies
(c), we know that L is a group. Let p be the identity of L. Define ¢ : L x T — R by
o(z,z) = xz. To see that ¢ is a homomorphism, let (z1,21), (x2,22) € L x T. Then
o(1,21)p(x2, 22) = T121X220 = T1XT229 = T1T22122 = P(T1T2,2122).

To see that ¢ is surjective, let x € R and pick the minimal left ideal L’ of 35 such
that € L'. If z is the identity of L', then xz = x and so ¢(zp,z) = xpz = xz = x.

Now assume that (z1,21),(x2,22) € L x T and ¢(z1,21) = @(x2,22). Then z
and zo are idempotents in the same minimal left ideal of 35, which is a group, and so
21 = 2. AlSO X1 = x1p = T121p = To29p = Xap = Ta.

Finally, to see that ¢ is continuous, let (x,2) € L x T and let U be a neighborhood
of p(x,z). Pick A € 2z such that A C U. Pick B C S such that BN L = {x}. Since
zp=uwx,{s€S:5'Bcp}caxsopick s € S such that s~ 'B € p. Then sp € BN L
so sp = x. Since p is a left identity for R, we have that for all y € R, sy = spy = xy.
We have that {2} is open in L. Also, since sz = 2z € A, we have that s~ TANR is a
neighborhood of z in R. We claim that ¢[{z} x (s"TANR)] C A. Let y € s~ !ANR.
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Then ¢(z,y) = 2y = sy € A.

To see that (a) implies (h), note that by Lemma 6.1, Us # () and is therefore a right
ideal of S. It then follows from Lemma 5.1(g) that K(3S) C Us.

Trivially (h) implies (i). To see that (i) implies (a), pick an idempotent p in K(35)
such that for each s € E, {u € S : su = u} € p. Pick a minimal right ideal R of 35 such
that p € R. Let g be an arbitrary idempotent in K(3S) and pick a minimal right ideal
R’ of 3S such that ¢ € R’. We shall show that p € R, and so R’ = R. Given s € E, A,
agrees with the identity on a member of p and thus sp = p. Since E € ¢, one has that
{s € S:sp=p} €q. Since p, is constant on a member of ¢, we have that ¢gp = p and
so p € R’ as claimed.

Now assume that statements (a) through (i) hold. Let L be a minimal left ideal of
BS and let p be an idempotent in L. Define h : S — L by h(s) = sp. By Lemma 6.1,
p is a left identity for K(8S) so if s,t € S then h(s)h(t) = sptp = stp = h(st). Since
L = 3Sp = ¢l(Sp) = Sp, h is surjective.

For s,t € S such that sp = tp, let Ry = {v € 58S : sv = tv}. We claim first that
Rs i # 0. To this end, pick u € S such that up is the inverse of sp in the group L. Then
p = spup = sup and p = tpup = tup so by [10, Theorem 3.35], {w € S : w = suw} € p
and {w € S : w = tuw} € p. Choosing w in the intersection of these two sets, we have
that uw € Ry ;. Next we note that if s,¢ € § such that sp = tp, then R, € p. Indeed,
since Ry ; # (), it is a right ideal of S and consequently R is a right ideal of 3S which
therefore contains K ((S), which is the unique minimal right ideal of gS. If V C §
satisfies V N K(3S) # 0 and if G € P;(S), we can choose v € VN({Rs, : s,t € G and
sp = tp}. O

We remark that statement (j) of Theorem 6.2 does not imply the other statements.
To see this, D be a two element left zero semigroup and let 7" be an infinite right zero
semigroup. Let S = D x T. Then the minimal left ideals of 3S are copies of D, so
statement (c) fails. It is routine to verify that S satisfies statement (j).

In the following theorem we shall show that, if S is any semigroup for which 3S
contains a point x such that u({z}) > 0 for some p € LIM(S), then S has properties

reminiscent of a right zero semigroup.

6.3 Theorem. Let S be a discrete semigroup. The following statements are equivalent.
(a) There exist p € LIM(S) and x € 3S such that p({x}) > 0.
(b) Every minimal left ideal L of BS is finite and has the property that the mapping \s

s injective on L for every s € S.
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(c) Every minimal left ideal L of BS is a finite group, and there exists a Folner net
(Fa)aep i Ps(S) such that {|Fy| : « € D} is bounded and (pip, )acp converges in
the weak* topology to the unique measure in LIM(S) with support L.

(d) There exists a Folner net (Fy)aep for which {|Fy|)acp is bounded.

If S satisfies these equivalent statements, then it satisfies each of the statements of
Theorem 6.2. In addition for every v € LIM(S), v(K(B8S)) = 1.

Proof. To see that (a) implies (b), assume that x € S and pu € LIM(S) satisfy
w({z}) > 0. Let L be a minimal left ideal of 3S. We may suppose that x € L, because

we could choose any y € L and replace x by xy and p by the measure which maps each
Borel subset B of 35S to u(p;l[B]).

For each s € S, u({sx}) > u({z}) by Theorem 5.1(a) and so Sz is finite. Since
L = Sz, L = Sz. Furthermore, sL = L for every s € S by Theorem 5.1(d), and so A,
is injective on L.

To see that (b) implies (c), Let L be a minimal left ideal of S and let p be an
idempotent in L. We have by Theorem 6.2 that L is a finite group, A, is injective on L
for each s € S, the mapping s — sp is a homomorphism from S onto L, and if V C S
satisfies V N K(BS) # 0 and G € Py(9), then there exists v € V such that sv = tv
whenever s,t € G and sp = tp.

Since L is finite and Sp C L, L = 3Sp = cl(Sp) = Sp. Pick K € P;(S) such that
|K|=|L|and Kp = L. Given s € S, sKp = sL = L because L is finite and A, is injective
on L. For F € Ps(S),let Gp = FKUK. Let A={ACS:LC A} and let A € A
For each s € S we have L C s—1A. Let ViEa = ﬂseGF s 1A so that L C VF,A and
sv € A for every s € G and every v € Vg 4. Pick vp a4 € VE 4 such that svp a4 = tvp a
whenever s,t € Gp and sp = tp, and let Hp 4 = Kvp a. Then |Hp 4| < |K| = |L|.
Direct Py (S) x A by putting (F’, A") < (F,A) if and only if F/ C F'and A C A". We
claim that (Hr 4)(F A)ep,(s)x.4 is @ Folner net in Py (S). To see this, it suffices to let
F ePs(S),let Ae A, let s € F, and show that Hp 4 C sHp. To thisend, let t € Hp 4
and pick v € K such that ¢ = uvp 4. Now up € L = sKp so pick w € K such that
up = swp. Then u,sw € Gp sot = wvpa = swvpa € sHp 4. Since Hrp 4 C A, it
follows that, for every B € A, pp, ,(B) = 1 whenever (F, A) € Ps(S) x A satisfies
A C B. So <,LLHF7A>(F’A)€'pf(S)XA converges in the weak® topology to the measure in
LIM(S) with support L.

It is obvious that (c) implies (d). To see that (d) implies (a), assume that (F,)aep
is a Fglner net in P¢(S) such that {|F,| : o € D} is bounded and let n = max{|F,| :
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a € D}.

Let p be a weak™® limit point of the net (up )acp. (In our current context, given
a Borel subset B of 8S and F' € P¢(S5), pr(B) = |B‘);|F|.) Pick a subnet (ug,)scr
of (uF,)acp which converges to p. Let z € [5cp cl(Ugss Gp) and suppose that
n({z}) = 0. Pick A € x such that u(A) < 5~ and let U = {v € MN(S) : v(A) < 5-}.
Pick § € E such that for every 8 > 4, ug, € U. Now also Ug>5 G € x so pick 8> ¢
such that ANGg # 0. Then pg,(A) > L so pug, ¢ U, a contradiction.

Now assume that these equivalent statements hold and let R = K(3S). Let v €
LIM(S). We shall show that v(R) = 1. Let p be an idempotent in R. By Lemma 6.1
for every s € E, if Us = {u € S : su = u}, then Us € p. Let X = cp ey, ubS.
By Theorem 5.1(g), v(X) = 1. It suffices to show that X C R, so let x € X. We claim
that for each s € F/, sx = z, so let s € E be given and pick u € Us. Then x € uf3S so

pick y € S such that x = uy. Then sx = suy = uy = x. Since for each s € E, st =z

we have that pr = x and therefore x € R as required. U

The preceding results give us a great deal of information about the structure of
LIM(S) when S denotes a discrete semigroup with the property that 5S contains a

singleton subset which has positive measure for some mean in LIM(S).

6.4 Definition. Let S denote a discrete semigroup with the property that there is
a mean in LIM(S) which assumes a positive value on a singleton subset of 5S. Let
Z(S)={p € K(BS) : pp = p} and let G(S) denote the finite group isomorphic to each
minimal left ideal of 35.

We have seen that Z(S) is a compact right zero semigroup which is equal to the
set of left identities of K ((35S).

The fact that the extreme points of LIM(S) are the measuresin LIM (S) whose
supports are minimal left ideals of 35 under the hypotheses of the following Corollary,
was proved in [18] by different methods.

6.5 Corollary. Let S denote a discrete semigroup with the property that there is a
mean in LIM(S) which assumes a positive value on a singleton subset of 3S. We can
then identify K(8S) with G(S) x Z(S) by Theorem 6.2(f). Let u denote the unique left
invariant mean on G(S). Then for each v € LIM(S) there is a regular Borel probability
measure p on Z(S) such that v is the product measure p ® p. The mapping v — p is a
bijection from LIM(S) onto the set of all reqular Borel probability measures on Z(S).
The extreme points of LIM(S) are the means in LIM (S) whose supports are minimal
left ideals of 55, and LIM(S) is the weak™ closed convex hull of LIMy(S).
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Proof. We claim that a regular Borel measure v on 85 whose support is contained
in K(3S), is left invariant if and only if v(z~!B) = v(B) for every Borel subset B of
BS and every x € K(83S). To see this, let p be the identity of the minimal left ideal
of 3S which contains x. Then x = xp = sp for some s € S. So xy = sy for every
y € K(BS). Conversely, for each s € S, we can put x = sp and deduce that xy = sy for
every y € K(BS). Thus A\gx(ss) = Aa|K(3S)-

Now let p be any regular Borel probability measure on Z(S). The product measure
1®pon G(S) x Z(S) has the property that p®p((g,2)"*B) = p® p(B) for every Borel
subset B of G(S) x Z(S), every g € G(S) and every z € Z(S). Thus p ® p corresponds
to a measure in LIM(S). Conversely, if v € LIM(S), we can define a regular Borel
probability measure p on Z(S) by putting p(B) = v(my '[B]) for every Borel subset B
of Z(S). It is then easy to verify that v = 4 ® p. We observe that the mapping v +— p
preserves convex combinations.

Now the extreme points of the set of regular Borel probability measures on Z(.5) are
the point measures 0, where z € Z(.S) by [13, 15.J]. Under the correspondence described
in the preceding paragraph, ¢, corresponds to the unique measure in LIM(S) whose
support is the minimal left ideal G(S) x {z} of G(S) x Z(S) ~ K(3S) which contains
z. So the extreme points of LIM (S) are the measures in LIM (S) whose supports are
minimal left ideals of K(3S). By Theorem 6.3(c), each such measure is in LIM;(S).
Thus it follows from the Krein Milman Theorem ([13, 15.1]) that LIM(.S) is the weak*
closed convex hull of LIMy(S5). O

Recall that a left amenable semigroup need not satisfy SFC, and so we might not
be able to apply our definition of density. As a consequence of Theorem 6.3 if there
exist p € LIM(S) and = € S such that u({z}) > 0, then S does satisfy SFC and we

have the following corollary.

6.6 Corollary. Let S be a discrete left amenable semigroup and assume that LIM(S)
contains a measure which is non-zero on a singleton subset of 3S. Suppose that every
minimal left ideal of 3S has n elements. Then there is a central® subset E of S such
w(E) = L for every p € LIM(S) and, for every s € E, p({fu € S:su=u}) =1 for
every p € LIM(S). In particular, d(E) = L and, for every s € E, d({u € S : su =

u}) =1.

Proof. Let p be an idempotent in K(3S) and let L be the minimal left ideal in S
which contains p. Let E = {s € S : sp = p}. By Theorem 6.3, S satisfies the statements

of Theorem 6.3. Therefore, by Lemma 6.1 F is central*.
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We claim that the sets of the form ¢t='E N K(3S5), where t € S, partition K(395)
into n disjoint subsets. Let y € K(3S) and suppose that y belongs to a minimal left
ideal L’ with identity p’. Since L' = Sy, there exists t € S such that ty = p’ € E.
This shows that K(35) C ,cq t~'E. Now let s,t € S. Suppose first that sp = tp.
Let y € K(B8S). Then sy = spy = tpy = ty. So K(3S)Ns'E = K(3S) Nt 'E.
Now suppose that sp # tp and that there exists y € K(8S)N s 'ENt 'E. Then
syp = typ = p. Multiplying on the right by the inverse of yp in L we have that sp = tp,
a contradiction. So K(3S)Ns™'E and K(3S)Nt~'E are disjoint. This shows that the
sets of the form ¢t~!F partition K(39) into n disjoint sets, as claimed. If u € LIM(S),
then p(K(8S)) = 1 by Theorem 6.3 and so u(E) = =. If s € E, {u € S : us = u} is
non-empty by Lemma 6.1 and is therefore a right ideal in S. So u({u € S:su=u}) =1
by Theorem 5.1(f).

As shown in the proof Theorem 2.14, for any subset A of S there exists u € LIM(S)
such that d(A) = p(A). It follows that d(A) = 1 and that d({u € S : su=u}) =1 for
every s € F. U

We now investigate the possibility that p(S) > 0 for some p € LIM(S).

6.7 Theorem. Let S be a discrete semigroup. The following statements are equivalent.
(a) There exists € LIM(S) for which u(S) = 1.

(b) There exists € LIM(S) for which u(S) > 0.

(c) There exist € LIM(S) and x € S for which p({z}) > 0.

(d) S contains a finite left ideal L which is a group and therefore has the property that

As 18 ingective on L for every s € S.

Proof. Trivially (a) implies (b). To see that (b) implies (c), assume that p(S) > 0.
Since p is regular, p(F') > 0 for some finite subset F' of S, because the compact subsets
of S are finite. So pu({z}) > 0 for some z € F.

To see that (c) implies (d) assume that p({z}) > 0 for some p € LIM (S) and some
x € S. By Theorem 5.1(a), u({sz}) > p({z}) for each s € S and thus Sz is finite. Thus
Sz = cl(Sx) = Sz so Sz is a left ideal of 55 and thus contains a minimal left ideal L.
By Theorem 6.3 the statements of Theorem 6.2 apply to L. In particular L is a group
and )\, is injective on L for each s € S.

To see that (d) implies (a), pick a finite left ideal L of S which is a group and
has the property that A, is injective on L for every s € S. Since ) is injective, and
thus bijective, on L for each s € S, we have that for any B C (S and any s € S,
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|sT'BNL| = |BNL| and thus pr(s™'B) = pr(B). That is uy, € LIM(S). Since L C S,
,uL(S) =1. O

We remark that the statements of Theorem 6.7 are strictly stronger than the state-
ments of Theorem 6.3. Trivially Theorem 6.7(c) implies Theorem 6.3(a). Consider now
the semigroup S = (N, max). We have that K(S) = N\ N and K(S) is a right zero
semigroup, so Theorem 6.3(b) is trivially satisfied. But (N, max) has no finite left ideals,
so Theorem 6.7(d) is not satisfied.

We are naturally interested in knowing about the class of semigroups that have the
property of Theorem 6.3(b). We shall investigate in particular those for which minimal
left ideals of S are singletons. That is the same as saying that K(3S5) is a right zero
semigroup. (Since any right ideal meets any left ideal, K ((3S) must be a minimal right

ideal, and then any member of K (/35), being an idempotent, must be a left identity for
K(B3S).)

6.8 Definition. RZ is the class of semigroups S such that K(8S) is a right zero

semigroup.

Given any member T of RZ and any finite group G, we have that S = G x T has
the property that any minimal left ideal L of 55 is a copy of G. It is not true that every
semigroup S which satisfies Theorem 6.3(b) is of the form G x T for some finite group
G and some T € RZ because if S is any semigroup which satisfies Theorem 6.3(b) and
S’ is S with an identity adjoined, then also S’ satisfies Theorem 6.3(b). The following
theorem tells us however that if S satisfies Theorem 6.3(b), then K(35) is topologically
isomorphic to K (ﬂ (GxT )) for some finite group G and some T € RZ.

6.9 Theorem. Let S be a semigroup with the property that 3S has a finite minimal
left ideal L which is a group. There exists T € RZ such that K(3S) is topologically
isomorphic to L x K(BT).

Proof. Let p be the identity of L and let T' = {s € S : sp = p}. By Lemma 6.1 if
qq = q € K(BS), then T € q. In particular, T # () so T is a semigroup and ST = c/T.
Also BT N K(BS) # 0 so by [10, Theorem 1.65], K(BT) = T N K(3S). We claim that
BT NK(BS) ={q € K(BS):qq = q} so that K(8T) = {q € K(BS) : q¢ = q}. We have
already seen that {q € K(8S5) : qq¢ = q} C BTNK(BS). Let ¢ € STNK(BS) and let r be
the identity of 5Sq. Then T'={s € S : sr =r} by Lemma 6.1 so T C {s € S: sq = q}
and thus gq = ¢q. By Theorem 6.2(f) we have that K(35) is topologically isomorphic to
L x K(8T). O
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One trivial class of semigroups S € RZ is those which have a right zero element.
(If b€ S and ab = b for all a € S, then b = b for all x € 55 so {b} is a minimal left
ideal of 3S.) We set out to show that RZ includes all left amenable bands. (Recall that

a band is a semigroup all of whose members are idempotents.)

6.10 Lemma. If S is a left amenable semigroup, then (\,cq s8S # 0 and if v €
Nscg 58S, and ss = s € S, then sx = x.

Proof. By Theorem 5.1(g), K(8S) C ;e 58S # 0. If ss = s, then s is a left identity
for s35S. U

We do not have an example of a semigroup satisfying the hypotheses of the following

theorem which is not already a band.

6.11 Theorem. Let S be a left amenable semigroup such that every element of S is a
product of idempotents. Then S € RZ and K(B3S) = (),cq s8S.

Proof. By Lemma 6.10 we have that for each = € (),.g4 58S, Sz = {x} and therefore
pSx = {x}, so that {z} is a minimal left ideal. Therefore S € RZ and (1,4 585 C
K(BS). By Theorem 5.1(g), K(8S) C (),cg 88S. O

We thus have several common examples of members of RZ, such as (N, max),
(N,Iecm) and (Pf(X),U) where X is an arbitrary set. If S = (N, max), then K(3S5) =
BN\N. If S = (N,lem), then K(35) = (,eynN. If S = (Pr(X),U), then K(35) =
Nrep,x) clps({G € Pr(X) : F C G}).

We now show that RZ is closed under arbitrary cartesian products and direct sums.

6.12 Theorem. Let A be a set and for each i € A, let S; € RZ.
(a) If S = X;ca S;, then S € RZ.
(b) If for each i € A, S; has an identity e; and S = @, 4 Si, then S € RZ.

Proof. The first part of the proofs of (a) and (b) are identical. For each F' € Pf(S)
and each i € A, let T, p = {t € S; : (Vs € F)(m(s) -t =1)}. Let F € Ps(S) and let
i € A. We claim that K(3S;) C ¢/T; p. To see this, let p € K(8S5;). Then 8S;p = {p}
so for all s € S;, sp = p. Therefore, for each s € F' we have by [10, Theorem 3.35] that
fveSi:im(s)-v=v}e€pandso Ty r =(,cp{v € Si:m(s) - v =0} €p.

Now assume that S = X;ca S;. For F € Pp(S),let Tr = XcaTip. If F € Ps(S5),
s € F, and v € Tg, then sv = v. Therefore, if p € ¢lTr and s € F, we have that
sp = p. Since {clTF : F € Ps(S)} has the finite intersection property, one may pick

pE nFePf(S) clTp. Then Sp = {p} and so BSp = {p}.
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Finally assume that for each ¢ € A, S; has an identity e; and S = GaieA S;.
For F € Py(S) and G € Ps(A), let Trg = {z € S : (Vi € G)(m(x) € Tip)}.
Let F' € P#(S). Then {c!/Trc : G € Ps(A)} has the finite intersection property so
mGe’Pf(A) cATrpa # 0. Let p € ﬂGe'])f(A) clTr g and let s € F. We claim that sp = p,
for which it suffices that {v € S:sv =v} €p. Let G ={i € A:m;(s) #e;}. If G =1,
then s is the identity of S so sp = p, so we may assume G € Ps(A). Then Tr ¢ € p and
Tre C{vesS:sv=u}.

Now {clTpc : F € Ps(S) and G € P¢(A)} has the finite intersection property.
Pick p € ﬂFePf(S) mGePf(A) clTr . Then for all s € S, sp = p and so Sp = {p} and
thus 8Sp = {p}. O

As a consequence of Theorem 6.12 we can give an example of a member of RZ
which is not a band and does not have a right zero. Let S = (N,max) and T' = (w, -).
Then S and T are commutative and thus left amenable. Also, S is a band and 7" has a
right zero. Therefore S x T' € RZ, and S x T is not a band and does not have a right

Zero.
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