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Density and Invariant Means in
Left Amenable Semigroups
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and

Dona Strauss

Abstract. A left cancellative and left amenable semigroup S satisfies the Strong Følner
Condition. That is, given any finite subset H of S and any ε > 0, there is a finite
nonempty subset F of S such that for each s ∈ H, |sF 4F | < ε · |F |. This condition is
useful in defining a very well behaved notion of density, which we call Følner density,
via the notion of a left Følner net , that is a net 〈Fα〉α∈D of finite nonempty subsets
of S such that for each s ∈ S, (|sFα 4Fα|)/|Fα| converges to 0. Motivated by a desire
to show that this density behaves as it should on cartesian products, we were led to
consider the set LIM0(S) which is the set of left invariant means which are weak*
limits in l∞(S)∗ of left Følner nets. We show that the set of all left invariant means
is the weak* closure of the convex hull of LIM0(S). (If S is a left amenable group,
this is a relatively old result of C. Chou.) We obtain our desired density result as
a corollary. We also show that the set of left invariant means on (N, +) is actually
equal to LIM0(N).We also derive some properties of the extreme points of the set of
left invariant means on S, regarded as measures on βS, and investigate the algebraic
implications of the assumption that there is a left invariant mean on S which is non-zero
on some singleton subset of βS.

1. Introduction

If E is a Banach space, its dual, the space of continuous linear functionals defined on
E, will be denoted by E∗. We recall that E∗ is a Banach space with norm defined by
‖f‖ = sup({|f(x)| : x ∈ E, ‖x‖ ≤ 1}) for f ∈ E∗.

Throughout this paper, S will denote a discrete semigroup. We shall use l∞(S) to
denote the real Banach space of bounded real valued functions on S with the supremum
norm, denoted by ‖ ‖∞. A mean on S is a member µ of l∞(S)∗ such that ||µ||∞ = 1
and µ(g) ≥ 0 whenever g ∈ l∞(S) and for all s ∈ S g(s) ≥ 0. A left invariant mean
on S is a mean µ such that for all s ∈ S and all g ∈ l∞(S), µ(s · g) = µ(g), where
s · g = g ◦ λs and λs : S → S is defined by λs(t) = st.

1.1 Definition. Let S be a discrete semigroup. Then MN(S) is the set of means on S
and LIM(S) is the set of left invariant means on S. A semigroup S is left amenable if
and only if LIM(S) 6= ∅.

1 This author acknowledges support received from the National Science Foundation via Grant
DMS-0554803.
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For any set X, let Pf (X) be the set of finite nonempty subsets of X. In [1]
Argabright and Wilde showed that a left cancellative semigroup S is left amenable if
and only if it satisfies the strong Følner condition:

(SFC)
(
∀H ∈ Pf (S)

)
(∀ε > 0)

(
∃F ∈ Pf (S)

)
(∀s ∈ H)(|F \ sF | < ε · |F |)

(See [17, page 145] for the short proof that this version is equivalent to the version
stated in the abstract.) They also showed that any commutative semigroup satisfies
SFC. In particular, any commutative semigroup is left amenable.

If F \ sF is replaced by sF \ F in the statement of SFC, one obtains the original
Følner condition (FC). In [5] Følner showed that any amenable group S satisfies (FC)
and Frey [6] showed that any left amenable semigroup satisfies (FC). (For a simplified
proof see [16, Theorem 3.5].)

The strong Følner condition corresponds naturally to the notion of a left Følner
net.

1.2 Definition. Let S be a semigroup and let 〈Fα〉α∈D be a net in Pf (S). Then
〈Fα〉α∈D is a left Følner net if and only if for each s ∈ S, the net〈

|sFα 4 Fα|
|Fα|

〉
α∈D

converges to 0.

Equivalently, 〈Fα〉α∈D is a left Følner net if and only if for each s ∈ S, the net〈
|Fα \ sFα|

|Fα|

〉
α∈D

converges to 0.

The notion of a left Følner net in turn leads naturally to a very well behaved notion
of density in any semigroup which satisfies SFC. We remark that the concept of density
is significant in Ramsey Theory. For example Szemerédi’s Theorem ([19], [7]) says that
any subset A of N with d(A) > 0 contains arbitrarily long arithmetic progressions.

1.3 Definition. Let S be a semigroup which satisifies SFC and let A ⊆ S. Then

d(A) = sup {α :
(
∀H ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
|A ∩K| ≥ α · |K| and(

∀s ∈ H
)(
|K 4 sK| < ε · |K|

))}
.

See [11, Section 4] for verification of the niceness of this notion of density. In
particular, we have the following.
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1.4 Theorem. Let S be a semigroup which satisifies SFC and let A ⊆ S. There exists
a left Følner net 〈Fα〉α∈D in Pf (S) such that

d(A) = lim
α∈D

|A ∩ Fα|
|Fα|

.

Proof. [11, Theorem 4.16].

In recent research involving small sets satisfying a version of the Central Sets The-
orem, we wanted to know that if S and T are left amenable left cancellative semigroups,
A ⊆ S, B ⊆ T , and either d(A) = 0 or d(B) = 0, then d(A × B) = 0. In fact we
suspected that d(A × B) = d(A) · d(B). The desire to prove that fact provided the
initial motivation for this paper. It is easy to prove in an entirely elementary fashion
that d(A × B) ≥ d(A) · d(B). (See Lemma 3.1.) The proof of the reverse inequality
leads us back into the world of invariant means.

1.5 Definition. Let S be a discrete semigroup and let F ∈ Pf (S). Then µF ∈ l∞(S)∗

is defined by µF (g) = 1
|F | ·

∑
t∈F g(t) for every g ∈ l∞(S).

Notice that each µF is a mean on S.

We remind the reader that, for any Banach space E with dual E∗, the weak topology
on E is the topology for which a net 〈xα〉α∈D in E converges to x ∈ E if and only if
〈f(xα)〉α∈D converges to f(x) for every f ∈ E∗. The weak* topology on E∗ is the
topology for which a net 〈fα〉α∈D in E∗ converges to f ∈ E∗ if and only if 〈f(xα)〉α∈D
converges to f(x) for every x ∈ E. Equivalently, the weak* topology is the restriction
to E∗ of the product topology on ×g∈E R.

We shall need to use the following well-known theorem.

1.6 Theorem. If E is any Banach space, the unit ball of E∗ is compact in the weak*
topology.

Proof. See [13, 17.4].

1.7 Definition. Let S be a discrete semigroup. Then LIM0(S) = {η ∈ l∞(S)∗ : there
exists a left Følner net 〈Fα〉α∈D in Pf (S) such that 〈µFα〉α∈D weak* converges to η}.

It is routine to show that LIM0(S) ⊆ LIM(S) and that LIM(S) is convex and
weak* closed. C. Chou showed in [3, Theorem 3.2(a)] that if G is a countable left
amenable discrete group, then LIM(G) is the weak* closed convex hull of LIM0(G).
(He actually dealt with σ-compact locally compact topological groups. Also, in groups
left amenability implies the existence of a two sided invariant mean. See [17, Section
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0.17].) This result was extended to an arbitrary left amenable group by A. Patterson in
[17, Theorem 4.17]. (Again, he actually dealt with locally compact topological groups.)
The proofs of these results strongly use algebraic properties of groups, and do not apply
directly to semigroups. In Section 2, we show that for any left cancellative left amenable
semigroup S, LIM(S) is the weak* closed convex hull of LIM0(S).

In Section 3 we use the above result to show that if S and T are left cancellative
left amenable semigroups, A ⊆ S, and B ⊆ T , then d(A×B) = d(A) · d(B).

The question naturally arises whether LIM(S) properly contains LIM0(S). We
cannot answer this question in general, but we do show in Section 4 that LIM(N,+) =
LIM0(N,+).

In Section 5 we derive some properties of the extreme points of LIM(S) where S
is a left cancellative and left amenable semigroup.

In Section 6 we consider the implications for the algebra of βS of the assumption
that there exists µ ∈ LIM(S), regarded as a measure on βS, and an element x ∈ βS for
which µ({x}) > 0. A. T.-M. Lau proved in [15] that this assumption holds if and only if
every minimal left ideal of βS is a finite group. We include a proof of this fact because
our terminology and methods of proof differ significantly from those used in [15]. The
papers [14] and [8] also contain results relevant to Section 6.

2. The weak* closed convex hull of LIM0(S)

We use l1(S) to denote the Banach space of mappings f : S → R such that
∑
s∈S |f(s)| <

∞, with norm ||f ||1 =
∑
s∈S |f(s)| for f ∈ l1(S). Of course, l∞(S) is the dual of l1(S),

the duality being defined by 〈g, f〉 =
∑
t∈S g(t)f(t) for g ∈ l∞ and f ∈ l1(S).

Given A ⊆ S and s ∈ S, s−1A = {u ∈ S : su ∈ A}.

2.1 Definition. Let S be a semigroup.

(a) Define τ : l1(S) → l∞(S)∗ by τ(f)(g) = 〈g, f〉 for f ∈ l1(S) and g ∈ l∞(S).

(b) For s ∈ S and f ∈ l1(S), s · f ∈ l1(S) is defined by (s · f)(t) =
∑
u∈s−1{t} f(u).

Thus τ : l1(S) → l∞(S)∗ is the natural embedding of l1(S) in its second dual. It is
an injective linear map and an isometry.

Note that if s is left cancelable, then (s · f)(t) =
{
f(u) if su = t

0 if t /∈ sS .

2.2 Lemma. Let S be a semigroup, let s ∈ S, and let f ∈ l1(S). Then τ(s ·f) = s ·τ(f).
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Proof. Let A = {(t, u) : t ∈ S and su = t} and let g ∈ l∞(S). Then(
s · τ(f)

)
(g) =

∑
u∈S g(su)f(u)

=
∑

(t,u)∈A g(t)f(u)

= τ(s · f)(g) .

We shall need the following two well-known results.

2.3 Lemma. Let E be a real locally convex topological vector space, let C be a closed
convex subset of E and let x ∈ E \ C. Then there is a continuous linear functional T
on E for which f(x) < inf T [C].

Proof. [9, B26].

2.4 Lemma. Let E be a real normed linear space and let C be a convex subset of E.
Then the weak closure of C and the norm closure of C are equal.

Proof. [13, 17.1].

2.5 Definition. Let S be a semigroup. Then Φ = Φ(S) is the set of all f ∈ l1(S) such
that

(1) (∀s ∈ S)(f(s) ≥ 0),

(2) {s ∈ S : f(s) > 0} is finite, and

(3) ||f ||1 = 1.

Note that if f ∈ Φ, then τ(f) is a mean, called a finite mean.

The following lemma is also well known. We give a short proof because we do not
have an explicit reference.

2.6 Lemma. Let µ ∈MN(S). Then µ is in the weak* closure of τ [Φ].

Proof. If µ ∈ MN(S) were not in the weak∗ closed convex hull of τ [Φ], there would
be a weak∗ continuous linear functional T on l∞(S)∗ and a real number a for which
T (µ) > a and T

(
τ(φ)

)
< a for every φ ∈ Φ, by Lemma 2.3. Now there exists g ∈ l∞(S)

such that 〈T, ν〉 = 〈ν, g〉 for every ν ∈ l∞(S)∗, by [13, 17.6]. Since 〈τ(φ), g〉 < a for
every φ ∈ Φ, g(s) < a for every s ∈ S and so g < a · 1, where 1 denotes the function
constantly equal to 1 on S. This implies that 〈µ, g〉 ≤ 〈µ, a · 1〉 = a – a contradiction.

The following lemma was proved in [16] with a left-right switch.
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2.7 Lemma. Let S be an arbitrary semigroup. Let φ ∈ Φ. Then φ can be written in
the form φ =

∑n
i=1 ciµAi where, for each i ∈ {1, 2, . . . , n}, ci ∈ [0, 1], Ai ∈ Pf (S) and∑n

i=1 ci = 1. Furthermore, for every s ∈ S, ||s · φ− φ||1 ≥
∑n
i=1 ci ·

|sAi\Ai|
|Ai| .

Proof. [16, Lemma 3.3].

2.8 Definition. Let S be a semigroup and let A ∈ Pf (S). We define µA ∈ Φ by
µA = 1

|F |
χF .

We omit the routine proof of the following lemma.

2.9 Lemma. Let S be a left cancellative semigroup, let F ∈ Pf (S), and let s ∈ S.
Then

||s · µF − µF ||1 =
|sF 4 F |

|F |
.

2.10 Lemma. Let S be a left cancellative semigroup, let A ∈ Pf (S) and let s ∈ S.
Then |sA \A| = |A \ sA|.

Proof. We have |F \ sF | = |F |− |F ∩ sF |, |sF \F | = |sF |− |F ∩ sF | and |F | = |sF |.

The proof of the following lemma is essentially the same as the elegant proof of
Theorem 2.2 in [16].

2.11 Lemma. Let S be a left cancellative and left amenable semigroup. Let µ ∈
LIM(S), let W be a convex weak* neighborhood of µ, and let U = Φ∩ τ−1[W ], let F ∈
Pf (S) and let δ > 0. Then there exists f ∈ U such that for each s ∈ F , ||s ·f −f ||1 < δ.

Proof. Let F = {s1, s2, . . . , sn}, let E = ×n
i=1l1(S), and for ~x ∈ E, let ||~x|| =

max
{
||xi||1 : i ∈ {1, 2, . . . , n}

}
. Then the weak topology on E is the product of the weak

topologies on the coordinate spaces [13, 17.13]. By Lemma 2.6, there is a net 〈fα〉α∈D
in U for which 〈τ(fα)〉α∈D converges to µ in the weak* topology of l∞(S)∗. For each
s ∈ S, the mapping ν 7→ s · ν is a weak* continuous mapping from l∞(S)∗ to itself. So
〈s·τ(fα)〉α∈D converges to s·µ = µ and 〈s·τ(fα)−τ(fα)〉α∈D converges to 0 in the weak*
topology. Since the weak* topology on τ [l1(S)] corresponds to the weak topology on
l1(S), it follows that 〈s ·fα−fα〉α∈D converges to 0 in the weak topology of l1(S). Thus
the net 〈s1 ·fα−fα, s2 ·fα−fα, . . . , sn ·fα−fα)〉α∈D converges to 0 in the weak topology
of E. So 0 is in the weak closure of the subset {(s1 ·f−f, s2 ·f−f, . . . , sn ·f−f) : f ∈ U}
of E. By Lemma 2.4, 0 is in the norm closure of this set. So there exists f ∈ U such
that ‖s · f − f‖1 < δ for every s ∈ F .

2.12 Theorem. Let S be left cancellative and left amenable. Then LIM(S) is the
weak* closed convex hull of LIM0(S).
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Proof. Let C denote the weak* closed convex hull of LIM0(S) and assume that there
exists µ ∈ LIM(S) \C. By Lemma 2.3, there is a weak* continuous linear functional T
on l∞(S)∗ and b ∈ R such that T (x) < b < inf T [C].

For each F ∈ Pf (S) and each δ > 0, put

Φ(F, δ) = {f ∈ Φ : ‖s · f − f‖1 < δ for all s ∈ F} .

We claim that there exists F0 ∈ Pf (S) and δ0 > 0 such that T
(
τ(f)

)
≥ b for every

f ∈ Φ(F0, δ0). To see this assume that, on the contrary, there exists f(F, δ) ∈ Φ(F, δ)
for every F ∈ Pf (S) and every δ > 0 such that T

(
τ
(
f(F, δ)

))
< b. We give Pf (S)×R+

a directed set ordering by putting (F1, δ1) < (F2, δ2) if F1 ⊆ F2 and δ1 > δ2. Then every
limit point ν of the net

〈
τ
(
f(F, δ)

)
〉(F,δ)∈Pf (S)×R is in LIM0(S) and satisfies T (ν) ≤ b,

a contradiction.

Let U = {ν ∈ l∞(S)∗ : T (ν) < b}. Since U is a weak* convex neighbourhood of µ,
it follows from Lemmas 2.10 and 2.11 that there exists f in the convex hull of Φ(F0, δ0)
for which τ(f) ∈ U . This is a contradiction because T

(
τ(f)

)
≥ b for every f in the

convex hull of Φ(F0, δ0).

We remark that Theorem 2.12 does not hold if the assumption of left cancellativity
is deleted. Every right cancellative left amenable semigroup which is not left cancellative
does not satisfy SFC and so has no Følner nets [17, p.145].

2.13 Corollary. If S is left cancellative and left amenable, LIM0(S) contains all the
extreme points of LIM(S).

Proof. [13, Theorem 15.2].

2.14 Theorem. Suppose that S is a semigroup which satisfies SFC. Then, for every
A ⊆ S, d(A) ≤ sup{µ(A) : µ ∈ LIM(S)}. If LIM(S) is the weak* closed convex hull of
LIM0(S) then, for every subset A of S, d(A) = sup({µ(χA) : µ ∈ LIM(S)}).

Proof. By Theorem 1.4, there is a Følner net 〈Fα〉α∈D such that d(A) = limµFα(χA).
If µ is any weak* limit point of the net 〈µFα〉α∈D, then µ ∈ LIM0(S) and µ(χA) = d(A).
So d(A) ≤ sup{µ(χA) : µ ∈ LIM(S)}.

Now {µ ∈ LIM(S) : µ(χA) ≤ d(A)} is a weak* closed convex subset of LIM(S)
which contains LIM0(S). It therefore contains LIM(S) if LIM(S) is the weak∗ closed
convex hull of LIM0(S).
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3. Density of products

We show in this section that for semigroups S satisfying SFC such that LIM(S) is
the weak* closed convex hull of LIM0(S), density in cartesian products behaves as it
should. We first record the very simple elementary proof of one desired inequality. For
this one does not need any special assumptions (beyond, of course, the assumption of
SFC, which is needed for density to be defined).

3.1 Lemma. Let S and T be semigroups which satisfy SFC, let A ⊆ S and B ⊆ T .
Then S × T satisfies SFC and d(A×B) ≥ d(A) · d(B).

Proof. Pick by Lemma 1.4 a left Følner net 〈Fα〉α∈D in Pf (S) and a left Følner net

〈Gδ〉δ∈E in Pf (T ) such that d(A) = lim
α∈D

|A ∩ Fα|
|Fα|

and d(B) = lim
δ∈E

|B ∩Gδ|
|Gδ|

. Direct

D × E by (α, δ) ≤ (α′, δ′) if and only if α ≤ α′ and δ ≤ δ′. Then 〈Fα × Gδ〉(α,δ)∈D×E
is a left Følner net in Pf (S × T ) and d(A) · d(B) = lim

(α,δ)∈D×E

|(A×B) ∩ (Fα ×Gδ)|
|Fα ×Gδ|

.

3.2 Definition. Let S be a semigroup. C(S) = {χA : A ⊆ S} and S(S), the set of
simple functions on S, is the linear span of C(S).

3.3 Lemma. Let S be an arbitrary semigroup. Assume ν : C(S) → [0, 1] such that
ν(χS) = 1, ν(χA∪B) = ν(χA) + ν(χB) whenever A and B are disjoint subsets of S,
and ν(χs−1A) = ν(χA) whenever A ⊆ S and s ∈ S. Then ν extends to a member of
LIM(S).

Proof. Let f ∈ S(S) be written as f =
∑m
i=1 aiχAi where a1, a2, . . . , am ∈ R and

A1, A2, . . . , Am ⊆ S. We claim that the number
∑m
i=1 aiν(χAi) is uniquely determined

by f .

We first consider the case in which we also have f =
∑n
j=1 bj

χBj , where (B1, B2,

. . . , Bn) is a disjoint partition of S and, for every i and j, Bj ⊆ Ai or Bj ∩ Ai = ∅.
We observe that, for every j and every s ∈ Bj , f(s) = bj =

∑
{ai : Bj ∩ Ai 6= ∅}. So

bjν(χBj ) =
∑
{aiν(χBj ) : Bj ∩ Ai 6= ∅} =

∑m
i=1 aiν(χAi∩Bj ). So

∑n
j=1 bjν(χBj ) =∑n

j=1

∑m
i=1 aiν(χAi∩Bj ) =

∑m
i=1

∑n
j=1 aiν(Ai ∩Bj) =

∑m
i=1 aiν(Ai).

Now suppose that f can also be written as f =
∑r
i=1 a

′
i
χ
A′
i
. We then we have∑n

i=1 aiν(χAi) =
∑r
i=1 a

′
iν(χA′i) because we can choose a disjoint partition (B1, B2,

. . . , Bn) of S such that, for every j ∈ {1, 2, . . . , n}, every i ∈ {1, 2, . . . ,m} and every
k ∈ {1, 2, . . . , r}, Bj ⊆ Ai or Bj ∩Ai = ∅ and Bj ⊆ A′k or Bj ∩A′k = ∅.

Thus we can extend ν to S(S) by putting ν(f) =
∑m
i=1 aiν(χAi).
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It is obvious that ν is linear on S(S) and that |ν(f)| ≤ ‖f‖∞ for every f ∈ S(S).
So ν can be extended to a continuous linear functional defined on l∞(S) because S(S)
is uniformly dense in l∞(S). It is clear that ν is a mean. Given s ∈ S and A ⊆ S, we
have χA ◦ λs = χ

s−1A and so ν(s · f) = ν(f) for every f ∈ S(S). Consequently ν is left
invariant on l∞(S).

3.4 Theorem. Let S and T be semigroups satisfying SFC and assume that LIM(S) is
the weak* closed convex hull of LIM0(S). For every A ⊆ S and B ⊆ T , d(A × B) =
d(A)d(B).

Proof. By Lemma 3.1, S × T satisfies SFC and d(A×B) ≥ d(A)d(B).

By Theorem 2.14, d(A × B) ≤ sup{ρ(χA×B) : ρ ∈ LIM(S × T )}. So the reverse
inequality will follow from the claim that ρ(χA×B) ≤ d(A)d(B) for every ρ ∈ LIM(S ×
T ). To prove this, we may clearly suppose that ρ(χA×B) > 0.

We define functions µ and ν on C(S) and C(T ) respectively by putting µ(χX) =
ρ(X × T ) for every X ⊆ S and ν(Y ) = ρ(A×Y )

ρ(A×T ) for every Y ⊆ T . We clearly have
µ(χS) = ν(χT ) = 1, µ(χX1∪X2) = µ(χX1) + µ(χX2) whenever X1 and X2 are disjoint
subsets of S and ν(χY1∪Y2) = ν(χY1) + ν(χY2) whenever Y1 and Y2 are disjoint subsets
of T . Furthermore, we claim that µ and ν are left invariant. To see this, observe that
for every a ∈ S and every b ∈ T , we have µ(χX) = ρ(χ(a,b)−1(X×T )) = ρ(χa−1X×T ) for

every X ⊆ S and ν(χY ) =
ρ(χ(a,b)−1(A×Y ))

ρ(χA×T )
for every Y ⊆ T . So µ(χa−1X) = µ(χX) and,

for every t ∈ T , ν(χt−1Y ) =
ρ(χ(a,b)−1(A×t−1Y ))

ρ(χA×T )
=

ρ(χ(a,tb)−1(A×Y ))

ρ(χA×T )
= ν(χY ).

It now follows from Theorem 2.14 and Lemma 3.3 that µ(χA) ≤ d(A) and ν(χB) ≤
d(B). Since µ(χA)ν(χB) = ρ(χA×B), we have that ρ(χA×B) ≤ d(A)d(B).

4. LIM0(N) is convex

We let N be the semigroup of positive integers under addition. It is easy to see that for
any left amenable left cancellative semigroup S, LIM0(S) is weak* closed. Therefore,
by Theorem 2.12, to see that LIM(N) = LIM0(N), it suffices to show that LIM0(N) is
convex.

We write N{0, 1} for the set of sequences in {0, 1}.

4.1 Lemma. Let η ∈ LIM0(N), let l,m ∈ N, let K ∈ Pf
(
N{0, 1}

)
, and let ε > 0.

There exists F ∈ Pf (N) such that

(a) minF > l,

(b) F is the union of blocks each of length an integer multiple of m, and
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(c) for all g ∈ K, |µF (g)− η(g)| < ε.

Proof. Pick a left Følner net 〈Hα〉α∈D in Pf (N) such that 〈µHα〉α∈D converges to η in
the weak* topology on l∞B(N)∗. Pick w ∈ N such that w > 6

ε and let

L = {x ∈ N : (∃a > l)(x ∈ {a, a+ 1, a+ 2, . . . , a+ wm} ⊆ H)} .

Note that for any α ∈ D, (1 + Hα) \ Hα 6= ∅ and so limα∈D |Hα| = ∞. Pick γ ∈ D

such that for all α ∈ D, if α ≥ γ, then |Hα| > 12l
ε and for all i ∈ {1, 2, . . . , wm},

|(i+Hα)\Hα| < ε
12wm · |Hα| and note that |Hα \ (−i+Hα)| = |(i+Hα)\Hα|. If α ≥ γ,

then Hα \L ⊆ {1, 2, . . . , l}∪
⋃wm
i=1(Hα \ (−i+Hα) so |Hα \L| < l+ ε

12 · |Hα| < ε
6 · |Hα|.

Pick δ ∈ D such that whenever α ∈ D and α ≥ δ, one has that for each g ∈ K,
|µHα(g)− η(g)| < ε

3 . Pick α ∈ D such that α ≥ γ and α ≥ δ.

Pick r ∈ N, 〈aj〉rj=1, and 〈sj〉rj=1 such that L =
⋃r
j=1{aj + 1, aj + 2, . . . , aj + sj}

where for j ∈ {1, 2, . . . , r}, sj ≥ wm, and if j < r, aj + sj ≤ aj+1. For j ∈ {1, 2, . . . , r},
let tj = b sjm c. Let F =

⋃r
j=1{aj + 1, aj + 2, . . . , aj + mtj}. Then |L| ≥ rwm and so

|L \ F | < rm ≤ 1
w · |L| < ε

6 · |Hα|. Therefore, |Hα \ F | < ε
3 · |Hα|. Let g ∈ K. We have

that |µHα(g) − η(g)| < ε
3 so it suffices to show that |µF (g) − µHα(g)| < 2ε

3 . We have
that

|µHα(g)− µF (g)| =
∣∣∣∣
∑
t∈Hα g(t)−

∑
t∈F g(t)

|Hα|
+

∑
t∈F g(t)
|Hα|

−
∑
t∈F g(t)
|F |

∣∣∣∣
≤

∑
t∈Hα\F |g(t)|
|Hα|

+
∑
t∈F |g(t)|
|F |

· |Hα| − |F |
|Hα|

≤ |Hα \ F |
|Hα|

+
|Hα \ F |
|Hα|

<
ε

3
+
ε

3
=

2ε
3
.

4.2 Lemma. Let η ∈ LIM0(N), let ε > 0, let K ∈ Pf
(
N{0, 1}

)
, and let n ∈ N. There

exists B0 ∈ N such that for all l ∈ N and all B ∈ N with B ≥ B0, there exists G ∈ Pf (N)
such that

(a) minG > l,

(b) G is the union of blocks each of length at least n,

(c) |G| = Bn, and

(d) for all g ∈ K, |µG(g)− η(g)| < ε.

Proof. Let X = K{0, 1
n ,

2
n , . . . , 1} and pick B0 ∈ N such that B0 >

2 · |X|
ε

. Let l ∈ N
and B ≥ B0 be given. Let m = 2Bn and pick by Lemma 4.1, F ∈ Pf (N) such that
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minF > l, F is the union of blocks each of length an integer multiple of m, and for all
g ∈ K, |µF (g)− µ(g)| < ε

2 . Let v = |F |
n (so v ≥ 2B) and choose an increasing sequence

〈xt〉vt=1 such that F =
⋃v
t=1{xt + 1, xt + 2, . . . , xt + n}.

For g ∈ K and t ∈ {1, 2, . . . , v}, let ft(g) = 1
n ·

∑n
j=1 g(xt + j) ∈ {0, 1

n ,
2
n , . . . , 1}.

For ψ ∈ X, let Hψ = {t ∈ {1, 2, . . . , v} : ft = ψ}. Note that
∑
ψ∈X |Hψ| = v.

We now claim that we can choose 〈aψ〉ψ∈X in ω such that

(1) for all ψ ∈ X, aψ ≤ |Hψ|,
(2) for all ψ ∈ X, B·|Hψ|v − 1 < aψ <

B·|Hψ|
v + 1, and

(3)
∑
ψ∈X aψ = B.

Indeed, we shall always have either aψ =
⌈
B·|Hψ|
v

⌉
or aψ =

⌊
B·|Hψ|
v

⌋
, so (2) will hold.

If one always chooses aψ =
⌈
B·|Hψ|
v

⌉
, then

∑
ψ∈X aψ ≥ B ·

∑
ψ∈X

|Hψ|
v = B and if one

always chooses aψ =
⌊
B·|Hψ|
v

⌋
, then

∑
ψ∈X aψ ≤ B ·

∑
ψ∈X

|Hψ|
v = B so one may make

such choices so that
∑
ψ∈X aψ = B. To see that (1) holds, let ψ ∈ X. If Hψ = ∅, then

aψ = 0. Otherwise, let k = |Hψ|. Then B·|Hψ|
v ≤ k

2 < k so aψ ≤
⌈
B·|Hψ|
v

⌉
≤ k.

For each ψ ∈ X, pick Gψ ∈ [Hψ]aψ and let

G =
⋃
ψ∈X

⋃
t∈Gψ {xt + 1, xt + 2, . . . , xt + n} .

Then |G| =
∑
ψ∈X naψ = Bn.

To complete the proof, let g ∈ K. We shall show that |µG(g)− µF (g)| < ε
2 so that

|µG(g)− µ(g)| < ε as required. Now F =
⋃
ψ∈X

⋃
t∈Hψ {xt + 1, xt + 2, . . . , xt + n} so

µF (g) =

∑
ψ∈X

∑
t∈Hψ nft(g)

vn
=

∑
ψ∈X

∑
t∈Hψ ft(g)

v
=

∑
ψ∈X |Hψ|ψ(g)

v
.

Also |G| = Bn and

µG(g) =

∑
ψ∈X

∑
t∈Gψ nft(g)

Bn
=

∑
ψ∈X

∑
t∈Gψ ft(g)

B
=

∑
ψ∈X aψψ(g)

B
.

Now B·|Hψ|
v − 1 < aψ <

B·|Hψ|
v + 1. So

∣∣∣aψB − |Hψ|
v

∣∣∣ < 1
B . Hence

|µF (g)− µG(g)| ≤
∑
ψ∈X ψ(g) ·

∣∣∣∣aψB − |Hψ|
v

∣∣∣∣ < ∑
ψ∈X ψ(g) · 1

B
≤ |X|

B
<
ε

2
.

Recall that MN(N) is the space of all means on N. The next lemma says that the
topology on MN(N) is determined by sequences in {0, 1}.

4.3 Lemma. Let η ∈MN(N) and let U be a weak* neighborhood of η in MN(N). There
exist K ∈ Pf

(
N{0, 1}

)
and ε > 0 such that

⋂
g∈K{ν ∈MN(N) : |η(g)−ν(g)| < ε} ⊆ U .
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Proof. It suffices to assume that U is a subbasic neighborhood of η in MN(N) so pick
f ∈ l∞(N) and δ > 0 such that U = {ν ∈MN(N) : |η(f)− ν(f)| < δ}. Let b > ||f || and
choose n ∈ N such that n > 3b

δ . Let ε = δ
6nb . For i ∈ {0, 1, . . . , 2n} let ci = −b+ bi

n and
for i ∈ {0, 1, . . . , 2n − 1} let gi be the characteristic function of f−1

[
[ci, ci+1)

]
. Then

||f −
∑2n−1
i=0 cigi|| < b

n < δ
3 . Consequently, given any ν ∈ MN(N), since ||ν|| = 1,

|ν(f −
∑2n−1
i=0 cigi)| < δ

3 .

Assume now that ν ∈MN(N) and for each i ∈ {0, 1, . . . , 2n−1}, |η(gi)−ν(gi)| < ε.
Then |ν(f)− ν(

∑2n−1
i=0 cigi)| < δ

3 and |η(f)− η(
∑2n−1
i=0 cigi)| < δ

3 . Finally

|ν(
∑2n−1
i=0 cigi)− η(

∑2n−1
i=0 cigi)| =

∣∣ ∑2n−1
i=0 ci

(
ν(gi)− η(gi)

)∣∣
≤

∑2n−1
i=0 |ci| · |ν(gi)− η(gi)| < 2nbε = δ

3 .

Thus |ν(f)− η(f)| < δ.

4.4 Lemma. Let η ∈ MN(N). If for each K ∈ Pf
(
N{0, 1}

)
, each n ∈ N, and each

ε > 0, there exists F ∈ Pf (N) such that F is the union of blocks, each of length at least
n, and for each g ∈ K, |µF (g)− η(g)| < ε, then η ∈ LIM0(N).

Proof. Let D = Pf
(
N{0, 1}

)
× R+ × N and order D by (K, ε, n) ≤ (K ′, ε′, n′) if and

only if K ⊆ K ′, ε ≥ ε′, and n ≤ n′. For each (K, ε, n) ∈ D, pick F (K, ε, n) ∈ Pf (N)
such that F (K, ε, n) is the union of blocks, each of length at least n, and for each g ∈ K,
|µF (K,ε,n)(g) − η(g)| < ε. Then by Lemma 4.3, 〈µF (K,ε,n)〉(K,ε,n)∈D converges to η in
the weak* topology on MN(N) so it suffices to show that 〈F (K, ε, n)〉(K,ε,n)∈D is a left
Følner net in Pf (N). To see this note that, given any k ∈ N and any (K, ε, n) ∈ D, if
F = F (K, ε, n) and n > k, then |F \ (k + F )| ≤ k

n · |F |.

4.5 Theorem. LIM0(N) is convex.

Proof. Since LIM0(N) is weak* closed and the dyadic rationals are dense in [0, 1], it
suffices to let µ, ν ∈ LIM0(N) and show that η = 1

2µ + 1
2ν ∈ LIM0(N). Let ε > 0, let

K ∈ Pf
(
N{0, 1}

)
, and let n ∈ N. By Lemma 4.4 it suffices to produce H ∈ Pf (N)

such that H is the union of blocks each of length at least n and for each g ∈ K,
|µH(g)− η(g)| < ε.

Pick B0 in N as guaranteed by Lemma 4.2 for µ, ε, K and n and pick B1 in N as
guaranteed by Lemma 4.2 for ν, ε, K and n. Let B = max{B0, B1}. Pick F ∈ Pf (N)
such that F is the union of blocks each of length at least n, |F | = Bn, and for all
g ∈ K, |µF (g) − µ(g)| < ε. Let l = maxF and pick G ∈ Pf (N) such that minG > l,
G is the union of blocks each of length at least n, |G| = Bn, and for all g ∈ K,
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|µG(g) − ν(g)| < ε. Let H = F ∪ G. Then µH = 1
2µF + 1

2µG and so for any g ∈ K,
|µH(g)− η(g)| ≤ 1

2 |µF (g)− µ(g)|+ 1
2 |µG(g)− ν(g)| < ε.

4.6 Corollary. LIM(N) = LIM0(N).

Proof. By Theorem 2.12, LIM(N) is the weak* closed convex hull of LIM0(N). Also
LIM0(N) is weak* closed and by Theorem 4.5 LIM0(N) is convex.

5. Further properties of left invariant means

We shall explore some of the connections between invariant means and the algebra of the
Stone-Čech compactification βS of a discrete left amenable semigroup S. Since l∞(S)
can be identified with C(βS), the Banach space of continuous real-valued functions
defined on βS, it follows from the Riesz Representation Theorem that a mean on S

corresponds to a regular Borel probability measure on βS. More precisely, for every
µ ∈ LIM(S), there exists a unique regular Borel probability measure µ̃ on βS for which
µ(f) =

∫
f̃dµ̃ for every f ∈ l∞(S), where f̃ : βS → R denotes the continuous extension

of f . In particular, µ̃(A ) = µ(χA) for every A ⊆ S. It follows easily from the regularity
of µ that µ̃(s−1B) = µ̃(B) for every s ∈ S and every Borel subset B of βS.

In the remainder of this paper, we shall regard LIM(S) as the space of left invariant
regular Borel probability measures defined on βS. We shall use a symbol such as µ to
denote an element of LIM(S), in preference to the more cumbersome µ̃ used in the
preceding paragraph.

We regard βS as the space of ultrafilters on S, with the points of S identified with
the principle ultrafilters. The topology of βS is defined by choosing the sets of the form
A = {p ∈ βS : A ∈ p}, where A denotes a subset of S, as a base for the open sets. A is
then a clopen subset of βS, with A = clβS(A), and all the clopen subsets of βS are of
this form.

We shall need to use the well-known fact that the semigroup operation of S can
be extended to βS and that βS is then a right topological semigroup with S contained
in its topological center. This means that, for every x ∈ βS, the map ρx : βS → βS

defined by ρx(y) = yx is continuous and, for every s ∈ S, the map λs : βS → βS defined
by λs(y) = sy is continuous. Given p, q ∈ βS and A ⊆ S, one has that A ∈ pq if and
only if {s ∈ S : s−1A ∈ q} ∈ p.

The fact that βS is a compact right topological semigroup has important algebraic
consequences. Among these is the fact that βS contains a smallest ideal K(βS) which is
the union of all the minimal left ideals of βS, as well as the union of all the minimal right
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ideals of βS. Any two minimal left ideals of βS are isomorphic, as are any two minimal
right ideals. The intersection of any minimal left ideal and any minimal right ideal of
βS is a group, and every minimal left ideal of βS is closed. See [10] for derivations of
these facts and further information.

Most of the statements in the following theorem are well-known. We give proofs
rather than references because the proofs are so simple.

5.1 Theorem. Let S be a discrete left amenable semigroup and let µ ∈ LIM(S). Then
the following statements hold:

(a) For every Borel subset B of βS, every s ∈ S and every µ ∈ LIM(S), if sB is
a Borel subset of βS, µ(sB) ≥ µ(B). In the case in which S is left cancellative,
µ(sB) = µ(B).

(b) The support of µ is a left ideal of βS;

(c) Every minimal left ideal of βS is the support of a measure in LIM(S);

(d) If L is a minimal left ideal of βS, then sL = L for every s ∈ S;

(e) If R is a right ideal of S, µ(R) = 1;

(f) µ(
⋂
{R : R is a right ideal of S}) = 1;

(g) K(βS) ⊆
⋂
{R : R is a right ideal of S}.

Proof. (a) In any semigroup S, B ⊆ s−1sB. In the case in which S is left cancellative,
s−1sB = B.

(b) Let C denote the support of µ. For every s ∈ S, µ(s−1C) = 1 and so C ⊆ s−1C.
Hence, for every x ∈ C, Sx ⊆ C and therefore (βS)x = Sx ⊆ C.

(c) Let L be a minimal left ideal in βS and let p ∈ L. We can define a a left
invariant Borel measure ν on βS by putting ν(B) = µ(ρ−1

p [B]) for every Borel subset
B of βS. To see that ν is regular, let B be a Borel subset of βS and let ε > 0.
We can choose a compact subset C of ρ−1

p [B] for which µ(ρ−1
p [B] \ C) < ε. Since

ρ−1
p

[
B \ ρp[C]

]
⊆ ρ−1

p [B] \ C, it follows that ν(B \ ρp[C]) < ε. So ν ∈ LIM(S). Now
ρp

−1[βS \ L] = ∅, and thus the support of ν is contained in L. By (b), the support of
ν is a left ideal and is therefore equal to L. (d) By (c), L is the support of a measure
µ ∈ βS. By (a), µ(sL) = 1. So L ⊆ sL and hence sL = L.

(e) Choose s ∈ R. Since R is a right ideal of βS by [10, Corollary 4.18], βS ⊆ s−1R.

(f) Since µ is regular, for any downward directed family C of compact subsets of
βS, µ(

⋂
C) = inf({µ(C) : C ∈ C}). So (f) follows from (e).

(g) This follows from (d), the fact that K(βS) is the union of the minimal left
ideals of βS, and the fact already mentioned that if R is a right ideal of S, then R is a
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right ideal of βS.

A semigroup S is said to be weakly left cancellative provided that for all u, v ∈ S,
{x ∈ S : ux = v} is finite.

5.2 Corollary. Let S be an infinite discrete left amenable semigroup. If S is weakly
left cancellative, then |LIM(S)| = 22|S| .

Proof. This follows from Theorem 5.1(c) and the fact that βS has 22|S| left ideals ([10,
Theorem 6.42]).

We shall now derive some properties of the extreme points of LIM(S). An inter-
esting characterisation of these points is given in [4].

5.3 Lemma. Let S be a discrete left amenable semigroup and let µ, ν ∈ LIM(S). If
ν = ν1 + ν2 where ν1 is absolutely continuous with respect to µ and ν2 is singular with
respect to µ, then ν1 and ν2 are left invariant.

Proof. Let s ∈ S. We shall show that s · ν1 is absolutely continuous with respect to
µ and that s · ν2 is singular with respect to µ. It will follow from the uniqueness of ν1
and ν2 that ν1 = s · ν1 and that ν2 = s · ν2.

If B is a Borel subset of βS for which µ(B) = 0, then µ(s−1B) = 0. So ν1(s−1B) =
0. Thus s · ν1 is absolutely continuous with respect to µ.

Now we can write βS as the union of two disjoint Borel subsets, B1 and B2, for
which µ(B1) = ν2(B2) = 0. Then ν1(s−1B1) = ν1(B) = 0. So ν2(s−1B1) = ν(s−1B1) =
ν(B1) = ν2(B1). Since 0 = ν2(B2) = 1 − ν2(B1) = 1 − ν2(s−1B1) = ν2(s−1B2), it
follows that s · ν2 is singular with respect to µ.

5.4 Lemma. Let S be a discrete left amenable semigroup and let ν be an extreme point
of LIM(S). For every µ ∈ LIM(S), either ν is singular with respect to µ or absolutely
continuous with respect to µ.

Proof. We write ν = ν1+ν2, where ν1 is absolutely continuous with respect to µ and ν2
is singular with respect to µ. If ν1 and ν2 are both non-zero, we obtain a contradicition
by writing ν = ‖ν1‖ ν1

‖ν1‖ + ‖ν2‖ ν2
‖ν2‖ and noting that, by Lemma 5.3, ν1

‖ν1‖ and ν2
‖ν2‖ are

in LIM(S).

5.5 Definition. Let S be a discrete left amenable semigroup and let µ be a non-negative
Borel measure on βS. We shall say that a Borel subset B of βS is µ left invariant if
µ(s−1B 4B) = 0 for every s ∈ S.
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5.6 Lemma. Let S be a discrete left amenable semigroup and let µ ∈ LIM(S). Suppose
that S is left cancellative. Let ν be an extreme point of LIM(S). If ν is absolutely
continuous with respect to µ, then there is a µ-left invariant Borel subset E of βS such
that ν(B) = µ(B∩E)

µ(E) for every Borel subset B of βS.

Proof. Let f : βS → R be a Borel measurable function with the property that ν(B) =∫
B
fdµ for every Borel subset B of βS. We claim that, for every given s ∈ S, f(st) =

f(t) for every t in the complement of some µ-null subset Ns of βS.

To see this, note that, for every x ∈ sβS, the mapping x 7→ s−1x is well defined on
sβS (by [10, Lemma 8.1]) and is easily seen to be continuous. We note that µ(sβS) = 1
by Theorem 5.1(e). Let B be a Borel subset of sβS. We have

∫
f(s−1t)χB(t)dµ(t) =∫

f(t)χB(st)dµ(t) =
∫
f(t)χs−1B(t)dµ(t) = ν(s−1B) = ν(B) =

∫
f(t)χB(t)dµ(t). It

follows that there exists a µ-null subset Ns of βS such that f(s−1t) = f(t) for every
t ∈ βS \Ns. We then have f(t) = f(s−1st) = f(st) for every t ∈ s−1Ns.

Let U1 and U2 be disjoint subsets of R which partition R and let B1 = f−1[U1] and
B2 = f−1[U2]. Then B1 and B2 are disjoint Borel subsets of βS which partition βS.
They are µ-left invariant because, for every s ∈ S, s−1B1 4 B1 and s−1B2 4 B2 are
contained in Ns. For i ∈ {1, 2}, define a measure νi by putting νi(B) =

∫
Bi∩B fdµ. We

claim that νi is left invariant. To see this, observe that, for every Borel subset B of βS
and every s ∈ S,

νi(B) =
∫
fχBχB1dµ

=
∫
f(st)χB(st)χBi(st)dµ(t)

=
∫
f(t)χs−1B(t)χBi(t)dµ(t)

= νi(s−1B).

We have ν = ν1 + ν2. If ν1 and ν2 are both non-zero, ν = ‖ν1‖ ν1
‖ν1‖ + ‖ν2‖ ν2

‖ν2‖ ,
contradicting the assumption that ν is an extreme point of LIM(S). So ν1 = 0 or ν2 = 0.
It follows that µ(B1) = 0 or µ(B2) = 0. Thus there exists a unique number c ∈ R such
that µ(f−1[U ]) > 0 for every open neighbourhood U of c, So µ(f−1[R \ {c}]) = 0 and
f = c except on a µ-null set.

Our claim is now established with E = f−1[{c}].

5.7 Theorem. Let S be a discrete left amenable semigroup. If S is left cancellative,
any two distinct extreme points of LIM(S) are mutually singular.
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Proof. Let µ and ν be extreme points of LIM(S). If they are not mutually singular,
then each is absolutely continuous with respect to the other by Lemma 5.4. By Lemma
5.6, there exist Borel subsets B and C of βS such that µ(E) = ν(E∩B)

ν(B) and ν(E) =
µ(E∩C)
µ(C) for every Borel subset E of βS. This implies that µ(βS \ B) = 0 = ν(βS \ B).

So µ(B) = ν(B) = 1. Similarly, µ(C) = ν(C) = 1. So µ(E) = ν(E) if E is a Borel
subset of B ∩ C or if E is a Borel subset of βS \ (B ∩ C). It follows that µ = ν.

We conclude this section with some results about the algebra of βS.

5.8 Definition. Let S be a semigroup which satisfies SFC.

∆∗(S) = {p ∈ βS : (∀A ∈ p)(d(A) > 0)}.

Recall that by Theorems 2.12 and 2.14 the hypotheses of the following theorem are
satisfied by any left cancellative left amenable semigroup.

5.9 Theorem. Let S be a semigroup which satisfies SFC. If for every A ⊆ S, d(A) =
sup{µ(A ) : µ ∈ LIM(S)}, then ∆∗(S) is a closed two sided ideal of βS.

Proof. It is immediate that ∆∗(S) is closed. To see that it is a left ideal, let p ∈ ∆∗(S).
We show that that Sp ⊆ ∆∗(S) and hence that c`βSSp = βSp ⊆ ∆∗(S). To this end,
let s ∈ S and let A ∈ sp. Then s−1A ∈ p and so d(s−1A) > 0. Therefore there is some
µ ∈ LIM(S) such that µ( s−1A ) > 0. Since µ(A ) = µ( s−1A ), one has d(A) > 0 as
required.

Now to see that ∆∗(S) is a right ideal, let p ∈ ∆∗(S), let q ∈ βS, and let A ∈ pq.
Let B = {s ∈ S : s−1A ∈ q}. Then B ∈ p so d(B) > 0 and therefore there is some
µ ∈ LIM(S) such that µ(B ) > 0. Note that B = ρ−1

q [A ]. Define ν ∈ LIM(S) by
ν(X) = µ(ρ−1

q [X]) for every Borel subset X of βS. Then ν(A ) > 0 so d(A) > 0.

Recall that a set A ⊆ S is thick provided that for each F ∈ Pf (S) there exists t ∈ S
such that Ft ⊆ A. The final result of this section is about the concept of weakly thick
sets, introduced in [12], where it was used in determining which products of central
subsets of semigroups are central.

5.10 Definition. Let A be a subset of a semigroup S. A is said to be weakly thick if
there exists s ∈ S such that s−1A is thick.

We remark that being weakly thick is trivially equivalent to being thick in a com-
mutative semigroup, but that these two concepts are not equivalent in general. For
example, if S is the free semigroup on two generators a and b, aS is weakly thick but
not thick.
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5.11 Theorem. Let S be a discrete left amenable semigroup. If A ⊆ S is weakly thick,
then A is thick.

Proof. Suppose that A is weakly thick. Then s−1A is thick for some s ∈ S. By [2,
Theorem 2.9(c)], a subset T of S is thick if and only if T contains a left ideal. So there
is a minimal left ideal L of βS for which L ⊆ s−1A. Then sL ⊆ A. By Theorem 5.1(d),
sL = L and so A is thick.

6. Semigroups S for which βS has

finite minimal left ideals

In the context of the current paper, we were interested in the possibility that one might
have some µ ∈ LIM(S) and some x ∈ βS such that µ({x}) > 0. It was shown by A.
T.-M. Lau in [15] that this is equivalent to the statement that the minimal left ideals
of βS are finite groups. In this section, we derive characterizations of semigroups with
some µ ∈ LIM(S) and some x ∈ βS such that µ({x}) > 0 and of those with some
µ ∈ LIM(S) and some x ∈ S such that µ({x}) > 0. We shall see that, if any such point
x exists, {x ∈ βS : µ({x}) > 0 for some µ ∈ LIM(S)} = K(βS). We shall then turn
our attention to showing that there is a rich class of semigroups, occurring naturally in
mathematics, which have this property.

6.1 Lemma. Let S be a semigroup, assume that some minimal left ideal L of βS is
finite and that R = K(βS) is a minimal right ideal of βS. Any idempotent in R is a
left identity for R. Let p be an idempotent in L and let E = {s ∈ S : sp = p}. Then
for every idempotent q in R, E = {s ∈ S : sq = q}, E ∈ q, and for each s ∈ E,
{u ∈ S : su = u} ∈ q.

Proof. Let q be an idempotent in R. Then q is a left identity for R. (We have qR = R

so given any x ∈ R, x = qy for some y ∈ R so qx = qqy = qy = x.) Thus if s ∈ S we
have that sp = p if and only if sq = q so E = {x ∈ S : sq = q}. To see that E ∈ q,
pick A ⊆ S such that A ∩ L = {p}. Then A ∈ p = qp so {s ∈ S : s−1A ∈ p} ∈ q. It
suffices to show that {s ∈ S : s−1A ∈ p} ⊆ E so let s ∈ S such that s−1A ∈ p. Then
sp ∈ A∩L so sp = p. Now, given s ∈ E one has that λs(q) = q and so by [10, Theorem
3.35], {u ∈ S : su = u} ∈ q.

The following theorem is purely topological-algebraic; it does not involve means,
invariant or otherwise. Recall that a subset E of S is a central* set if and only if E
is a member of every idempotent in K(βS). When we say that objects A and B are
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topologically isomorphic we mean that there is a function from A to B which is both an
isomorphism and a homeomorphism. A semigroup S is a right zero semigroup if and
only if ab = b for all a and b in S.

6.2 Theorem. Let S be a semigroup and assume that some minimal left ideal of βS is
finite (and thus every minimal left ideal of βS is finite). Statements (a) through (i) are
equivalent and imply statement (j).

(a) βS has a unique minimal right ideal R = K(βS).

(b) K(βS) is a compact minimal right ideal of βS.

(c) Each minimal left ideal of βS is a group.

(d) For each s ∈ S and each minimal left ideal L of βS, λs|L is injective.

(e) For each s ∈ S and some minimal left ideal L of βS, λs|L is injective.

(f) If L is a minimal left ideal of K(βS) and T = {z ∈ K(βS) : zz = z}, then L

is a finite group, T is a compact right zero semigroup, and K(βS) is topologically
isomorphic to L× T .

(g) There exist a finite group G and a compact right zero semigroup T such that K(βS)
is topologically isomorphic to G× T .

(h) There is a central* subset E of S such that for each s ∈ E, Us = {u ∈ S : su = u}
is non-empty and therefore, being a right ideal in S, satisfies K(βS) ⊆ Us.

(i) There exist a central* subset E of S and an idempotent p ∈ K(βS) such that for
each s ∈ E, {u ∈ S : su = u} ∈ p.

(j) If L is a minimal left ideal of βS and p is an idempotent in L, then the function
s 7→ sp is a homomorphism from S onto L. If G ∈ Pf (S) and if V is a subset of
S for which V ∩K(βS) 6= ∅, then there exists v ∈ V such that sv = tv whenever
s, t ∈ G and sp = tp.

Proof. That (a) and (c) are equivalent follows immediately from the fact that the
intersection of any minimal left ideal and any minimal right ideal is a group (and
distinct minimal right ideals are disjoint).

Trivially (b) implies (a). To see that (a) implies (b), let p be an idempotent in
R = K(βS). Let L = βSp and let E = {s ∈ S : sp = p}. By Lemma 6.1 E ∈ p.
Note that for any s ∈ S, {x ∈ βS : sx = x} is closed. It thus suffices to show that
R =

⋂
s∈E{x ∈ βS : sx = x}. Indeed, if x ∈ R and s ∈ E, then x = px = spx = sx.

Conversely, if x ∈ βS and for all s ∈ E, sx = x, then ρx is constantly equal to x on E

and therefore px = x so x ∈ R.
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To see that (a) implies (d), let L be a minimal left ideal of βS, let x, y ∈ L, and
assume that sx = sy. Let p be the identity of L. Let A = {a ∈ S : ax = ay}. Then
A is a left ideal of S so A is a left ideal of βS. Pick a minimal left ideal L′ of βS
such that L′ ⊆ A and let p′ be the identity of L′. Then for all a ∈ A, axp′ = ayp′

and so ρxp′ and ρyp′ agree on a member of p′ and therefore p′xp′ = p′yp′. Since p′

is a left identity for R = K(βS), we have that xp′ = p′xp′ = p′yp′ = yp′ and so
x = xp = xp′p = yp′p = yp = y.

Trivially (d) implies (e). To see that (e) implies (a), pick a minimal left ideal L of
βS such that for each s ∈ S, λs|L is injective. Suppose that βS has distinct minimal
left ideals R and R′. Let p be the identity of L∩R and let p′ be the identity of L∩R′.
Pick A ⊆ S such that A ∩ L = {p}. Since pp = p, {s ∈ S : s−1A ∈ p} ∈ p. Since p′ is
a right identity for L, pp′ = p and so {s ∈ S : s−1A ∈ p′} ∈ p. Pick s ∈ S such that
s−1A ∈ p and s−1A ∈ p′. Then sp ∈ A∩L and sp′ ∈ A∩L so sp = sp′ = p. Since λs is
injective on L, p = p′, a contradiction.

Trivially (f) implies (g). To see that (g) implies (c), note that the minimal left
ideals of G× T are the sets of the form G× {a} for a ∈ T . It follows quickly from [10,
Lemma 1.43(c)] that L is a minimal left ideal of βS if and only if L is a minimal left
ideal of K(βS).

To see that (b) implies (f) note that each member of T is a left identity for R =
K(βS), and in particular T is a right zero semigroup. Also, T = {z ∈ R : zx = x

for all x ∈ R} so T =
⋂
x∈R (R ∩ ρ−1

x [{x}]) and thus T is compact. Since (b) implies
(c), we know that L is a group. Let p be the identity of L. Define ϕ : L × T → R by
ϕ(x, z) = xz. To see that ϕ is a homomorphism, let (x1, z1), (x2, z2) ∈ L × T . Then
ϕ(x1, z1)ϕ(x2, z2) = x1z1x2z2 = x1x2z2 = x1x2z1z2 = ϕ(x1x2, z1z2).

To see that ϕ is surjective, let x ∈ R and pick the minimal left ideal L′ of βS such
that x ∈ L′. If z is the identity of L′, then xz = x and so ϕ(xp, z) = xpz = xz = x.

Now assume that (x1, z1), (x2, z2) ∈ L × T and ϕ(x1, z1) = ϕ(x2, z2). Then z1

and z2 are idempotents in the same minimal left ideal of βS, which is a group, and so
z1 = z2. Also x1 = x1p = x1z1p = x2z2p = x2p = x2.

Finally, to see that ϕ is continuous, let (x, z) ∈ L×T and let U be a neighborhood
of ϕ(x, z). Pick A ∈ xz such that A ⊆ U . Pick B ⊆ S such that B ∩ L = {x}. Since
xp = x, {s ∈ S : s−1B ∈ p} ∈ x so pick s ∈ S such that s−1B ∈ p. Then sp ∈ B ∩ L
so sp = x. Since p is a left identity for R, we have that for all y ∈ R, sy = spy = xy.
We have that {x} is open in L. Also, since sz = xz ∈ A, we have that s−1A ∩ R is a
neighborhood of z in R. We claim that ϕ[{x} × ( s−1A ∩ R)] ⊆ A. Let y ∈ s−1A ∩ R.
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Then ϕ(x, y) = xy = sy ∈ A.

To see that (a) implies (h), note that by Lemma 6.1, Us 6= ∅ and is therefore a right
ideal of S. It then follows from Lemma 5.1(g) that K(βS) ⊆ Us.

Trivially (h) implies (i). To see that (i) implies (a), pick an idempotent p in K(βS)
such that for each s ∈ E, {u ∈ S : su = u} ∈ p. Pick a minimal right ideal R of βS such
that p ∈ R. Let q be an arbitrary idempotent in K(βS) and pick a minimal right ideal
R′ of βS such that q ∈ R′. We shall show that p ∈ R′, and so R′ = R. Given s ∈ E, λs
agrees with the identity on a member of p and thus sp = p. Since E ∈ q, one has that
{s ∈ S : sp = p} ∈ q. Since ρp is constant on a member of q, we have that qp = p and
so p ∈ R′ as claimed.

Now assume that statements (a) through (i) hold. Let L be a minimal left ideal of
βS and let p be an idempotent in L. Define h : S → L by h(s) = sp. By Lemma 6.1,
p is a left identity for K(βS) so if s, t ∈ S then h(s)h(t) = sptp = stp = h(st). Since
L = βSp = c`(Sp) = Sp, h is surjective.

For s, t ∈ S such that sp = tp, let Rs,t = {v ∈ βS : sv = tv}. We claim first that
Rs,t 6= ∅. To this end, pick u ∈ S such that up is the inverse of sp in the group L. Then
p = spup = sup and p = tpup = tup so by [10, Theorem 3.35], {w ∈ S : w = suw} ∈ p

and {w ∈ S : w = tuw} ∈ p. Choosing w in the intersection of these two sets, we have
that uw ∈ Rs,t. Next we note that if s, t ∈ S such that sp = tp, then Rs,t ∈ p. Indeed,
since Rs,t 6= ∅, it is a right ideal of S and consequently Rs,t is a right ideal of βS which
therefore contains K(βS), which is the unique minimal right ideal of βS. If V ⊆ S

satisfies V ∩K(βS) 6= ∅ and if G ∈ Pf (S), we can choose v ∈ V ∩
⋂
{Rs,t : s, t ∈ G and

sp = tp}.

We remark that statement (j) of Theorem 6.2 does not imply the other statements.
To see this, D be a two element left zero semigroup and let T be an infinite right zero
semigroup. Let S = D × T . Then the minimal left ideals of βS are copies of D, so
statement (c) fails. It is routine to verify that S satisfies statement (j).

In the following theorem we shall show that, if S is any semigroup for which βS

contains a point x such that µ({x}) > 0 for some µ ∈ LIM(S), then S has properties
reminiscent of a right zero semigroup.

6.3 Theorem. Let S be a discrete semigroup. The following statements are equivalent.

(a) There exist µ ∈ LIM(S) and x ∈ βS such that µ({x}) > 0.

(b) Every minimal left ideal L of βS is finite and has the property that the mapping λs
is injective on L for every s ∈ S.
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(c) Every minimal left ideal L of βS is a finite group, and there exists a Følner net
〈Fα〉α∈D in Pf (S) such that {|Fα| : α ∈ D} is bounded and 〈µFα〉α∈D converges in
the weak∗ topology to the unique measure in LIM(S) with support L.

(d) There exists a Følner net 〈Fα〉α∈D for which 〈|Fα|〉α∈D is bounded.

If S satisfies these equivalent statements, then it satisfies each of the statements of
Theorem 6.2. In addition for every ν ∈ LIM(S), ν

(
K(βS)

)
= 1.

Proof. To see that (a) implies (b), assume that x ∈ βS and µ ∈ LIM(S) satisfy
µ({x}) > 0. Let L be a minimal left ideal of βS. We may suppose that x ∈ L, because
we could choose any y ∈ L and replace x by xy and µ by the measure which maps each
Borel subset B of βS to µ(ρ−1

y [B]).

For each s ∈ S, µ({sx}) ≥ µ({x}) by Theorem 5.1(a) and so Sx is finite. Since
L = Sx, L = Sx. Furthermore, sL = L for every s ∈ S by Theorem 5.1(d), and so λs
is injective on L.

To see that (b) implies (c), Let L be a minimal left ideal of βS and let p be an
idempotent in L. We have by Theorem 6.2 that L is a finite group, λs is injective on L
for each s ∈ S, the mapping s 7→ sp is a homomorphism from S onto L, and if V ⊆ S

satisfies V ∩ K(βS) 6= ∅ and G ∈ Pf (S), then there exists v ∈ V such that sv = tv

whenever s, t ∈ G and sp = tp.

Since L is finite and Sp ⊆ L, L = βSp = c`(Sp) = Sp. Pick K ∈ Pf (S) such that
|K| = |L| andKp = L. Given s ∈ S, sKp = sL = L because L is finite and λs is injective
on L. For F ∈ Pf (S), let GF = FK ∪K. Let A = {A ⊆ S : L ⊆ A} and let A ∈ A.
For each s ∈ S we have L ⊆ s−1A. Let VF,A =

⋂
s∈GF s

−1A so that L ⊆ V F,A and
sv ∈ A for every s ∈ GF and every v ∈ VF,A. Pick vF,A ∈ VF,A such that svF,A = tvF,A

whenever s, t ∈ GF and sp = tp, and let HF,A = KvF,A. Then |HF,A| ≤ |K| = |L|.
Direct Pf (S) × A by putting (F ′, A′) ≤ (F,A) if and only if F ′ ⊆ F and A ⊆ A′. We
claim that 〈HF,A〉(F,A)∈Pf (S)×A is a Følner net in Pf (S). To see this, it suffices to let
F ∈ Pf (S), let A ∈ A, let s ∈ F , and show that HF,A ⊆ sHF . To this end, let t ∈ HF,A

and pick u ∈ K such that t = uvF,A. Now up ∈ L = sKp so pick w ∈ K such that
up = swp. Then u, sw ∈ GF so t = uvF,A = swvF,A ∈ sHF,A. Since HF,A ⊆ A, it
follows that, for every B ∈ A, µHF,A(B) = 1 whenever (F,A) ∈ Pf (S) × A satisfies
A ⊆ B. So 〈µHF,A〉(F,A)∈Pf (S)×A converges in the weak∗ topology to the measure in
LIM(S) with support L.

It is obvious that (c) implies (d). To see that (d) implies (a), assume that 〈Fα〉α∈D
is a Følner net in Pf (S) such that {|Fα| : α ∈ D} is bounded and let n = max{|Fα| :
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α ∈ D}.
Let µ be a weak* limit point of the net 〈µFα〉α∈D. (In our current context, given

a Borel subset B of βS and F ∈ Pf (S), µF (B) = |B∩F |
|F | .) Pick a subnet 〈µGδ〉δ∈E

of 〈µFα〉α∈D which converges to µ. Let x ∈
⋂
δ∈E c`(

⋃
β>δ Gβ) and suppose that

µ({x}) = 0. Pick A ∈ x such that µ(A ) < 1
2n and let U = {ν ∈MN(S) : ν(A ) < 1

2n}.
Pick δ ∈ E such that for every β > δ, µGβ ∈ U . Now also

⋃
β>δ Gβ ∈ x so pick β > δ

such that A ∩Gβ 6= ∅. Then µGβ (A ) > 1
n so µGβ /∈ U , a contradiction.

Now assume that these equivalent statements hold and let R = K(βS). Let ν ∈
LIM(S). We shall show that ν(R) = 1. Let p be an idempotent in R. By Lemma 6.1
for every s ∈ E, if Us = {u ∈ S : su = u}, then Us ∈ p. Let X =

⋂
s∈E

⋂
u∈Us uβS.

By Theorem 5.1(g), ν(X) = 1. It suffices to show that X ⊆ R, so let x ∈ X. We claim
that for each s ∈ E, sx = x, so let s ∈ E be given and pick u ∈ Us. Then x ∈ uβS so
pick y ∈ βS such that x = uy. Then sx = suy = uy = x. Since for each s ∈ E, sx = x

we have that px = x and therefore x ∈ R as required.

The preceding results give us a great deal of information about the structure of
LIM(S) when S denotes a discrete semigroup with the property that βS contains a
singleton subset which has positive measure for some mean in LIM(S).

6.4 Definition. Let S denote a discrete semigroup with the property that there is
a mean in LIM(S) which assumes a positive value on a singleton subset of βS. Let
Z(S) = {p ∈ K(βS) : pp = p} and let G(S) denote the finite group isomorphic to each
minimal left ideal of βS.

We have seen that Z(S) is a compact right zero semigroup which is equal to the
set of left identities of K(βS).

The fact that the extreme points of LIM(S) are the measuresin LIM(S) whose
supports are minimal left ideals of βS under the hypotheses of the following Corollary,
was proved in [18] by different methods.

6.5 Corollary. Let S denote a discrete semigroup with the property that there is a
mean in LIM(S) which assumes a positive value on a singleton subset of βS. We can
then identify K(βS) with G(S)×Z(S) by Theorem 6.2(f). Let µ denote the unique left
invariant mean on G(S). Then for each ν ∈ LIM(S) there is a regular Borel probability
measure ρ on Z(S) such that ν is the product measure µ⊗ ρ. The mapping ν 7→ ρ is a
bijection from LIM(S) onto the set of all regular Borel probability measures on Z(S).
The extreme points of LIM(S) are the means in LIM(S) whose supports are minimal
left ideals of βS, and LIM(S) is the weak∗ closed convex hull of LIM0(S).
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Proof. We claim that a regular Borel measure ν on βS whose support is contained
in K(βS), is left invariant if and only if ν(x−1B) = ν(B) for every Borel subset B of
βS and every x ∈ K(βS). To see this, let p be the identity of the minimal left ideal
of βS which contains x. Then x = xp = sp for some s ∈ S. So xy = sy for every
y ∈ K(βS). Conversely, for each s ∈ S, we can put x = sp and deduce that xy = sy for
every y ∈ K(βS). Thus λs|K(βS) = λx|K(βS).

Now let ρ be any regular Borel probability measure on Z(S). The product measure
µ⊗ρ on G(S)×Z(S) has the property that µ⊗ρ

(
(g, z)−1B

)
= µ⊗ρ(B) for every Borel

subset B of G(S)×Z(S), every g ∈ G(S) and every z ∈ Z(S). Thus µ⊗ ρ corresponds
to a measure in LIM(S). Conversely, if ν ∈ LIM(S), we can define a regular Borel
probability measure ρ on Z(S) by putting ρ(B) = ν(π−1

2 [B]) for every Borel subset B
of Z(S). It is then easy to verify that ν = µ⊗ ρ. We observe that the mapping ν 7→ ρ

preserves convex combinations.

Now the extreme points of the set of regular Borel probability measures on Z(S) are
the point measures δz where z ∈ Z(S) by [13, 15.J]. Under the correspondence described
in the preceding paragraph, δz corresponds to the unique measure in LIM(S) whose
support is the minimal left ideal G(S) × {z} of G(S) × Z(S) ∼ K(βS) which contains
z. So the extreme points of LIM(S) are the measures in LIM(S) whose supports are
minimal left ideals of K(βS). By Theorem 6.3(c), each such measure is in LIM0(S).
Thus it follows from the Krein Milman Theorem ([13, 15.1]) that LIM(S) is the weak∗

closed convex hull of LIM0(S).

Recall that a left amenable semigroup need not satisfy SFC, and so we might not
be able to apply our definition of density. As a consequence of Theorem 6.3 if there
exist µ ∈ LIM(S) and x ∈ βS such that µ({x}) > 0, then S does satisfy SFC and we
have the following corollary.

6.6 Corollary. Let S be a discrete left amenable semigroup and assume that LIM(S)
contains a measure which is non-zero on a singleton subset of βS. Suppose that every
minimal left ideal of βS has n elements. Then there is a central* subset E of S such
µ(E) = 1

n for every µ ∈ LIM(S) and, for every s ∈ E, µ({u ∈ S : su = u}) = 1 for
every µ ∈ LIM(S). In particular, d(E) = 1

n and, for every s ∈ E, d({u ∈ S : su =
u}) = 1.

Proof. Let p be an idempotent in K(βS) and let L be the minimal left ideal in βS

which contains p. Let E = {s ∈ S : sp = p}. By Theorem 6.3, S satisfies the statements
of Theorem 6.3. Therefore, by Lemma 6.1 E is central*.
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We claim that the sets of the form t−1E ∩K(βS), where t ∈ S, partition K(βS)
into n disjoint subsets. Let y ∈ K(βS) and suppose that y belongs to a minimal left
ideal L′ with identity p′. Since L′ = Sy, there exists t ∈ S such that ty = p′ ∈ E.
This shows that K(βS) ⊆

⋃
t∈S t

−1E. Now let s, t ∈ S. Suppose first that sp = tp.
Let y ∈ K(βS). Then sy = spy = tpy = ty. So K(βS) ∩ s−1E = K(βS) ∩ t−1E.
Now suppose that sp 6= tp and that there exists y ∈ K(βS) ∩ s−1E ∩ t−1E. Then
syp = typ = p. Multiplying on the right by the inverse of yp in L we have that sp = tp,
a contradiction. So K(βS)∩ s−1E and K(βS)∩ t−1E are disjoint. This shows that the
sets of the form t−1E partition K(βS) into n disjoint sets, as claimed. If µ ∈ LIM(S),
then µ(K(βS)) = 1 by Theorem 6.3 and so µ(E) = 1

n . If s ∈ E, {u ∈ S : us = u} is
non-empty by Lemma 6.1 and is therefore a right ideal in S. So µ({u ∈ S : su = u}) = 1
by Theorem 5.1(f).

As shown in the proof Theorem 2.14, for any subset A of S there exists µ ∈ LIM(S)
such that d(A) = µ(A). It follows that d(A) = 1

n and that d({u ∈ S : su = u}) = 1 for
every s ∈ E.

We now investigate the possibility that µ(S) > 0 for some µ ∈ LIM(S).

6.7 Theorem. Let S be a discrete semigroup. The following statements are equivalent.

(a) There exists µ ∈ LIM(S) for which µ(S) = 1.

(b) There exists µ ∈ LIM(S) for which µ(S) > 0.

(c) There exist µ ∈ LIM(S) and x ∈ S for which µ({x}) > 0.

(d) S contains a finite left ideal L which is a group and therefore has the property that
λs is injective on L for every s ∈ S.

Proof. Trivially (a) implies (b). To see that (b) implies (c), assume that µ(S) > 0.
Since µ is regular, µ(F ) > 0 for some finite subset F of S, because the compact subsets
of S are finite. So µ({x}) > 0 for some x ∈ F .

To see that (c) implies (d) assume that µ({x}) > 0 for some µ ∈ LIM(S) and some
x ∈ S. By Theorem 5.1(a), µ({sx}) ≥ µ({x}) for each s ∈ S and thus Sx is finite. Thus
Sx = c`(Sx) = βSx so Sx is a left ideal of βS and thus contains a minimal left ideal L.
By Theorem 6.3 the statements of Theorem 6.2 apply to L. In particular L is a group
and λs is injective on L for each s ∈ S.

To see that (d) implies (a), pick a finite left ideal L of S which is a group and
has the property that λs is injective on L for every s ∈ S. Since λs is injective, and
thus bijective, on L for each s ∈ S, we have that for any B ⊆ βS and any s ∈ S,
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|s−1B∩L| = |B∩L| and thus µL(s−1B) = µL(B). That is µL ∈ LIM(S). Since L ⊆ S,
µL(S) = 1.

We remark that the statements of Theorem 6.7 are strictly stronger than the state-
ments of Theorem 6.3. Trivially Theorem 6.7(c) implies Theorem 6.3(a). Consider now
the semigroup S = (N,max). We have that K(S) = βN \ N and K(S) is a right zero
semigroup, so Theorem 6.3(b) is trivially satisfied. But (N,max) has no finite left ideals,
so Theorem 6.7(d) is not satisfied.

We are naturally interested in knowing about the class of semigroups that have the
property of Theorem 6.3(b). We shall investigate in particular those for which minimal
left ideals of βS are singletons. That is the same as saying that K(βS) is a right zero
semigroup. (Since any right ideal meets any left ideal, K(βS) must be a minimal right
ideal, and then any member of K(βS), being an idempotent, must be a left identity for
K(βS).)

6.8 Definition. RZ is the class of semigroups S such that K(βS) is a right zero
semigroup.

Given any member T of RZ and any finite group G, we have that S = G× T has
the property that any minimal left ideal L of βS is a copy of G. It is not true that every
semigroup S which satisfies Theorem 6.3(b) is of the form G× T for some finite group
G and some T ∈ RZ because if S is any semigroup which satisfies Theorem 6.3(b) and
S′ is S with an identity adjoined, then also S′ satisfies Theorem 6.3(b). The following
theorem tells us however that if S satisfies Theorem 6.3(b), then K(βS) is topologically
isomorphic to K

(
β(G× T )

)
for some finite group G and some T ∈ RZ.

6.9 Theorem. Let S be a semigroup with the property that βS has a finite minimal
left ideal L which is a group. There exists T ∈ RZ such that K(βS) is topologically
isomorphic to L×K(βT ).

Proof. Let p be the identity of L and let T = {s ∈ S : sp = p}. By Lemma 6.1 if
qq = q ∈ K(βS), then T ∈ q. In particular, T 6= ∅ so T is a semigroup and βT = c`T .
Also βT ∩K(βS) 6= ∅ so by [10, Theorem 1.65], K(βT ) = βT ∩K(βS). We claim that
βT ∩K(βS) = {q ∈ K(βS) : qq = q} so that K(βT ) = {q ∈ K(βS) : qq = q}. We have
already seen that {q ∈ K(βS) : qq = q} ⊆ βT ∩K(βS). Let q ∈ βT ∩K(βS) and let r be
the identity of βSq. Then T = {s ∈ S : sr = r} by Lemma 6.1 so T ⊆ {s ∈ S : sq = q}
and thus qq = q. By Theorem 6.2(f) we have that K(βS) is topologically isomorphic to
L×K(βT ).
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One trivial class of semigroups S ∈ RZ is those which have a right zero element.
(If b ∈ S and ab = b for all a ∈ S, then xb = b for all x ∈ βS so {b} is a minimal left
ideal of βS.) We set out to show that RZ includes all left amenable bands. (Recall that
a band is a semigroup all of whose members are idempotents.)

6.10 Lemma. If S is a left amenable semigroup, then
⋂
s∈S sβS 6= ∅ and if x ∈⋂

s∈S sβS, and ss = s ∈ S, then sx = x.

Proof. By Theorem 5.1(g), K(βS) ⊆
⋂
s∈S sβS 6= ∅. If ss = s, then s is a left identity

for sβS.

We do not have an example of a semigroup satisfying the hypotheses of the following
theorem which is not already a band.

6.11 Theorem. Let S be a left amenable semigroup such that every element of S is a
product of idempotents. Then S ∈ RZ and K(βS) =

⋂
s∈S sβS.

Proof. By Lemma 6.10 we have that for each x ∈
⋂
s∈S sβS, Sx = {x} and therefore

βSx = {x}, so that {x} is a minimal left ideal. Therefore S ∈ RZ and
⋂
s∈S sβS ⊆

K(βS). By Theorem 5.1(g), K(βS) ⊆
⋂
s∈S sβS.

We thus have several common examples of members of RZ, such as (N,max),
(N, lcm) and (Pf (X),∪) where X is an arbitrary set. If S = (N,max), then K(βS) =
βN \ N. If S = (N, lcm), then K(βS) =

⋂
n∈N nN. If S = (Pf (X),∪), then K(βS) =⋂

F∈Pf (X) clβS({G ∈ Pf (X) : F ⊆ G}).
We now show that RZ is closed under arbitrary cartesian products and direct sums.

6.12 Theorem. Let A be a set and for each i ∈ A, let Si ∈ RZ.

(a) If S =×i∈A Si, then S ∈ RZ.

(b) If for each i ∈ A, Si has an identity ei and S =
⊕

i∈A Si, then S ∈ RZ.

Proof. The first part of the proofs of (a) and (b) are identical. For each F ∈ Pf (S)
and each i ∈ A, let Ti,F = {t ∈ Si : (∀s ∈ F )(πi(s) · t = t)}. Let F ∈ Pf (S) and let
i ∈ A. We claim that K(βSi) ⊆ c`Ti,F . To see this, let p ∈ K(βSi). Then βSip = {p}
so for all s ∈ Si, sp = p. Therefore, for each s ∈ F we have by [10, Theorem 3.35] that
{v ∈ Si : πi(s) · v = v} ∈ p and so Ti,F =

⋂
s∈F {v ∈ Si : πi(s) · v = v} ∈ p.

Now assume that S =×i∈A Si. For F ∈ Pf (S), let TF =×i∈A Ti,F . If F ∈ Pf (S),
s ∈ F , and v ∈ TF , then sv = v. Therefore, if p ∈ c`TF and s ∈ F , we have that
sp = p. Since {c`TF : F ∈ Pf (S)} has the finite intersection property, one may pick
p ∈

⋂
F∈Pf (S) c`TF . Then Sp = {p} and so βSp = {p}.
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Finally assume that for each i ∈ A, Si has an identity ei and S =
⊕

i∈A Si.
For F ∈ Pf (S) and G ∈ Pf (A), let TF,G = {x ∈ S : (∀i ∈ G)(πi(x) ∈ Ti,F )}.
Let F ∈ Pf (S). Then {c`TF,G : G ∈ Pf (A)} has the finite intersection property so⋂
G∈Pf (A) c`TF,G 6= ∅. Let p ∈

⋂
G∈Pf (A) c`TF,G and let s ∈ F . We claim that sp = p,

for which it suffices that {v ∈ S : sv = v} ∈ p. Let G = {i ∈ A : πi(s) 6= ei}. If G = ∅,
then s is the identity of S so sp = p, so we may assume G ∈ Pf (A). Then TF,G ∈ p and
TF,G ⊆ {v ∈ S : sv = v}.

Now {c`TF,G : F ∈ Pf (S) and G ∈ Pf (A)} has the finite intersection property.
Pick p ∈

⋂
F∈Pf (S)

⋂
G∈Pf (A) c`TF,G. Then for all s ∈ S, sp = p and so Sp = {p} and

thus βSp = {p}.

As a consequence of Theorem 6.12 we can give an example of a member of RZ

which is not a band and does not have a right zero. Let S = (N,max) and T = (ω, ·).
Then S and T are commutative and thus left amenable. Also, S is a band and T has a
right zero. Therefore S × T ∈ RZ, and S × T is not a band and does not have a right
zero.
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