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An Algebraic Proof of Deuber’s Theorem

Neil Hindman1

and

Dona Strauss

Abstract. Deuber’s Theorem says that, given any m, p, c, r in N, there exist n, q, µ in
N such that whenever an (n, q, cµ)-set is r-coloured, there is a monochrome (m, p, c)-set.
This theorem has been used in conjunction with the algebraic structure of the Stone-
Čech compactification βN of N to derive several strengthenings of itself. We present
here an algebraic proof of the main results in βN and derive Deuber’s Theorem as a
consequence.

1. Introduction.

In [4], Deuber introduced the notion of (m, p, c)-sets and used them to prove a
conjecture of Rado, namely that the property of containing solutions to any partitition
regular system of homogeneous linear equations is itself a partition regular property.
(See [9, p. 80] for a description of how this partition regularity follows.)

1.1 Definition. Let m, p, c ∈ N. A set A ⊆ N is an (m, p, c)-set if and only if there
exists ~x ∈ Nm such that A = {Σm

i=1λi · xi : {λ1, λ2, . . . , λm} ⊆ {0, 1, . . . , p} and there is
some j ∈ {1, 2, . . . ,m} such that λj = c and λi = 0 for i < j}.

Often, in the definition of (m, p, c)-set, one allows the coefficients λi to come from
{−p,−p + 1, . . . , p− 1, p} and adds the requirement that the resulting sum be positive.
It is well known that there is no substantive difference between these definitions. (See
for example [2, p. 309].)

Note also, that if c > p then any (m, p, c)-set is empty.

1.2 Theorem (Deuber). Let m, p, c, r ∈ N. There exist n, q, µ ∈ N such that whenever
A is an (n, q, cµ)-set and A =

⋃r
i=1 Bi, there exist i ∈ {1, 2, . . . , r} and an (m, p, c)-set

C such that C ⊆ Bi.

1 Thisauthor acknowledges support received from the National Science Foundation
via grant DMS 9424421.
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Proof. This is [4, Satz 3.1]. See also [13] or [14].

Deuber’s Theorem is often stated with an unspecified d where we have written cµ.
But the fact that d can be chosen to be a power of c (and, in particular, that d can be
chosen equal to 1 if c = 1) is included in Deuber’s original paper [4].

Two strong extensions of Deuber’s Theorem were obtained using the algebraic
structure of the compact right topological semigroup (βN,+). These extensions involve
the notion of finite sums from a sequence of sets.

1.3 Definition. (a) Let 〈Yt〉∞t=1 be a sequence of subsets of N. For any D ⊆ N,

FS(〈Yt〉t∈D) =
{
Σt∈F xt : F is a finite nonempty subset of D

and for each t ∈ F, xt ∈ Yt

}
.

In particular, given m,n ∈ N,

FS(〈Yt〉∞t=m) =
{
Σt∈F xt : F is a finite nonempty subset of {m,m + 1,m + 2, . . .}
and for each t ∈ F, xt ∈ Yt

}
and

FS(〈Yt〉nt=m) =
{
Σt∈F xt : F is a finite nonempty subset of {m,m + 1, . . . , n}
and for each t ∈ F, xt ∈ Yt

}
.

(b) A subset A of N is an (M,P, C)-system if and only if there is a sequence 〈Yt〉∞t=1

such that A = FS(〈Yt〉∞t=1) and for any m, p, c ∈ N there is some t ∈ N such that Yt is
an (m, p, c)-set.

(c) An (m, p, c)-matrix is a matrix A with m columns which satisfies the following
conditions:

(i) No row of A is identically 0;
(ii) The first (leftmost) nonzero entry of every row is equal to c;
(iii) All the entries of A are in {0, 1, 2, . . . , p}; and
(iv) All possible rows which satisfy these conditions occur in A.

We observe that there is a close connection between (m, p, c)-sets and (m, p, c)-
matrices. If A is an (m, p, c)-matrix and ~x ∈ Nm, then the set of entries of A~x is an
(m, p, c)-set and all (m, p, c)-sets arise in this way.

It was shown in [5] that whenever N is finitely coloured there is a monochrome
(M,P, C)-system. This result was extended in [12], where it was shown that the
(M,P, C)-systems are themselves partition regular. That is, given any finite colour-
ing of any (M,P, C)-system, there must be some monochrome (M,P, C)-system.
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The stronger of these results was based on the fact that a certain subset of (βN,+)
is a compact subsemigroup, and hence contains an idempotent. But the proof that
this subset is nonempty required the use of Deuber’s Theorem (Theorem 1.2). (And
the weaker of the results depended on a corollary of Deuber’s Theorem.) We found
this fact to be aesthetically unpleasing. (A similar situation had held for a number of
years with regard to van der Waerden’s Theorem. One was able to prove many strong
extensions of van der Waerden’s Theorem using the algebraic structure of (βN,+), but
these all depended on van der Waerden’s Theorem itself. This situation changed when
an algebraic proof of van der Waerden’s Theorem was found [1].)

In Section 2 of this paper we present an algebraic derivation of a result which
implies that the subsemigroup used in [12] is nonempty. In Section 3 we use this result
to derive Deuber’s Theorem.

As we have previously indicated, we use the semigroup (βN,+) where βN is the
Stone-Čech compactification of the set N of positive integers and + denotes the extension
of ordinary addition to βN which makes (βN,+) a right topological semigroup with N
contained in its topological centre.

We take the points of βN to be the ultrafilters on N, the principal ultrafilters being
identified with the points of N. Given A ⊆ N, A = c`A = {p ∈ βN : A ∈ p}. The
set {A : A ⊆ N} is a basis for the open sets (as well as a basis for the closed sets)
of βN. A fundamental topological property of βN which we shall need, is that every
neighbourhood U ⊆ βN of an ultrafilter p ∈ βN satisfies U ∩ N ∈ p.

When we say that (βN,+) is a right topological semigroup we mean that for each
p ∈ βN the function ρp : βN −→ βN, defined by ρp(q) = q + p, is continuous. When
we say that N is contained in the topological centre of (βN,+) we mean that for each
x ∈ N, the function λx : βN −→ βN defined by λx(q) = x + q is continuous. The
operation + on βN is characterized as follows: Given A ⊆ N, A ∈ p + q if and only if
{x ∈ N : −x + A ∈ q} ∈ p where −x + A = {y ∈ N : x + y ∈ A}. This operation could
also be defined toplogically by stating that x + y = limmα→x limnβ→y(mα + nβ), where
〈mα〉α∈D and 〈nβ〉β∈E denote nets in N converging to x, y respectively in βN. See [10]
for a detailed construction of βN and derivations of some of the basic algebraic facts,
with the caution that there (βN,+) is taken to be left rather than right topological.

When we say that p ∈ βN is idempotent, we mean that p + p = p. We shall need
to use the fact that, for every idempotent p ∈ βN and every c ∈ N, cN ∈ p. (This can
easily be verified by noting that the natural map h : N → Zc has a continuous extension
h̃ : βN → Zc which is a homomorphism and therefore satisfies h̃(p) = 0.)
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Given any compact right topological semigroup S, we denote by K(S) the smallest
two sided ideal of S. An idempotent in S is minimal if and only if it is a member of
K(S). See [3] for any unfamiliar facts about compact right topological semigroups.

Given a set X we take the members of Xm to be column vectors, and given a vector
~x we take as usual xi to be the i th entry of ~x.

Acknowledgement. The authors would like to thank Walter Deuber for some helpful
correspondence.

2. Idempotents and Image Partition Regular Matrices.

Let `,m ∈ N and let A be an `×m matrix with entries from Q. In terminology sug-
gested by Deuber, the matrix A is said to be image partition regular provided whenever
r ∈ N and N =

⋃r
i=1 Bi, there exist i ∈ {1, 2, . . . , r} and ~x ∈ Nm such that A~x ∈ B`

i .
In [11] several characterizations of image partition regular matrices were found, some
of which were given in terms of the notion of a “first entries” matrix. (As the reader
can observe, the notion of a first entries matrix is in turn based on the notion of an
(m, p, c)-set.) We modify the usual definition slightly by requiring that all “first entries”
be 1, but as can easily be seen, this is not a substantive modification.

In this section, we prove our main Theorem by using basic results about the alge-
braic structure of compact right topological semigroups. The purpose of the preliminary
lemmas is to construct a compact subsemigroup of a product of copies of βN and an
ideal within this subsemigroup. The reader who is familiar with the algebraic proof of
van der Waerden’s Theorem will recognise that our methods are inspired by this proof.

2.1 Definition. Let and let A be a matrix with entries from Q. Then A satisfies the
first entries condition if and only if no row of A is ~0 and the first (leftmost) nonzero
entry in each row is 1.

We shall restrict our attention in this section to matrices that have nonnegative
rational entries.

2.2 Definition. Let F be a finite subset of Q ∩ [0,∞) with {0, 1} ⊆ F .

(a) For each k ∈ N let P (k) = {Πk
i=1ai : {a1, a2, . . . , ak} ⊆ F}.

(b) M = {A : A is a finite dimensional matrix which satisfies the first entries
condition and has all of its entries from

⋃∞
k=1 P (k)}.

(c) Fix an enumeration ofM as 〈At〉∞t=1, and let m(t) denote the number of columns
of At.
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(d) Fix ~α ∈×∞
t=1Nm(t) such that for each t ∈ N, all the entries of At~αt are in N.

For each t ∈ N let Yt be the set of entries of At~αt.

(e) For each n ∈ N, let Sn = FS(〈Yt〉∞t=n) and let Tn = FS(〈Yt〉nt=1).

(f) For each n, k ∈ N define V (n, k) ⊆ Sn by stating that v ∈ V (n, k) if and only if
v ∈ Sn and there exist x1, x2, . . . , xk ∈ N such that
(*) xr+1 + Σk

i=r+2uixi + uk+1v ∈ Sn

for every r ∈ {0, 1, . . . , k − 1} and every choice of ui ∈ P (k), where i ∈ {r + 2,

r + 3, . . . , k + 1}.

All of the notions defined in Definition 2.2 depend on the choice of the set F and
the sets Yt ⊆ N in part (d) (and, consequently, the sets Sn and V (n, k) ) depend on the
choice of ~α, but we supress that dependence in the notation.

In the expression (*) of part (f), of course, if r = k − 1, we take
xr+1 + Σk

i=r+2uixi + uk+1v = xr+1 + uk+1v.

Observe that P (k) ⊆ P (k + 1) for every k ∈ N, because 1 ∈ F .

We first prove two simple algebraic lemmas.

2.3 Lemma. Let p ∈ βN be an idempotent and let B ∈ p. Define B∗ = {b ∈ B :
−b + B ∈ p}, then B∗ ∈ p. Furthermore, for every b ∈ B∗, −b + B∗ ∈ p.

Proof. Since B ∈ p = p + p, {b ∈ N : −b + B ∈ p} ∈ p so B∗ = B ∩ {b ∈ N : −b + B ∈
p} ∈ p.

Now let b ∈ B∗. Then −b + B ∈ p so (−b + B)∗ ∈ p, and (−b + B)∗ = −b + B∗.

In the following Lemma, we denote the semigroup operation additively, because we
shall want to apply it to a product of copies of (βN,+). However, we do not assume
that the operation is commutative.

2.4 Lemma. Let (S, +) be a compact right topological semigroup with dense topological
centre Λ. Suppose that 〈En〉∞n=1 and 〈In〉∞n=1 are decreasing sequences of non-empty
subsets of Λ, with In ⊆ En for each n ∈ N. Suppose that, for each k ∈ N and each
a ∈ Ek, there exists n ∈ N such that a+En ⊆ Ek and a+In ⊆ Ik. Suppose, in addition,
that a + En ⊆ Ik if we also have a ∈ Ik. Then

⋂∞
n=1 c`SEn is a subsemigroup of S and⋂∞

n=1 c`SIn is an ideal in this subsemigroup.

Proof. Let E =
⋂∞

n=1 c`SEn and I =
⋂∞

n=1 c`SIn. Let x, y ∈ E. Choose any k ∈ N.
We show that x + y ∈ c`SEk. First we show that Ek + y ⊆ c`SEk, so let a ∈ Ek and let
n ∈ N such that a+En ⊆ Ek. Since a+y = λa(y) ∈ a+ c`SEn = c`S(a+En) ⊆ c`SEk,
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we have that Ek + y ⊆ c`SEk as desired. Thus x + y = ρy(x) ∈ c`S(Ek + y) ⊆ c`SEk.
So x + y ∈ E and E is a subsemigroup of S.

Now let z ∈ I and let k ∈ N. A similar argument shows that Ek + z ⊆ c`SIk and
Ik+y ⊆ c`SIk. Consequently x+z ∈ c`S(Ek+z) ⊆ c`SIk and z+y ∈ c`S(Ik+y) ⊆ c`SIk

so x + z ∈ I and z + y ∈ I.

2.5 Lemma. For all n, k ∈ N, V (n, k) 6= ∅.

Proof. We can form matrices in M which contain all possible rows of the form (0
0 . . . 0 1 ur+2 ur+3 . . . uk+1 ), where r ∈ {0, 1, . . . , k − 1} and ui ∈ P (k) for each
i ∈ {r + 2, r + 3, . . . , k + 1} and there are r 0’s preceding the first non-zero entry. There
will be infinitely many matrices of this kind, because we can add on any number of
additional rows. Thus we can choose a matrix At which contains all these rows and

has t > n. If ~αt =


x1

x2
...

xk

v

, then v ∈ V (n, k), because the sums which occur in (*) are

entries of At~αt and so are in Yt ⊆ Sn.

2.6 Lemma. Let n, k ∈ N.
(a) V (n + 1, k) ⊆ V (n, k).
(b) V (n, k + 1) ⊆ V (n, k).

Proof. (a) Since Sn+1 ⊆ Sn, this is trivial.
(b) Suppose that v ∈ V (n, k + 1). Thus there exist x1, x2, . . . , xk+1 ∈ N such that

xr+1 + Σk+1
i=r+2uixi + uk+2v ∈ Sn

for every r ∈ {0, 1, . . . , k} and every ui ∈ P (k + 1), where i ∈ {r + 2, r + 3, . . . , k + 2}.
Now these relations are satisfied for each r ∈ {0, 1, . . . , k − 1} with uk+1 = 0 and with
ui chosen in P (k) if i ∈ {r + 2, r + 3, . . . , k} ∪ {k + 2}, because P (k) ⊆ P (k + 1). Hence
v ∈ V (n, k).

2.7 Lemma. Let A be a matrix with m columns which satisfies the first entries condition
and has all its entries in F . Let n, k ∈ N with k > m. For each v ∈ V (n, k), there exists
~x ∈ Nm such that, for every entry y of A~x and every a ∈ F , we have y+av ∈ V (n, k−m).

Proof. Since v ∈ V (n, k), choose z1, z2, . . . , zk ∈ N such that zr+1 + Σk
i=r+2uizi +

uk+1v ∈ Sn for every r ∈ {0, 1, . . . , k − 1} and every choice of ui ∈ P (k) for i ∈
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{r + 2, r + 3, . . . , k + 1}. Let ~x =


zk−m+1

zk−m+2

...
zk

, let y be an entry of A~x, and let a ∈ F .

Let v′ = y + av. Choose wk−m+1, wk−m+2, . . . , wk ∈ F such that y = Σk
i=k−m+1wizi.

Note that if u ∈ P (k −m) and w ∈ F , then uw ∈ P (k).
Let r ∈ {0, 1, . . . , k − m − 1} and choose ui ∈ P (k − m) for each i ∈ {r +

2, r + 3, . . . , k − m + 1}. Then zr+1 + Σk−m
i=r+2uizi + uk−m+1v

′ = zr+1 + Σk−m
i=r+2uizi +

Σk
i=k−m+1uk−m+1wizi + uk−m+1av ∈ Sn.

2.8 Lemma. Let n, k ∈ N. For every v ∈ V (n, k) there exists s ∈ N such that for all
n′ > s and all v′ ∈ V (n′, k), one has v + v′ ∈ V (n, k).

Proof. Since v ∈ V (n, k), choose x1, x2, . . . , xk ∈ N such that xr+1 + Σk
i=r+2uixi +

uk+1v ∈ Sn for every r ∈ {0, 1, . . . , k − 1} and every ui ∈ P (k), where i ∈ {r + 2, r +
3, . . . , k + 1}.

We can choose s ∈ N such that all these sums as well as v are in FS(〈Yt〉st=n),
because the number of these sums is finite.

Suppose that n′ > s and that v′ ∈ V (n′, k).
There exist x′1, x

′
2, . . . , x

′
k ∈ N such that x′r+1 + Σk

i=r+2uix
′
i + uk+1v

′ ∈ Sn′ for
every r ∈ {0, 1, . . . , k− 1} and every ui ∈ P (k), where i ∈ {r + 2, r + 3, . . . , k + 1}. Now
the sum of a number in FS(〈Yt〉st=n) and a number in Sn′ is in Sn. Thus, if we put
x′′j = xj + x′j for each j ∈ {1, 2, . . . , k}, we have x′′r+1 + Σk

i=r+2uix
′′
i + uk+1(v + v′) ∈ Sn

for every r ∈ {0, 1, 2, . . . , k − 1} and every ui ∈ P (k), where i ∈ {r + 2, r + 3, . . . k + 1}.
So v + v′ ∈ V (n′, k).

2.9 Definition. V =
⋂

n c`βNV (n, n).

2.10 Lemma. V is a compact subsemigroup of βN.

Proof. By Lemma 2.8, for each n ∈ N and each v ∈ V (n, n), there exists n′ ∈ N such
that n′ > n and v + V (n′, n) ⊆ V (n, n). This implies that v + V (n′, n′) ⊆ V (n, n),
because V (n′, n′) ⊆ V (n′, n) by Lemma 2.6(b). So the result follows from Lemma 2.4.

The following theorem is the main result of this section.

2.11 Theorem. Suppose that p is a minimal idempotent in V and that B ∈ p. Let
A ∈ M be a matrix with m columns whose entries are all in F . Then there is some
~x ∈ Nm such that all of the entries of A~x are in B.
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Proof. We proceed by induction on m. If m = 1, A is simply a matrix with a single
column all of whose entries are 1. In this case, it is trivial that the theorem is true. We
shall assume that it is true for matrices with m columns and deduce that it holds for
matrices with m + 1 columns.

So let A′ ∈M have m + 1 columns and, say, r + 1 rows, where all of the entries of
A′ are in F . We may presume that the last row of A′ is (0 0 0 . . . 0 1) and that all of
the other rows of A′ have a 1 somewhere in the first m columns. Let A be the upper
left r ×m corner of A′. Then

A′ =
(

A ~u
~0 1

)
where ~0 is a row with all 0’s and ~u ∈ F r.

As in Lemma 2.3, define B∗ = {b ∈ B : −b + B ∈ p}. Then for each n ∈ N,

⋂
s∈B∗∩Tn

(−s + B∗) ∈ p

because each −s + B∗ ∈ p (by Lemma 2.3) and Tn is finite. For n ∈ N, let

In = V (n, n)r ∩ {A~x + v~u : ~x ∈ Nm and v ∈ B∗ ∩ Sn ∩
⋂

s∈B∗∩Tn−1
(−s + B∗)}

and let

En = V (n, n)r ∩ {A~x + v~u : ~x ∈ Nm and v ∈ {0} ∪
(
B∗ ∩Sn ∩

⋂
s∈B∗∩Tn−1

(−s + B∗)
)
}

(and agree that B∗ ∩ S1 ∩
⋂

s∈B∗∩T0
(−s + B∗) = B∗ ∩ S1).

We claim that each In 6= ∅. To see this, note that V (n + m,n + m) ∈ p and so we
can choose v ∈ V (n + m,n + m)∩B∗ ∩

⋂
s∈B∗∩Tn−1

(−s + B∗). Since v ∈ V (n, n + m),
we can choose ~x ∈ Nm as guaranteed by Lemma 2.7. Then A~x + v~u ∈ In.

Let (βN)r have the product topology, let

I =
⋂∞

n=1 c`(βN)r In,

and let E =
⋂∞

n=1 c`(βN)r En .

Since, for each n, En ⊆ V (n, n)r, one can routinely verify that E ⊆ V r.
Now we claim that 〈En〉∞n=1 and 〈In〉∞n=1 satisfy the hypotheses of Lemma 2.4 with

S = (βN)r. Certainly Nr is contained in (in fact equal to) the topological centre of S and
In ⊆ En for each n. Further, since Tn−1 ⊆ Tn, Sn+1 ⊆ Sn, and V (n+1, n+1) ⊆ V (n, n)
(by Lemma 2.6) we have In+1 ⊆ In and En+1 ⊆ En.
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So let k ∈ N and let ~b ∈ Ek. We need to show that there is some n ∈ N such that
~b + En ⊆ Ek, ~b + In ⊆ Ik, and if ~b ∈ Ik, then ~b + En ⊆ Ik.

Pick ~x ∈ Nm and v ∈ {0} ∪
(
B∗ ∩Sk ∩

⋂
s∈B∗∩Tk−1

(−s + B∗)
)

with v 6= 0 if ~b ∈ Ik

such that ~b = A~x + v~u ∈ V (k, k)r. If v = 0, let ` = k. Otherwise, pick ` ∈ N such that
v ∈ FS(〈Yt〉`t=k). Choose by Lemma 2.8 (applied r times) some n > ` such that for
each i ∈ {1, 2, . . . , r} and each z ∈ V (n, k), one has bi + z ∈ V (k, k).

Let ~c ∈ En and pick ~y ∈ Nm and w ∈ {0} ∪
(
B∗ ∩ Sn ∩

⋂
s∈B∗∩Tn−1

(−s + B∗)
)
},

with w 6= 0 if ~c ∈ In, such that ~c = A~y + w~u ∈ V (n, n)r.
Then ~c ∈ V (n, k)r so ~b + ~c ∈ V (k, k)r and ~b + ~c = A(~x + ~y) + (v + w)~u. Of

course if v = w = 0 then v + w = 0 and if just one of v or w is 0 then trivially
v + w ∈ Sk ∩ B∗ ∩

⋂
s∈B∗∩Tk−1

(−s + B∗). Assume then that neither v nor w is 0.
Then v ∈ FS(〈Yt〉`t=k) and w ∈ Sn so v + w ∈ Sk. Also, v ∈ B∗ ∩ T` ⊆ B∗ ∩ Tn−1 so
v + w ∈ B∗. To see that v + w ∈

⋂
s∈B∗∩Tk−1

(−s + B∗), let s ∈ B∗ ∩ Tk−1. Then
s + v ∈ B∗. Also s ∈ Tk−1 and v ∈ FS(〈Yt〉`t=k) and so s + v ∈ T` ⊆ Tn−1. Thus
s + v + w ∈ B∗ as required.

Define p = (p p . . . p) ∈ V r. By [3, Corollary 1.2.6] K(V r) = K(V )r so p ∈ K(V r).
We claim that p ∈ E. To see this, let n ∈ N and let U be a neighbourhood of p in βNr.
For each i ∈ {1, 2, . . . , r}, pick Wi ∈ p such that

{q ∈ (βN)r : for each i ∈ {1, 2, . . . , r}, Wi ∈ qi} ⊆ U .

Let W =
⋂r

i=1 Wi. Then W ∈ p and V (n, n) ∈ p so by the induction hypothesis, there
is some ~x ∈ Nm such that all entries of A~x are in W ∩ V (n, n). Then A~x ∈ U ∩En and
so p ∈ E as claimed.

Thus E ∩K(V r) 6= ∅ so by [3, Corollary 1.2.15], K(E) = E ∩K(V r) and thus p ∈
K(E). Since I is an ideal of E by Lemma 2.4, K(E) ⊆ I and so p ∈ I. Now (c`βN B)r

is a neighbourhood of p and hence (c`βN B)r ∩ I1 6= ∅. So pick ~b ∈ (c`βN B)r ∩ I1 and

pick ~x ∈ Nm and v ∈ S1 ∩B∗ such that ~b = A~x + v~u. Let ~y =


x1

x2
...

xm

v

. Then any entry

of A′~y is either v or is an entry of A~x + v~u. In either case the entry is in B.

We conclude this section with a derivation of the key step in [12] where Deuber’s
Theorem was invoked in the process of proving the partition regularity of (M,P, C)-
systems.
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2.12 Corollary. Let M ⊆ N be a set which is closed under the formation of finite
products. Let 〈Ct〉∞1 be an enumeration of all (m, p, c)-matrices for which c ∈ M .
Suppose that Ct is an

(
m(t), p(t), c(t)

)
-matrix and that ~γt ∈ Nm(t). Let Zt denote the

set of entries of Ct~γt. Then there is an ultrafilter q ∈
⋂

n c`βNFS〈Zt〉∞t=n with the

following property: For every t ∈ N and every B ∈ q, there is some ~x ∈ Nm(t) such that
the entries of Ct~x all lie in B.

Proof. Let C ′t = 1
c(t)Ct. Let F denote the set of all finite sets F ⊆ Q∩ [0,∞) for which

{0, 1} ⊆ F . For each F ∈ F , let NF = {t ∈ N : all entries of C ′t are finite products of
elements of F} and let DF,n = {t ∈ NF : t ≥ n}.

We now show that for each F ∈ F there is an idempotent

qF ∈
⋂∞

n=1 c`FS(〈Zt〉t∈DF,n
)

such that for every t ∈ NF and every B ∈ qF there is some ~y ∈ Nm(t) such that all
entries of C ′t~y lie in B. To see this, let F ∈ F be given. Let 〈σ(t)〉∞t=1 enumerate NF in
increasing order and for each t let At = C ′σ(t). Then 〈At〉∞t=1 enumerates M where M
is as in Definition 2.2. (Recall that all of the notions defined in Definition 2.2 depend
on the choice of F .) For t ∈ N, let ~αt = c

(
σ(t)

)
γσ(t). Then for each t, At~αt = Ct~γσ(t)

so all entries of At~αt are in N.
Let 〈Yt〉∞t=1, 〈Sn〉∞n=1, and 〈〈V (n, k)〉∞n=1〉∞k=1 be as defined in Definition 2.2 in terms

of F and α and let V =
⋂∞

n=1 c`βN V (n, n). Pick by Theorem 2.11 an idempotent

qF ∈ V such that for each B ∈ qF and each t ∈ N, there is some ~x ∈ Nm(σ(t)) such that
all entries of At~x are in B.

For each n, V (n, n) ⊆ Sn = FS(〈Yt〉∞t=n) = FS(〈Zt〉t∈DF,σ(n)) so

qF ∈
⋂∞

n=1 c`FS(〈Zt〉t∈DF,n
)

as required.
Now direct F by inclusion and let q be a limit point of the net 〈qF 〉F∈F . To see

that q is as required, let t ∈ N and let B ∈ q. Let H be the set of entries of C ′t and pick
F ⊇ H such that B ∈ qF . Now qF is idempotent so Nc(t) ∈ qF . Pick ~y ∈ Nm(t) such
that all entries of C ′t~y are in B ∩ Nc(t). All rows of the form (0 0 . . . 0 1 0 . . . 0) are
in C ′t so each entry of ~y is in Nc(t). Let ~x = 1

c(t)~y. Then ~x ∈ Nm(t) and the entries of
Ct~x all lie in B.

2.13 Corollary. Let 〈Ct〉∞t=1 and 〈Zt〉∞t=1 be as described in Corollary 2.12. Whenever
FS(〈Zt〉∞t=1) is expressed as the union of of a finite number of sets D1, D2, . . . , Dr, there
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will be an i ∈ {1, 2, . . . , r} with the following property: for each t ∈ N, there is some
~x ∈ Nm(t) for which all the entries of Ct~x are in Di.

Proof. Let q be the ultrafilter described in Corollary 2.12. Since FS(〈Yt〉∞t=n) ∈ q, it
follows that Di ∈ q for some i ∈ {1, 2, . . . r}.

3. Deuber’s Theorem.

In this section, we derive Deuber’s Theorem as a consequence of Theorem 2.11.
Throughout this section, we shall assume that c is a given positive integer, and that
〈Yt〉∞t=1 is a sequence of (m, p, cα)-sets which contains an (m, p, cα)−set for every choice
of m, p, α ∈ N, if p ≥ cα.

We first use a standard compactness argument to establish a finitary version of
Corollary 2.13.

3.1 Lemma. Let 〈Zt〉∞t=1 be defined as in Corollary 2.12. Let A be an (m, p, c)-matrix
and let r ∈ N. There is some w ∈ N such that whenever FS(〈Zs〉ws=1) =

⋃r
i=1 Di, there

exist some i ∈ {1, 2, . . . , r} and some ~x ∈ Nm such that A~x has all its entries in Di.

Proof. Suppose the conclusion fails. Then for each n ∈ N we may choose some
φn : FS(〈Zs〉ns=1) −→ {1, 2, . . . , r} such that for no ~x ∈ Nm and no j ∈ {1, 2, . . . , r}
does one have all the entries of A~x in φ−1

n {j}. For each n, let Tn = FS(〈Zt〉ns=1) and
let T =

⋃
n Tn.

We define φ̃n : T 7→ {0, 1, 2, . . . , r} by stating that φ̃n = φn on Tn and that
φ̃n = {0} on T \ Tn. Let φ be a limit point of the sequence 〈φ̃n〉∞n=1 in the compact
space {0, 1, 2, . . . , r}T . By Corollary 2.13, there exists ~x ∈ Nm for which all the entries
of A~x ⊆ φ−1{j} for some j ∈ {0, 1, 2, . . . , r}. Now the entries of A~x are contained in Tn

for some n ∈ N. Since Tn is finite, φ coincides with φ̃n′ , and therefore with φn′ , on Tn

for some n′ ∈ N satisfying n′ > n, a contradiction.

For the remainder of this paper fix m, p, c ∈ N and let A be a given (m, p, c)-matrix.

3.2 Definition. (a) Let 〈At〉∞t=1 be an enumeration of all (n, q, cα)-matrices, where
n, q, α vary over N, with At being an (m(t), p(t), cα(t)) matrix.

(b) Define s(t) for t ∈ N inductively by s(1) = 0 and s(t + 1) = Σt
i=1m(i).

(c) For i ∈ N, M(i) = max{p(t) : s(t) < i}.
(d) For each i ∈ N, we define ti to be the integer for which i ∈ {s(ti) + 1, s(ti) +

2, . . . , s(ti + 1)}.
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(e) We inductively choose a sequence 〈xi〉∞i=1 in N, choosing x1 = 1 and choosing
xn+1 to satisfy xn+1 > mpM(n + 1)Σn

i=1xi.
(f) S will denote the set of all numbers in ω which can be expressed as sums of the

form Σ∞i=1aixi, where ai ∈ {0, 1, 2, . . . ,mpM(i)} for each i ∈ N.

In the following Lemma we construct a mapping with sufficient linearity to commute
with A on part of its domain.

3.3 Lemma. Given any sequence 〈ui〉∞i=1 in N, we can define a mapping φ : S 7→ [0,∞)
by stating that φ(z) = Σ∞i=1c

−α(ti)aiui if z = Σ∞i=1aixi with ai ∈ {0, 1, 2, . . . ,mpM(i)}
for each i. This mapping has the following property:

Suppose that, for each j ∈ {1, 2, . . . ,m}, zj ∈ [0,∞) satisfies zj = Σ∞k=1bj,kxk with
bj,k ∈ {0, 1, 2, . . . ,M(k)} for each j ∈ {1, 2, . . . ,m} and each k ∈ N. Let

~z =


z1

z2
...

zm

 and φ̃(~z) =


φ(z1)
φ(z2)

...
φ(zm)

 .

Then φ
(
(A~z)i

)
=

(
Aφ̃(~z)

)
i

for each i ∈ {1, 2, . . . , l}, where l denotes the number
of rows in A.
Proof. We first show that φ is well defined, by showing that the expression of an
integer in S in the form described is unique. Suppose then that Σ∞i=1aixi and Σ∞i=1a

′
ixi

are finite and equal, where ai, a
′
i ∈ {0, 1, 2, . . . ,mpM(i)}, but that the sequences 〈ai〉∞i=1

and 〈a′i〉∞i=1 are not identical. We also suppose that these sequences are chosen so that
the number of non-zero terms that they contain is as small as possible subject to these
assumptions.

Let n = max{i ∈ N : ai 6= 0} and n′ = max{i ∈ N : a′i 6= 0}. If n′ > n, we have
a′n′xn′ ≥ xn′ > mpM(n′)Σn

i=1xi. Hence a′n′xn′ > mpM(n′)Σn
i=1xi ≥ Σn

i=1aixi, because
ai ≤ mpM(n′) for each i ∈ {0, 1, 2, . . . , n}. This contradiction shows that n = n′. The
same argument then shows that an = a′n; for a′n > an implies that an′ − an ≥ 1. Thus
we can cancel anxn from the equation Σ∞i=1aixi = Σ∞i=1a

′
ixi, contradicting our choice of

the sequences 〈a′i〉∞i=1 and 〈ai〉∞i=1. So φ is well defined.
Let ai,j denote the entry in the i th row and j th column of the matrix A. We note

that ai,j ≤ p for every i ∈ {1, 2, . . . , l} and every j ∈ {1, 2, . . . ,m}. Thus Σm
j=1ai,jzj =

Σ∞k=1

(
Σm

j=1ai,jbj,k

)
xk with Σm

j=1ai,jbj,k ≤ mpM(k). So φ
(
(A~z)i

)
= φ

(
Σm

j=1ai,jzj

)
=

Σ∞k=1c
−α(tk)

(
Σm

j=1ai,jbj,k

)
uk = Σm

j=1ai,j

(
Σ∞k=1c

−α(tk)bj,kuk

)
=

(
Aφ̃(~z)

)
i
.

We are now in a position to derive Deuber’s Theorem.
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3.4 Theorem (Deuber). Let m, p, c, r ∈ N. There exist n, q, µ ∈ N such that whenever
D is an (n, q, cµ)-set and D =

⋃r
k=1 Dk, there exist k ∈ {1, 2, . . . , r} and an (m, p, c)-set

C such that C ⊆ Dk.

Proof. We put take Zt to be the set of entries in At~γt where ~γt =


xs(t)+1

xs(t)+2

...
xs(t+1)

. Note

that, since s(t + 1) = s(t) + m(t), ~γt ∈ Nm(t).

By Lemma 3.1 we can choose w ∈ N so that whenever FS(〈Zt〉wt=1) is expressed
as the union of r sets, one of these sets will contain all of the entries of A~z for some
~z ∈ Nm.

Let n = s(w + 1) (which is Σw
i=1m(i)), let µ = max

{
α(t) : t ∈ {1, 2, . . . , w}

}
, and

let q = max
{
p(t)cµ−α(t) : t ∈ {1, 2, . . . , w}

}
. We shall show that n, q, and µ are as

required.

We define a first entries matrix B with n columns as follows. For each t ∈ {1, 2, . . . ,

w}, let A′t = 1
cα(t) At. The rows of B are all rows that can be written in block form as(

θ(1) θ(2) . . . θ(w)
)

where each θ(t) is either a row of A′t or is a row of m(t) 0’s and and
at least one θ(t) is not a row of 0’s. For each i ∈ {1, 2, · · · , n}, we put vi = cα(ti)xi. Let

~v =


v1

v2
...

vn

 and observe that the set of entries of B~v is precisely the set FS(〈Zt〉wt=1).

Observe also that the rows of cµB are some of the rows of an (n, q, cµ)-matrix.
(Given a nonzero entry of B it is a/cα(t) for some entry a of some At. Since a ≤ p(t),
we have cµa/cα(t) ≤ p(t)cµ−α(t) ≤ q.)

Now let D be an (n, q, cµ)-set and assume that D =
⋃r

k=1 Dk. Since the rows of
cµB are rows of an (n, q, cµ)-matrix, choose ~u ∈ Nn such that all of the entries of cµB~u

are in D. Then for i ≤ n we have ui is the i th entry of ~u. For i > n let ui be any
member of N. Let φ denote the mapping defined in Lemma 3.3 and let bi,j denote
the entry in the i th row and j th column of B. Recall that we have defined tj so that
j ∈ {s(tj) + 1, s(tj) + 2, . . . , s(tj + 1)}. Given a row i and a column j of B, we know
that bi,j is an entry of A′tj

and so cα(tj)bi,j ≤ p(tj) and s(tj) < j so cα(tj)bi,j ∈ {0, 1,

. . . , M(j)}.
We claim that φ maps the entries of B~v into the entries of B~u. To see this,

let i be a row of B. Then the i th entry of B~v is Σn
j=1bi,jvj = Σn

j=1bi,jc
α(tj)xj and

φ(Σn
j=1bi,jc

α(tj)xj) = Σn
j=1bi,juj . So the claim is established.
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Since the set of entries of B~v is FS(〈Zt〉wt=1), we have

FS(〈Zt〉wt=1) ⊆
⋃r

k=1 φ−1[c−µDk] .

By the choice of w, pick k ∈ {1, 2, . . . , r} and ~z ∈ Nm such that the entries of A~z are
contained in φ−1[c−µDk] ∩ FS(〈Zt〉wt=1).

Now, given any entry zh of ~z, czh is an entry of A~z, and therefore an entry of
B~v, and so for some i, czh = Σn

j=1bi,jvj = Σn
j=1bi,jc

α(tj)xj , where, as we have seen,
bi,jc

α(tj) ∈ {0, 1, . . . ,M(j)}. Then c~z satisfies the hypotheses of Lemma 3.3 and so, for
each i ∈ {1, 2, . . . , l}, we have

φ
(
(Ac~z)i

)
=

(
Aφ̃(c~z)

)
i

.

To conclude the proof, we show that all entries of Acµφ̃(~z) are in Dk. So let
i ∈ {1, 2, . . . , l}. Then (A~z)i ∈ φ−1[c−µDk]. So cµφ

(
(A~z)i

)
∈ Dk. Since

cµφ
(
(A~z)i

)
= cµ−1φ

(
(Ac~z)i

)
= cµ−1φ

(
Aφ̃(c~z)

)
i

= Acµφ̃(~z)i ,

we have Acµφ̃(~z)i ∈ Dk as required.
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