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Abstract. Deuber’s Theorem says that, given any m, p, c,r in N, there exist n, ¢, 4 in
N such that whenever an (n, ¢, ¢*)-set is r-coloured, there is a monochrome (m, p, ¢)-set.
This theorem has been used in conjunction with the algebraic structure of the Stone-

Cech compactification SN of N to derive several strengthenings of itself. We present
here an algebraic proof of the main results in SN and derive Deuber’s Theorem as a
consequence.

1. Introduction.

In [4], Deuber introduced the notion of (m,p,c)-sets and used them to prove a
conjecture of Rado, namely that the property of containing solutions to any partitition
regular system of homogeneous linear equations is itself a partition regular property.

(See [9, p. 80] for a description of how this partition regularity follows.)

1.1 Definition. Let m,p,c € N. A set A C N is an (m,p, ¢)-set if and only if there
exists & € N such that A = {Z A - x; : { 1, A2, ..., A} €{0,1,...,p} and there is
some j € {1,2,...,m} such that A\; = cand \; =0 for i < j}.

Often, in the definition of (m, p, ¢)-set, one allows the coefficients \; to come from
{-p,—p+1,...,p—1,p} and adds the requirement that the resulting sum be positive.
It is well known that there is no substantive difference between these definitions. (See
for example [2, p. 309].)

Note also, that if ¢ > p then any (m, p, ¢)-set is empty.

1.2 Theorem (Deuber). Let m,p,c,r € N. There exist n,q, u € N such that whenever
A is an (n,q,c*)-set and A = J;_, B;, there exist i € {1,2,...,7} and an (m,p,c)-set
C such that C C B;.
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Proof. This is [4, Satz 3.1]. See also [13] or [14]. 0

Deuber’s Theorem is often stated with an unspecified d where we have written c.
But the fact that d can be chosen to be a power of ¢ (and, in particular, that d can be
chosen equal to 1 if ¢ = 1) is included in Deuber’s original paper [4].

Two strong extensions of Deuber’s Theorem were obtained using the algebraic
structure of the compact right topological semigroup (8N, +). These extensions involve

the notion of finite sums from a sequence of sets.

1.3 Definition. (a) Let (Y;)$2, be a sequence of subsets of N. For any D C N,

FS((Yi)tep) = {Etep x¢ : F' is a finite nonempty subset of D
and for each t € F, x; € Yt} )

In particular, given m,n € N,

FS((Y1)i2,,) = {Zter x;: F is a finite nonempty subset of {m,m +1,m+2,...}
and for each t € F, x; € Y}}
and
FS({Y)i_,,) = {Zter x¢: F is a finite nonempty subset of {m,m+1,...,n}

and for each t € F, x; € Yt} .

(b) A subset A of Nis an (M, P,C)-system if and only if there is a sequence (Y;)$2,
such that A = FS((Y;)$2,) and for any m, p,c € N there is some ¢t € N such that Y; is
an (m, p, c)-set.

(¢) An (m, p, c)-matrix is a matrix A with m columns which satisfies the following
conditions:

(i) No row of A is identically 0;

(ii) The first (leftmost) nonzero entry of every row is equal to ¢;
(iii) All the entries of A are in {0,1,2,...,p}; and
(

iv) All possible rows which satisfy these conditions occur in A.

We observe that there is a close connection between (m,p,c)-sets and (m,p, c)-
matrices. If A is an (m,p, c)-matrix and & € N™, then the set of entries of AZ is an
(m,p, c)-set and all (m, p, c)-sets arise in this way.

It was shown in [5] that whenever N is finitely coloured there is a monochrome
(M, P,C)-system. This result was extended in [12], where it was shown that the
(M, P,C)-systems are themselves partition regular. That is, given any finite colour-

ing of any (M, P, C)-system, there must be some monochrome (M, P, C)-system.
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The stronger of these results was based on the fact that a certain subset of (8N, +)
is a compact subsemigroup, and hence contains an idempotent. But the proof that
this subset is nonempty required the use of Deuber’s Theorem (Theorem 1.2). (And
the weaker of the results depended on a corollary of Deuber’s Theorem.) We found
this fact to be aesthetically unpleasing. (A similar situation had held for a number of
years with regard to van der Waerden’s Theorem. One was able to prove many strong
extensions of van der Waerden’s Theorem using the algebraic structure of (8N, +), but
these all depended on van der Waerden’s Theorem itself. This situation changed when

an algebraic proof of van der Waerden’s Theorem was found [1].)

In Section 2 of this paper we present an algebraic derivation of a result which
implies that the subsemigroup used in [12] is nonempty. In Section 3 we use this result

to derive Deuber’s Theorem.

As we have previously indicated, we use the semigroup (8N, +) where ON is the
Stone-Cech compactification of the set N of positive integers and + denotes the extension
of ordinary addition to SN which makes (ON, +) a right topological semigroup with N

contained in its topological centre.

We take the points of SN to be the ultrafilters on N, the principal ultrafilters being
identified with the points of N. Given A C N, A = ¢/A = {p € fN : A € p}. The
set {A : A C N} is a basis for the open sets (as well as a basis for the closed sets)
of SN. A fundamental topological property of SN which we shall need, is that every
neighbourhood U C (N of an ultrafilter p € BN satisfies U NN € p.

When we say that (8N, +) is a right topological semigroup we mean that for each
p € BN the function p, : BN — [N, defined by p,(¢) = ¢ + p, is continuous. When
we say that N is contained in the topological centre of (SN, +) we mean that for each
x € N, the function A\, : SN — (N defined by A,(q) = x + ¢ is continuous. The
operation + on (N is characterized as follows: Given A C N, A € p + ¢ if and only if
{reN:—x+Acq} €pwhere —o+A={yeN:z+yec A}. This operation could
also be defined toplogically by stating that x +y = lim,,,, ., lim,, ., (mq +ng), where
(Ma)aep and (ng)ser denote nets in N converging to z,y respectively in SN. See [10]
for a detailed construction of SN and derivations of some of the basic algebraic facts,
with the caution that there (SN, +) is taken to be left rather than right topological.

When we say that p € ON is idempotent, we mean that p + p = p. We shall need
to use the fact that, for every idempotent p € BN and every ¢ € N, ¢N € p. (This can
easily be verified by noting that the natural map h : N — Z. has a continuous extension

h: BN — Z. which is a homomorphism and therefore satisfies a(p) = 0.)
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Given any compact right topological semigroup S, we denote by K(.5) the smallest
two sided ideal of S. An idempotent in S is minimal if and only if it is a member of
K(S). See [3] for any unfamiliar facts about compact right topological semigroups.

Given a set X we take the members of X" to be column vectors, and given a vector

T we take as usual z; to be the i*? entry of 7.

Acknowledgement. The authors would like to thank Walter Deuber for some helpful

Correspondence.
2. Idempotents and Image Partition Regular Matrices.

Let £,m € N and let A be an £ x m matrix with entries from Q. In terminology sug-
gested by Deuber, the matrix A is said to be image partition reqular provided whenever
r € Nand N = |J;_, B;, there exist i € {1,2,...,r} and ¥ € N™ such that A% € B!.
In [11] several characterizations of image partition regular matrices were found, some
of which were given in terms of the notion of a “first entries” matrix. (As the reader
can observe, the notion of a first entries matrix is in turn based on the notion of an
(m, p, ¢)-set.) We modify the usual definition slightly by requiring that all “first entries”
be 1, but as can easily be seen, this is not a substantive modification.

In this section, we prove our main Theorem by using basic results about the alge-
braic structure of compact right topological semigroups. The purpose of the preliminary
lemmas is to construct a compact subsemigroup of a product of copies of SN and an
ideal within this subsemigroup. The reader who is familiar with the algebraic proof of

van der Waerden’s Theorem will recognise that our methods are inspired by this proof.

2.1 Definition. Let and let A be a matrix with entries from Q. Then A satisfies the
first entries condition if and only if no row of A is 0 and the first (leftmost) nonzero

entry in each row is 1.

We shall restrict our attention in this section to matrices that have nonnegative

rational entries.

2.2 Definition. Let F' be a finite subset of Q N [0, 00) with {0,1} C F.

(a) For each k € N let P(k) = {I1*_,q; : {a1,az,...,ax} C F}.

(b) M = {A : A is a finite dimensional matrix which satisfies the first entries
condition and has all of its entries from (J;—, P(k)}.

(c) Fix an enumeration of M as (A;)$2,, and let m(t) denote the number of columns
of At .



(d) Fix @ € X ;= ,N™® gsuch that for each ¢ € N, all the entries of A;@; are in N.
For each t € N let Y; be the set of entries of A;d;.

(e) For each n € N, let S,, = FS((Y)52,,) and let T, = FS((Y)7—,).

(f) For each n, k € N define V(n, k) C S,, by stating that v € V(n, k) if and only if
v € S, and there exist x1, o, ..., € N such that
(*) Trg1 + B 0w + up1v € Sy
for every r € {0,1,...,k — 1} and every choice of u; € P(k), where i € {r + 2,
r+3,....k+1}.

All of the notions defined in Definition 2.2 depend on the choice of the set F' and
the sets Y; C N in part (d) (and, consequently, the sets S, and V'(n, k) ) depend on the
choice of @, but we supress that dependence in the notation.

In the expression (*) of part (f), of course, if r = k — 1, we take
Trg1 + BP0 + Uk 10 = g1 + U0

Observe that P(k) C P(k + 1) for every k € N, because 1 € F.

We first prove two simple algebraic lemmas.

2.3 Lemma. Let p € OGN be an idempotent and let B € p. Define B* = {b € B :
—b+ B € p}, then B* € p. Furthermore, for every b € B*, —b+ B* € p.

Proof. Since Bep=p+p, {beN:—-b+Bep}epsoB*=BnN{beN:-b+Be€
p} € p.
Now let b € B*. Then —b+ B €pso (—b+ B)* €p, and (—b+ B)* = —-b+ B*.[J

In the following Lemma, we denote the semigroup operation additively, because we
shall want to apply it to a product of copies of (6N, +). However, we do not assume

that the operation is commutative.

2.4 Lemma. Let (S,+) be a compact right topological semigroup with dense topological
centre A. Suppose that (E,)02, and (I,)2, are decreasing sequences of non-empty
subsets of A, with I, C E, for each n € N. Suppose that, for each k € N and each
a € Ey, there exists n € N such that a+ FE,, C Ey and a+ I, C I.. Suppose, in addition,
that a + E,, C I if we also have a € I,. Then ﬂzozl clsE, is a subsemigroup of S and

Mo, clsl, is an ideal in this subsemigroup.

Proof. Let E = (), clsE, and I = (\._, clsl,. Let z,y € E. Choose any k € N.
We show that x +y € clgE). First we show that Ex +vy C clgFEy, so let a € Ey and let
n € N such that a+ E,, C Ei. Since a+y = A\ (y) € a+clsE, = cls(a+ E,) C clsFE,
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we have that Ey, +y C clgE), as desired. Thus z +y = py(z) € cls(Er +y) C clsEy.
Sox+y € F and FE is a subsemigroup of S.

Now let z € I and let k£ € N. A similar argument shows that E, + z C c¢lgl; and
In+y C clsly. Consequently x+z € clg(Er+2) C clgly and z+y € clg(Ix+y) C clsly
sorx+zeland z4+yel. U

2.5 Lemma. For alln,k € N, V(n, k) # (.

Proof. We can form matrices in M which contain all possible rows of the form (0
0...01 wpyo tpgs ... ugy1 ), where r € {0,1,...,k — 1} and u; € P(k) for each
ie{r+2,r+3,...,k+1} and there are r 0’s preceding the first non-zero entry. There
will be infinitely many matrices of this kind, because we can add on any number of

additional rows. Thus we can choose a matrix A; which contains all these rows and

T
Z2
hast >n. If @&, = | : |, then v € V(n, k), because the sums which occur in (*) are
T
v
entries of A;d; and so are in Y; C S,,. O

2.6 Lemma. Let n,k € N.
(a) V(n+1,k) CV(n,k).
(b)) Vin,k+1) CV(n,k).

Proof. (a) Since S,,11 C Sy, this is trivial.
(b) Suppose that v € V(n,k + 1). Thus there exist x1,x2,...,Tk+1 € N such that

k+1
Tri1 + ZiirJrzuixi + Up 42V € Sh

for every r € {0,1,...,k} and every u; € P(k+ 1), where i € {r +2,r+3,...,k + 2}.

Now these relations are satisfied for each r € {0,1,...,k — 1} with ugy; = 0 and with
u; chosen in P(k) ifi € {r+2,r+3,...,k} U{k+ 2}, because P(k) C P(k+1). Hence
v e V(n, k). O

2.7 Lemma. Let A be a matrix with m columns which satisfies the first entries condition
and has all its entries in F'. Let n,k € N with k > m. For each v € V(n, k), there exists
Z € N such that, for every entry y of AZ and every a € F, we have y+av € V(n,k—m).

Proof. Since v € V(n,k), choose z1,z29,...,2;r € N such that 2.1 + Zfzrwuizi +
ug+1v € S, for every r € {0,1,...,k — 1} and every choice of u; € P(k) for i €
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Rk—m+1

Zk—m+2
{r+2,r+3,...,k+1}. Let ¥ = m , let y be an entry of A%, and let a € F.
2k
Let v/ = y 4+ av. Choose Wk_m11, Wk—ma2,-..,wr € F such that y = Ef:k_meizi.

Note that if u € P(k —m) and w € F, then uw € P(k).
Let » € {0,1,...,k — m — 1} and choose u; € P(k — m) for each i € {r +
2,r+3,....,k—m+1}. Then z.,1 + Ef:_ﬁQuizi + Up—mr1V = Zpy1 + Ef:_ﬂﬂizi +

k
k1 Uk —m 1 WiZi + Uk —m 10V € Sp. O

2.8 Lemma. Let n,k € N. For every v € V(n, k) there exists s € N such that for all
n' > s and allv' € V(n', k), one has v +v" € V(n, k).

Proof. Since v € V(n,k), choose x1,x3,...,z;r € N such that x,41 + Zf:,,JrQuixi +
ugr1v € Sy, for every r € {0,1,...,k — 1} and every u; € P(k), where i € {r +2,r +
3,... k+1}.

We can choose s € N such that all these sums as well as v are in FS((Y:);_,,),
because the number of these sums is finite.

Suppose that n’ > s and that v € V(n', k).

There exist #,2%,...,2) € N such that o/, + X w2} + up1v' € S, for
every r € {0,1,...,k—1} and every u; € P(k), where i € {r+2,74+3,...,k+1}. Now

the sum of a number in F'S((Y;);_,,) and a number in S, is in S,. Thus, if we put

7 =x;+af for each j € {1,2,...,k}, we have z;/,; + SF w4 upp(v+0') €8,
for every r € {0,1,2,...,k — 1} and every u; € P(k), where i € {r+2,7+3,...k+1}.

Sov+v e V(n, k). O

Xz

2.9 Definition. V =, céﬁNV(n,n).
2.10 Lemma. V is a compact subsemigroup of GN.

Proof. By Lemma 2.8, for each n € N and each v € V(n,n), there exists n’ € N such
that n’ > n and v+ V(n/,n) C V(n,n). This implies that v + V(n/,n’) C V(n,n),
because V(n',n’") C V(n/,n) by Lemma 2.6(b). So the result follows from Lemma 2.4.

O

The following theorem is the main result of this section.

2.11 Theorem. Suppose that p is a minimal idempotent in V and that B € p. Let
A € M be a matriz with m columns whose entries are all in F'. Then there is some
Z € N such that all of the entries of AZ are in B.
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Proof. We proceed by induction on m. If m = 1, A is simply a matrix with a single
column all of whose entries are 1. In this case, it is trivial that the theorem is true. We
shall assume that it is true for matrices with m columns and deduce that it holds for
matrices with m + 1 columns.

So let A’ € M have m + 1 columns and, say, r + 1 rows, where all of the entries of
A’ are in F. We may presume that the last row of A" is (000 ...0 1) and that all of

the other rows of A’ have a 1 somewhere in the first m columns. Let A be the upper

, (A @
v=(5 1)

where 0 is a row with all 0’s and @ € F".
As in Lemma 2.3, define B* = {b € B: —b+ B € p}. Then for each n € N,

left » x m corner of A’. Then

Nsepenr, (—s+B*)€p
because each —s + B* € p (by Lemma 2.3) and T, is finite. For n € N, let
I, =V(n,n)" N{AZ +vi: 7€ N" and v € B* NS, N(\,cpenp,_, (—5+ B*)}
and let
E, =V(n,n)" N{AZ+vi: ZeN" and v € {0} U (B* NS, NNyepenr,_, (—s+B*))}

(and agree that B* N S1 N(\,cpeqy, (—s+ B*)=B*NS5).

We claim that each I,, # (). To see this, note that V(n + m,n +m) € p and so we
can choose v € V(n+m,n+m) N B* N(\,cgeqr,_, (=54 B¥). Since v € V(n,n +m),
we can choose Z € N™ as guaranteed by Lemma 2.7. Then AZ + vi € I,,.

Let (BN)" have the product topology, let

1= mnzl Og(ﬁN)r Ina

and let £ =(_, Og(ﬁN)r E, .

Since, for each n, E,, C V(n,n)", one can routinely verify that £ C V".

Now we claim that (F,,)°° ; and (I,,)5° ; satisfy the hypotheses of Lemma 2.4 with
S = (BN)". Certainly N" is contained in (in fact equal to) the topological centre of S and
I,, C E, for each n. Further, since T,y C T},, Sp4+1 € Sy, and V(n+1,n+1) C V(n,n)
(by Lemma 2.6) we have 1,11 C I, and E,,+1 C E,.
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So let k € N and let b € FE;.. We need to show that there is some n € N such that
b+ E, CEy, b+ 1, C I, and if b € I, then b+ E,, C I.

Pick # € N™ and v € {0} U (B*N Sk NNyepenr,_, (—s+B*)) with v £ 0if b € I
such that b = AZ +vid € V(k,k)". If v =0, let £ = k. Otherwise, pick ¢ € N such that
v € FS((Y;)!_,). Choose by Lemma 2.8 (applied r times) some n > ¢ such that for
each i € {1,2,...,7r} and each z € V(n, k), one has b; + z € V(k, k).

Let ¢ € E, and pick ¥ € N™ and w € {0} U (B*N S, NNycp-nr,_, (—s+ B*))},
with w # 0 if ¢ € I,,, such that ¢ = Ay + wu € V(n,n)".

Then @ € V(n, k)" so b+ ¢ € V(kk)" and b+ = AT+ ) + (v + w)d@. Of
course if v = w = 0 then v + w = 0 and if just one of v or w is 0 then trivially
v+w € SN B*N(yepenp,_, (—8+ B). Assume then that neither v nor w is 0.
Then v € FS((Y;)t_,) and w € S,, so v +w € S. Also, v € B*NT, C B*NT,_1 so
v+w € B*. Tosee that v +w € (\,cpeny,_, (—5+ B”), let s € B*NTk_1. Then
s+wv € B*. Also s € Tp,_1 and v € FS((Y}>f:k) and so s +v € Ty C T,,_;. Thus
s+ v+ w € B* as required.

Definep= (pp ... p) € V". By [3, Corollary 1.2.6] K(V") = K(V)"sop € K(V").
We claim that p € E. To see this, let n € N and let U be a neighbourhood of p in SN".
For each i € {1,2,...,r}, pick W; € p such that

{ge (BN)": foreachi e {1,2,...,r}, W, € ¢} CU.

Let W =(\;_, W;. Then W € p and V(n,n) € p so by the induction hypothesis, there
is some & € N such that all entries of AZ are in W NV (n,n). Then AZ € UN E,, and
so p € E as claimed.

Thus ENK(V") # () so by [3, Corollary 1.2.15], K(F) = ENK(V") and thus p €
K(F). Since I is an ideal of E' by Lemma 2.4, K(E) C I and so p € I. Now (cﬁﬁN B)"
is a neighbourhood of p and hence (cﬁﬁN B)" N1y # 0. So pick b € (CEﬂN B)"NI; and

T
)
pick ¥ € N™ and v € S; N B* such that b= AZ +vi. Let Y= - |. Then any entry
Tm
v
of A’y is either v or is an entry of AZ + vd. In either case the entry is in B. O

We conclude this section with a derivation of the key step in [12] where Deuber’s
Theorem was invoked in the process of proving the partition regularity of (M, P,C)-

systems.



2.12 Corollary. Let M C N be a set which is closed under the formation of finite
products. Let (Cy)3° be an enumeration of all (m,p,c)-matrices for which ¢ € M.
Suppose that Cy is an (m(t),p(t), c(t))-matriz and that 7, € N Let Z, denote the
set of entries of Cy¥s. Then there is an ultrafilter ¢ € (), cﬁﬁNFS(Ztﬁin with the

following property: For everyt € N and every B € q, there is some T € N such that

the entries of Ci@ all lie in B.

Proof. Let C] = %C’t. Let F denote the set of all finite sets F' C QN [0, 00) for which
{0,1} C F. For each F' € F, let Np = {t € N : all entries of C] are finite products of
elements of F'} and let Dp,, = {t € Np : t > n}.

We now show that for each F' € F there is an idempotent

qr € oy lFS((Zi)teny,)

such that for every t € Np and every B € gp there is some 3 € N"™® guch that all
entries of C¢ lie in B. To see this, let F' € F be given. Let (o(t)){2; enumerate N in
increasing order and for each ¢ let A, = C7 ;). Then (A;)72; enumerates M where M
is as in Definition 2.2. (Recall that all of the notions defined in Definition 2.2 depend
on the choice of F.) For t € N, let a; = c(cr(t))’ya(t). Then for each ¢, Aidy = CiYp ()
so all entries of A;d; are in N.

Let (Y3)721, (Sn)o2q, and ((V(n, k))o2,)52, be as defined in Definition 2.2 in terms

n=1
of F and a and let V = (), cl gy V(n,n). Pick by Theorem 2.11 an idempotent
qr € V such that for each B € g and each t € N, there is some Z € N"(“®) guch that
all entries of A;¥ are in B.

For each n, V(n,n) C S, = FS((Y4)i2,)) = FS((Zt)teDy () SO

qr € ey lFS((Z¢)teDy.,)

as required.

Now direct F by inclusion and let ¢ be a limit point of the net (gr)pecx. To see
that ¢ is as required, let t € N and let B € q. Let H be the set of entries of C] and pick
F D H such that B € qp. Now gp is idempotent so Ne(t) € qp. Pick ¢ € N™®) guch
that all entries of C}y are in B N Ne(¢). All rows of the form (00 ... 010 ... 0) are
in C] so each entry of ¢ is in N¢(t). Let & = ﬁgj Then # € N™® and the entries of
C,% all lie in B. O

2.13 Corollary. Let (Cy)52, and (Z;)72, be as described in Corollary 2.12. Whenever
FS((Z)$2,) is expressed as the union of of a finite number of sets Dy, Ds, ..., D, there
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will be an i € {1,2,...,r} with the following property: for each t € N, there is some
z e N™®) for which all the entries of CiT are in D;.

Proof. Let g be the ultrafilter described in Corollary 2.12. Since F'S((Y:)2,,) € ¢, it
follows that D; € ¢ for some i € {1,2,...r}. O

3. Deuber’s Theorem.

In this section, we derive Deuber’s Theorem as a consequence of Theorem 2.11.
Throughout this section, we shall assume that ¢ is a given positive integer, and that
(Y;)$2, is a sequence of (m, p, c*)-sets which contains an (m, p, c®)—set for every choice

of m,p,a € N, if p > .

We first use a standard compactness argument to establish a finitary version of
Corollary 2.13.

3.1 Lemma. Let (Z;)$2, be defined as in Corollary 2.12. Let A be an (m,p, c)-matriz
and let r € N. There is some w € N such that whenever FS((Zs)*_) = U;_, Di, there

exist some i € {1,2,...,r} and some & € N such that AZ has all its entries in D,.

Proof. Suppose the conclusion fails. Then for each n € N we may choose some

¢On : FS((Zs)7—1) — {1,2,...,r} such that for no ¥ € N™ and no j € {1,2,...,r}
does one have all the entries of A% in ¢, {j}. For each n, let T,, = FS({Z;)"_,) and
let T'=J, Th.

We define ¢, : T — {0,1,2,...,7} by stating that bn = &, on T, and that
¢n = {0} on T\ T,,. Let ¢ be a limit point of the sequence (¢,)°, in the compact
space {0,1,2,...,7}T. By Corollary 2.13, there exists ¥ € N™ for which all the entries
of A% C ¢=1{j} for some j € {0,1,2,...,7}. Now the entries of AT are contained in T,
for some n € N. Since T;, is finite, ¢ coincides with &n/, and therefore with ¢,/, on T,,

for some n’ € N satisfying n’ > n, a contradiction. O
For the remainder of this paper fix m, p, ¢ € N and let A be a given (m, p, ¢c)-matrix.

3.2 Definition. (a) Let (A;)?2; be an enumeration of all (n,q,c*)-matrices, where
n,q,a vary over N, with A; being an (m(t), p(t), c*®)) matrix.

(b) Define s(t) for ¢ € N inductively by s(1) =0 and s(t + 1) = Xf_;m(i).

(c) For i € N, M(7) = max{p(t) : s(t) < i}.

(d) For each i € N, we define ¢; to be the integer for which i € {s(¢;) + 1, s(¢;) +
2,...,8(ti+ 1)}

11



(e) We inductively choose a sequence (x;)$2; in N, choosing 1 = 1 and choosing
Tn41 to satisfy x,41 > mpM(n+ 1)37 ;.

(f) S will denote the set of all numbers in w which can be expressed as sums of the
form 32°,a,x;, where a; € {0,1,2,...,mpM{(i)} for each i € N.

In the following Lemma we construct a mapping with sufficient linearity to commute

with A on part of its domain.

3.3 Lemma. Given any sequence (u;)$2, in N, we can define a mapping ¢ : S — [0, 00)
by stating that ¢(z) = 2 =@ au; if 2 = £2 azx; with a; € {0,1,2,...,mpM (i)}
for each 1. This mapping has the following property:

Suppose that, for each j € {1,2,...,m}, z; € [0,00) satisfies z; = X, b; kTr with
bik €{0,1,2,...,M(k)} for each j € {1,2,...,m} and each k € N. Let

NG
Z= 2.2 and ¢(%) = 222
Zm (2m)

Then ¢((AZ);) = (A(;S(Z))Z for each i € {1,2,...,1}, where [ denotes the number

of rows in A.
Proof. We first show that ¢ is well defined, by showing that the expression of an
integer in S in the form described is unique. Suppose then that X5°,a;x; and 32, alx;
are finite and equal, where a;,a; € {0,1,2,...,mpM (i)}, but that the sequences (a;)$,
and (a;):2, are not identical. We also suppose that these sequences are chosen so that
the number of non-zero terms that they contain is as small as possible subject to these
assumptions.

Let n = max{i € N: a; # 0} and n’ = max{i € N: a} # 0}. If n’ > n, we have
ar Tp > T > mpM ()X x;. Hence al,x, > mpM(n')X?  x; > X" ja;z;, because
a; < mpM(n') for each i € {0,1,2,...,n}. This contradiction shows that n = n/. The
same argument then shows that a,, = a; for a, > a,, implies that a,, — a,, > 1. Thus
we can cancel a,z,, from the equation 32, a;z; = X9°,alx;, contradicting our choice of
the sequences (a;)$2; and (a;)$2,. So ¢ is well defined.

Let a; ; denote the entry in the ™ row and '™ column of the matrix A. We note
that a; ; < p for every i € {1,2,...,l} and every j € {1,2,...,m}. Thus ¥7*q; jz; =
S0 (B0 aijbjk) wk with X7 a; 505 < mpM (k). So ¢((A2):) = ¢(27 ai;2) =
550 1) (ST a; by ) = ST a5 (552 ¢ b ) = (A(2)).. O

We are now in a position to derive Deuber’s Theorem.
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3.4 Theorem (Deuber). Let m,p,c,r € N. There exist n,q, u € N such that whenever
D is an (n,q,c*)-set and D = \J,._, Dy, there exist k € {1,2,...,r} and an (m,p,c)-set
C such that C C Dy,.

Ts(t)+1

Ls(t)+2
Proof. We put take Z; to be the set of entries in A;7; where 5; = ’ ) . Note

Ts(t+1)
that, since s(t 4+ 1) = s(t) + m(t), 7, € N™®),

By Lemma 3.1 we can choose w € N so that whenever F'S({Z;)}”,) is expressed
as the union of r sets, one of these sets will contain all of the entries of AZ for some
ZeN™,

Let n = s(w + 1) (which is % m(i)), let p = max{a(t) : t € {1,2,...,w}}, and
let ¢ = max{p(t)c“_a(t) it e {1,2,...,w}}. We shall show that n, ¢, and u are as
required.

We define a first entries matrix B with n columns as follows. For each t € {1,2,...,
w}, let A} = ﬁAt. The rows of B are all rows that can be written in block form as
(6(1) 6(2) ... O(w)) where each 6(t) is either a row of Aj or is a row of m(t) 0’s and and

at least one 6(t) is not a row of 0’s. For each i € {1,2,---,n}, we put v; = ¢**)a;. Let
U1
V2

U= and observe that the set of entries of B is precisely the set F'S({(Z;)}" ;).

Un
Observe also that the rows of ¢#B are some of the rows of an (n,q, c*)-matrix.

(Given a nonzero entry of B it is a/c*® for some entry a of some A;. Since a < p(t),
we have cta/c®®) < p(t)ch=1) < q.)

Now let D be an (n,q,c")-set and assume that D = (J;_; Di. Since the rows of
c"B are rows of an (n, g, c*)-matrix, choose & € N" such that all of the entries of c* B
are in D. Then for ¢ < n we have wu; is the ith entry of u. For i > n let u; be any
member of N. Let ¢ denote the mapping defined in Lemma 3.3 and let b; ; denote
the entry in the ¢ row and j™ column of B. Recall that we have defined t; so that
Jj € {s(t;)+1,s(t;) +2,...,s(t; + 1)}. Given a row i and a column j of B, we know
that b; ; is an entry of A} and so )b, o < p(t;) and s(t;) < j so )b, ; € {0,1,

M)}

We claim that ¢ maps the entries of Bt into the entries of Bu. To see this,

let i be a row of B. Then the i*" entry of B7 is YT 1biv; = E?Zlbivjc"‘(tj)xj and

qf)(E?:lbi,jco‘(tj)xj) = X"_1b; juj. So the claim is established.
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Since the set of entries of B¥'is F'S((Z;)}*,), we have
FS({Ze)iZ1) € Uper 07 e Di] -

By the choice of w, pick k € {1,2,...,r} and Z € N™ such that the entries of AZ are
contained in ¢~ [cTFDg] N FS({(Z)E ).

Now, given any entry z; of Z, czp is an entry of AZ, and therefore an entry of
Bv, and so for some i, czp, = XJ_b; ju; = E?Zlbi’jco‘(tj)xj, where, as we have seen,
bi,jca(tﬂ') € {0,1,...,M(j)}. Then cZ satisfies the hypotheses of Lemma 3.3 and so, for
each i € {1,2,...,1}, we have

5((4c2)) = (49(c),

To conclude the proof, we show that all entries of Ac#¢(Z) are in Dy. So let
i€{1,2,...,1}. Then (A2); € ¢~ *[c#Dy]. So c¢*¢((AZ);) € Dy. Since

B((AZ2)) = o L((AcD),)
= o19(Ad(c)),
= Ac“gb(i’)i,

we have Ac“d;(é')i € Dy, as required. O
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