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Abstract. A digital representation of a semigroup (S, ·) is a family 〈Ft〉t∈I , where I
is a linearly ordered set, each Ft is a finite non-empty subset of S and every element of
S is uniquely representable in the form Πt∈H xt where H is a finite subset of I, each
xt ∈ Ft and products are taken in increasing order of indices. (If S has an identity 1,
then Πt∈∅ xt = 1.) A strong digital representation of a group G is a digital represen-

tation of G with the additional property that for each t ∈ I, Ft = {xt, x2
t , . . . , xmt−1

t }
for some xt ∈ G and some mt > 1 in N where mt = 2 if the order of xt is infinite,
while, if the order of xt is finite, then mt is a prime and the order of xt is a power of
mt. We show that any free semigroup has a digital representation with each |Ft| = 1
and that each abelian group has a strong digital representation. We investigate the
problem of whether all groups, or even all finite groups have strong digital represen-
tations, obtaining several partial results. Finally, we give applications to the algebra
of the Stone-Čech compactification of a discrete group and the weakly almost periodic
compactification of a discrete semigroup.

1. Introduction

There are many examples where one utilizes the ability to represent each element of an
abelian group or semigroup (S,+) in a unique fashion as

∑
t∈A atxt for at ∈ Dt where

〈xt〉t∈A is a given indexed set and Dt is a finite subset of Z. The use of various fixed
bases for the expansion of members of N as well as more esoteric variable bases are too
numerous to cite here. Not so well known is the fact that with xt = (−2)t, Dt = {0, 1},
and A = ω = N∪{0}, every element of Z has a unique expansion of the form

∑
t∈A atxt

with each at ∈ Dt. This fact was used by B. Bordbar and J. Pym in [1] to show that there
are 2c idempotents in the weakly almost periodic compactification of Z and that the
set of such idempotents is not closed. (A similar construction, wherein the coefficients
rather than the base elements were allowed to be negative, was used also by W. A. F.
Ruppert in [14] to produce weakly almost periodic functions.) In collaboration with
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I. Leader, we used a similar expansion to the base −k in [7] to establish that certain
natural infinite matrices are not image partition regular. A weak version of digital
representation, the notion of oid , was introduced by J. Pym in [13] and is sufficient to
derive much of the algebraic structure of the Stone-Čech compactification of N.

Considerably more surprising was the fact that members of Q can be expressed

uniquely in the form
∑

t∈A atxt for at ∈ Dt where A = Z, xt =
(−1)t

(1− t)!
and Dt = {0, 1,

. . . ,−t} if t < 0, and xt = (−1)t(1 + t)! and Dt = {0, 1, . . . , t + 1} if t ≥ 0. T. Budak,
N. Işik, and J. Pym established this fact in [2]. They used it to show that βQd, the
Stone-Čech compactification of Q with the discrete topology, has 2c minimal left ideals
and 2c minimal right ideals, and each maximal group in its smallest ideal contains a
free group on 2c generators.

In [10] we investigated which semigroups have the property that there is some in-
dexed family 〈xt〉t∈A such that every element of the semigroup is uniquely representable
in the form

∑
t∈F xt. In the terms of the current paper, in which we are writing arbi-

trary semigroups multiplicatively, we were investigating which semigroups have digital
representations 〈Ft〉t∈I with each |Ft| = 1.

In this paper we investigate more generally which semigroups have digital repre-
sentations with specified properties. In Section 2 we show that any free semigroup has
a digitial representation 〈Ft〉t∈I with each |Ft| = 1.

In Section 3 we turn our attention to groups. We show that any abelian group
has a strong digital representation. We also show that if G is a group, H is a torsion
group which is a normal subgroup of G and both H and G/H have strong digital
representations, then so does G. As a consequence, if we knew that each finite simple
group has a strong digital representation, we would know that the same statement
would hold for any finite group. We succeed only in showing that the two classes of
nonabelian finite simple groups which have the smallest members do all have strong
digital representations.

In Section 4 we provide applications of our results to the algebra of the Stone-
Čech compactification and the weakly almost periodic compactification of a discrete
semigroup. Specifically we show that if a discrete semigroup T can be mapped homo-
morphically onto an infinite commutative cancellative semigroup of cardinality κ which
has a digital representation, then the maximal groups in the smallest ideal of βT contain
copies of the free group on 22κ

generators. We also show that, if T is an infinite discrete
commutative group of cardinality κ, then the weakly almost periodic compactification
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of T contains copies of the free abelian group on 22κ

generators.

We conclude the introduction with a general result applying to both semigroups and
groups. Recall that the notions of digital representation and strong digital representation
were defined in the abstract.

1.1 Lemma. Let J be a set and for each j ∈ J , let Sj be a semigroup with identity 1
which has a digital representation. Then S =

⊕
j∈J Sj has a digital representation. If

each Sj is a group which has a strong digital representation, then S has a strong digital
representation.

Proof. For each j ∈ J choose a digital representation 〈Fj,t〉t∈Ij
of Sj , and choose a

linear ordering of J . Let I = {(k, t) : k ∈ J and t ∈ Ik} and order I by agreeing
that (k, t) < (j, s) if either k = j and t < s or k < j. For each k ∈ J , let θk :
Sk → S denote the natural injection. It is routine to verify that 〈θk[Fk,t]〉(k,t)∈I is a
digital representation of S and, if each Sj is a group and 〈Fj,t〉t∈Ij

is a strong digital
representation of Sj , then 〈θk[Fk,t]〉(k,t)∈I is a strong digital representation of S.

2. Free semigroups

We show that all free semigroups have digital representations 〈Ft〉t∈I with each |Ft| = 1.
We show also that if κ is the cardinality of the semigroup, then I can be chosen equal
to κ with its ordering as an ordinal. (We are using the standard interpretation that
κ is the first ordinal of its size. In particular the statements σ < κ and σ ∈ κ are
synonymous.)

Given a set X we write Pf (X) for the set of finite nonempty subsets of X. Given
〈xt〉t∈I where I is a linearly ordered set, we let

FP (〈xt〉t∈I) = {
∏

t∈F xt : F ∈ Pf (I)}

where the products are taken in increasing order of indices.

Notice that if S is the free semigroup (without identity) on an alphabet B and
〈Ft〉t∈I is a digital representation of S, then 〈Ft〉t∈I is also a digital representation of
the free semigroup with identity on B. For w ∈ S we write `(w) for the length of the
word w.

2.1 Lemma. Let λ > 0 be a cardinal and let B be an alphabet with |B| = λ. Let S be the
free semigroup on the alphabet B and let κ = |S|. For w ∈ S, let A(w) = {m ∈ S : m
occurs in w}. There is a well ordering < of S in order type κ so that if w, v ∈ S,
A(w) ⊆ A(v), and `(w) < `(v), then w < v.
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Proof. Notice that κ = max{λ, ω}. Well order B as 〈aι〉ι<λ. For each s ∈ S, we define
f(s) < λ by f(s) = max({ι < λ : aι occurs in s}). We put g(s) = max{`(s), f(s)}. For
each ι < κ, we put Jι = g−1[{ι}].

We make the following observations. The family {Jι : ι < κ} partitions S into
disjoint subsets, Jι is finite if ι is finite, and |Jι| = |ι| if ι is infinite.

We well order each Jι in such a way that, for every s, t ∈ Jι, if `(s) < `(t), then
s < t. We then order S lexicographically by stating that s < t if g(s) < g(t) or if
g(s) = g(t) and s < t in Jg(s). This defines a well ordering of S of order type κ because,
for every µ < κ, |

⋃
ι<µ Jι| < κ.

Now assume that w, v ∈ S, A(w) ⊆ A(v), and `(w) < `(v). Since A(w) ⊆ A(v) we
must have f(w) ≤ f(v). Therefore g(w) ≤ g(v). If g(w) = g(v), then w < v in Jg(w)

and consequently w < v.

2.2 Theorem. Let B be an alphabet, let S be the free semigroup on the alphabet B,
and let κ = |S|. Then S has a digital representation 〈Fσ〉σ<κ with each |Fσ| = 1.

Proof. For w ∈ S let A(w) = {m ∈ S : m occurs in w}. By Lemma 2.1 well order S in
order type κ so that if w, v ∈ S, A(w) ⊆ A(v), and `(w) < `(v), then w < v.

Let x0 = minS. Let σ < κ and assume we have chosen xτ for τ < σ. Then
|FP (〈xτ 〉τ<σ)| < κ so S \ FP (〈xτ 〉τ<σ) 6= ∅. Let xσ = min

(
S \ FP (〈xτ 〉τ<σ)

)
.

Since the ordering of S is in order type κ we have that S = FP (〈xσ〉σ<κ). Note
also that

(∗) if w ∈ S , σ < κ , A(w) ⊆ A(xσ), and `(w) < `(xσ), then w ∈ FP (〈xτ 〉τ<σ) .

Suppose we have F 6= G in Pf (κ) such that
∏

σ∈F xσ =
∏

σ∈F xσ. By right
cancellation we may assume that τ = maxF 6= maxG = δ. Further, if we had `(xτ ) =
`(xδ) we would have xτ = xδ, so we may assume that `(xτ ) > `(xδ). And then, since
A(xδ) ⊆ A(xτ ) we have by (∗) that xδ ∈ FP (〈xη〉η<τ ) and so δ < τ .

For σ ∈ G, letHσ = {µ ∈ G : σ ≤ µ}. Let η = min{σ ∈ G : `(
∏

µ∈Hσ
xµ) ≤ `(xτ )}.

We cannot have `(
∏

µ∈Hη
xµ) = `(xτ ) for then we would have xτ =

∏
µ∈Hη

xµ ∈
FP (〈xµ〉µ≤δ) ⊆ FP (〈xµ〉µ<τ ). So `(

∏
µ∈Hη

xµ) < `(xτ ). So there exist letters m1,m2,

. . . ,ms such that xk = m1 ·m2 · · ·ms

∏
µ∈Hη

xµ. Let γ = max(G \Hη). Then γ < η so

`(xγ) + `(
∏

µ∈Hη
xµ) = `(

∏
µ∈Hγ

xµ)

> `(xτ )

= s+ `(
∏

µ∈Hη
xµ)
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so s < `(xγ) and by (∗) m1 ·m2 · · ·ms ∈ FP (〈xµ〉µ<γ) ⊆ FP (〈xµ〉µ<η) so
xτ ∈ FP (〈xµ〉µ≤δ) ⊆ FP (〈xµ〉µ<τ ), a contradiction.

The induction being complete, let Fσ = {xσ} for each σ < κ.

3. Groups

Now we turn our attention to groups. In this section we will write “(〈xt〉t∈I , 〈mt〉t∈I)
is a digital representation of S” to represent the statement that 〈Ft〉t∈I is a digital
representation of S and for each t ∈ I, Ft = {xt, x

2
t , . . . , x

mt−1
t }. Then the assertion

“(〈xt〉t∈I , 〈mt〉t∈I) is a strong digital representation of S” adds the requirement that
mt = 2 when xt has infinite order and if the order of xt is finite then that order is the
power of a prime p and mt = p.

3.1 Lemma. Let H and K be subgroups of a group G such that H ∩ K = {1} and
HK is a group. Assume that (〈xt〉t∈I , 〈mt〉t∈I) is a digital representation of H and
(〈yt〉t∈J , 〈nt〉t∈J) is a digital representation of K. Let L = (I × {1}) ∪ (J × {2}) and
order L by agreeing that I × {1} precedes J × {2} (and of course internal order is
preserved). For t ∈ I, let z(t,1) = xt and r(t,1) = mt, and for t ∈ J , let z(t,2) = yt

and r(t,2) = nt. Then (〈z(t,i)〉(t,i)∈L, 〈r(t,i)〉(t,i)∈L) is a digital representation of HK. In
particular, if H and K have strong digital representations, so does HK.

Proof. Trivially each element of HK is representable in the form(∏
t∈F (xt)α(t)

) (∏
t∈P (yt)δ(t)

)
for some finite (possibly empty) subsets F of I and P of J and some choice of α(t) ∈
{1, 2, . . . ,mt − 1} for t ∈ F and some choice of δ(t) ∈ {1, 2, . . . , nt − 1} for t ∈
P . Suppose that we have finite subsets F and F ′ of I and P and P ′ of J and
choices of α(t) for t ∈ F , α′(t) for t ∈ F ′, δ(t) for t ∈ P , and δ′(t) for t ∈ P ′

such that
(∏

t∈F (xt)α(t)
) (∏

t∈P (yt)δ(t)
)

=
(∏

t∈F ′ (xt)α′(t)
)(∏

t∈P ′ (yt)δ′(t)
)
. Then(∏

t∈F ′ (xt)α′(t)
)−1(∏

t∈F (xt)α(t)
)

=
(∏

t∈P ′ (yt)δ′(t)
)(∏

t∈P (yt)δ(t)
)−1 ∈ H ∩K = {1}

so (F, α) = (F ′, α′) and (P, δ) = (P ′, δ′).

3.2 Lemma. Let H be a normal subgroup of a group G. Assume that G/H has a
digital representation (〈xtH〉t∈I , 〈mt〉t∈I), (〈yt〉t∈J , 〈nt〉t∈J) is a digital representation
of H, and I∩J = ∅. Let L = I∪J and order L by agreeing that I preceeds J . For t ∈ I,
let zt = xt and rt = mt, and for t ∈ J , let zt = yt and rt = nt. Then (〈zt〉t∈L, 〈rt〉t∈L)
is a digital representation of G.
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Proof. We first show that each w ∈ G is representable in the form(∏
t∈F (xt)α(t)

) (∏
t∈P (yt)δ(t)

)
for some finite (possibly empty) subsets F of I and P of J and some choice of α(t) ∈ {1, 2,
. . . ,mt − 1} for t ∈ F and some choice of δ(t) ∈ {1, 2, . . . , nt − 1} for t ∈ P . If w ∈ H,
this is trivial, so assume that w ∈ G \H. Pick finite F ⊆ I and a choice of α(t) ∈ {1, 2,
. . . ,mt − 1} for t ∈ F such that wH =

∏
t∈F (xtH)α(t). Then w ∈

(∏
t∈F (xt)α(t)

)
H

so pick z ∈ H such that w =
(∏

t∈F (xt)α(t)
)
z. Pick finite P ⊆ J and a choice of

δ(t) ∈ {1, 2, . . . , nt − 1} for t ∈ P such that z =
∏

t∈P (yt)δ(t).

Now suppose that we have finite subsets F and F ′ of I and P and P ′ of J and
choices of α(t) for t ∈ F , α′(t) for t ∈ F ′ δ(t) for t ∈ P , and δ′(t) for t ∈ P ′

such that
(∏

t∈F (xt)α(t)
) (∏

t∈P (yt)δ(t)
)

=
(∏

t∈F ′ (xt)α′(t)
) (∏

t∈P ′ (yt)δ′(t)
)
. Then(∏

t∈F ′ (xt)α′(t)
)−1 (∏

t∈F (xt)α(t)
)

=
(∏

t∈P ′ (yt)δ′(t)
) (∏

t∈P (yt)δ(t)
)−1 ∈ H so(∏

t∈F ′ (xt)α′(t)
)
H =

(∏
t∈F (xt)α(t)

)
H so

∏
t∈F ′ (xtH)α′(t) =

∏
t∈F (xtH)α(t). So

(F, α) = (F ′, α′) and therefore
∏

t∈P (yt)δ(t) =
∏

t∈P ′ (yt)δ′(t) and thus (P, δ) = (P ′, δ′).

Recall that a torsion group is one in which each element has finite order and a
torsion free group is one in which no element has finite order. In what follows, given a
group G and an element g ∈ G, we shall denote by o(g) the order of g.

3.3 Lemma. Let G be a group and let H be a torsion group which is a normal subgroup
of G. Let p be a prime, let k ∈ N, and assume that y ∈ G is such that o(yH) = pk.
Then there exist x ∈ G and n ∈ N such that xH = yH and o(x) = pn.

Proof. Since ypk ∈ H, y has finite order. Let m = o(y). If m = pk, we are done, so
assume m > pk. Now ym = 1 ∈ H so (yH)m = H so pk divides m. Pick t ≥ k and
q relatively prime to p such that m = qpt. Pick by the Chinese Remainder Theorem
some z ∈ N such that z ≡ 0 (mod q) and z ≡ 1 (mod pk). Pick r, s ∈ ω such that
z = rq = spk + 1. Let x = yz. Then xH = yspk+1H = (yH)pksyH = yH. Also
xpt

= yrqpt

= (ym)r = 1 so o(x) divides pt.

Note that one cannot omit the assumption that H is a torsion group in either the
above lemma or the following theorem. To see this let G = (Z,+) and let H = 3Z. Then
o(1 +H) = 3 but no x ∈ G has finite order. Further, no strong digital representation of
H extends to a strong digital representation of G.
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3.4 Theorem. Let G be a group, let H be a torsion group which is a normal subgroup
of G, and assume that H and G/H have strong digital representations. Then so does
G. In fact, if (〈yt〉t∈J , 〈nt〉t∈J) is a strong digital representation of H, then there exist
L containing J and a strong digital representation (〈zt〉t∈L, 〈rt〉t∈L) of G such that t
precedes s whenever t ∈ L \ J and s ∈ J and zt = yt and rt = nt whenever t ∈ J .

Proof. Lemmas 3.2 and 3.3.

3.5 Corollary. If each finite simple group has a strong digital representation, then
every finite group has a strong digital representation.

Proof. Induction on |G| using Theorem 3.4.

We now set out to show in Theorem 3.9 that every abelian group has a strong
digital representation.

3.6 Lemma. Let G be an abelian torsion group, let P be the set of primes, and for
p ∈ P , let Ap = {x ∈ G : o(x) = pk for some k ∈ ω}. Then each Ap is a subgroup of G
and G ∼=

⊕
p∈P Ap.

Proof. [6, Theorem A3].

3.7 Lemma. Let p be a prime and let G be an abelian group such that o(x) is a power
of p for each x ∈ G. Then G has a strong digital representation.

Proof. For each n ∈ N, let Gn = {a ∈ G : apn

= 1}. Then each Gn is a subgroup of G.
We produce inductively a possibly empty set An and 〈xt〉t∈An such that An ∩ Ak = ∅
for n 6= k and if Bm =

⋃m
n=1An and for each t ∈ Bm, rt = p, then for each m ∈ N,

(〈xt〉t∈Bm , 〈rt〉t∈Bm) is a strong digital representation of Gm.

We have that G1 is a vector space over Zp , so is isomorphic to a direct sum of
copies of Zp hence, by Lemma 1.1, G1 has a strong digital representation.

Pick A1 and 〈xt〉t∈A1 such that (〈xt〉t∈A1 , 〈rt〉t∈A1) is a strong digital representation
of G1 where rt = p for each t ∈ A1.

Inductively, let m ∈ N and assume that An and 〈xt〉t∈An have been chosen for
n ≤ m. Now given w ∈ Gm+1, wp ∈ Gm so Gm+1/Gm is a vector space over Zp and
therefore has a strong digital representation.

By Theorem 3.4 we may choose a set Am+1 disjoint from Bm =
⋃m

n=1An and
〈xt〉t∈Am+1 such that (〈xt〉t∈Bm∪Am+1 , 〈rt〉t∈Bm∪Am+1) is a strong digital representation
of Gm+1 where each rt = p.
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The induction being complete, let B =
⋃∞

n=1An. Then (〈xt〉t∈B , 〈rt〉t∈B) is a
strong digital representation of G.

3.8 Lemma. Let G be an abelian torsion free group. Then G has a strong digital
representation.

Proof. [10, Theorem 4.7].

3.9 Theorem. Every abelian group has a strong digital representation.

Proof. Let G be an abelian group, let T = {x ∈ G : o(x) is finite}. Let P be the set of
primes, and for p ∈ P , let Ap = {x ∈ T : o(x) = pk for some k ∈ ω}. By Lemma 3.6,
T ∼=

⊕
p∈P Ap so by Lemmas 3.7 and 1.1, T has a strong digital representation.

Now G/T is torsion free so by Lemma 3.8, G/T has a strong digital representation.
By Theorem 3.4, G has a strong digital representation.

3.10 Lemma. Every finite nonabelian simple group has an order which has a repeated
prime factor.

Proof. In [5, Table 1] the orders of the finite simple groups are listed. A simple check
shows that each has a repeated prime factor.

Notice that the requirement in the following theorem regarding no repeated prime
factors cannot simply be omitted. Indeed, Z4 does not have a digital representation
with each xt having order 2.

3.11 Theorem. Let G be a finite group and assume that |G| is a product of distinct
primes. Then G has a strong digital representation (〈xt〉t∈I , 〈mt〉t∈I) with the additional
property that each xt has order mt.

Proof. We proceed by induction on the length of the prime factorization of |G|. If
|G| is a prime p, then G is isomorphic to Zp which has a digital representation of the
required type. Assume now that |G| is a product of more than 1 distinct primes and
the result is valid for groups with shorter factorizations of their order. By Lemma 3.10
G is not simple so pick a proper normal subgroup H of G. Then H and G/H each
have a digital representation of the required type. Assume that (〈xtH〉t∈I , 〈mt〉t∈I) is
a digital representation of G/H where each mt = o(xt) and mt is a prime. By Lemma
3.3 one may choose for each t ∈ I some zt ∈ G such that ztH = xtH and o(zt) = (mt)n

for some n ∈ N. But since |G| has no repeated prime factors, we know that n = 1. The
result now follows from Lemma 3.2.
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3.12 Theorem. If G is a group such that |G| has at most 2 distinct prime factors,
then G has a strong digital representation.

Proof. Assume first that |G| = pk for some prime p and some k ∈ N. By Lemma 3.7
G has a strong digital representation.

Now, assume |G| = pkql where p and q are primes. Pick by Sylow’s Theorem
subgroups H and K with |H| = pk and |K| = ql. Then H ∩ K = {1} so Lemma 3.1
applies.

We now set out to show in Theorem 3.18 that any group of order p2qr has a
strong digital representation. Actually, a considerably stronger result holds. We have
by Theorems 3.20 and 3.29 below that all of the groups An and An(q) where n ∈ N and
q is a power of a prime have strong digital representations. According to [5, Table 1] any
nonabelian simple group which is not of this form has an order whose prime factorization
has length at least 8. Consequently, by Theorem 3.4 any finite group whose order has
a prime factorization of length less than 8 must have a strong digital representation.
However, we do feel that there is some virtue in a result whose proof does not rely on
the classification of the finite simple groups.

3.13 Lemma. Let p, q, and r be primes and let G be a group with |G| = p2qr. If G has
a subgroup H with size pqr, qr, p2q, or p2r, then G has a strong digital representation.

Proof. Assume first that |H| ∈ {qr, p2q, p2r}. By Theorem 3.12 H has a strong digital
representation. Pick a subgroup K such that |K| is respectively p2, r, or q. Then K

has a strong digital representation so Lemma 3.1 applies.

Now assume that |H| = pqr. By Theorem 3.11, H has a strong digital rep-
resentation. Pick a subgroup M of G with |M | = p2. Pick x ∈ M \ H. Then
{x, x2, . . . , xp−1} ∩ H = ∅. (Suppose t ∈ {1, 2, . . . , p − 1} and xt ∈ H. Pick by the
Chinese Remainder Theorem k ∈ N such that k ≡ 0 (mod t) and k ≡ 1

(
mod o(x)

)
.

Then x = xk ∈ H.) We claim that every member of G is uniquely representable in the
form zxt for z ∈ H and t ∈ {0, 1, . . . , p − 1}. Since |G| = |H| · p it suffices to establish
uniqueness. Suppose z, w ∈ H and t, s ∈ {0, 1, . . . , p − 1} with t ≤ s and zxt = wxs.
Then xs−t = w−1z ∈ H, so s = t so z = w.

3.14 Lemma. Let G be a group, let H be a subgroup of G, and let NH = {x ∈ G :
xH = Hx}. If NH = H, x, y ∈ G, and xH 6= yH, then xHx−1 6= yHy−1.

Proof. If xHx−1 = yHy−1, then y−1xH = Hy−1x so y−1x ∈ NH = H so xH = yH.
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3.15 Lemma. Let p, q, and r be primes and let G be a group with |G| = p2qr. If G
does not have a strong digital representation, then G has at least (q − 1)pr elements of
order q and at least (r − 1)pq elements of order r.

Proof. It suffices to show that there are at least (q − 1)pr elements of order q. Pick a
subgroup H of G with |H| = q. Let NH = {x ∈ G : xH = Hx}. Then H ⊆ NH and NH

is a group, so |NH | ∈ {q, pq, qr, pqr, p2q, p2qr}. By Lemma 3.13, |NH | /∈ {qr, pqr, p2q}.
Suppose |NH | = p2qr. That is, NH = G. Then H is a normal subgroup of G.

Since |H| = q and |G/H| = p2r we have by Theorem 3.12 that H and G/H have strong
digital representations hence, by Theorem 3.4, so does G, a contradiction.

Thus |NH | = q or |NH | = pq. Assume first that |NH | = q so that NH = H. By
Lemma 3.14, if xH 6= yH, then xHx−1 6= yHy−1. There are p2r left cosets of H and if
xHx−1 6= yHy−1, then xHx−1 ∩ yHy−1 = {1}, so |

⋃
x∈G xHx−1| = p2r(q − 1) + 1 so

there are at least p2r(q − 1) elements of order q.

Now assume that |NH | = pq. We claim that if y ∈ NH and o(y) = q, then y ∈ H.
Indeed, pick x ∈ NH such that o(x) = p and pick a ∈ H \ {1}. Then

{
xtas : t ∈ {0, 1,

. . . , p − 1} and s ∈ {0, 1, . . . , q − 1}
}

is a subset of NH with pq elements, so it equals
NH . Note that if t ∈ {1, 2, . . . , p − 1} and s ∈ {0, 1, . . . , q − 1}, then o(xtas) is either
p or pq. (We have that xt ∈ NH so (xtH)q = xtqH so (xtas)q = xtqb for some b ∈ H.
Since b ∈ H and xtq 6= 1, xtqb 6= 1.) Thus the only elements of NH of order q must be
of the form x0as, as required.

Next we claim that ifH∩uNHu
−1 6= {1}, thenH = uHu−1. Note thatH∩uNHu

−1

is a nontrivial subgroup of H, so H = H ∩ uNHu
−1. That is H ⊆ uNHu

−1. To see
that H ⊆ uHu−1, let y ∈ H. If y = 1, then y ∈ uHu−1 so assume that y 6= 1. Then
u−1yu ∈ NH and o(u−1yu) = q so u−1yu ∈ H. Thus y ∈ uHu−1. Since H ⊆ uHu−1

and |H| = |uHu−1| we have H = uHu−1.

Now we claim that if uNH 6= vNH , then (uNHu
−1)∩(vNHv

−1) contains no elements
of order q. Suppose instead we have y ∈ (uNHu

−1) ∩ (vNHv
−1) with o(y) = q. Then

u−1yu ∈ NH∩u−1vNHv
−1u. Since o(u−1yu) = q and u−1yu ∈ NH , we have u−1yu ∈ H

so H∩u−1vNHv
−1u 6= {1}. Thus H = u−1vHv−1u 6= {1}, so v−1u ∈ NH and therefore

uNH = vNH , a contradiction.

Since there are pr left cosets of NH and each uNHu
−1 has q − 1 elements of order

q, there are at least (q − 1)pr elements of order q in G.

3.16 Lemma. Let p, q, and r be primes and let G be a group with |G| = p2qr. Assume
that a ∈ G and o(a) = p2. Let H = {1, a, a2, . . . , ap2−1}, let Na = {x ∈ G : ax = xa},
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and let NH = {x ∈ G : xH = Hx}. If G does not have a strong digital representation,
then Na = NH = H.

Proof. Trivially, Na = NH and H ⊆ NH . So p2 divides |NH |. It suffices to show that
|NH | = p2. By Lemma 3.13 |NH | 6= p2q and |NH | 6= p2r. Suppose that |NH | = p2qr.
Pick subgroups K and M of G with |K| = q and |M | = r. Then, by Theorem 3.12, H,
K, and M have strong digital representations. Since K ⊆ NH , by Lemma 3.1, HK is
a group which has a strong digital representation. Then |MHK| = p2qr so, by Lemma
3.1, G = MHK has a strong digital representation.

3.17 Lemma. Let p, q, and r be primes and let G be a group with |G| = p2qr. Let
A and B be distinct subgroups of G with |A| = |B| = p2. If G does not have a strong
digital representation, then A ∩B is contained in the center of G.

Proof. Suppose we have a ∈ (A ∩ B) \ Z(G). Since any group of order p2 is abelian,
A ⊆ Na, so p2 divides |Na|. By Lemma 3.13 |Na| 6= p2q and |Na| 6= p2r. If we had
|Na| = p2qr, then we would have Na = G and so a ∈ Z(G). Thus |Na| = p2. Since
A ∪B ⊆ Na, we have |A ∪B| = p2 so A = B.

3.18 Theorem. Let p, q, and r be primes and let G be a group with |G| = p2qr. Then
G has a strong digital representation.

Proof. Suppose not. Pick a subgroup H with |H| = p2. Assume first that H has an
element x with o(x) = p2. Then for t ∈ {1, 2, . . . , p2 − 1},

o(xt) =
{
p if t ∈ {p, 2p, . . . , (p− 1)p}
p2 otherwise.

So H has p2− p elements of order p2. None of these occur in another subgroup of order
p2 since the intersection of two distinct groups of order p2 has either 1 or p elements.
By Lemma 3.16 NH = H so, by Lemma 3.14, if x, y ∈ G and xH 6= yH, we have
x−1Hx 6= y−1Hy. Since H has qr cosets, there are at least qr(p2− p) elements of order
p2. (We shall show later that there cannot be this many elements of order p2.)

Assume now that H has no element of order p2. We claim that H is not contained
in the center of G. Suppose it is and pick subgroups K and M of order q and r

respectively. Then H, K, and M have strong digital representations by Theorem 3.12.
Since H ⊆ Z(G), HK is a group which has a strong digital representation by Lemma
3.1. Then |MHK| = p2qr so G = MHK has a strong digital representation by Lemma
3.1.
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Thus H ∩ Z(G) is a proper subgroup of H so has at most p elements. Next we
claim that NH = H. Since H ⊆ NH we have that p2 divides |NH |. By Lemma 3.13,
|NH | is neither of pq or p2r. If |NH | = p2qr, then as above pick subgroups K and M of
order q and r respectively. Then H, K, and M have strong digital representations by
Theorem 3.12. Since K ⊆ NH , HK is a group which has a strong digital representation
by Lemma 3.1. Then |MHK| = p2qr so G = MHK has a strong digital representation
by Lemma 3.1. So NH = H as claimed.

By Lemma 3.17 if xHx−1 6= yHy−1, then xHx−1∩yHy−1 ⊆ Z(G) so xHx−1\Z(G)
and yHy−1 \ Z(G) are disjoint. By Lemma 3.14 if xH 6= yH, then xHx−1 6= yHy−1.
So |

⋃
x∈G xHx−1| ≥ qr(p2 − p) + p.

Thus in any event there are at least qr(p2 − p) elements of order p or p2. But also
by Lemma 3.15 there are at least (q − 1)pr elements of order q and at least (r − 1)qp
elements of order r. But qr(p2−p)+(q−1)pr+(r−1)qp = p2qr+p(qr− q− r) > p2qr,
a contradiction.

Because of Corollary 3.5 we are interested in the finite simple groups, which would
necessarily provide the smallest counterexamples to the assertion that each group, or
at least each finite group, has a strong digital representation. The smallest non-abelian
simple group is A5, the alternating group on 5 elements. Further, An is simple for all
n ≥ 5. The same proof applies to the full symmetric group, so we give it as well.

In the following, ↓Π1
t=nxt = xnxn−1 · · ·x1.

3.19 Lemma. Let n ∈ N \ {1, 2} and let G = An−1 and K = An or let G = Sn−1

and K = Sn. Assume that (〈xt〉kt=1, 〈mt〉kt=1) is a digital representation of G. Let
〈yt〉lt=1 be a sequence in K \ G and let 〈pt〉lt=1 be a sequence in N \ {1}. Assume that
pt = o(yt) for each t ∈ {1, 2, . . . , l} and (yt)a /∈ G for each t ∈ {1, 2, . . . , l} and each
a ∈ {1, 2, . . . , pt − 1}. For t ∈ {1, 2, . . . , k + l} define

zt =
{

xt if t ≤ k
yt−k if t > k

and st =
{
mt if t ≤ k
rt−k if t > k

Assume further that whenever q ∈ {2, 3, . . . , l}, at and bt are in {0, 1, . . . , pt−1}, and c ∈
{1, 2, . . . , pq − 1} one has that

(∏q−1
t=1 (yt)at

)
(yq)c

(
↓Π1

t=q−1(yt)bt

)
/∈ G. Then whenever

at and bt are in {0, 1, . . . , st} for each t ∈ {1, 2, . . . , k+ l} and
∏k+l

t=1(zt)at =
∏k+l

t=1(zt)bt ,
one must have at = bt for each t ∈ {1, 2, . . . , k + l}.

Proof. Since (〈xt〉kt=1, 〈mt〉kt=1) is a digital representation of G, it suffices to show
that if u, v ∈ G and at and bt are in {0, 1, . . . , pt − 1} for each t ∈ {1, 2, . . . , l}, if
u

∏l
t=1(yt)at = v

∏l
t=1(yt)bt , then at = bt for each t. Suppose instead that this fails
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and pick the largest q ∈ {1, 2, . . . , l} such that aq 6= bq and assume without loss of
generality that aq > bq. If q = 1, then we have (y1)a1−b1 = u−1v ∈ G, a contradiction.
So assume that q > 1. Then

(∏q−1
t=1 (yt)at

)
(yq)aq−bq

(
↓Π1

t=q−1(yt)pt−bt

)
= u−1v ∈ G, a

contradiction.

3.20 Theorem. For each n ∈ N\{1, 2}, An and Sn have strong digital representations
(〈xt〉t∈I , 〈mt〉t∈I) with the additional property that each xt has order mt.

Proof. We proceed by induction on n. If n = 3, the results are trivial.

Now let n > 3 and let G = An−1 and K = An or let G = Sn−1 and K = Sn. Let
(〈xt〉kt=1, 〈mt〉kt=1) be a digital representation of G with the required property. Factor n
as p1p2 · · · pl where each pi is a prime and, if n is even, p1 = 2. Since |K| = |G| ·

∏l
t=1 pt,

by Lemma 3.19, it suffices to produce yt ∈ K \ G for each t ∈ {1, 2, . . . , l} such that
(yt)a /∈ G for each t ∈ {1, 2, . . . , l} and each a ∈ {1, 2, . . . , pt − 1} and whenever q ∈
{2, 3, . . . , l}, at and bt are in {0, 1, . . . , pt − 1}, and c ∈ {1, 2, . . . , pq − 1} one has that(∏q−1

t=1 (yt)at

)
(yq)c

(
↓Π1

t=q−1(yt)bt

)
/∈ G.

If p1 = 2, let y1 = (n − 1, n)(1, 2) and let B1 = {n − 1, n}. Otherwise, let y1 be a
p1-cycle including n and let B1 be the set of terms of that cycle. Let k ∈ {1, 2, . . . , l−1}
and assume that we have chosen yk and Bk so that |Bk| =

∏k
i=1 pi and, unless k = 1

and p1 = 2, Bk is the set of numbers moved by yk. Let yk+1 consist of |Bk| disjoint
pk+1-cycles, each of which includes exactly one term from Bk. Unless k = l − 1, make
sure that neither 1 nor 2 is moved by pk+1.

For example, if n = 36 = 2 · 3 · 3 · 2, let

y1 =(35, 36)(1, 2)

y2 =(31, 32, 35)(33, 34, 36)

y3 =(19, 20, 31)(21, 22, 32)(23, 24, 33)(25, 26, 34)(27, 28, 35)(29, 30, 36)

y4 =(1, 19)(2, 20)(3, 21)(4, 22)(5, 23)(6, 24)(7, 25)(8, 26)(9, 27)

(10, 28)(11, 29)(12, 30)(13, 31)(14, 32)(15, 33)(16, 34)(17, 35)(18, 36) .

Now let q ∈ {2, 3, . . . , l} and choose at and bt in {0, 1, . . . , pt− 1} for each t ∈ {1, 2,
. . . , q − 1} and c ∈ {1, 2, . . . , pq − 1} and let w =

(∏q−1
t=1 (yt)at

)
(yq)c

(
↓Π1

t=q−1(yt)bt

)
.

We need to show that w /∈ G, that is, that w moves n. Let m =
(
↓Π1

t=q−1(yt)bt

)
(n).

Then m ∈ Bq−1 and c 6= 0 so (yq)c(m) ∈ Bq \Bq−1. Therefore(∏q−1
t=2 (yt)at

) (
(yq)c(w)

)
= (yq)c(w) .
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If q = l, then possibly (yq)c(w) ∈ {1, 2} in which case
(∏q−1

t=1 (yt)at

) (
(yq)c(w)

)
∈ {1, 2}.

Otherwise
(∏q−1

t=1 (yt)at

) (
(yq)c(w)

)
= (y1)a1

(
(yq)c(w)

)
= (yq)c(w) 6= n.

The next simplest class of nonabelian simple groups are the groups denoted in [5]
by An(q).

3.21 Definition.

(a) Let F be a field and let m ∈ N. Then GLm(F ) is the set of all m ×m matrices
over F with nonzero determinant.

(b) Let F be a field and let m ∈ N. Then SLm(F ) = {w ∈ GLm(F ) : det(w) = 1}.
(c) Let p be a prime, let k,m ∈ N, let q = pk, let F be the field with q ele-

ments, and let Z be the center of SLm+1(F ). Then Am(q) = SLm+1(F )/Z and
πm : SLm+1(F ) → Am(q) is the quotient map.

(d) Let p be a prime, let k,m ∈ N, let q = pk, and let F be the field with q elements.
Then Wm(q) = {w ∈ SLm+1(F ) : for all t ∈ {2, 3, . . . ,m+ 1}, wt,1 = 0}.

The following lemma is well known and its proof is at any rate an easy exercise.

3.22 Lemma. Let p be a prime, let k,m ∈ N, let q = pk, let F be the field with
q elements, and let Z be the center of SLm+1(F ). Let D = {x ∈ F : xm+1 = 1}
and let I be the (m + 1) × (m + 1) identity matrix. Then Z = {xI : x ∈ D} and
|D| = gcd(m+ 1, q − 1).

According to [12] all of the nonabelian simple groups of order less than 6000 are of
the form An, A1(pk), or A2(pk).

We saw above that each An has a strong digital representation. The smaller simple
groups not of this form are (with order in parentheses) A1(7) (168 = 23 · 3 · 7), A1(8)
(504 = 23 · 32 · 7), A1(11) (660 = 22 · 3 · 5 · 11), A1(13) (1092 = 22 · 3 · 7 · 13), A1(17)
(2448 = 24 · 32 · 17), A1(19) (3420 = 22 · 32 · 5 · 19), A1(16) (4080 = 24 · 3 · 5 · 17), and
A2(3) (5616 = 24 · 33 · 13).

The following lemma, except possibly for part (d), is well known.

3.23 Lemma. Let p be a prime, let k,m ∈ N, let q = pk, and let F be the field with q
elements.

(a) |GLm+1(F )| = qm(m+1)/2
∏m

t=0(q
t+1 − 1).

(b) |SLm+1(F )| = qm(m+1)/2
∏m

t=1(q
t+1 − 1).

(c) If d = gcd(m+ 1, q − 1), then |Am(q)| = 1
dq

m(m+1)/2
∏m

t=1(q
t+1 − 1).

(d) |Wm(q)| = qm(m+1)/2
∏m−1

t=0 (qt+1 − 1).

14



Proof. (a) To obtain a matrix in GLm+1(F ) the first row can be any nonzero vector
in Fm+1 and in general for i ∈ {1, 2, . . . ,m}, row i+ 1 can be any row not in the linear
span of the first i rows, so

|GLm+1(F )| =
∏m

t=0(q
m+1 − qt)

=
∏m

t=0 q
t
∏m

t=0(q
m+1−t − 1)

= qm(m+1)/2
∏m

t=0(q
t+1 − 1) .

(b) |SLm+1(F )| = 1
q−1 |GLm+1(F )|.

(c) This follows from (b) and Lemma 3.22.

(d) Any matrix B ∈ Wm(q) may be written in block form as B =
(
b1,1 ~v
~0 C

)
where C is an arbitrary member of GLm(F ), ~v is an arbitrary member of Fm, and
b1,1 = (detC)−1. Consequently, |Wm(q)| = qm · |GLm(F )|.

3.24 Lemma. Let p be a prime, let k,m ∈ N, let q = pk, and let n =
∑m

t=0 q
t. Then

gcd(n, q − 1) = gcd(m+ 1, q − 1).

Proof. We have that n = (m + 1) +
∑m

t=1(q
t − 1) and q − 1 divides qt − 1 for each

t ∈ {1, 2, . . . ,m}. Therefore any power of a prime which divides q − 1 divides n if and
only if it divides m+ 1.

It is a fact, apparently due to Gauss [4] who counted all such things, though this
fact may predate that, that given any m ≥ 2 and any finite field F there is an irreducible
polynomial of degree m over F . In fact the following holds.

3.25 Lemma. Let F be a finite field, let F̃ be a field extension of degree m over F ,
and let ξ be a generator of the (cyclic) multiplicative group of F̃ . There is an irreducible
polynomial f of degree m over F such that ξ is a root of f in F̃ .

Proof. [11, Theorem 2.10 and Corollary 2.11].

3.26 Lemma. Let p be a prime, let k,m ∈ N, let q = pk, let F be the field with q

elements and let f be an irreducible polynomial of degree m + 1 over F . Let F̃ be the
field obtained by adjoining a root ξ of f to F . Given η ∈ F̃ \ {0}, multiplication by η
is a linear transformation from F̃ to itself; let φm,f (η) be the matrix representation of
this linear transformation with respect to the basis {1, ξ, ξ2, . . . , ξm} for F̃ as a vector
space over F . Then φm,f is an injective homomorphism from the multiplicative group
of F̃ to GLm+1(F ).
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Proof. Given η ∈ F̃ \ {0},
(
φm,f (η)

)−1 = φm,f (η−1) and so det
(
φm,f (η)

)
6= 0.

3.27 Lemma. Let p be a prime, let k,m ∈ N, let q = pk, let F be the field with q

elements and let f be an irreducible polynomial of degree m + 1 over F . Let F̃ be the
field obtained by adjoining a root ξ of f to F and let n =

∑m
t=0 q

t. Let φm,f be defined
as in Lemma 3.26. Let F̃ ∗ be the multiplicative group of F̃ and let X = {ηq−1 : η ∈ F̃ ∗}.
Then X is a subgroup of F̃ ∗ such that |X| = n and φm,f [X] ⊆ SLm+1(F ).

Proof. Pick a generator δ of F̃ . Then X =
{
δt(q−1) : t ∈ {1, 2, . . . , n}

}
so |X| = n. To

see that φm,f [X] ⊆ SLm+1(F ), let t ∈ {1, 2, . . . , n}. Then 1 =
(

det
(
φm,f (δt)

))q−1 =
det

(
φm,f (δt(q−1))

)
.

3.28 Lemma. Let p be a prime, let k,m ∈ N with m > 1, let q = pk, and let F be
the field with q elements. If Am−1(q) has a strong digital representation, then so do
SLm(F ) and πm[Wm(q)].

Proof. Assume that Am−1(q) has a strong digital representation. The center of SLm(F )
is abelian so has a strong digital representation by Theorem 3.9 and thus so does SLm(F )
by Theorem 3.4.

Let F ∗ be the multiplicative subgroup of F and let D = {a ∈ F ∗ : am+1 = 1}.
Define ψ : πm[Wm(q)] → F ∗/D by, for x ∈Wm(q), ψ

(
πm(z)

)
= z1,1D. Then ψ is a well

defined surjective homomorphism and F ∗/D is abelian and thus has a strong digital
representation by Theorem 3.9. Consequently by Theorem 3.4 it suffices to show that
the kernel of ψ has a strong digital representation.

Let U = {z ∈ Wm(q) : z1,1 = 1}. Given z ∈ U , let τ(z) be the lower right m ×m

corner of z. Then τ is a homomorphism from U onto SLm(F ) and z is in the kernel of
τ if and only if there is some ~v ∈ F q such that

z =
(

1 ~v
~0 I

)
where I is the m ×m identity matrix. Thus the kernel of τ is abelian so has a strong
digital representation, and since SLm(F ) has a strong digital representation, so does U .
Finally, the restriction of πm to U is an isomorphism onto the kernel of ψ.

3.29 Theorem. Let p be a prime, let k,m ∈ N, and let q = pk. Then Am(q) has a
strong digital representation.

Proof. Let F be the field with q elements. We proceed by induction on m. We ground
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the induction by showing that π1[W1(q)] has a strong digital representation. Let

K =
{(

a 0
0 a−1

)
: a ∈ F \ {0}

}
and M =

{(
a b
0 a

)
: a, b ∈ F and a2 = 1

}
.

Then W1(q) = KM so π1[W1(q)] = π1[K]π1[M ]. Also K is abelian and so π1[K] is
abelian so has a strong digital representation by Theorem 3.9. Since |π1[M ]| = q we have
by Theorem 3.12 that π1[M ] has a strong digital representation. Since π1[M ]∩π1[K] =
{π1[I]} we have by Lemma 3.1 that π1[W1(q)] has a strong digital representation.

Let m ∈ N and assume that πm[Wm(q)] has a strong digital representation. We
shall show that Am(q) has a strong digital representation and so, by Lemma 3.28, the
same is true for πm+1[Wm+1(q)].

Pick by Lemma 3.25 an irreducible polynomial f of degree m+ 1 over F such that
one may represent the field F̃ of degree m + 1 over F as the vector space with basis
{1, ξ, ξ2, . . . , ξm} where ξ is a root of f and a generator of the multiplicative group F̃ ∗

of F̃ . Let d = gcd(m+ 1, q − 1). We define an element v ∈ SLm+1(F ) as follows:

(a) If d = 1, let v = I, the (m+ 1)× (m+ 1) identity matrix.

(b) If d is odd and d > 1, then let v1,d = 1, let vi,i−1 = 1 for i ∈ {2, 3, . . . , d},
and let vi,i = 1 for i ∈ {d + 1, d + 2, . . . ,m + 1}. Let all other entries of v be
0. (Thus v is obtained from I by permuting the first d rows of I via the cycle
(1, 2, . . . , d). Since this is an even permutation, det(v) = 1.)

(c) If d is even and d < m+1, then let v1,d = 1, let vi,i−1 = 1 for i ∈ {2, 3, . . . , d},
let vi,i = 1 for i ∈ {d+ 1, d+ 2, . . . ,m}, and let vm+1,m+1 = −1. Let all other
entries of v be 0.

(d) If d is even and d = m + 1, then let v1,d = −1 and let vi,i−1 = 1 for i ∈
{2, 3, . . . ,m+ 1}.

Let V be the subgroup of SLm+1(F ) generated by v. In the first three cases,
|V | = d and V ∩ Wm(q) = V ∩ Z

(
SLm+1(F )

)
= {I}, where Z

(
SLm+1(F )

)
is the

center of SLm+1(F ), so that |πm[V ]| = d. In the last case, |V | = 2d and V ∩Wm(q) =
V ∩ Z

(
SLm+1(F )

)
= {I,−I} so that again |πm[V ]| = d.

Let n =
∑m

t=0 q
t, let φm,f be defined as in Lemma 3.26, and let X =

{
ξt(q−1) : t ∈

{1, 2, . . . , n}
}
. Then, by Lemma 3.27, X is a subgroup of F̃ ∗ and φm,f [X] ⊆ SLm+1(F ).

We now claim that VWm(q)V ∩ φm,f [X] ⊆ Z
(
SLm+1(F )

)
. To see this, let η ∈ X

and assume that φm,f (η) ∈ VWm(q)V . Pick y, z ∈ V and w ∈ Wm(q) such that
φm,f (η) = ywz. Then yw is obtained from w by permuting the first d rows and possibly
multiplying some rows by −1. So we may pick i ∈ {1, 2, . . . , d} such that the only
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nonzero entry of column 1 of yw is in row i. Now ywz is obtained from yw by permuting
the first d columns and possibly multiplying some columns by −1. Thus there is some
j ∈ {1, 2, . . . , d} such that the entry in row i and column j of ywz is some b 6= 0 and all
other entries of column j are 0. Thus if u is the column vector with jth entry equal to 1
and all other entries 0 one has that φm,f (η)u is the column vector with ith entry equal to
b and all other entries 0. That is, ηξj = bξi. Thus ξi−j = b−1η. Now b−1 = ξs for some
s ∈ {1, 2, . . . , qm+1} and η = ξt(q−1) for some t ∈ {1, 2, . . . , n}. Thus ξi−j = ξs+t(q−1).
Now 1 = b1−q = ξs(1−q) and so n(q− 1) = qm+1 − 1 divides s(q− 1) and thus n divides
s. By Lemma 3.24 d divides n and thus d divides s. Also d divides q − 1 and so d

divides s + t(q − 1) and thus d divides i − j. Since −d < i− j < d we have that i = j

and thus η = b ∈ F . We then have that φm,f (η) = bI and since det
(
φm,f (η)

)
= 1,

φm,f (η) ∈ Z
(
SLm+1(F )

)
, as claimed.

We have that πm[Wm(q)] has a strong digital representation by the induction hy-
pothesis. Also, φm,f [X] is commutative by Lemma 3.26 and so πm[V ] and πm

[
φm,f [X]

]
are commutative and so have strong digital representations by Theorem 3.9. By Lemma
3.23 and the fact that Z

(
SLm+1(F )

)
⊆Wm(q) we have that

|πm[Wm(q)]| = 1
dq

m(m+1)/2
∏m−1

t=0 (qt+1 − 1)

while |πm[V ]| = d and
∣∣πm

[
φm,f [X]

]∣∣ ≥ n
d so |πm[Wm(q)]| · |πm[V ]| ·

∣∣πm

[
φm,f [X]

]∣∣ ≥
1
dq

m(m+1)/2
∏m

t=1(q
t+1− 1) = |Am(q)|. Thus it suffices to show that if w1, w2 ∈Wm(q),

y1, y2 ∈ V , z1, z2 ∈ φm,f [X], and πm(w1)πm(y1)πm(z1) = πm(w2)πm(y2)πm(z2), then
πm(w1) = πm(w2), πm(y1) = πm(y2), and πm(z1) = πm(z2).

So assume that we have πm(w1)πm(y1)πm(z1) = πm(w2)πm(y2)πm(z2). Then there
is some u1 ∈ Z

(
SLm+1(F )

)
such that (z2)−1(y2)−1(w2)−1w1y1z1 = u1 so

z2z
−1
1 = (y2)−1(w2)−1(u1)−1w1y1z1 ∈ VWm(q)V ∩ φm,f [X]

so there is some u2 ∈ Z
(
SLm+1(F )

)
such that z2z−1

1 = u2 and in particular πm(z1) =
πm(z2). Now y2(y1)−1 = (w2)−1(u2)−1(u1)−1w1 ∈ V ∩Wm(q) so πm(y2) = πm(y1) and
then πm(w2) = πm(w1).

4. Applications to semigroup compactifications

In this section we shall show that, for a class of discrete semigroups S which includes
all infinite abelian groups, the smallest ideal of βS contains copies of the free group on
22|S|

generators; and that, for any infinite discrete abelian group S, the weakly almost
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periodic compactification of S contains copies of the free abelian semigroup on 22|S|

generators.

Given a discrete semigroup (S, ·), we take the Stone-Čech compactification βS of S
to be the set of ultrafilters on S, identifying the points of S with the principal ultrafilters
and thus pretending that S ⊆ βS. Given A ⊆ S and p ∈ βS, A ∈ p if and only if
p ∈ c`βSA. The operation extends to βS making (βS, ·) a right topological semigroup
(meaning that for each p ∈ βS, the function ρp : βS → βS defined by ρp(q) = q · p is
continuous) with S contained in its topological center (meaning that for each s ∈ S, the
function λs : βS → βS defined by λs(q) = s · q is continuous). Given p, q ∈ βS,

p · q = lim
s→p
s∈S

lim
t→q
t∈S

s · t .

Thus if p, q ∈ βS and A ⊆ S, then A ∈ p · q if and only if {s ∈ S : s−1A ∈ q} ∈ p where
s−1A = {t ∈ S : s · t ∈ A}.

If T is any compact right topological semigroup, it has a smallest two sided ideal
K(T ) which is the union of all of the minimal right ideals of T and is also the union
of all of the minimal left ideals of T . If L is a minimal left ideal and R is a minimal
right ideal, then L ∩ R is a group, and any two such groups are isomorphic. A given
copy of this group is called the structure group of T . If p is an idempotent in T , L is
the minimal left ideal with p ∈ L and R is the minimal right ideal with p ∈ R, then
L ∩R = pTp. See [9] for a gentle introduction to βS and its algebraic structure.

Under reasonable hypotheses the structure group of βS is known to be quite rich.
For example, the structure group of (βN,+) contains a copy of the free group on 2c

generators [9, Corollary 7.37] (a fact originally established in [8]). (Recall that |βN| =
2c.) Further, if G is a countably infinite group which can be mapped into a compact
metrizable topological group by an injective homomorphism, then the structure group
of βG contains a copy of the free group on 2c generators [9, Corollary 7.40].

It is also known that if S is a weakly left cancellative and right cancellative semi-
group with |S| = κ ≥ ω, then βS contains a copy of the free group on 22κ

generators
[9, Corollary 7.39]. The proof given in [9] is, in fact, valid for the larger class of semi-
groups which are weakly left cancellative and nearly right cancellative. (A semigroup
S is said to be nearly right cancellative if there is a subset D of S such that |D| = |S|
and for every distinct s, t ∈ S, {d ∈ D : sd = td} is finite. There are many examples
of semigroups which arise very naturally and are weakly left cancellative and nearly
right cancellative, but not right cancellative. These include (Pf (X),∪), where X is
an arbitrary set, (N,max) and (N, lcm). The concept of near right cancellativity was

19



introduced in [3] and is discussed there.) However, [9, Corollary 7.39] provides no in-
formation about the structure group of K(βS), as the free groups constructed in this
theorem do not normally meet K(βS).

In this section we show that if S is a semigroup with |S| = κ ≥ ω which has a digital
representation and satisfies a related commutavity condition, then there is a compact
subsemigroup V of βS whose structure group contains a copy of the free group on 22κ

generators. We show that if, in addition, S is left cancellative, then the structure group
of βS contains a copy of the free group on 22κ

generators. As a corollary, we show that
if T is any semigroup which has as a homomorphic image a commutative cancellative
semigroup of cardinality κ with a digital representation, then the structure group of βT
contains a copy of the free group on 22κ

generators.

4.1 Convention. We shall assume througout this section until Corollary 4.16 that
(S, ·) is a semigroup with identity 1 and cardinality κ which has a digital representation
〈Ft〉t∈κ. We shall also assume that if s < t < κ, x ∈ Ft, and y ∈ Fs, then xy = yx.

We remark that our assumptions are satisfied if S is a commutative group (by
Theorem 3.9) or if S is a semigroup which is a direct sum of finite semigroups with
identities.

4.2 Definition.

(a) We put supp(1) = ∅. If s =
∏

t∈H xt where each xt = Ft, let supp(s) = H.

(b) If a, b ∈ S, we write a ⊥ b if supp(a) ∩ supp(b) = ∅.
(c) For J ⊆ κ, DJ = {s ∈ S : supp(s) ∩ J = ∅}.
(d) V =

⋂
J∈Pf (κ) c`βSDJ .

(e) C =
⋂
{c`βSDJ : J ⊆ κ and |J | < κ}.

Notice that Convention 4.1 guarantees that if a, b ∈ S and a ⊥ b, then ab = ba and
supp(ab) = supp(a) ∪ supp(b).

We remark that if (S, ·) = (N,+) and Ft = {2t} for t < ω, then V = C =⋂∞
t=0 c`βN (2tN) = H, a subsemigroup of βN which includes all of the idempotents of

βN and has substantial known structure. See [9, Sections 6.3 and 7.2] for information
about the structure of H and where its copies may be found.

4.3 Lemma. Both V and C are subsemigroups of βS.

Proof. For V , let A = Pf (κ). For C, let A = {J ⊆ κ : |J | < κ}. By [9, Theorem 4.20]
it suffices to observe that if J ∈ A and s ∈ DJ , then for all t ∈ DJ∪supp(s), s · t ∈ DJ .
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We set out to show that maximal subgroups in the smallest ideal of V contain
copies of the free group on 22κ

generators. The proof of Theorem 4.4 will include
several subsidiary lemmas.

4.4 Theorem. Let p be an idempotent in K(V ). The group pV p contains a copy of
the free group on 22κ

generators.

Proof. Choose bt ∈ Ft for each t ∈ I and let U be the set of uniform ultrafilters on
{bt : t < κ}. Then it is well known that |U | = 22κ

. (See for example [9, Theorem 3.58].)
Enumerate U as {rt : t < 22κ}. Let T be the free group on the generators {αt : t < 22κ}
with identity 1 and let ϕ : T → pV p be the unique homomorphism such that ϕ(1) = p

and ϕ(αt) = prtp for each t < 22κ

.

It suffices to show that the kernel of ϕ is {1} so suppose instead there is some
other element in the kernel. Choose d ∈ N, w1, w2, . . . , wd in pV p, and l1, l2, . . . , ld in N
such that for each i ∈ {1, 2, . . . , d} there exists t(i) < 22κ

such that either wi = prt(i)p

or wi = (prt(i)p)−1, t(i) 6= t(i + 1) if i < d, and (w1)l1 · (w2)l2 · · · (wd)ld = p. Let
n =

∣∣{t(i) : i ∈ {1, 2, . . . , d}
}∣∣ and let {x1, x2, . . . , xn} =

{
rt(i) : i ∈ {1, 2, . . . , d}

}
.

Choose a partition {J1, J2, . . . , Jn} of κ such that {bt : t ∈ Ji} ∈ xi for each i ∈ {1, 2,
. . . , n}. Let M = 1 +

∏d
i=1 li.

Let E be the set of finite sequences in {1, 2, . . . , n} including the empty sequence.
Let [κ]<ω be the set of finite subsets of κ (so [κ]<ω = Pf (κ)∪{∅}). Define ψ : [κ]<ω → E

as follows. First ψ(∅) = ∅. If µ ∈ Pf (κ) and µ = {j1, j2, . . . , jk} where j1 < j2 < . . . <

jk, then for i ∈ {1, 2, . . . , k} let ai be the member of {1, 2, . . . , n} such that ji ∈ Jai
.

Then ψ(µ) = 〈a1, a2, . . . , ak〉.

Given σ ∈ E and s ∈ S, let φσ(s) = {µ ⊆ supp(s) : ψ(µ) = σ}. Define for
σ ∈ E, δσ : S → ZM by δσ(s) ≡ |φσ(s)| (mod M) and let δ̃σ : βS → ZM be the
continuous extension of δσ. We shall (eventually) show that there is some σ ∈ E such
that δ̃σ

(
(w1)l1 · (w2)l2 · · · (wd)ld

)
6= δ̃σ(p), which will complete the proof.

For J ⊆ κ, define γJ : S → ZM by γJ(s) ≡ |supp(s) ∩ J | (mod M) and let
γ̃J : βS → ZM be the continuous extension of γJ .

4.5 Lemma. Let h : βS → R be a continuous mapping into a compact right topological
semigroup. If h(ab) = h(a)h(b) for every a, b ∈ S such that a ⊥ b, then h(xv) = h(x)h(v)
for every x ∈ βS and every v ∈ V , and so the restriction of h to V is a homomorphism.
In particular, for any J ⊆ κ, the restriction of γ̃J to V is a homomorphism. If i ∈ {1, 2,
. . . , n} and σ = 〈i〉, then δσ = γ

Ji so the restriction of δ̃σ to V is a homomorphism.

21



Proof. We have h(xv) = lim
a→x

lim
b→v

h(ab) = lim
a→x

lim
b→v

h(a)h(b) = h(x)h(v).

For the last assertion note that given s ∈ S, µ ∈ φσ(s) if and only if there is some
j ∈ supp(s) ∩ Ji such that µ = {j}.

4.6 Lemma. Let r be an idempotent in V and for each µ ∈ [κ]<ω let Rµ ∈ r. For
k ∈ N and µ ∈ [κ]<ω let

Bµ,k =
{
s1 · s2 · · · sk : for i ∈ {1, 2, . . . , k} , supp(si) ∩ µ = ∅ , supp(si) ∩ supp(sj) = ∅

when i 6= j , s1 ∈
⋂
{Rν : ν ⊆ µ}, and for t ∈ {2, 3, . . . , k} ,

st ∈
⋂
{Rν : ν ⊆ µ ∪ supp(s1 · s2 · · · st−1)}

}
.

Then each Bµ,k ∈ r.

Proof. We proceed by induction on k. If µ ∈ [κ]<ω, then

Bµ,1 = Dµ ∩
(⋂

{Rν : ν ⊆ µ}
)
∈ r .

So let k ∈ N and assume that the assertion holds for k.

Let µ ∈ [κ]<ω. We claim that Dµ ∩
(⋂

{Rν : ν ⊆ µ}
)
⊆ {s ∈ S : s−1Bµ,k+1 ∈ r}

so that Bµ,k+1 ∈ r · r = r. So let x1 ∈ Dµ ∩
(⋂

{Rν : ν ⊆ µ}
)
. We claim that

Dsupp(x1)∩Bµ∪supp(x1),k ⊆ (x1)−1Bµ,k+1. So let s1 ·s2 · · · sk ∈ Dsupp(x1)∩Bµ∪supp(x1),k

where for i ∈ {1, 2, . . . , k}, supp(si)∩
(
µ∪ supp(x1)

)
= ∅, supp(si)∩ supp(sj) = ∅ when

i 6= j, s1 ∈
⋂
{Rν : ν ⊆ µ ∪ supp(x1)}, and for t ∈ {2, 3, . . . , k}

st ∈
⋂
{Rν : ν ⊆ µ ∪ supp(x1) ∪ supp(s1 · s2 · · · st−1)} .

For t ∈ {2, 3, . . . , k + 1}, let xt = st−1. Then x1 · x2 · · ·xk+1 ∈ Bµ,k+1.

4.7 Lemma. Let σ ∈ E, let r be an idempotent in V , and let

L = {µ ∈ [κ]<ω : ψ(µ) is a subsequence of σ} .

For µ ∈ L and s ∈ S, let θµ(s) = {ν ⊆ supp(s) : µ ∩ ν = ∅ and µ ∪ ν ∈ L}.
Then for all m ∈ N and all µ ∈ L, there is some R ∈ r such that for all s ∈ R,
|{ν ∈ θµ(s) : |ν| = m}| ≡ 0 (mod M).

Proof. If σ = ∅, then L = {∅} and θµ(s) = {∅} for all s ∈ S so the conclusion
holds. We shall assume that σ 6= ∅ and proceed by induction on m. Assume first that
m = 1. Let µ ∈ L and let J = {t < κ : t /∈ µ and µ ∪ {t} ∈ L}. By Lemma 4.5 the
restriction of γ̃J to V is a homomorphism so γ̃J(r) = 0 so pick R ∈ r such that for all
s ∈ R, γJ(s) = 0. Given s ∈ R, {ν ∈ θµ(s) : |ν| = 1} =

{
{t} : t ∈ supp(s) ∩ J

}
so

|{ν ∈ θµ(s) : |ν| = 1}| ≡ γJ(s) (mod M).
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Now let m > 1 and assume that the result holds for all k < m. For each µ ∈ L, pick
Rµ ∈ r such that for all k < m and all s ∈ Rµ, |{ν ∈ θµ(s) : |ν| = k}| ≡ 0 (mod M). If
µ ∈ [κ]<ω \ L, let Rµ = S.

Let µ ∈ L be given and pick a ∈ ZM and R′ ∈ r such that for all s ∈ R′,
|{ν ∈ θµ(s) : |ν| = m}| ≡ a (mod M). Define Bµ,M as in Lemma 4.6 and let R =
Bµ,M∩R′∩

(⋂
{Rν : ν ⊆ µ}

)
. Then R ∈ r. Let t ∈ R and let H = {ν ∈ θµ(t) : |ν| = m}.

We shall show that |H| ≡ 0 (modM). Pick s1, s2, . . . , sM as guaranteed by the definition
of Bµ,M such that t = s1 · s2 · · · sM .

Suppose that t ∈ R satisfies t = s1 · s2 · · · sM , where s1, s2, . . . , sM have properties
(i), (ii), and (iii). Let H = {ν ∈ θµ(t) : |ν| = m}. We shall show that |H| ≡ 0 (mod M).

If i ∈ {1, 2, . . . ,M}, then since t ∈ R′, |H ∩ θµ(si)| ≡ a (mod M) and so∣∣ ⋃M
i=1

(
H ∩ θµ(si)

)∣∣ ≡ aM ≡ 0 (mod M) .

Given A ⊆ {1, 2, . . . ,M} such that |A| ≥ 2, let

HA =
{
ν ∈ H : A = {i ∈ {1, 2, . . . ,M} : ν ∩ supp(si) 6= ∅}

}
.

Then H =
⋃M

i=1

(
H ∩ θµ(si)

)
∪

⋃
{HA : A ⊆ {1, 2, . . . ,M} and |A| ≥ 2} and the listed

sets are pairwise disjoint so it suffices to let A ⊆ {1, 2, . . . ,M} such that |A| ≥ 2 and
show that |HA| ≡ 0 (mod M).

Let c = maxA and let v =
∏

i∈A\{c} si. Let

K = {γ ∈ θµ(v) : for each i ∈ A \ {c} , γ ∩ supp(si) 6= ∅ and |γ| = m}

and for γ ∈ K, let Tγ = {τ ∈ θµ∪γ(sc) : |τ | = m − |γ|}. We claim that HA =⋃
γ∈K {γ ∪ τ : τ ∈ Tγ}. This will suffice because:

(a) if γ, γ′ ∈ K and γ 6= γ′, then {γ ∪ τ : τ ∈ Tγ} ∩ {γ′ ∪ τ : τ ∈ Tγ′} = ∅ since
(γ ∪ τ) ∩ supp(v) = γ;

(b) for γ ∈ K, |{γ ∪ τ : τ ∈ Tγ}| = |Tγ |; and

(c) for γ ∈ K, since sc ∈ Rµ∪γ , |{τ ∈ θµ∪γ(sc) : |τ | = m− |γ|}| ≡ 0 (mod M), i.e.,
|Tγ | ≡ 0 (mod M).

To see that HA ⊆
⋃

γ∈K {γ ∪ τ : τ ∈ Tγ}, let ν ∈ HA. Let γ = ν ∩ supp(v) and
let τ = ν ∩ supp(sc). Then γ ∈ θµ(t) because γ ⊆ ν so that γ ∪ µ ⊆ ν ∪ µ and thus
ψ(γ ∪ µ) is a subsequence of ψ(ν ∪ µ). Consequently γ ∪ µ ∈ L so that γ ∈ θµ(v) and
thus γ ∈ K. Also µ ∪ γ ∪ τ = µ ∪ ν so τ ∈ θµ∪γ(sc). Since |ν| = m, τ ∈ Tγ .

To see that
⋃

γ∈K {γ ∪ τ : τ ∈ Tγ} ⊆ HA, let γ ∈ K and let τ ∈ Tγ . Let ν = γ ∪ τ .
Then ψ(µ ∪ ν) = ψ(µ ∪ γ ∪ τ) so ν ∈ θµ(t) and |ν| = m so ν ∈ HA.
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4.8 Lemma. Let σ ∈ E \ {∅}, let r be an idempotent in V , and let x ∈ βS. Then
δ̃σ(xr) = δ̃σ(x). Also δ̃σ(r) = 0.

Proof. Let L be as in the statement of Lemma 4.7. Let a = δ̃σ(xr) and let c =
δ̃σ(x). Pick B1 ∈ xr and B2 ∈ x such that δσ[B1] = {a} and δσ[B2] = {c}. Then
{s ∈ S : s−1B1 ∈ r} ∈ x so pick s ∈ B2 such that s−1B1 ∈ r. Let m be the length of
σ. For µ ∈ L and t ∈ S, let θµ(t) = {ν ⊆ supp(t) : µ ∩ ν = ∅ and µ ∪ ν ∈ L}. Let
L′ = {µ ∈ L : µ ⊆ supp(s)}. For each µ ∈ L′ pick by Lemma 4.7 Rµ ∈ r such that
for each t ∈ Rµ and each k ∈ {1, 2, . . . ,m}, |{ν ∈ θµ(t) : |ν| = k}| ≡ 0 (mod M). Pick
t ∈ s−1B1 ∩Dsupp(s) ∩

(⋂
{Rµ : µ ∈ L′}

)
. Now |φσ(s)| ≡ c (mod M). Also,

φσ(st) = φσ(s) ∪
(⋃

µ∈L′ {µ ∪ ν : ν ⊆ supp(t) and ψ(µ ∪ ν) = σ}
)
, so

|φσ(st)| = |φσ(s)|+
∑

µ∈L′ |{µ ∪ ν : ν ⊆ supp(t) and ψ(µ ∪ ν) = σ}| .

For µ ∈ L′,

|{µ ∪ ν : ν ⊆ supp(t) and ψ(µ ∪ ν) = σ}| = |{ν ∈ θµ(t) : |ν| = m− |µ|}|

≡ 0 (mod M)

so a = δσ(st) ≡ |φσ(st)| (mod M) ≡ |φσ(s)| (mod M) ≡ c (mod M) and so a = c.

Putting x = 1 shows that δ̃σ(r) = 0.

4.9 Lemma. Let σ = 〈a1, a2, . . . , ak〉 ∈ E \ {∅}, let y ∈ βS, and let i ∈ {1, 2, . . . , n}.
If k = 1, let σ′ = ∅. If k > 1, let σ′ = 〈a1, a2, . . . , ak−1〉. Then

δ̃σ(yxi) =
{
δ̃σ(y) if i 6= ak

δ̃σ(y) + δ̃σ′(y) if i = ak.

In particular, if σ = 〈a1〉, then

δ̃σ(yxi) =
{
δ̃σ(y) if i 6= a1

δ̃σ(y) + 1 if i = a1.

Proof. Pick B ∈ y such that for all s ∈ B, δσ(s) = δ̃σ(y) and δσ′(s) = δ̃σ′(y).
Let A = {sbt : s ∈ B, t ∈ Ji, and t > max supp(s)}. Then A ∈ yxi. Now let
s ∈ B and let t > max supp(s). Then supp(sbt) = supp(s) ∪ {t}. Assume first that
ak 6= i. If ν ⊆ supp(sbt) and ψ(ν) = σ, then ν ⊆ supp(s) so φσ(sbt) = φσ(s) and thus
δσ(sbt) = δσ(s).

Now assume that ak = i. In this case φσ(sbt) = φσ(s) ∪ {ν ∪ {t} : ν ∈ φσ′(s)} so
δσ(sbt) = δσ(s) + δσ′(s).

For the final conclusion note that for any s ∈ S, φ∅(s) = {∅}.
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4.10 Lemma. Let i ∈ {1, 2, . . . , n}, let r be an idempotent in V , let z ∈ βS such that
zxir = r, and let σ = 〈a1, a2, . . . , ak〉 ∈ E \ {∅}. Then δ̃σ(z) = 0 unless a1 = a2 = . . . =
ak = i, in which case δ̃σ(z) = (−1)k.

Proof. First note that, by Lemma 4.8, 0 = δ̃σ(r) = δ̃σ(zxir) = δ̃σ(zxi).

We proceed by induction on k. If k = 1, then by Lemma 4.9,

δ̃σ(zxi) =
{
δ̃σ(z) if i 6= a1

δ̃σ(z) + 1 if i = a1

so δ̃σ(z) =
{

0 if i 6= a1

−1 if i = a1.

Now let k > 1 and assume the result holds for k − 1. Let σ′ = 〈a1, a2, . . . , ak−1〉.
By Lemma 4.9,

δ̃σ(zxi) =
{
δ̃σ(z) if i 6= a1

δ̃σ(z) + δ̃σ′(z) if i = a1

so δ̃σ(z) =
{

0 if i 6= a1

−δ̃σ′(z) if i = a1.

Thus if a1 = a2 = . . . = ak = i, then δ̃σ(z) = (−1)k and δ̃σ(z) = 0 otherwise.

Recall that we have fixed an idempotent p ∈ K(V ). Fix an idempotent q ∈ K(C).
For i ∈ {1, 2, . . . , n} let yi be the inverse of pxip in the group pV p and let zi be the
inverse of qxiq in the group qCq.

4.11 Lemma. Let i ∈ {1, 2, . . . , n} and let l ∈ {1, 2, . . . ,M − 1}.
(a) δ̃〈i〉

(
(zi)l

)
= −l and δ̃〈i〉

(
(qxiq)l

)
= l.

(b) Let σ = 〈a1, a2, . . . , ak〉 ∈ E \ {∅} and assume that it is not the case that a1 = a2 =
. . . = ak = i. Then δ̃σ

(
(zi)l

)
= δ̃σ

(
(qxiq)l

)
= 0.

Proof. By Lemma 4.5, δ̃〈i〉 is a homomorphism and hence δ̃〈i〉(q) = 0. So (a) follows
immediately from the observation that δ̃〈i〉(xi) = 1.

We establish (b) by induction on k. If k = 1, then a1 6= 1 so by Lemma 4.9
δ̃σ

(
(zi)l

)
= δ̃σ

(
(zi)lxi

)
= δ̃σ

(
(zi)l−1

)
= 0 and δ̃σ

(
(qxiq)l

)
= δ̃σ

(
(qxiq)l−1xiq

)
=

δ̃σ
(
(qxiq)l−1xi

)
= δ̃σ

(
(qxiq)l−1

)
= 0. Now assume that k > 1 and (b) holds for k − 1.

If ak 6= i, then exactly as above δ̃σ
(
(qxiq)l

)
= δ̃σ

(
(zi)l

)
= 0, so assume that ak = i

and let σ′ = 〈a1, a2, . . . , ak−1〉. Then it is not the case that a1 = a2 = . . . = ak−1 so
by Lemma 4.9, 0 = δ̃σ

(
(zi)l−1

)
= δ̃σ

(
(zi)lxi

)
= δ̃σ

(
(zi)l

)
+ δ̃σ′

(
(zi)l

)
= δ̃σ

(
(zi)l

)
. Also

δ̃σ
(
(qxiq)l

)
= δ̃σ

(
(qxiq)l−1xiq

)
= δ̃σ

(
(qxiq)l−1xi

)
= δ̃σ

(
(qxiq)l−1

)
+δ̃σ′

(
(qxiq)l−1

)
= 0.

4.12 Definition. For v, v′ ∈ βS, v ∼ v′ if and only if for all σ ∈ E\{∅}, δ̃σ(v) = δ̃σ(v′).

4.13 Lemma. Let v, v′ ∈ βS and assume that v ∼ v′.

(a) If r, r′ are idempotents in V , then vr ∼ v′r′.
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(b) For every i ∈ {1, 2, . . . , n}, vxi ∼ v′xi and vyi ∼ v′zi.

Proof. (a) By Lemma 4.8, δ̃σ(vr) = δ̃σ(v) = δ̃σ(v′) = δ̃σ(v′r′).

(b) We have vyixip = vp and v′zixiq = v′q so by Lemma 4.8 for any σ ∈ E \ {∅},
δ̃σ(vyixi) = δ̃σ(vyixip) = δ̃σ(vp) = δ̃σ(v) = δ̃σ(v′) = δ̃σ(v′q) = δ̃σ(v′zixiq) = δ̃σ(v′zixi),
so vyixi ∼ v′zixi.

We now proceed by induction on the length of σ. Assume first that σ = 〈a1〉. Then
by Lemma 4.9 either

(1) δ̃σ(vyixi) = δ̃σ(vyi), δ̃σ(v′zixi) = δ̃σ(v′zi), δ̃σ(vxi) = δ̃σ(v), and δ̃σ(v′xi) =
δ̃σ(v′); or

(2) δ̃σ(vyixi) = δ̃σ(vyi) + 1, δ̃σ(v′zixi) = δ̃σ(v′zi) + 1, δ̃σ(vxi) = δ̃σ(v) + 1, and
δ̃σ(v′xi) = δ̃σ(v′) + 1.

In either case δ̃σ(vyi) = δ̃σ(v′zi) and δ̃σ(vxi) = δ̃σ(v′xi).

Now assume that k > 1, σ′ = 〈a1, a2, . . . , ak−1〉, δ̃σ′(vyi) = δ̃σ′(v′zi), and δ̃σ′(vxi) =
δ̃σ′(v′xi). Again applying Lemma 4.9 we see that δ̃σ(vyi) = δ̃σ(v′zi), and δ̃σ(vxi) =
δ̃σ(v′xi).

4.14 Lemma. Let m ∈ N and let j1, j2, . . . , jm ∈ {1, 2, . . . , n}. Assume that for each
i ∈ {1, 2, . . . ,m}, either vi = pxjip and v′i = qxjiq or vi = yji and v′i = zji . Let
u = v1 · v2 · · · vm and let u′ = v′1 · v′2 · · · v′m. Then u ∼ u′.

Proof. Note that by Lemma 4.8, p ∼ q. We proceed by induction on m. If m = 1, the
result is an immediate consequence of Lemma 4.13 (noting that pyi = yi and qzi = zi).

Now assume thatm > 1 and v1·v2 · · · vm−1 ∼ v′1·v′2 · · · v′m−1. Then applying Lemma
4.13 twice we have v1 · v2 · · · vm−1 · p ∼ v′1 · v′2 · · · v′m−1 · q so v1 · v2 · · · vm ∼ v′1 · v′2 · · · v′m.

We are now ready to conclude the proof of Theorem 4.4. Recall that we have
assumed that we have d ∈ N, w1, w2, . . . , wd ∈ pV p, l1, l2, . . . , ld ∈ N, and j1, j2, . . . , jd ∈
{1, 2, . . . , n} such that (w1)l1 · (w2)l2 · · · (wd)ld = p, for each i ∈ {1, 2, . . . , d}, either
wi = pxjip or wi = yji , and if i ∈ {1, 2, . . . , d− 1}, then ji 6= ji−1. (All of these things
were introduced at the start of the proof of Theorem 4.4 except for j1, j2, . . . , jd. These
can be determined from the fact that {x1, x2, . . . , xn} =

{
rt(i) : i ∈ {1, 2, . . . , d}

}
.)

Let σ = 〈j1, j2, . . . , jd〉 and let u = (w1)l1 · (w2)l2 · · · (wd)ld . We shall show that
δ̃σ(u) 6= 0, which will be a contradiction since δ̃σ(p) = 0.

For i ∈ {1, 2, . . . , d}, let w′i = qxjiq if wi = pxjip and let w′i = zji if wi = yji .
Let u′ = (w′1)

l1 · (w′2)l2 · · · (w′d)ld . By Lemma 4.14, u ∼ u′ so it suffices to show that
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δ̃σ(u′) 6= 0.

Let E′ = {τ ∈ E : the length of τ is less than d}. For m ∈ {1, 2, . . . , d}, let

Am =
{
s1 · s2 · · · sm :(∀i ∈ {1, 2, . . . ,m− 1})(max supp(si) < min supp(si+1)) and

(∀τ ∈ E′)(∀i ∈ {1, 2, . . . ,m})
(
δτ (si) = δ̃τ

(
(w′i)

li
))}

.

We show by induction on m that Am ∈ (w′1)
l1 · (w′2)l2 · · · (w′m)lm . For each τ ∈ E′ pick

Rτ ∈ (w′1)
l1 such that for all s ∈ Rτ , δτ (s) = δ̃τ

(
(w′1)

l1
)
. Then

⋂
τ∈E′ Rτ ⊆ A1 so

A1 ∈ (w′1)
l1 .

Now let m ∈ {1, 2, . . . , d− 1} and assume that Am ∈ (w′1)
l1 · (w′2)l2 · · · (w′m)lm . We

show that

Am ⊆ {t ∈ S : t−1Am+1 ∈ (w′m+1)
lm+1}

so that Am+1 ∈ (w′1)
l1 · (w′2)

l2 · · · (w′m+1)
lm+1 as required. Let t ∈ Am and pick

s1, s2, . . . , sm as in the definition of Am so that t = s1 · s2 · · · sm. For each τ ∈
E′ pick Rτ ∈ (w′m+1)

lm+1 such that for all s ∈ Rτ , δτ (s) = δ̃τ
(
(w′m+1)

lm+1
)
. Let

T = {v ∈ S : min supp(v) > max supp(sm)}. Then since (w′m+1)
lm+1 ∈ C, we have

T ∈ (w′m+1)
lm+1 . (This fact is the reason for working with u′ rather than u.) Then

T ∩
(⋂

τ∈E′ Rτ

)
⊆ t−1Am+1 so t−1Am+1 ∈ (w′m+1)

lm+1 as required.

We thus have that Ad ∈ u′. We also know that {t ∈ S : δσ(t) = δ̃σ(u′)} ∈ u′.
We shall show that for t ∈ A such that δσ(t) = δ̃σ(u′), either δσ(t) =

∏d
i=1 li or

δσ(t) = −
∏d

i=1 li. Recalling that M = 1 +
∏d

i=1 li, we will then have that δ̃σ(u′) 6= 0.
To this end let t ∈ Ad and pick s1, s2, . . . , sd such that t = s1 · s2 · · · sd, for all i ∈ {1, 2,
. . . ,m− 1}, max supp(si) < min supp(si+1), and for all τ ∈ E′ and all i ∈ {1, 2, . . . ,m},
δτ (si) = δ̃τ

(
(w′i)

li
)
.

Let H = {(ρ1, ρ2, . . . , ρd) ∈ Ed : σ = ρ1
_ρ2

_ . . . _ρd} (where _ denotes con-
catenation) and for (ρ1, ρ2, . . . , ρd) ∈ H, let

G(ρ1,ρ2,...,ρd) = {µ ∈ φσ(t) : (∀i ∈ {1, 2, . . . , d})(ψ
(
µ ∩ supp(si)

)
= ρi)} .

We note that |G(ρ1,ρ2,...,ρd)| =
∏d

i=1 |φρi
(si)| because there are precisely |φρi

(si)| choices
for µ ∩ supp(si) with ψ

(
µ ∩ supp(si)

)
= ρi. Note also that

φσ(t) =
⋃

(ρ1,ρ2,...,ρd)∈H G(ρ1,ρ2,...,ρd)

and these sets are pairwise disjoint so |φσ(t)| =
∑

(ρ1,ρ2,...,ρd)∈H

∏d
i=1 |φρi

(si)|.
Now, if (ρ1, ρ2, . . . , ρd) ∈ H and (ρ1, ρ2, . . . , ρd) 6= (〈j1〉, 〈j2〉, . . . , 〈jd〉), then for

some i ∈ {1, 2, . . . , d}, ρi is neither empty nor constant so, by Lemma 4.11, δρi
(si) =

δ̃ρi

(
(w′i)

li
)

= 0 and thus |φρi
(si)| ≡ 0 (mod M). Consequently δ̃σ(u′) = δσ(t) ≡
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|φσ(t)| (mod M) ≡
∏d

i=1 |φ〈ji〉(si)| (mod M). By Lemma 4.11 for i ∈ {1, 2, . . . , d},
|φ〈ji〉(si)| ≡ δ〈ji〉(si) (mod M) ≡ δ̃〈ji〉

(
(wi)li

)
= ±li and thus either δσ(t) =

∏d
i=1 li or

δσ(t) = −
∏d

i=1 li.

We show now that if S is left cancellative, then Theorem 4.4 yields a result about
the smallest ideal of βS.

4.15 Theorem. If S is left cancellative, then V ∩ K(βS) 6= ∅ and so K(V ) =
K(βS) ∩ V .

Proof. We show that given any minimal left ideal L of βS, V ∩ L 6= ∅. It suffices to
show that for each J ∈ Pf (κ), L ∩DJ 6= ∅ because then {L ∩ c`βSDJ : J ∈ Pf (κ)} is
a collection of closed subsets of βS with the finite intersection property, and therefore
has nonempty intersection.

So let J ∈ Pf (κ). We observe that every s ∈ S can be written uniquely as s = ab

where a ∈ S satisfies supp(a) ⊆ J and b ∈ DJ , and that {a ∈ S : supp(a) ⊆ J} is finite.
Hence, if p is an idempotent in L, then p = ax for some a ∈ S and some x ∈ DJ . Now
axp = ax and this implies that x = xp by [9, Lemma 8.1]. So x ∈ L and and thus
L ∩DJ 6= ∅.

The fact that K(V ) = K(βS) ∩ V follows from [9, Theorem 1.65].

Recall that we are assuming that S is an infinite semigroup, that |S| = κ and that
S has a digital representation with the property that ab = ba whenever a, b ∈ S satisfy
a ⊥ b.

4.16 Corollary. If S is left cancellative, then the structure group of S contains a copy
of the free group on 22κ

generators.

Proof. Pick an idempotent p ∈ K(V ). Then, by Theorem 4.15, pV p ⊆ K(βS) and so
Theorem 4.4 applies.

We now show that Corollary 4.16 can be extended to many semigroups which may
not satisfy the hypotheses used in the proof of this corollary.

4.17 Theorem. Let T be a discrete semigroup and assume that there is a discrete
semigroup S whose structure group contains a copy of the free group on 22κ

generators
and that there is a homomorphism h : T onto−→S. Then the structure group of βT contains
a copy of the free group on 22κ

generators.
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Proof. Let h̃ : βT → βS be the continuous extension of h. Then by [9, Corollary 4.22]
h̃ is a homomorphism and h̃[βT ] = βS by [9, Exercise 3.4.1] so by [9, Exercise 1.7.3]
K(βS) = h̃[K(βT )]. Let p be an idempotent in K(βS) and let G be a copy of the
free group on 22κ

generators contained in pβSp (which exists by assumption). Then
h̃−1[{p}]∩K(T ) 6= ∅ so pick a minimal left ideal L of βT such that h̃−1[{p}]∩L 6= ∅. Then
h̃−1[{p}]∩L is a compact subsemigroup of βT so pick an idempotent q ∈ h̃−1[{p}]∩L.
Then h̃[qβTq] = pβSp. Let A be the set of generators of G and for a ∈ A, pick
f(a) ∈ qβTq such that h̃

(
f(a)

)
= a. Then since G is a free group, f extends to a

homomorphism f∗ : G→ qβTq. For any w ∈ G, h̃
(
f∗(w)

)
= w so f∗ is injective.

4.18 Corollary. Let κ ≥ ω and let T be either the free semigroup with identity or the
free group on the generators 〈aλ〉λ<κ. Then the structure group of βT contains a copy
of the free group on 22κ

generators.

Proof. If T is the free semigroup with identity on the generators 〈aλ〉λ<κ, let S =⊕
λ<κ(ω,+). If T is the free group, let S =

⊕
λ<κ(Z,+). In either case S is cancellative

and commutative and by Theorem 1.1, S has a digital representation. By Corollary 4.16
the structure group of S contains a copy of the free group on 22κ

generators. Given
λ < κ, let h(aλ) ∈ S be defined by, for τ < λ,

h(aλ)(τ) =
{

1 if τ = λ
0 if τ 6= λ .

Extend h to a homomorphism on T and note that h is surjective, so that Theorem 4.17
applies.

We now give an application of digital representations to weakly almost periodic
compactifications. In the sequel S will denote an infinite discrete abelian group with
cardinality κ, WAP(S) will denote the algebra of weakly almost periodic functions
defined on S and SWAP will denote the weakly almost periodic compactification of S.
The mapping π : βS → SWAP will denote the canonical homomorphism. We observe
that, for any x, y ∈ βS, π(x) = π(y) if and only if f̃(x) = f̃(y) for every f ∈ WAP(S),
where f̃ denotes the continuous extension of f to βS. We remind the reader that SWAP

is a commutative semigroup.

By Theorem 3.9, S has a digital representation 〈Ft〉t∈κ. For s ∈ S, we define
supp(s) and V as in Definition 4.2. We define α : S → ω by α(s) = |supp(s)|. Then
α̃ : βS → βω will denote the continuous extension of α. For any subset J of κ and any
s ∈ S, we put αJ(s) = |J∩supp(s)| and use α̃J : βS → βω for the continuous extension
of αJ . (So the mapping γJ introduced above, is αJ reduced modulo M .)
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4.19 Lemma. Let S be an abelian group with cardinality κ. Given n ∈ N, put
An = {s ∈ S : α(s) ≤ n}. Then χAn ∈ WAP(S). Furthermore, for every J ⊆ κ,
χAn · αJ ∈ WAP(S).

Proof. By [9, Theorem 21.18], to see that χAn ∈ WAP(S), it is sufficient to show that
χ̃An(xy) = χ̃An(yx) for every x, y ∈ βS.

We first show that every z ∈ An can be written as z = cw, where c ∈ S, w ∈ V

and α̃(w) ∈ ω. To see this, put St = {s ∈ S : t ∈ supp(s)} for each t ∈ κ, and put
H = {t ∈ κ : St ∈ z}. We claim that H is a finite set with cardinality at most n. To
see this, let H ′ denote any finite subset of H. Then

⋂
t∈H′ St ⊆ {s ∈ S : α(s) ≥ |H ′|}.

Since
⋂

t∈H′ St ∈ z, it follows that |H ′| ≤ n. Given s ∈ S, write s =
∏

t∈supp(s) xt

with each xt ∈ Ft and put f(s) =
∏

t∈supp(s)∩H xt. Then, S =
⋃
{f−1[{c}] : c ∈ S and

supp(c) ⊆ H}. Since {c ∈ S : supp(c) ⊆ H} is finite, for some c ∈ S with supp(c) ⊆ H,
we have f−1[{c}] ∈ z.

We claim that or each F ∈ Pf (κ) such that F ∩H = ∅, c−1z ∈ DH∪F , so let such
F be given and let L =

⋂
t∈F (S \ St) Then L ∈ z and therefore c−1(L ∩ f−1[{c}]) ∈

c−1z. We claim that c−1(L ∩ f−1[{c}]) ⊆ DH∪F , so let y ∈ c−1(L ∩ f−1[{c}]). Then
cy =

∏
t∈supp(cy) xt where each xt ∈ Ft and c = f(cy) =

∏
t∈supp(cy)∩H xt. Thus

y =
∏

t∈supp(cy)\H xt and in particular, supp(y) = supp(cy)\H. Suppose that y /∈ DH∪F

and pick t ∈ supp(y) ∩ (H ∪ F ). Then t ∈ (supp(cy) \H) ∩ F . But cy ∈ L ⊆ S \ St so
t /∈ supp(cy), a contradiction. As a consequence we have that c−1z ∈ V and hence that
z = cw for some w ∈ V . By Lemma 4.5, this implies that α(c)α̃(w) = α̃(z) ∈ ω. So
α̃(w) ∈ ω, because βω \ ω is an ideal of βω [9, Theorem 4.36].

Now assume that xy ∈ An. Then there exists s ∈ S such that sy ∈ An. Thus there
exist c ∈ S and v ∈ V such that sy = cv and α̃(v) ∈ ω. Let b = s−1c. Then y = bv.
Then, using the fact that S is contained in the center of βS, xy = bxv ∈ An. By Lemma
4.5, α̃(xy) = α̃(bx)α̃(v) ∈ ω, and hence α̃(bx) ∈ ω. Consequently, bx ∈ Am for some
m ∈ ω so we also have x = au for some a ∈ S and some u ∈ V satisfying α̃(u) ∈ ω.
So α̃(xy) = α̃(ab)α̃(u)α̃(v) = α̃(ab)α̃(v)α̃(u) = α̃(yx). So χ̃

An(xy) = χ̃
An(yx), and

χAn ∈ WAP(S), as claimed.

Similarly, it follows from Lemma 4.5 that, if xy ∈ An for some n ∈ ω, then α̃J(xy) =
α̃J(yx). So χAn · αJ ∈ WAP(S).

4.20 Theorem. Copies of the free abelian semigroup on 22κ

generators exist in SWAP .

Proof. As in the proof of Theorem 4.4, we choose bt ∈ Ft for each t < κ, and use
U to denote the set of uniform ultrafilters on {bt : t < κ}. We note that |U | = 22κ

.
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We choose a finite number of distinct elements x1, x2, . . . , xn in U and a partition of
κ into disjoint subsets J1, J2, . . . , Jn with the property that {bt : t ∈ Ji} ∈ xi for each
i ∈ {1, 2, . . . , n}.

Suppose that u = xk1
1 x

k2
2 · · ·xkn

n and that v = xm1
1 xm2

2 · · ·xmn
n , where ki,mi ∈ ω

and 〈k1, k2, . . . , kn〉 6= 〈m1,m2, . . . ,mn〉. We shall show that π(u) 6= π(v). It will follow
that π[U ] generates a free abelian subsemigroup of SWAP .

To see this, choose N >
∑n

i=1(ki + mi). It is easy to verify that α̃(u) =
∑n

i=1 ki

and α̃(v) =
∑n

i=1mi, so that u, v ∈ AN . Now α̃Ji
(xj) =

{
1 if i = j
0 if i 6= j

. By Lemma 4.5,

α̃Ji
is a homomorphism on V . So α̃Ji

(u) = ki and α̃Ji
(v) = mi for each i ∈ {1, 2, . . . , n}.

We can choose i ∈ {1, 2, . . . , n} for which ki 6= mi. Then χ̃AN
· α̃Ji

(u) 6= χ̃AN
· α̃Ji

(v).
By Lemma 4.19, χAN

· αJi
∈ WAP(S) and so π(u) 6= π(v).

Theorem 4.20 illustrates the fact that the existence of free algebraic structures in
a compact right topological semigroup T , can be very different from their existence in
K(T ). For example, suppose that S is a direct sum of copies of Z2. It is well-known
that K(SWAP ) is the Bohr compactification of S and that this is a group with index 2.
So K(SWAP ) contains no non-trivial free abelian semigroups.
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Math. Proc. Cambr. Phil. Soc. 116 (1994), 99–118.

[3] H. G. Dales, A. Lau and D. Strauss, Banach algebras on semigroups and their
compactifications, manuscript∗.

[4] C. F. Gauss, Analysis residuorum: Caput octavum, Disquisitiones generales de
congruentiis, Königlichen Gesellschaft der Wissenschaften, Gottingen, 1876; Un-
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