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Abstract. A digital representation of a semigroup (S,-) is a family (Ft)icy, where T
is a linearly ordered set, each F} is a finite non-empty subset of S and every element of
S is uniquely representable in the form Il;cf x; where H is a finite subset of I, each
z¢ € Fy and products are taken in increasing order of indices. (If S has an identity 1,
then I,y x¢ = 1.) A strong digital representation of a group G is a digital represen-

tation of G with the additional property that for each t € I, Fy = {z¢,23,..., w;ntfl}
for some z+ € G and some m¢ > 1 in N where m; = 2 if the order of x; is infinite,
while, if the order of x4 is finite, then m¢ is a prime and the order of x4 is a power of
m¢. We show that any free semigroup has a digital representation with each |F:| =1
and that each abelian group has a strong digital representation. We investigate the
problem of whether all groups, or even all finite groups have strong digital represen-
tations, obtaining several partial results. Finally, we give applications to the algebra
of the Stone-Cech compactification of a discrete group and the weakly almost periodic
compactification of a discrete semigroup.

1. Introduction

There are many examples where one utilizes the ability to represent each element of an
abelian group or semigroup (S, +) in a unique fashion as ), , a;z; for a; € Dy where
(x¢)tca is a given indexed set and Dy is a finite subset of Z. The use of various fixed
bases for the expansion of members of N as well as more esoteric variable bases are too
numerous to cite here. Not so well known is the fact that with z, = (-2)*, D, = {0,1},
and A = w = NU{0}, every element of Z has a unique expansion of the form ), , a;z;
with each a; € D;. This fact was used by B. Bordbar and J. Pym in [1] to show that there
are 2¢ idempotents in the weakly almost periodic compactification of Z and that the
set of such idempotents is not closed. (A similar construction, wherein the coefficients
rather than the base elements were allowed to be negative, was used also by W. A. F.

Ruppert in [14] to produce weakly almost periodic functions.) In collaboration with
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I. Leader, we used a similar expansion to the base —k in [7] to establish that certain
natural infinite matrices are not image partition regular. A weak version of digital
representation, the notion of oid, was introduced by J. Pym in [13] and is sufficient to

derive much of the algebraic structure of the Stone-Cech compactification of N.
Considerably more surprising was the fact that members of Q can be expressed

—1)t
uniquely in the form ZteA asxy for a; € Dy where A =7, xy = ((1 )t)' and Dy = {0, 1,
oo, —t}ift <0, and 2 = (-1)%(1 +t)! and D; = {0,1,...,t + 1} if t > 0. T. Budak,
N. Isik, and J. Pym established this fact in [2]. They used it to show that SQ,, the

Stone-Cech compactification of Q with the discrete topology, has 2¢ minimal left ideals

and 2¢ minimal right ideals, and each maximal group in its smallest ideal contains a

free group on 2° generators.

In [10] we investigated which semigroups have the property that there is some in-
dexed family (z;);c 4 such that every element of the semigroup is uniquely representable
in the form ), . ;. In the terms of the current paper, in which we are writing arbi-
trary semigroups multiplicatively, we were investigating which semigroups have digital

representations (Fy)¢cy with each |Fy| = 1.

In this paper we investigate more generally which semigroups have digital repre-
sentations with specified properties. In Section 2 we show that any free semigroup has

a digitial representation (Fy);c; with each |F;| = 1.

In Section 3 we turn our attention to groups. We show that any abelian group
has a strong digital representation. We also show that if G is a group, H is a torsion
group which is a normal subgroup of G and both H and G/H have strong digital
representations, then so does G. As a consequence, if we knew that each finite simple
group has a strong digital representation, we would know that the same statement
would hold for any finite group. We succeed only in showing that the two classes of
nonabelian finite simple groups which have the smallest members do all have strong

digital representations.

In Section 4 we provide applications of our results to the algebra of the Stone-
Cech compactification and the weakly almost periodic compactification of a discrete
semigroup. Specifically we show that if a discrete semigroup 7' can be mapped homo-
morphically onto an infinite commutative cancellative semigroup of cardinality x which
has a digital representation, then the maximal groups in the smallest ideal of 3T contain
copies of the free group on 22 generators. We also show that, if T is an infinite discrete

commutative group of cardinality , then the weakly almost periodic compactification
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of T contains copies of the free abelian group on 22" generators.
We conclude the introduction with a general result applying to both semigroups and
groups. Recall that the notions of digital representation and strong digital representation

were defined in the abstract.

1.1 Lemma. Let J be a set and for each j € J, let S; be a semigroup with identity 1
which has a digital representation. Then S = @jeJ S; has a digital representation. If
each S; is a group which has a strong digital representation, then S has a strong digital

representation.

Proof. For each j € J choose a digital representation (F};);cr, of S;, and choose a
linear ordering of J. Let I = {(k,t) : k € J and t € I} and order I by agreeing
that (k,t) < (j,s) if either kK = j and ¢ < s or k < j. For each k € J, let 0 :
Sk — S denote the natural injection. It is routine to verify that (0 [Fk t])k,er is a
digital representation of S and, if each S; is a group and (F};);cz, is a strong digital

representation of S;, then (0x[Fk.¢])(x+)er is a strong digital representation of S. U
2. Free semigroups

We show that all free semigroups have digital representations (F}):er with each |Fi| = 1.
We show also that if k is the cardinality of the semigroup, then I can be chosen equal
to k with its ordering as an ordinal. (We are using the standard interpretation that
k is the first ordinal of its size. In particular the statements ¢ < k and o € k are
Synonymous. )

Given a set X we write P;(X) for the set of finite nonempty subsets of X. Given

(x¢)ter where I is a linearly ordered set, we let

FP((zi)ier) = {lliep v - F € Pr(D)}

where the products are taken in increasing order of indices.

Notice that if S is the free semigroup (without identity) on an alphabet B and
(Fi)ier is a digital representation of S, then (Fy):c; is also a digital representation of
the free semigroup with identity on B. For w € S we write ¢(w) for the length of the

word w.

2.1 Lemma. Let A > 0 be a cardinal and let B be an alphabet with |B| = \. Let S be the
free semigroup on the alphabet B and let k = |S|. For w € S, let A(w) ={m € S:m

occurs in w}. There is a well ordering < of S in order type k so that if w,v € S,
A(w) € A(v), and (w) < {(v), then w < v.
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Proof. Notice that kK = max{\,w}. Well order B as (a,),<x. For each s € S, we define
f(s) < Aby f(s) =max({t < X :a, occurs in s}). We put g(s) = max{{(s), f(s)}. For
each ¢ < Kk, we put J, = g~ [{}].

We make the following observations. The family {J, : ¢+ < s} partitions S into
disjoint subsets, J, is finite if ¢ is finite, and |.J,| = |¢] if ¢ is infinite.

We well order each J, in such a way that, for every s,t € J,, if £(s) < £(t), then
s < t. We then order S lexicographically by stating that s < ¢ if g(s) < g¢(t) or if
g(s) = g(t) and s <t in Jy(4). This defines a well ordering of S of order type s because,
v<ps J,| < k.

Now assume that w,v € S, A(w) C A(v), and ¢(w) < £(v). Since A(w) C A(v) we
must have f(w) < f(v). Therefore g(w) < g(v). If g(w) = g(v), then w < v in Jy()

for every u < k, |

and consequently w < v. U

2.2 Theorem. Let B be an alphabet, let S be the free semigroup on the alphabet B,
and let k = |S|. Then S has a digital representation (F,),<, with each |F,| = 1.

Proof. For w € S let A(w) = {m € S : m occurs in w}. By Lemma 2.1 well order S in
order type k so that if w,v € S, A(w) C A(v), and ¢(w) < £(v), then w < v.

Let g = minS. Let 0 < k and assume we have chosen z, for 7 < o. Then
|[FP((#;)7<0)| < k50 S\ FP((z:)r<s) # 0. Let 25 = min (S\ FP((z:)r<0)).

Since the ordering of S is in order type x we have that S = FP((z,)s<x). Note
also that

(x) fweS,o<k, Alw) C A(x,), and f(w) < l(z,), then w € FP((z;)7<o) -

Suppose we have F' # G in Py(k) such that [[ .p 2o = [[,cp 2o. By right
cancellation we may assume that 7 = max F' # max G = §. Further, if we had {(z,) =
{(xs5) we would have z, = x5, so we may assume that ¢(x,) > ¢(z5). And then, since
A(xs) € A(z,) we have by () that z5 € FP((x)y<-) and so § < 7.

Foro € G, let H, ={p € G:0 < p}t. Letn=min{o € G: {(]],cp, =u) < €(zr)}
We cannot have E(HueHn x,) = {(x;) for then we would have z, = HueHn x, €
FP({zu)u<s) € FP((xu)pu<r). SO E(HMGH" x,) < L(z;). So there exist letters my, ma,
...,mg such that x; = mq-mg---my HueHn x,. Let v = max(G \ H,). Then v < 7 so

K(I'y) + g(HueHU xu) = E(HMEH7 xu)
> l(x;)
=S5+ K(I_IMQH,7 xu)



so s < {(x4) and by (x) my -ma---mg € FP((x,)<y) € FP((y)pu<y) S0
zr € FP((x,)u<s) € FP({x,)<s), a contradiction.
The induction being complete, let F,, = {x,} for each o < k. U

3. Groups

Now we turn our attention to groups. In this section we will write “((x{)ter, (mi)ter)
is a digital representation of S” to represent the statement that (Fi)c; is a digital
representation of S and for each t € I, F, = {x;,22,...,2/ '}. Then the assertion
“(x)ter, (me)ier) is a strong digital representation of S” adds the requirement that
m; = 2 when z; has infinite order and if the order of x; is finite then that order is the

power of a prime p and m; = p.

3.1 Lemma. Let H and K be subgroups of a group G such that H N K = {1} and
HK is a group. Assume that ((zi)ter, (mi)icr) is a digital representation of H and
((yt)te, (ne)tes) is a digital representation of K. Let L = (I x {1}) U (J x {2}) and
order L by agreeing that I x {1} precedes J x {2} (and of course internal order is
preserved). For t € I, let 21y = x4 and vy = my, and fort € J, let 240y = s
and r 9y = ng. Then ((2(4,0)) (t,i)eLs (T(t,6)) (t,i)er) 5 a digital representation of HK. In

particular, if H and K have strong digital representations, so does HK .

Proof. Trivially each element of H K is representable in the form

(HteF (xt)a(t)> (HtEP (yt)é(t))

for some finite (possibly empty) subsets F' of I and P of J and some choice of a(t) €
{1,2,...,my — 1} for t € F and some choice of §(t) € {1,2,...,ny — 1} for t €
P. Suppose that we have finite subsets F' and F’ of I and P and P’ of J and
choices of a(t) for t € F, o/(t) for t € F’', §(t) for t € P, and §'(t) for t € P’
such that ([T, (20)*®) (ITep @)°@) = (iep (@) D) (liepr (01" ®). Then

(Mer @) O) " (e @)°©) = [Liep @07 O) (iep @)°©) " € HNK = {1}
so (F,a) = (F',a’) and (P,§) = (P',¥). O

3.2 Lemma. Let H be a normal subgroup of a group G. Assume that G/H has a
digital representation ({(x¢H)icr, (mi)icr), ((Yt)ees, (ni)tes) is a digital representation
of H, and INJ = (). Let L = IUJ and order L by agreeing that I preceeds J. Fort € I,
let zy = x¢ and ry = my, and fort € J, let zz =y and ry = ny. Then ((zt)ter, (Tt)tel)

18 a digital representation of G.



Proof. We first show that each w € GG is representable in the form

(HteF (xt)a(t)) (HteP (yt)é(t))

for some finite (possibly empty) subsets F' of I and P of J and some choice of a(t) € {1, 2,
...,my — 1} for t € F' and some choice of §(¢t) € {1,2,...,ny — 1} fort € P. If w € H,
this is trivial, so assume that w € G\ H. Pick finite F' C I and a choice of a(t) € {1, 2,
...,my — 1} for t € F such that wH = [[,cp (z:H)*®. Then w € ([[,ep (z)*W) H
so pick z € H such that w = ([[,cp (2:)*®) z. Pick finite P C J and a choice of
5(t) € {1,2,...,n; — 1} for t € P such that z = [[,.p (¢)°").

Now suppose that we have finite subsets F' and F’ of I and P and P’ of J and
choices of «(t) for t € F, o/(t) for t € F' §(t) for t € P, and §'(t) for t € P’

such that ([T,cp (20)*®) ([T,ep (1)°®) = <Ht€F1 (xt)o‘/(t)> (Htep/ (yt)y(t)>. Then
(HteF’ (xt)a/(t)>_ (IMeer (xe)*®) = (HteP' (yt)y(t)> (ITiep (yt)é(t))_l € H so

<Ht€F’ (xt)a/(t)> H = (HteF (xt)a(t)) H so [[icp (xtH)a/(t) = [licr (xtH)a(t). So
(F,a) = (F', ') and therefore [, p (4:)°® = [L,cpr (1) ® and thus (P,d) = (P',d").
ad

Recall that a torsion group is one in which each element has finite order and a
torsion free group is one in which no element has finite order. In what follows, given a

group G and an element g € G, we shall denote by o(g) the order of g.

3.3 Lemma. Let G be a group and let H be a torsion group which is a normal subgroup
of G. Let p be a prime, let k € N, and assume that y € G is such that o(yH) = p".
Then there exist x € G and n € N such that tH = yH and o(x) = p™.

Proof. Since ypk € H, y has finite order. Let m = o(y). If m = p*, we are done, so
assume m > p*. Now y™ =1 € H so (yH)™ = H so p* divides m. Pick t > k and
q relatively prime to p such that m = ¢p’. Pick by the Chinese Remainder Theorem
some z € N such that z = 0 (mod ¢) and z = 1 (mod p*). Pick r,s € w such that
z=rq=sp"+1. Let z = y*>. Then zH = y*?" *1H = (yH)?"*yH = yH. Also
2P =y’ = (y™)" =1 so o(z) divides p'. O

Note that one cannot omit the assumption that H is a torsion group in either the
above lemma or the following theorem. To see this let G = (Z,+) and let H = 3Z. Then
o(1+ H) = 3 but no = € G has finite order. Further, no strong digital representation of

H extends to a strong digital representation of G.
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3.4 Theorem. Let G be a group, let H be a torsion group which is a normal subgroup
of G, and assume that H and G/H have strong digital representations. Then so does
G. In fact, if ((yt)tes, (nt)tes) s a strong digital representation of H, then there exist
L containing J and a strong digital representation ({z)ter, (Tt)ter,) of G such that t

precedes s whenevert € L'\ J and s € J and z; = y; and ry = ny whenever t € J.
Proof. Lemmas 3.2 and 3.3. U

3.5 Corollary. If each finite simple group has a strong digital representation, then

every finite group has a strong digital representation.
Proof. Induction on |G| using Theorem 3.4. 0

We now set out to show in Theorem 3.9 that every abelian group has a strong

digital representation.

3.6 Lemma. Let G be an abelian torsion group, let P be the set of primes, and for
p€ P, let Ay ={z € G:o(x)=p" for some k € w}. Then each A, is a subgroup of G
and G = P ,cp Ap.

Proof. [6, Theorem A3]. O

3.7 Lemma. Let p be a prime and let G be an abelian group such that o(x) is a power

of p for each x € G. Then G has a strong digital representation.

Proof. For each n € N, let G,, = {a € G : a?" = 1}. Then each G,, is a subgroup of G.
We produce inductively a possibly empty set A,, and (x¢)ica, such that A, N Ap =0
for n # k and if B, = UTZI A, and for each t € B,,, r; = p, then for each m € N,
((x¢)teB,,, (Tt)ten,,) is a strong digital representation of G,.

We have that G is a vector space over Z,, so is isomorphic to a direct sum of
copies of Z, hence, by Lemma 1.1, G; has a strong digital representation.

Pick Ay and (x¢)tca, such that ((z;)teca,, (rt)tca, ) is a strong digital representation
of G1 where r; = p for each t € A;.

Inductively, let m € N and assume that A, and (x;);c4, have been chosen for
n < m. Now given w € G411, WP € Gy, 80 Gryy1/Gpy is a vector space over Z, and
therefore has a strong digital representation.

By Theorem 3.4 we may choose a set A,,+1 disjoint from B,, = U?:l A, and
(T¢)te A, such that ((x¢)ieB,,uA 15 (Tt)t€BmUA,.., ) IS a strong digital representation

of G,,4+1 where each 7, = p.



The induction being complete, let B = (J, A,. Then ((z4)iep, (rt)tcp) is a
strong digital representation of G. U

3.8 Lemma. Let G be an abelian torsion free group. Then G has a strong digital

representation.
Proof. [10, Theorem 4.7]. 0
3.9 Theorem. Fvery abelian group has a strong digital representation.

Proof. Let G be an abelian group, let T'= {z € G : o(z) is finite}. Let P be the set of
primes, and for p € P, let A, = {x € T : o(z) = p* for some k € w}. By Lemma 3.6,
T= @peP A, so by Lemmas 3.7 and 1.1, T" has a strong digital representation.

Now G/T is torsion free so by Lemma 3.8, G/T has a strong digital representation.
By Theorem 3.4, G has a strong digital representation. U

3.10 Lemma. FEvery finite nonabelian simple group has an order which has a repeated

prime factor.

Proof. In [5, Table 1] the orders of the finite simple groups are listed. A simple check

shows that each has a repeated prime factor. U

Notice that the requirement in the following theorem regarding no repeated prime
factors cannot simply be omitted. Indeed, Z, does not have a digital representation

with each xz; having order 2.

3.11 Theorem. Let G be a finite group and assume that |G| is a product of distinct
primes. Then G has a strong digital representation ({x¢)ter, (Mmy)rer) with the additional

property that each x; has order my.

Proof. We proceed by induction on the length of the prime factorization of |G|. If
|G| is a prime p, then G is isomorphic to Z, which has a digital representation of the
required type. Assume now that |G| is a product of more than 1 distinct primes and
the result is valid for groups with shorter factorizations of their order. By Lemma 3.10
G is not simple so pick a proper normal subgroup H of G. Then H and G/H each
have a digital representation of the required type. Assume that ((x:H)ier, (me)ier) is
a digital representation of G/H where each m; = o(x;) and m; is a prime. By Lemma
3.3 one may choose for each t € I some z; € G such that z;H = 2, H and o(z;) = (my)"
for some n € N. But since |G| has no repeated prime factors, we know that n = 1. The

result now follows from Lemma 3.2. UJ



3.12 Theorem. If G is a group such that |G| has at most 2 distinct prime factors,

then G has a strong digital representation.

Proof. Assume first that |G| = p* for some prime p and some k € N. By Lemma 3.7

G has a strong digital representation.

Now, assume |G| = p¥q¢' where p and ¢ are primes. Pick by Sylow’s Theorem
subgroups H and K with |H| = p* and |K| = ¢!. Then HN K = {1} so Lemma 3.1
applies. U

We now set out to show in Theorem 3.18 that any group of order p?qr has a
strong digital representation. Actually, a considerably stronger result holds. We have
by Theorems 3.20 and 3.29 below that all of the groups A,, and A,,(q) where n € N and
q is a power of a prime have strong digital representations. According to [5, Table 1] any
nonabelian simple group which is not of this form has an order whose prime factorization
has length at least 8. Consequently, by Theorem 3.4 any finite group whose order has
a prime factorization of length less than 8 must have a strong digital representation.
However, we do feel that there is some virtue in a result whose proof does not rely on

the classification of the finite simple groups.

3.13 Lemma. Letp, q, and r be primes and let G be a group with |G| = p?qr. If G has

a subgroup H with size pqr, qr, pq, or p*>r, then G has a strong digital representation.

Proof. Assume first that |H| € {qr,p*q, p?>r}. By Theorem 3.12 H has a strong digital
representation. Pick a subgroup K such that |K| is respectively p?, r, or q. Then K
has a strong digital representation so Lemma 3.1 applies.

Now assume that |H| = pgr. By Theorem 3.11, H has a strong digital rep-
resentation. Pick a subgroup M of G with |M| = p?. Pick x € M \ H. Then
{x,2%,..., 27"}y N H = (. (Suppose t € {1,2,...,p — 1} and 2t € H. Pick by the
Chinese Remainder Theorem k € N such that £ = 0 (mod ¢) and k = 1 (mod o(z)).
Then x = z¥ € H.) We claim that every member of G is uniquely representable in the
form za! for z € H and ¢t € {0,1,...,p — 1}. Since |G| = |H| - p it suffices to establish
uniqueness. Suppose z,w € H and t,s € {0,1,...,p — 1} with ¢t < s and zz' = wxs.

Then z° ' =w~lz€ H,so s =tso z = w. O

3.14 Lemma. Let G be a group, let H be a subgroup of G, and let Ny = {x € G :
xH =Hzx}. If Ny = H, x,y € G, and xH # yH, then tHx™' # yHy 1.

Proof. If tHx=! = yHy™ !, then y~'aH = Hy 'z soy~'x € Ny = H so zH = yH.
U



3.15 Lemma. Let p, q, and r be primes and let G be a group with |G| = p?qr. If G
does not have a strong digital representation, then G has at least (¢ — 1)pr elements of

order q and at least (r — 1)pq elements of order r.

Proof. It suffices to show that there are at least (¢ — 1)pr elements of order ¢. Pick a
subgroup H of G with |H| =¢. Let Ny ={z € G:2H = Hz}. Then H C Ny and Ny
is a group, so |Nx| € {¢,pq, g7, pqr, p*q,p*qr}. By Lemma 3.13, [Ny | & {qr, pqr, p*q}.

Suppose |Ng| = p?qr. That is, Ny = G. Then H is a normal subgroup of G.
Since |H| = ¢ and |G/H| = p*r we have by Theorem 3.12 that H and G/H have strong
digital representations hence, by Theorem 3.4, so does G, a contradiction.

Thus |Ngy| = q or |[Ny| = pg. Assume first that |[Ngy| = ¢ so that Ny = H. By
Lemma 3.14, if tH # yH, then tHx~! # yHy~ 1. There are p*r left cosets of H and if
cHr ' # yHy ', then xHa ' NyHy ™' = {1}, so |U,eq eHx ! = p*r(¢—1) + 1 s0
there are at least p?r(q — 1) elements of order q.

Now assume that |Ng| = pg. We claim that if y € Ny and o(y) = ¢, then y € H.
Indeed, pick z € Ny such that o(z) = p and pick a € H \ {1}. Then {xtas 1t €40,1,

..,p—1}and s € {0,1,...,q — 1}} is a subset of Ny with pg elements, so it equals
Npy. Note that if t € {1,2,...,p— 1} and s € {0,1,...,q — 1}, then o(xa®) is either
p or pg. (We have that 2' € Ny so (2'H)? = x'9H so (z'a®)? = x'9b for some b € H.
Since b € H and x'9 # 1, 2! # 1.) Thus the only elements of Ny of order ¢ must be
0a®, as required.

Next we claim that if HNuNgu~—! # {1}, then H = uHu~!. Note that HNuNgu~!
is a nontrivial subgroup of H, so H = H NuNgu~'. That is H C uNgu~'. To see
that H C uHu !, let y € H. If y = 1, then y € uHu ! so assume that y # 1. Then
u~lyu € Ny and o(u=tyu) = ¢ so v~ lyu € H. Thus y € uHu~!. Since H C uHu !
and |H| = [uHu™!| we have H = uHu 1.

Now we claim that if uNg # vNg, then (uNgu~=t)N(vNgv~1) contains no elements

of the form x

of order q. Suppose instead we have y € (uNyu™1) N (vNgv™!) with o(y) = ¢. Then
ulyu € Ngnu~tvNgv~tu. Since o(u~'yu) = g and u=tyu € Ny, we have u=lyu € H
so HNu 'oNyv~tu # {1}. Thus H = u='vHv 'u # {1}, so v"'u € Ny and therefore
uNyg = vNy, a contradiction.

Since there are pr left cosets of Ny and each uNyu~! has ¢ — 1 elements of order

q, there are at least (¢ — 1)pr elements of order ¢ in G. U

3.16 Lemma. Let p, q, and r be primes and let G be a group with |G| = p?qr. Assume
that a € G and o(a) = p*. Let H = {1,a,a>,...,a?" 1}, let N, = {z € G : ax = za},
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and let Ny ={x € G:xH = Hz}. If G does not have a strong digital representation,
then N, = Ng = H.

Proof. Trivially, N, = Ny and H C Ng. So p? divides |Ng|. It suffices to show that
|Ng| = p?. By Lemma 3.13 |Ng| # p?q and |Ng| # p?r. Suppose that |Ng| = p?qr.
Pick subgroups K and M of G with |K| = g and |M| = r. Then, by Theorem 3.12, H,
K, and M have strong digital representations. Since K C Ny, by Lemma 3.1, HK is
a group which has a strong digital representation. Then |M H K| = p?qr so, by Lemma
3.1, G = M HK has a strong digital representation. U

3.17 Lemma. Let p, q, and r be primes and let G be a group with |G| = p*qr. Let
A and B be distinct subgroups of G with |A| = |B| = p?. If G does not have a strong

digital representation, then AN B is contained in the center of G.

Proof. Suppose we have a € (AN B) \ Z(G). Since any group of order p? is abelian,
A C N, so p? divides |N,|. By Lemma 3.13 |N,| # p*q and |N,| # p?*r. If we had
|N,| = p?qr, then we would have N, = G and so a € Z(G). Thus |N,| = p?. Since
AUB C N,, we have |AU B| = p? so A = B. U

3.18 Theorem. Let p, q, and r be primes and let G be a group with |G| = p*qr. Then

G has a strong digital representation.

Proof. Suppose not. Pick a subgroup H with |H| = p?. Assume first that H has an
element z with o(z) = p?. Then for t € {1,2,...,p? — 1},
ozt = { p ifte{p.2p,....(p—1)p}

p?  otherwise.

So H has p? — p elements of order p?. None of these occur in another subgroup of order
p? since the intersection of two distinct groups of order p? has either 1 or p elements.
By Lemma 3.16 Ny = H so, by Lemma 3.14, if z,y € G and *H # yH, we have
r 'Hx # y ' Hy. Since H has qr cosets, there are at least gr(p? — p) elements of order
p?. (We shall show later that there cannot be this many elements of order p?.)

Assume now that H has no element of order p?. We claim that H is not contained
in the center of G. Suppose it is and pick subgroups K and M of order ¢ and r
respectively. Then H, K, and M have strong digital representations by Theorem 3.12.
Since H C Z(G), HK is a group which has a strong digital representation by Lemma
3.1. Then |MHK| = p*qr so G = MHK has a strong digital representation by Lemma
3.1.
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Thus H N Z(G) is a proper subgroup of H so has at most p elements. Next we
claim that Ny = H. Since H C Ny we have that p? divides |[Ny|. By Lemma 3.13,
|Ng| is neither of p? or p?r. If [Ng| = p?qr, then as above pick subgroups K and M of
order q and r respectively. Then H, K, and M have strong digital representations by
Theorem 3.12. Since K C Ny, HK is a group which has a strong digital representation
by Lemma 3.1. Then |M HK| = p?qr so G = M HK has a strong digital representation
by Lemma 3.1. So Ny = H as claimed.

By Lemma 3.17if tHz ™! # yHy ™!, then zHx 'NyHy ™! C Z(G) so xHx '\ Z(G)
and yHy '\ Z(Q) are disjoint. By Lemma 3.14 if xH # yH, then xHx~! # yHy~ L.
So |U,eq zH2 ™t = qr(p* — p) + p.

Thus in any event there are at least qr(p* — p) elements of order p or p?. But also
by Lemma 3.15 there are at least (¢ — 1)pr elements of order ¢ and at least (r — 1)gp
elements of order r. But qr(p? —p) + (¢—1)pr+ (r —1)qp = p*qr + p(gr —q—r) > p?qr,
a contradiction. O

Because of Corollary 3.5 we are interested in the finite simple groups, which would
necessarily provide the smallest counterexamples to the assertion that each group, or
at least each finite group, has a strong digital representation. The smallest non-abelian
simple group is As, the alternating group on 5 elements. Further, A,, is simple for all
n > 5. The same proof applies to the full symmetric group, so we give it as well.

In the following, I, z; = zp@p_1 - - - 21.

3.19 Lemma. Letn € N\ {1,2} and let G = A,,—1 and K = A,, or let G = S,,_1
and K = S,. Assume that ((x:)F_1,(m¢)¥_|) is a digital representation of G. Let
(ye)l_, be a sequence in K \ G and let (p;),_, be a sequence in N\ {1}. Assume that
pr = o(yy) for each t € {1,2,...,1} and (y.)* ¢ G for each t € {1,2,...,l} and each
a€{l,2,....,ps —1}. Forte {1,2,...,k+1} define
ft < ft <
=yl sk mec{ HE

Assume further that whenever q € {2,3,...,1l}, a; and by are in{0,1,...,p;—1}, andc €
{1,2,...,py — 1} one has that (Hf;j(yt)ﬂ (yq)© (H::q_l(yt)bt> ¢ G. Then whenever
a; and by are in {0,1,...,8:} for eacht € {1,2,... k+1} and Hfill(zt)“t = f;rll(zt)bf,
one must have a; = by for each t € {1,2,...,k+1}.

Proof. Since ({z:)¥_,,(m:)F_;) is a digital representation of G, it suffices to show
that if u,v € G and a; and b; are in {0,1,...,p; — 1} for each t € {1,2,...,1}, if
uHizl(yt)‘“ = UHizl(yt)bf, then a; = b; for each t. Suppose instead that this fails
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and pick the largest ¢ € {1,2,...,1} such that a, # b, and assume without loss of
generality that a, > b,. If ¢ = 1, then we have (y1)*~% = u"1v € G, a contradiction.
So assume that ¢ > 1. Then <Hf;11(yt)at) (y4)%a b (Hi:q_l(yt)pt*bf) =ulveG a

contradiction. O

3.20 Theorem. For eachn € N\{1,2}, A,, and S,, have strong digital representations

((x¢)ter, (Mme)rer) with the additional property that each xy has order my.

Proof. We proceed by induction on n. If n = 3, the results are trivial.

Now let n >3 and let G = A,,_1 and K = A, orlet G = S,,_1 and K = S,,. Let
((z4)F_1, (me)®_,) be a digital representation of G with the required property. Factor n
as p1ps - - - p; where each p; is a prime and, if n is even, p; = 2. Since |K| = |G| 'Hizl Dt
by Lemma 3.19, it suffices to produce y; € K \ G for each t € {1,2,...,l} such that
(ye)* ¢ G for each t € {1,2,...,1l} and each a € {1,2,...,p; — 1} and whenever ¢ €
{2,3,...,1}, a; and b; are in {0,1,...,ps — 1}, and ¢ € {1,2,...,p, — 1} one has that
(T 00" ) () (L () £ G

If pp =2, let y3 = (n—1,n)(1,2) and let B; = {n — 1,n}. Otherwise, let y; be a
pi-cycle including n and let B; be the set of terms of that cycle. Let k € {1,2,...,[—1}
and assume that we have chosen y, and By so that |Byg| = Hle p; and, unless k = 1
and p; = 2, By is the set of numbers moved by yi. Let yri1 consist of |By| disjoint
pr+1-cycles, each of which includes exactly one term from Bj. Unless k = [ — 1, make

sure that neither 1 nor 2 is moved by pg41.

For example, if n =36 =2-3-3 -2, let

(35,36)(1,2)

(31,32,35)(33, 34, 36)

(19,20, 31)(21,22,32)(23, 24, 33)(25, 26, 34) (27, 28, 35)(29, 30, 36)
(1,

(

1,19)(2,20)(3,21)(4, 22)(5, 23)(6, 24)(7, 25)(8, 26)(9, 27)
10,28)(11,29)(12,30)(13, 31)(14, 32)(15, 33) (16, 34) (17, 35) (18, 36) .

Now let g € {2,3,...,1} and choose a; and b; in {0,1,...,p; — 1} for each t € {1, 2,
cva—1band e € {1,2,..,p, — 1} and let w = (T ()™ ) () (Mg (00)™)
We need to show that w ¢ G, that is, that w moves n. Let m = <F[i:q71(yt)bt> (n).

Then m € By_1 and ¢ # 0 so (y4)°(m) € By \ By—1. Therefore

(T2 )™ ) (9)°(w)) = () ()
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If ¢ = [, then possibly (y,)¢(w) € {1,2} in which case (Hf;ll (yt)‘”> ((yg)°(w)) € {1,2}.
Otherwise (TT2Z{ ()™ ) ((4a)°(w)) = (1) () *(w)) = (yg)*(w) # . 0

The next simplest class of nonabelian simple groups are the groups denoted in [5]
by A, (q).

3.21 Definition.

(a) Let F be a field and let m € N. Then GL,,(F') is the set of all m x m matrices
over F' with nonzero determinant.

(b) Let F be a field and let m € N. Then SL,,(F) = {w € GL,,(F) : det(w) = 1}.

(c) Let p be a prime, let k,m € N, let ¢ = p¥, let F be the field with ¢ ele-
ments, and let Z be the center of SL,,+1(F). Then A,,(q) = SLpy+1(F)/Z and
T+ SLpmy1(F) — Ap(q) is the quotient map.

(d) Let p be a prime, let k,m € N, let ¢ = p*, and let F' be the field with ¢ elements.
Then Wy, (¢) = {w € SLy41(F) : forall t € {2,3,...,m+ 1}, wy1 = 0}.

The following lemma is well known and its proof is at any rate an easy exercise.

3.22 Lemma. Let p be a prime, let k,m € N, let ¢ = p*, let F be the field with
q elements, and let Z be the center of SLy1(F). Let D = {x € F : 2™ = 1}
and let I be the (m + 1) x (m + 1) identity matriz. Then Z = {xl : © € D} and
|D| = ged(m +1,q —1).

According to [12] all of the nonabelian simple groups of order less than 6000 are of
the form A, A1 (p*), or Ax(p*).

We saw above that each A,, has a strong digital representation. The smaller simple
groups not of this form are (with order in parentheses) A;(7) (168 = 23-3-7), A;(8)
(504 = 23-32.7), A;(11) (660 = 22-3-5-11), A1(13) (1092 = 22-3-7-13), A1(17)
(2448 = 2% -32.17), A1(19) (3420 = 22 -3%.5-19), A;(16) (4080 = 2*-3-5-17), and
Az(3) (5616 = 21 - 33 - 13).

The following lemma, except possibly for part (d), is well known.

3.23 Lemma. Let p be a prime, let k,m € N, let ¢ = p*, and let F be the field with q

elements.
(a) |GLypnir (F)] = g™ (¢ — 1),
(0) |SLmi1(F)| = g™ D2TL (¢ = 1).
(c) Ifd=ged(m+1,q — 1), then |Ap(q)| = Lgmm D2 (¢! —1).
(@) [Win(g)] = ¢mm D2 T (gt = 1).
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Proof. (a) To obtain a matrix in GL,,4+1(F) the first row can be any nonzero vector
in F™*1 and in general for i € {1,2,...,m}, row i + 1 can be any row not in the linear

span of the first ¢ rows, so

|G L1 (F)| =12 = ¢")
=2 ' TTZo (g™ F = 1)
_ qm(m+1)/2 H?’Lzo(qt—kl . 1) )

(0) 1SLin1(F) = ;5 1G L1 (F)].
(c) This follows from (b) and Lemma 3.22.

0o C
where C' is an arbitrary member of GL,,(F), ¥ is an arbitrary member of F™, and

b1 = (det C)~1. Consequently, |W,,(q)] = ¢™ - |GLn(F)]|. U

(d) Any matrix B € W,,(q) may be written in block form as B = (bl-ll v)

3.24 Lemma. Let p be a prime, let k,m € N, let ¢ = p*, and let n = Z;T;o qt. Then
ged(n,q — 1) = ged(m + 1,4 — 1).

Proof. We have that n = (m + 1) + Y ;~,(¢" — 1) and ¢ — 1 divides ¢* — 1 for each
t € {1,2,...,m}. Therefore any power of a prime which divides ¢ — 1 divides n if and
only if it divides m + 1. U

It is a fact, apparently due to Gauss [4] who counted all such things, though this
fact may predate that, that given any m > 2 and any finite field F' there is an irreducible

polynomial of degree m over F. In fact the following holds.

3.25 Lemma. Let F' be a finite field, let F be a field extension of degree m over F,
and let & be a generator of the (cyclic) multiplicative group of F. There is an irreducible

polynomial f of degree m over F such that & is a root of f in F.
Proof. [11, Theorem 2.10 and Corollary 2.11]. U

3.26 Lemma. Let p be a prime, let k,m € N, let ¢ = p*, let F be the field with q
elements and let f be an irreducible polynomial of degree m + 1 over F. Let F be the
field obtained by adjoining a root & of f to F. Given n € F \ {0}, multiplication by n
18 a linear transformation from F to itself; let ¢, ¢(n) be the matriz representation of
this linear transformation with respect to the basis {1,£,£2,...,€™} for F as a vector

space over F'. Then ¢, ¢ is an injective homomorphism from the multiplicative group
of F t0 GLps1(F).
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Proof. Given n € F \ {0}, ((bm,f(’f]))_l = ¢m.¢(n™1) and so det ((ﬁm,f('r))) £ 0. O

3.27 Lemma. Let p be a prime, let k,m € N, let ¢ = p”, let F be the field with q
elements and let f be an irreducible polynomial of degree m + 1 over F. Let F be the
field obtained by adjoining a root & of f to F and let n ="," q". Let ¢m, 5 be defined
as in Lemma 3.26. Let F* be the multiplicative group ofFN’ and let X = {n?1:ne ﬁ*}
Then X is a subgroup of F* such that | X| =n and Gm, £ X] C SLyya1 (F).

Proof. Pick a generator § of F. Then X = {6t@=Y:te{1,2,...,n}} so |X|=n. To
see that ¢ f[X] C SLy41(F), let t € {1,2,...,n}. Then 1 = (det (¢ r(0%)))" " =
det (@, (5117 1)). O

3.28 Lemma. Let p be a prime, let k,m € N with m > 1, let ¢ = p*, and let F be

the field with q elements. If A;,—1(q) has a strong digital representation, then so do
SL,(F) and mm[Wi(q)].

Proof. Assume that A4,,_1(q) has a strong digital representation. The center of SL,, (F)
is abelian so has a strong digital representation by Theorem 3.9 and thus so does S L, (F')
by Theorem 3.4.

Let F* be the multiplicative subgroup of F and let D = {a € F* : a™*! = 1}.
Define ¢ : m, [Win(q)] — F*/D by, for © € Wy, (q), ¥ (mm(2)) = 21,1D. Then 1 is a well
defined surjective homomorphism and F*/D is abelian and thus has a strong digital
representation by Theorem 3.9. Consequently by Theorem 3.4 it suffices to show that
the kernel of 1) has a strong digital representation.

Let U ={z € Wp,(q) : 211 = 1}. Given z € U, let 7(2) be the lower right m x m
corner of z. Then 7 is a homomorphism from U onto SL,,(F') and z is in the kernel of

7 if and only if there is some ¥ € F'? such that

(1@
=\0 1

where [ is the m x m identity matrix. Thus the kernel of 7 is abelian so has a strong
digital representation, and since SL,,(F") has a strong digital representation, so does U.

Finally, the restriction of m,, to U is an isomorphism onto the kernel of ). U

3.29 Theorem. Let p be a prime, let k,m € N, and let ¢ = p*. Then A,,(q) has a

strong digital representation.

Proof. Let F be the field with g elements. We proceed by induction on m. We ground
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the induction by showing that m1[W1(q)] has a strong digital representation. Let

K:{(S a(_)1> :aEF\{O}} andM:{(g 2) :a,bEFanda2:1}.

Then Wi(q) = KM so m[Wi(q)] = m[K]mi[M]. Also K is abelian and so 7 [K] is
abelian so has a strong digital representation by Theorem 3.9. Since |71 [M]| = ¢ we have
by Theorem 3.12 that 71 [M] has a strong digital representation. Since 71 [M]|Nm[K] =
{m[I]} we have by Lemma 3.1 that 71 [W1(q)] has a strong digital representation.

Let m € N and assume that m,,[W,,(q)] has a strong digital representation. We
shall show that A,,(¢) has a strong digital representation and so, by Lemma 3.28, the
same is true for m,11[Wi+1(q)].

Pick by Lemma 3.25 an irreducible polynomial f of degree m + 1 over F' such that
one may represent the field F of degree m + 1 over F' as the vector space with basis
{1,£,€2,...,€™} where £ is a root of f and a generator of the multiplicative group F*
of F. Let d = ged(m + 1, — 1). We define an element v € SL,,+1(F) as follows:

(a) If d =1, let v=1, the (m+ 1) x (m + 1) identity matrix.

(b) If d is odd and d > 1, then let v1 4 = 1, let v;;,—1 = 1 for ¢ € {2,3,...,d},
and let v;; =1forie {d+1,d+2,...,m+ 1}. Let all other entries of v be
0. (Thus v is obtained from I by permuting the first d rows of I via the cycle
(1,2,...,d). Since this is an even permutation, det(v) = 1.)

(c) If diseven and d < m+1, thenlet v; g =1, let v;,_1 = 1 fori € {2,3,...,d},
let v;; =1forie {d+1,d+2,...,m}, and let v4+1m+1 = —1. Let all other
entries of v be 0.

(d) If d is even and d = m + 1, then let v1 4 = —1 and let v;;,_1 = 1 for i €
2,3,...,m+1}.

Let V' be the subgroup of SL,,11(F) generated by v. In the first three cases,
V] =dand VN Wy(q) =V NZ(SLyny1(F)) = {I}, where Z(SLy,11(F)) is the
center of SLy,11(F), so that |m,,[V]| = d. In the last case, |V| =2d and V N W,,(¢q) =
VN Z(SLmy1(F)) = {I,—1I} so that again |m,,[V]| = d.

Let n =3"1",q", let ¢, s be defined as in Lemma 3.26, and let X = {¢"2=Y ¢ €
{1,2,...,n}}. Then, by Lemma 3.27, X is a subgroup of F* and Gm, [ X] C SLy11(F).

We now claim that VW,,(¢)V N ¢, [ X] C Z(SLyi1(F)). To see this, let n € X
and assume that ¢, r(n) € VW, (q)V. Pick y,z € V and w € W,,(q) such that
®m, £(n) = ywz. Then yw is obtained from w by permuting the first d rows and possibly
multiplying some rows by —1. So we may pick i € {1,2,...,d} such that the only
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nonzero entry of column 1 of yw is in row 2. Now ywz is obtained from yw by permuting
the first d columns and possibly multiplying some columns by —1. Thus there is some
j€{1,2,...,d} such that the entry in row ¢ and column j of ywz is some b # 0 and all
other entries of column j are 0. Thus if u is the column vector with j*® entry equal to 1
and all other entries 0 one has that ¢, r(1)u is the column vector with iR entry equal to
b and all other entries 0. That is, n¢?/ = b&¢. Thus £&'~7 = b~ 'n. Now b~ = £° for some
s€{1,2,...,¢™"} and n = €971 for some t € {1,2,...,n}. Thus &7 = ¢sttla—1),
Now 1 =b'"9 = ¢5(-9) and so n(q — 1) = ¢™*+ — 1 divides s(q — 1) and thus n divides
s. By Lemma 3.24 d divides n and thus d divides s. Also d divides ¢ — 1 and so d
divides s + t(q¢ — 1) and thus d divides i — j. Since —d < i — j < d we have that i = j
and thus n = b € F. We then have that ¢y, ;(n) = bl and since det (¢, r(n)) = 1,
Gm,r(n) € Z(SLm41(F)), as claimed.

We have that m,,[W,,(q)] has a strong digital representation by the induction hy-
pothesis. Also, ¢y, ¢[X] is commutative by Lemma 3.26 and so 7, [V] and mp, [¢rm, r[X]]

are commutative and so have strong digital representations by Theorem 3.9. By Lemma
3.23 and the fact that Z(SLy,+1(F)) € Wi,(g) we have that

[T [Win(9)]| = 5™ D2 T (g = 1)

while |7, [V]| = d and |7, (¢, [X]]]| 2 5 s0 |10 [Win(@)]| - [T V]| - |7 [$m,r [X]]| >
%qm(m“)/Q [T, (¢" = 1) = |As(g)|. Thus it suffices to show that if wy, w2 € Wi, (q),
y1,Y2 €V, 21,22 € ¢ [ X], and mp, (w1) T (Y1) (21) = T (W2) T (Y2) T (22), then
T (W1) = T (W2), T (Y1) = T (Y2), and m,(21) = T (22).

So assume that we have 7, (w1) T (Y1) Tm (21) = T (W2) T (Y2) T (22). Then there

is some uq € Z(SLm+1(F)) such that (z2) 1 (y2) H(wse) twiy121 = uy so
2ozt = (y2) H(wa) "M (wa) Trwiyizr € VWi (q)V N [ X]

so there is some uy € Z(SLm+1(F)) such that zngl = uy and in particular 7,,(z1) =
Tm(22). Now y2(y1) ™1 = (w2) " (uz) " H(ur) "twy € VN W,(q) s0 1 (y2) = 7 (y1) and
then 7, (ws2) = 7 (w1). O

4. Applications to semigroup compactifications

In this section we shall show that, for a class of discrete semigroups S which includes
all infinite abelian groups, the smallest ideal of 35S contains copies of the free group on

927! generators; and that, for any infinite discrete abelian group S, the weakly almost
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periodic compactification of S contains copies of the free abelian semigroup on 927!
generators.

Given a discrete semigroup (S, -), we take the Stone-Cech compactification 35 of S
to be the set of ultrafilters on S, identifying the points of S with the principal ultrafilters
and thus pretending that S C 8S. Given A C S and p € 8S, A € p if and only if
p € clgsA. The operation extends to £S making (35, -) a right topological semigroup
(meaning that for each p € 35, the function p, : S — (S defined by p,(q) = ¢ - p is
continuous) with S contained in its topological center (meaning that for each s € S, the
function A\ : S — (S defined by As(¢) = s - ¢ is continuous). Given p,q € 35,

p-q= lim lims-¢t.

5P tq
seES tes

Thus if p,q € 3S and A C S, then A € p-q if and only if {s € S: 5714 € ¢} € p where
sTTA={teS:s-te A}

If T" is any compact right topological semigroup, it has a smallest two sided ideal
K (T) which is the union of all of the minimal right ideals of T" and is also the union
of all of the minimal left ideals of T". If L is a minimal left ideal and R is a minimal
right ideal, then L N R is a group, and any two such groups are isomorphic. A given
copy of this group is called the structure group of T'. If p is an idempotent in T', L is
the minimal left ideal with p € L and R is the minimal right ideal with p € R, then
LN R =pTp. See [9] for a gentle introduction to S and its algebraic structure.

Under reasonable hypotheses the structure group of 3S is known to be quite rich.
For example, the structure group of (N, +) contains a copy of the free group on 2°¢
generators [9, Corollary 7.37] (a fact originally established in [8]). (Recall that |N| =
2¢.) Further, if G is a countably infinite group which can be mapped into a compact
metrizable topological group by an injective homomorphism, then the structure group
of BG contains a copy of the free group on 2¢ generators [9, Corollary 7.40].

It is also known that if S is a weakly left cancellative and right cancellative semi-
group with |S| = k > w, then 3S contains a copy of the free group on 22" generators
[9, Corollary 7.39]. The proof given in [9] is, in fact, valid for the larger class of semi-
groups which are weakly left cancellative and nearly right cancellative. (A semigroup
S is said to be nearly right cancellative if there is a subset D of S such that |D| = |S]
and for every distinct s,t € S, {d € D : sd = td} is finite. There are many examples
of semigroups which arise very naturally and are weakly left cancellative and nearly
right cancellative, but not right cancellative. These include (Pf(X),U), where X is

an arbitrary set, (N, max) and (N,lcm). The concept of near right cancellativity was

19



introduced in [3] and is discussed there.) However, [9, Corollary 7.39] provides no in-
formation about the structure group of K(3S), as the free groups constructed in this
theorem do not normally meet K (35).

In this section we show that if S is a semigroup with |S| = k > w which has a digital
representation and satisfies a related commutavity condition, then there is a compact
subsemigroup V of 58 whose structure group contains a copy of the free group on 22"
generators. We show that if, in addition, S is left cancellative, then the structure group
of 35S contains a copy of the free group on 22" generators. As a corollary, we show that
if T' is any semigroup which has as a homomorphic image a commutative cancellative
semigroup of cardinality x with a digital representation, then the structure group of 57T

contains a copy of the free group on 22" generators.

4.1 Convention. We shall assume througout this section until Corollary 4.16 that
(S,) is a semigroup with identity 1 and cardinality k which has a digital representation
(Fy)tew. We shall also assume that if s <t < k, x € Fy, and y € Fy, then xy = yzx.

We remark that our assumptions are satisfied if S is a commutative group (by
Theorem 3.9) or if S is a semigroup which is a direct sum of finite semigroups with

identities.

4.2 Definition.
(a) We put supp(1) = 0. If s =[],y #: where each z; = F}, let supp(s) = H.
(b) If a,b € S, we write a L b if supp(a) Nsupp(b) = 0.
(c) For J Ck, Dy ={s€S:supp(s)NJ =0}
(d) V =Nsep, ) closD-
(e) C=(WclgsDy:J Ckand |J| <k}

Notice that Convention 4.1 guarantees that if a,b € S and a L b, then ab = ba and
supp(ab) = supp(a) U supp(b).

We remark that if (S,-) = (N,+) and F, = {2!} for t < w, then V = C =
Niso ¢lsn (2'N) = H, a subsemigroup of SN which includes all of the idempotents of
ON and has substantial known structure. See [9, Sections 6.3 and 7.2] for information

about the structure of H and where its copies may be found.
4.3 Lemma. Both V and C are subsemigroups of 3S.

Proof. For V, let A ="P¢(k). For C,let A={J C k:|J| < k}. By [9, Theorem 4.20]
it suffices to observe that if J € A and s € D, then for all t € D jusupp(s), s+t € Dy. U
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We set out to show that maximal subgroups in the smallest ideal of V' contain
copies of the free group on 22" generators. The proof of Theorem 4.4 will include

several subsidiary lemmas.

4.4 Theorem. Let p be an idempotent in K(V'). The group pVp contains a copy of

the free group on 22" generators.

Proof. Choose b; € F; for each t € I and let U be the set of uniform ultrafilters on
{bs : t < k}. Then it is well known that |U| = 22". (See for example [9, Theorem 3.58].)
Enumerate U as {r; : t < 22" }. Let T be the free group on the generators {o; : t < 22"}
with identity 1 and let ¢ : T — pVp be the unique homomorphism such that ¢(1) = p
and ¢(ay) = pryp for each t < 22",

It suffices to show that the kernel of ¢ is {1} so suppose instead there is some
other element in the kernel. Choose d € N, w1, ws, ..., wg in pVp, and I1,l5,...,l;in N
such that for each ¢ € {1,2,...,d} there exists t(i) < 22" such that either w; = Pre(i)P
or w; = (pryyp)~t, t(i) # i+ 1) if i < d, and (w1)" - (w2)" - (wq)'® = p. Let
n = |{t(z) D1 € {1,2,...,d}}‘ and let {x1,29,...,2,} = {rt(i) NS {1,2,...,d}}.
Choose a partition {Jy,Jo,...,J,} of k such that {b; : t € J;} € x; for each i € {1,2,
~.,n}. Let M =1+T[L, L.

Let F be the set of finite sequences in {1,2,...,n} including the empty sequence.
Let [k]<“ be the set of finite subsets of x (so [k]<“ = Py(k)U{0}). Define ¢ : 5|~ — E
as follows. First ¢(0) = 0. If u € Ps(k) and p = {j1,Jj2,--.,jx} where j; < jo < ... <
Jk, then for ¢ € {1,2,...,k} let a; be the member of {1,2,...,n} such that j; € J,,.
Then ¥(u) = (a1, az,...,ax).

Given ¢ € F and s € 5, let ¢,(s) = {u C supp(s) : ¥(u) = o}. Define for
o € E, 0, : S — Zy by 6,(s) = |po(s)| (mod M) and let 0, : 8BS — Zy; be the
continuous extension of J,. We shall (eventually) show that there is some o € E such
that gg((wl)ll (wy)l2 - (wd)ld) + gg (p), which will complete the proof.

For J C k, define 7y : S — Zy by V5(s) = |supp(s) N J| (mod M) and let

Yy : BS — Zu be the continuous extension of ;.

4.5 Lemma. Let h: 3S — R be a continuous mapping into a compact right topological
semigroup. If h(ab) = h(a)h(b) for everya,b € S such thata L b, then h(xv) = h(x)h(v)
for every x € 35S and every v € V, and so the restriction of h to V' is a homomorphism.
In particular, for any J C k, the restriction 0f’~VJ to V is a homomorphism. Ifi € {1,2,

...,n} and o = (i), then 6, =y, so the restriction of 8, to V is a homomorphism.
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Proof. We have h(zv) = lim lim A(ab) = lim lim h(a)h(b) = h(z)h(v).

a—x b—v a—T b—v
For the last assertion note that given s € S, u € ¢,(s) if and only if there is some
j € supp(s) N J; such that p = {j}. O

4.6 Lemma. Let r be an idempotent in V and for each p € [k]<¥ let R,, € r. For
k€N and p € [k]<% let
B, = {31 - Sg---s forie{1,2,...,k}, supp(s;) N =0, supp(s;) Nsupp(s;) =0
when i # 5,81 € ({R, : v C pu}, and for t € {2,3,...,k},
st € MRy v C pUsupp(s: - s5--+s1-1)}} -
Then each B, i € 7.

Proof. We proceed by induction on k. If p € [k]<%, then
Bui=D,Nn(N{R,:vCpu})er.
So let k € N and assume that the assertion holds for k.
Let p € [k]<*. We claim that D, N (({R, :v C p}) C{s€S:s ' Byii1 €1}
so that B, gy1 € r-r =r. Solet 21 € D, N (ﬂ{RU v C ,u}) We claim that

Dsupp(ml) ﬂB,uUSupp(ml),k - (xl)_lBu,k—i—l' Solet s1-89-+-8; € Dsupp(ml) mBuUsupp(azl),k
where for i € {1,2,...,k}, supp(s;) N (pUsupp(z1)) = 0, supp(s;) Nsupp(s;) = @ when
i#7,81 €(V{R,:v CpuUsupp(zy)}, and for t € {2,3,...,k}

st € ({Ry : v C pUsupp(z1) Usupp(sy -2+ se-1)}-
Fort e {2,3,...,k+ 1}, let 2y = s;—1. Then 21 - x2- - T41 € By pt1- O
4.7 Lemma. Let o € E, let r be an idempotent in 'V, and let
L= {p € [k]<¥ :(n) is a subsequence of o} .

For p € L and s € S, let 0,(s) = {v C supp(s) : pNv = 0 and pUv € L}.
Then for all m € N and all p € L, there is some R € r such that for all s € R,
H{v € ,(s): [v| =m}| =0 (mod M).

Proof. If 0 = (), then L = {0} and 6,(s) = {0} for all s € S so the conclusion
holds. We shall assume that o # () and proceed by induction on m. Assume first that
m=1 Letue€ Landlet J={t <rk:t¢ pand pU{t} € L}. By Lemma 4.5 the
restriction of 7; to V is a homomorphism so 7;(r) = 0 so pick R € r such that for all
s €R,V(s) =0. Given s € R, {v € 0,(s) : [v| =1} = {{t} : t € supp(s) N J} so
H{v €0,(s) : [v] =1} =Y(s) (mod M).

22



Now let m > 1 and assume that the result holds for all £ < m. For each u € L, pick
R,, € r such that for all kK < m and all s € R,,, [{v € 0,,(s) : [v| =k}| =0 (mod M). If
pe[k]<Y\L,let R, =S.

Let u € L be given and pick a € Zy; and R’ € r such that for all s € R/,
H{v € 0,(s) : [v| = m}| = a (mod M). Define B,y as in Lemma 4.6 and let R =
BumuNR'N(N{R, : v Cpu}). ThenR € r. Lett € Randlet H = {v € ,(t) : [v] = m}.
We shall show that |H| = 0 (mod M). Pick sq, s2, ..., sy as guaranteed by the definition
of B, nr such that ¢ = sy - s2--- 5.

Suppose that t € R satisfies t = s1 - $o -+ - Spr, Where sq, 8s,..., ) have properties
(i), (ii), and (iii). Let H = {v € 0,(t) : |v| = m}. We shall show that |H| = 0 (mod M).

Ifie{1,2,...,M}, thensince t € R, |H N 6,(s;)| = a (mod M) and so

| Uiy (H N0,(s:))| = aM =0 (mod M).
Given A C {1,2,..., M} such that |A| > 2, let
Hy={veH:A={ie{1,2,...,M} :vNsupp(s;) # 0}}.

Then H = UY, (HN6,(s:)) UU{HA : AC {1,2,...,M} and |A| > 2} and the listed
sets are pairwise disjoint so it suffices to let A C {1,2,..., M} such that |A| > 2 and
show that |H 4| =0 (mod M).

Let ¢ = max A and let v = [[,c 4\ (. si- Let

K ={vye€b,(v): foreachi e A\ {c}, yNsupp(s;) # 0 and |y| = m}

and for v € K, let T, = {7 € 0,u4(sc) : |T| = m — |y|}. We claim that Hy =
U,ex {yU7: 7 €T,}. This will suffice because:
(a) if v, € K and v #+/, then {yUT: 7 e T,}N{y Ut :7 €Ty} =0 since
(yUT)Nsupp(v) =1;
(b) forye K, {yUr:7eT,} =|T,]; and
(c) for v € K, since s, € Ruuy, {7 € 0uuy(Se) [T =m— 7|} =0 (mod M), i.e.,
|T,| = 0 (mod M).

To see that Ha C U, cx {yUT: 7 €T,}, let v € Ha. Let v = v Nsupp(v) and
let 7 = v Nsupp(s.). Then v € ,,(t) because v C v so that v U pu C v U p and thus
Y(y U p) is a subsequence of ¢(v U pu). Consequently v U p € L so that v € 6,(v) and
thus vy € K. Also pUyUT=pUv so 7 € 0,u4(sc). Since |[v| =m, 7 € T,.

To see that |J cp {yUT:7€T,} C Ha,let y€ K andlet 7 € T, Let v =~UT.
Then Y(pUv) =y(pUyUT)sov e b,(t) and [v|=msov e Ha. O
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4.8 Lemma. Let 0 € E\ {0}, let r be an idempotent in V, and let x € 3S. Then
b5 (1) = 0, (x). Also 6,(r) = 0.

Proof. Let L be as in the statement of Lemma 4.7. Let a = d,(zr) and let ¢ =
b,(z). Pick By € ar and By € x such that 6,[Bi] = {a} and 6,[Bs] = {c}. Then
{s €S :5 !By €r} € xsopick s € By such that s7!B; € r. Let m be the length of
o. For pe Landt e S, let 0,(t) = {v Csupp(t) : pNv ="0and pUvr € L}. Let
L' ={peL:puCsupp(s)}. For each p € L' pick by Lemma 4.7 R, € r such that
for each t € R, and each k € {1,2,...,m}, [{vr € 0,(t) : |v| = k}| =0 (mod M). Pick
t € s7'B1 N Dsypp(s) N ({Ru 1w € L'}). Now |¢o(s)] = ¢ (mod M). Also,

o (st) = ¢o(s)U (UueL’ {pUv:v Csupp(t) and Y(pUv) =0c}), so

|00 (st)] = |0 ()] + 2 ,c {unUv v Csupp(t) and (nUv) =},
For p e L',
{pUv:v Csupp(t) and Y(pUv) = o} = [{v € ,(t) : [v] = m — |ul}]
=0 (mod M)
s0 a = 0, (st) = |po(st)| (mod M) = |¢,(s)| (mod M) = c (mod M) and so a = c.
Putting x = 1 shows that d,(r) = 0. U

4.9 Lemma. Let o = (a1, as,...,ax) € E\ {0}, let y € BS, and let i € {1,2,...,n}.
Ifk=1,leto’ =0. If k > 1, let 0/ = (ay,az,...,ax_1). Then

5 topn — [0 ) ifis a
50(3/ 1) { 50(3/) + 50,(y) ZfZ = Q.

In particular, if o = (ay), then
5, (yi) = {g}(y) ifi#m
W) +1 ifi=a.
Proof. Pick B € y such that for all s € B, 6,(s) = 0,(y) and 8g/(s) = 0o (y).
Let A = {sby : s € B, t € J;, and t > maxsupp(s)}. Then A € yz;. Now let
s € B and let ¢ > maxsupp(s). Then supp(sb;) = supp(s) U {t}. Assume first that
ar # 1. If v C supp(sby) and 1 (v) = o, then v C supp(s) S0 ¢, (sb:) = ¢, (s) and thus
95 (sbt) = 05 (5).
Now assume that ax = . In this case ¢, (sb;) = @ (s) U{r U{t} : v € ¢,/ (s)} so
35 (sbt) = 95 (s) + 90 ().
For the final conclusion note that for any s € S, ¢p(s) = {0}. O
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4.10 Lemma. Leti € {1,2,...,n}, let r be an idempotent in V, let z € 3S such that
zzir =r, and let 0 = (a1, ag, . .., a;) € E\{0}. Then d,(z) =0 unless a1 = ag = ... =
ax =i, in which case dy(2) = (—1)*.
Proof. First note that, by Lemma 4.8, 0 = 6,(r) = 0y (22:7) = 0g(22;).

We proceed by induction on k. If £ = 1, then by Lemma 4.9,

ga(zxi):{@(z’) ifita ga(z):{o if § % ay

5U(z)+1 ifi=a -1 ifi=a.
Now let k£ > 1 and assume the result holds for &k — 1. Let o/ = (ay,as2,...,a5_1).
By Lemma 4.9,
gg(mi):{@;(z) N %fz:#al o gg<z):{0~ if i # a1
60(2) + 6O-I(Z) ifi=ag —(501(2’) if i = ay.

Thus if a1 = as = ... = a = i, then d,(z) = (—1)* and 8,(z) = 0 otherwise. O

Recall that we have fixed an idempotent p € K (V). Fix an idempotent ¢ € K(C).
For i € {1,2,...,n} let y; be the inverse of px;p in the group pVp and let z; be the
inverse of qx;q in the group ¢qCq.

4.11 Lemma. Leti € {1,2,...,n} and letl € {1,2,..., M — 1}.

(a) 6y ((z:)") = =1 and 645 ((qziq)') = L.

(b) Let o = (ay,as,...,a;) € E\{0} and assume that it is not the case that a; = ag =
..=ay =1t. Then ga((zl)l) = gg((qxiq)l) =0.

Proof. By Lemma 4.5, g@-) is a homomorphism and hence 5@((]) = 0. So (a) follows
immediately from the observation that g@) (z;) = 1.
We establish (b) by induction on k. If & = 1, then a; # 1 so by Lemma 4.9

2{0((zi)l) = gg((zillxi) = gc,((zi)l_l) = 0 and gg((qxiq)l) = gg((qxiq)l_lxiq) =
b5 ((qziq)' 'x;) = 6, ((qwiq)' ) = 0. Now assume that & > 1 and (b) holds for k — 1.
If ar # i, then exactly as above ga((qxiq)l) = ga((zl)l) = 0, so assume that a = ¢
and let o’ = (a1, as9,...,ax_1). Then it is not the case that a3 = as = ... = ax_1 so
by Lemma 4.9, 0 = 50((21)“1) = 50((zi)lxi) = gg((zi)l) + by ((z:)") = ga((zi)l). Also
3o ((qz:0)!) = 00 ((qzi)' " 2iq) = 65 ((qzi0) " 2) = 65 ((qiq)' ") +00 ((qziq) ") = 0.

O

4.12 Definition. For v,v' € 35, v ~ v/ if and only if for all o € E\ {0}, 6,(v) = 0, (v').

4.13 Lemma. Let v,v' € 3S and assume that v ~ v’.

(a) If r,r" are idempotents in V, then vr ~ v'r’.
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b) For everyi € {1,2,...,n}, va; ~v'z; and vy; ~ v'z;.
Y Yy

Proof. (a) By Lemma 4.8, 6, (vr) = 0, (v) = 0, (v') = 6, (V7).
(b) We have vy;x;p = vp and v'z;2;,¢ = v'q so by Lemma 4.8 for any o € E \ {0},
0o (V1Y) = 0y (Vyizip) = 06 (vp) = 05 (V) = 0, (V') = 0, (Vq) = 0y (V' 2;5q) = 0o (V' 2:5),
S0 vy ~ v z;x;.
We now proceed by induction on the length of 0. Assume first that o = (a;). Then
by Lemma 4.9 either
(1) 0o (vyimi) = 00 (i), 00 (V' 2ixi) = 05 (V'2), 0 (vx;) = 0y (v), and 0, (v'z;) =
55 (v'); or
(2) gg(vyixi) = gg(vyi) +1, go(v'zixi) = ga(v’zi) +1, gg(’UCIJZ') = gg(v) + 1, and
be (V') = 6, (v') + 1.
In either case gg(vyi) = 5U(v’zi) and gg(m:i) = gg(v'azi).

Now assume that & > 1, 0’ = (a1, aq,...,ak_1), gg/(vyi) = gg/(v’zi), and gg/(vxi) =

o (v'z;). Again applying Lemma 4.9 we see that d,(vy;) = 0,(v'2;), and 0, (va;)
5 (V1)

O

4.14 Lemma. Let m € N and let j1,j2,...,jm € {1,2,...,n}. Assume that for each

i € {1,2,...,m}, either v; = px;,;p and v, = qr;,q or v; = y;, and v, = z;,. Let

/

U=101 Vg Uy and let v’ = v} -vh-- v, . Then u ~u'.

Proof. Note that by Lemma 4.8, p ~ q. We proceed by induction on m. If m = 1, the

result is an immediate consequence of Lemma 4.13 (noting that py; = y; and qz; = 2;).

/
m—1-

Now assume that m > 1 and vy-vg -+ - vpy—1 ~ V)05 v Then applying Lemma

/

s / / / / !/
4.13 twice we have vy - Vg U1 P~ V] Vg Uy, QSO VL -V Uy ~ V] -V -V

m*

O

We are now ready to conclude the proof of Theorem 4.4. Recall that we have
assumed that we have d € N, wy,ws, ..., wq € pVp, l1,ls,...,lg € N, and j1,J2,...,74 €
{1,2,...,n} such that (wi)" - (wy)" - (wq)'¢ = p, for each i € {1,2,...,d}, either
w; = pxj,p or w; =y;,, and if i € {1,2,...,d — 1}, then j; # j;—1. (All of these things
were introduced at the start of the proof of Theorem 4.4 except for ji,jo,...,jq. These
can be determined from the fact that {z1,z2,...,2,} = {rt(i) i e{l,2,... ,d}}.)

Let 0 = (j1,j2,...,44) and let u = (wy)" - (w2)" -+ - (wg)'*. We shall show that
65 (u) # 0, which will be a contradiction since d,(p) = 0.

For i € {1,2,...,d}, let w; = qxj,q if w; = pzr;,p and let w, = z;, if w; = y;,.

Let o/ = (w])" - (wh)=2 - (w))e. By Lemma 4.14, u ~ u’ so it suffices to show that
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0g (u') # 0.
Let E' = {7 € E : the length of 7 is less than d}. For m € {1,2,...,d}, let

Ay = {31 “So - Sm (Vi €{1,2,...,m — 1})(maxsupp(s;) < minsupp(s;+1)) and
(Vr e B)(Vie {1,2,...,m}) <5T(si) - ST((w;)li)) ).
We show by induction on m that A,, € (w})"* - (wh)" --- (w!,)'. For each 7 € E’ pick
R, € (w})" such that for all s € R,, 0,(s) = ST((wi)ll). Then (\.cp R € Ap so
A € (’wll)ll.
Now let m € {1,2,...,d — 1} and assume that A,, € (w}))" - (wh)--- (w! ). We
show that
Ay C{te St Ay € (whyyq) ™t}

so that An,q1 € (wh)™ - (wh)'2--- (w), 1)+ as required. Let t € A,, and pick

m
$1,82,...,8y as in the definition of A,, so that ¢t = s1 - s9---s,,. For each 7 €
E' pick R, € (w], )™+ such that for all s € R,, 6.(s) = gT((w;Hl)lm“). Let

T = {v € S : minsupp(v) > maxsupp(sm,)}. Then since (w), ;)'+* € C, we have
T € (w),;q1)'+*. (This fact is the reason for working with «’ rather than u.) Then
TN (Nrep Br) Ct7 Apia so t7 1 Ayqq € (wh, )™+ as required.

We thus have that Aq € u/. We also know that {t € S : 0,(t) = d,(uv))} € u'.
We shall show that for ¢ € A such that 6,(t) = 6,(u), either 8,(t) = H?Zl l; or
ds(t) = — H?Zl l;. Recalling that M =1+ Hfil l;, we will then have that 0, (u') # 0.
To this end let t € Ay and pick s1, Sa, ..., 8q such that t = s1 - s9---s4, for all i € {1,2,
...,m—1}, maxsupp(s;) < minsupp(s;+1), and for all 7 € E/ and all i € {1,2,...,m},
7 (51) = 0r ((w))").

Let H = {(p1,p2,---,pd) € E*: 0 = p1 "p2a " ... "paq} (where ~ denotes con-
catenation) and for (p1, p2,...,p4) € H, let

G(p17p27~~'apd) = {“ € ¢U(t) : (VZ S {L 2’ te 7d})(d]<ﬂ N Supp(si)) = pz)}

We note that |G, ,,....p0)| = H?Zl |, (5:)| because there are precisely |¢,, (s;)| choices
for p N supp(s;) with @D(u N supp(si)) = p;. Note also that

¢U(t) = U(p17p2,...,pd)€H G(Pl»PQ»-de)

and these sets are pairwise disjoint so |¢q(¢)| =2, oo, pneH H?zl |®p: (51)].

.....

NOW7 if (ph P2, - 7pd) € H and (/)17 P2 - nod) 7é (<.]1>7 <j2>7 R <.]d>)7 then for
some ¢ € {1,2,...,d}, p; is neither empty nor constant so, by Lemma 4.11, 6,,(s;) =

gpi((wg)li) = 0 and thus |¢,,(s;)] = 0 (mod M). Consequently 5o (W) = 6,(t)
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6o (t)] (mod M) = [, ¢4y (s0)| (mod M). By Lemma 4.11 for i € {1,2,...,d},
|00y (83)| = ¢4y (si) (mod M) = 65, ((w;)") = +l; and thus either 6, (t) = Hle l; or
50<t) = - H?:l lZ O

We show now that if S is left cancellative, then Theorem 4.4 yields a result about
the smallest ideal of 35.

4.15 Theorem. If S is left cancellative, then V N K(8S) # 0 and so K(V) =
K(BS)NV.

Proof. We show that given any minimal left ideal L of 35S, V N L # (). It suffices to
show that for each J € P(k), L N Dy # () because then {L NclgsDy : J € Py(k)} is
a collection of closed subsets of 35S with the finite intersection property, and therefore

has nonempty intersection.

So let J € Py(k). We observe that every s € S can be written uniquely as s = ab
where a € S satisfies supp(a) C J and b € Dy, and that {a € S : supp(a) C J} is finite.
Hence, if p is an idempotent in L, then p = ax for some a € S and some z € D ;. Now
arp = azr and this implies that = xp by [9, Lemma 8.1]. So x € L and and thus
LN EJ #* 0.

The fact that K(V) = K(8S) NV follows from [9, Theorem 1.65]. 0

Recall that we are assuming that S is an infinite semigroup, that |S| = k and that
S has a digital representation with the property that ab = ba whenever a,b € S satisfy
a L b.

4.16 Corollary. If S is left cancellative, then the structure group of S contains a copy

of the free group on 22" generators.

Proof. Pick an idempotent p € K (V). Then, by Theorem 4.15, pVp C K(3S) and so
Theorem 4.4 applies. U

We now show that Corollary 4.16 can be extended to many semigroups which may

not satisfy the hypotheses used in the proof of this corollary.

4.17 Theorem. Let T be a discrete semigroup and assume that there is a discrete
semigroup S whose structure group contains a copy of the free group on 22" generators
onto

and that there is a homomorphism h : T=—=S. Then the structure group of BT contains

a copy of the free group on 22 generators.
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Proof. Let h: 3T — (S be the continuous extension of h. Then by [9, Corollary 4.22]
I is a homomorphism and h[3T] = 8S by [9, Exercise 3.4.1] so by [9, Exercise 1.7.3]
K(3S) = h[K(BT)]. Let p be an idempotent in K(3S) and let G be a copy of the
free group on 22" generators contained in pBSp (which exists by assumption). Then
R {p}NK(T) # 0 so pick a minimal left ideal L of 3T such that A~ [{p}]NL # 0. Then
R~[{p}] N L is a compact subsemigroup of BT so pick an idempotent ¢ € A~ [{p}] N L.
Then E[qﬁTq] = pBSp. Let A be the set of generators of G and for a € A, pick
f(a) € qB8Tq such that E(f(a)) = a. Then since G is a free group, f extends to a
homomorphism f* : G — ¢B8Tq. For any w € G, ﬁ(f*(w)) = w so f* is injective. U

4.18 Corollary. Let k > w and let T be either the free semigroup with identity or the
free group on the generators {(ax)x<x. Then the structure group of BT contains a copy

of the free group on 22" generators.

Proof. If T is the free semigroup with identity on the generators (aj)i<x, let S =
D, ., (w,+). If Tis the free group, let S = P, _,.(Z, +). In either case S is cancellative
and commutative and by Theorem 1.1, S has a digital representation. By Corollary 4.16
the structure group of S contains a copy of the free group on 22" generators. Given
A < K, let h(ay) € S be defined by, for 7 < A,

1 ifr=2A
Man)(r) = {0 if 7 # A
Extend h to a homomorphism on 7" and note that h is surjective, so that Theorem 4.17

applies. U

We now give an application of digital representations to weakly almost periodic
compactifications. In the sequel S will denote an infinite discrete abelian group with
cardinality x, WAP(S) will denote the algebra of weakly almost periodic functions
defined on S and SWAP will denote the weakly almost periodic compactification of S.

SWAP will denote the canonical homomorphism. We observe

The mapping 7 : S —

that, for any z,y € 89, 7(x) = n(y) if and only if f(z) = f(y) for every f € WAP(S),
where fdenotes the continuous extension of f to 35. We remind the reader that S"4F
is a commutative semigroup.

By Theorem 3.9, S has a digital representation (F});c.. For s € S, we define
supp(s) and V as in Definition 4.2. We define o : S — w by a(s) = |supp(s)|. Then
a: S — Pw will denote the continuous extension of a. For any subset J of x and any
s € S, we put ay(s) = |JNsupp(s)| and use oy : S — Pw for the continuous extension

of ay. (So the mapping 7, introduced above, is oy reduced modulo M)
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4.19 Lemma. Let S be an abelian group with cardinality k. Given n € N, put
A, ={s € S :a(s) <n}. Then Xy, € WAP(S). Furthermore, for every J C &,
Xa, 0y € WAP(S).

Proof. By [9, Theorem 21.18], to see that X4, € WAP(S), it is sufficient to show that
XA (zy) = Xa, (yx) for every z,y € 3S.

We first show that every z € A,, can be written as z = cw, where c € S, w € V
and a(w) € w. To see this, put S; = {s € S : t € supp(s)} for each ¢t € k, and put
H={tek:S5 € z}. We claim that H is a finite set with cardinality at most n. To
see this, let H' denote any finite subset of H. Then (,cy, S: C {s € S : a(s) > [H'[}.
Since (\,eps St € 2, it follows that [H'| < n. Given s € S, write s = [[,cqupp(s) %t
with each z; € Fy and put f(s) = [;cqupp(s)nm 2¢- Then, S = U{f"'[{c}] : c € S and
supp(c) C H}. Since {c € S : supp(c) C H} is finite, for some ¢ € S with supp(c) C H,
we have f~1[{c}] € 2.

We claim that or each F' € Ps(k) such that FF N H = (), ¢ 'z € Dyur, so let such
F be given and let L = (),c(S\ Si) Then L € z and therefore ¢~ (L N f~1[{c}]) €
c~tz. We claim that ¢c=*(L N f~*[{c}]) € Duur, so let y € ¢c 1 (L N f~1[{c}]). Then
cy = HtESUPP(Cy) xy where each x; € F; and ¢ = f(cy) = Ht@upp(cy)mH z¢. Thus
Y= HtESupp(Cy)\H x¢ and in particular, supp(y) = supp(cy)\H. Suppose that y ¢ Dyur
and pick ¢ € supp(y) N (H U F). Then t € (supp(cy) \ H) N F. But cy € L C S\ S; so
t ¢ supp(cy), a contradiction. As a consequence we have that ¢™12z € V and hence that
z = cw for some w € V. By Lemma 4.5, this implies that a(c)a(w) = a(z) € w. So
a(w) € w, because fw \ w is an ideal of fw [9, Theorem 4.36].

Now assume that zy € A,. Then there exists s € S such that sy € A,. Thus there
exist ¢ € S and v € V such that sy = cv and a(v) € w. Let b = s~tc. Then y = bu.
Then, using the fact that S is contained in the center of 85, zy = bav € A,,. By Lemma
4.5, a(zy) = a(br)a(v) € w, and hence a(bx) € w. Consequently, bx € A, for some
m € w so we also have x = au for some a € S and some u € V satisfying a(u) € w.
So a(xy) = a(ab)a(u)a(v) = a(ab)a(v)d(u) = a(yz). So Xa, (zy) = Xa, (yz), and
X4, € WAP(S), as claimed.

Similarly, it follows from Lemma 4.5 that, if 2y € A,, for some n € w, then a;(zy) =

&J(yx). So XAn Qg EWAP(S) O
4.20 Theorem. Copies of the free abelian semigroup on 22" generators exist in SV AL .

Proof. As in the proof of Theorem 4.4, we choose b; € F; for each t < k, and use
U to denote the set of uniform ultrafilters on {b; : t < x}. We note that |U| = 22",
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We choose a finite number of distinct elements xq,xs,...,x, in U and a partition of
k into disjoint subsets Jp, Ja, ..., J, with the property that {b; : t € J;} € x; for each
ie{l,2,...,n}.

Suppose that u = z¥ 22 ... 2k and that v = 2722 ... 27" where ki, m; € w
and (k1,ko, ..., kn) # (my,ma,...,my,). We shall show that 7(u) # m(v). It will follow
that [U] generates a free abelian subsemigroup of SWAF.

To see this, choose N > Y"1 | (k; +m;). It is easy to verify that a(u) = Y i, k;
lifi=y
0ifi #j
@y, is a homomorphism on V. So ay,(u) = k; and ay, (v) = m; foreach i € {1,2,...,n}.
We can choose i € {1,2,...,n} for which k; # m;. Then X4, - &y, (u) # Xay - ay, (v).
By Lemma 4.19, X4, - oy, € WAP(S) and so w(u) # m(v). O

Mp
n

and a(v) = > ;" m;, so that u,v € Ay. Now ay,(z;) = . By Lemma 4.5,

Theorem 4.20 illustrates the fact that the existence of free algebraic structures in
a compact right topological semigroup 7', can be very different from their existence in
K(T). For example, suppose that S is a direct sum of copies of Z,. It is well-known
that K(S"4F) is the Bohr compactification of S and that this is a group with index 2.

So K(SWAP) contains no non-trivial free abelian semigroups.
References

[1] B. Bordbar and J. Pym, The set of idempotents in the weakly almost periodic
compactification of the integers is not closed, Trans. Amer. Math. Soc. 352 (2000),
823-842.

[2] T. Budak, N. Isik, and J. Pym, Subsemigroups of Stone-Cech compactifications,
Math. Proc. Cambr. Phil. Soc. 116 (1994), 99-118.

[3] H. G. Dales, A. Lau and D. Strauss, Banach algebras on semigroups and their
compactifications, manuscript*.

[4] C. F. Gauss, Analysis residuorum: Caput octavum, Disquisitiones generales de
congruentiis, Koniglichen Gesellschaft der Wissenschaften, Gottingen, 1876; Un-
tersuchungen iiber Hohere Arithmetik (H. Maser, ed.), Springer, Berlin, 1889, 602—
629. Available on line:
http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN23599524X

[5] D. Gorenstein, R. Lyons, and R. Solomon, The classification of the finite simple

groups, American Mathematical Society, Providence, 1994.

* Currently available at http://www.maths.leeds.ac.uk/ pmt6hgd/.

31



[6] E. Hewitt and K. Ross, Abstract Harmonic Analysis, I, Springer-Verlag, Berlin,
1963.
[7] N. Hindman, I. Leader, and D. Strauss, Separating Milliken-Taylor systems with
negative entries, Proc. Edinburgh Math. Soc. 46 (2003), 45-61.
[8] N. Hindman and J. Pym, Free groups and semigroups in SN, Semigroup Forum 30
(1984), 177-193.
[9] N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification: theory
and applications, de Gruyter, Berlin, 1998.
[10] N. Hindman and D. Strauss, Bases for commutative semigroups and groups, Math.
Proc. Cambr. Phil. Soc., to appear™*.
[11] R. Lidl and H. Niederreiter, Finite fields, Cambridge University Press, Cambridge,
1997.
[12] D. Madore, Orders of nonabelian simple groups.
http://www.madore.org/ david/math/simplegroups.html
[13] J. Pym, Semigroup structure in Stone-Cech compactifications, J. London Math.
Soc. 36 (1987), 421-428.
[14] W. Ruppert, On signed a-adic expansions and weakly almost periodic functions,
Proc. London Math. Soc. 63 (1991), 620-656.

Stefano Ferri Neil Hindman
Departamento de Matematicas Department of Mathematics
Universidad de los Andes Howard University

Carrera 1 n.o 18A-10 Washington, DC 20059
Bogoté USA

Apartado Aéreo 4976 nhindman®@aol . com
Colombia

stferri@uniandes.edu.co

Dona Strauss
Mathematics Centre
University of Hull
Hull HU6 7TRX

UK

d.strauss@hull.ac.uk

kK

Currently available at http://members.aol.com/nhindman/.

32



