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Abstract. We investigate the following three questions: Let n ∈ N. For which
Hausdorff spaces X is it true that whenever Γ is an arbitrary (respectively finite to
one) (respectively injective) function from Nn to X, there must exist an infinite subset
M of N such that Γ[Mn ] is discrete?

Of course, if n = 1 the answer to all three questions is “all of them”. For n ≥ 2
the answers to the second and third questions are the same; in the case n = 2 that
answer is “those for which there are only finitely many points which are the limit of
injective sequences”. The answers to the remaining instances involve the notion of
n-Ramsey limit . We show also that the class of spaces satisfying these discreteness
conclusions for all n includes the class of F-spaces. In particular, it includes the Stone-
Čech compactification of any discrete space.

1. Introduction

The simplest nontrivial case of Ramsey’s Theorem [10] says that whenever the two
element subsets [Y ]2 of an infinite set Y are divided into finitely many classes, there
must be an infinite subset Z of Y such that [Z]2 is contained in one of those classes.
Ramsey’s Theorem inspired a branch of mathematics known as Ramsey Theory . (See
[6].)

In a recent paper [2] we were deriving some Ramsey theoretic consequences of
some algebraic results about the Stone-Čech compactification βW of a discrete free
semigroup W . (These algebraic results [1] extended the Graham-Rothschild Parameter
Sets Theorem [5].) In the process we needed to know whether, given a doubly indexed
sequence 〈xi,j〉(i,j)∈N×N in βW with the property that xi,j 6= xk,l when (i, j) 6= (k, l),
there must exist an infinite Y ⊆ N = {1, 2, 3, . . .} such that 〈xi,j〉(i,j)∈Y×Y is discrete.
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We determined that the answer is “yes”, and characterized those Hausdorff spaces X
for which the corresponding statement with βW replaced by X remained valid.

After consulting with several experts we were surprised to find out that this re-
sult appears to be new. Consequently, we were motivated to investigate the following
questions.

1.1 Question. Let n ∈ N. For which Hausdorff spaces X is it true that whenever Γ is
an arbitrary (respectively finite to one) (respectively injective) function from Nn to X,
there must exist some M ∈ [N]ω such that Γ[Mn ] is discrete?

Of course, everyone learns in infancy that if n = 1, the answer is “all of them”.
To answer the three forms of Question 1.1 for n > 2 we introduce the notion of an
n-Ramsey limit .

Section 2 consists of an introduction to n-Ramsey limits and development of some
of their properties. In Section 4 we establish our main results. And in Section 5 we
investigate some spaces that satisfy the conclusion of the first form of Question 1.1 for
all n.

Given a set Y and a cardinal number κ, [Y ]κ = {A ⊆ Y : |A| = κ}. We take N
to be the set of positive integers and ω to be the set of nonnegative integers. Also, ω
is the first infinite cardinal, so that, given a set Y , [Y ]ω is the set of countably infinite
subsets of Y . Given any set Y , we write Pf (Y ) for the set of finite nonempty subsets
of Y . Also, given f : X → Y and A ⊆ X we write f [A] = {f(x) : x ∈ A}.

Viewing [Y ]ω for Y infinite as being ordered by inclusion, D ⊆ [Y ]ω is downward
cofinal if for each Z ∈ [Y ]ω there is W ∈ [Z]ω ∩ D, and D is downward closed if for all
W,Z ∈ [Y ]ω, if W ⊆ Z and Z ∈ D then W ∈ D. We will often use the fact that the
intersection of finitely many sets which are downward cofinal and downward closed is
also downward cofinal and downward closed and, consequently, nonempty.

Late in our investigation we realized that we did not know the answer to the versions
of Question 1.1 that replace Nn by [N]n. The answer to these versions (which is “all of
them”) is presented in Section 3.

We have mentioned the simplest nontrivial instance of Ramsey’s Theorem. We
shall be using a more general version so we state it now.

1.2 Theorem (Ramsey). Let n, r ∈ N and let Y be an infinite set. If [Y ]n =
⋃r
i=1 Ci,

then there exist i ∈ {1, 2, . . . , r} and Z ∈ [Y ]ω such that [Z]n ⊆ Ci.

Proof. [10], or see [6, Theorem 1.2] or [8, Theorem 18.2].
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We thank the referee for a helpful and constructive report. In particular, the referee
provided us with statements (c) and (d) of Theorem 4.7.

2. Ramsey Filters and Ramsey Limits

Our main tool is a certain class of filters which we introduce now.

2.1 Definition. Let M be an infinite set and let n ∈ N. The n-Ramsey filter on [M ]n

is Rn(M) = {A ⊆ [M ]n : for all B ∈ [M ]ω, [B]n ∩A 6= ∅}.
We let Rn = Rn(N).

Of course, since we have called Rn(M) a filter, we should verify that it is a filter.
This verification also shows the reason for “Ramsey” in the name.

2.2 Lemma. Let n ∈ N and let M be an infinite set. Then Rn(M) is a filter on [M ]n.

Proof. The only nontrivial part of this assertion is that Rn(M) is closed under finite
intersections. So let A,B ∈ Rn(M). Let

D1 = [M ]n \ (A ∪B) ,

D2 = A \B ,

D3 = B \A , and

D4 = A ∩B .

Let E ∈ [M ]ω and pick by Ramsey’s Theorem i ∈ {1, 2, 3, 4} and C ∈ [E]ω such that
[C]n ⊆ Di. Since [C]n ∩A 6= ∅ and [C]n ∩B 6= ∅, we must have that i = 4.

2.3 Lemma. Let M be an infinite set and let A ∈ Rn(M). For every L ∈ [M ]ω there
exists B ∈ [L]ω such that [B]n ⊆ A.

Proof. Pick by Ramsey’s Theorem some B ∈ [L]ω such that either [B]n ⊆ A or
[B]n ∩A = ∅. The latter alternative cannot hold.

We shall be concerned with limits in a Hausdorff space determined by the filters
Rn(M).

2.4 Definition. Let X be a Hausdorff space, let n ∈ N, let y ∈ X, let M be an infinite
set and let ϕ : [M ]n → X. Then y = Rn(M)- limϕ if and only if for every neighborhood
U of y, ϕ−1[U ] ∈ Rn(M). We say that y is a nontrivial n-Ramsey limit in X if and
only if there exists some ϕ : [N]n → X such that y = Rn- limϕ and ϕ−1[{y}] /∈ Rn.
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Notice that Rn-limits are unique if they exist. Notice also that if f : N → X and
ϕ({m}) = f(m), then the statements y = lim

m→∞
f(m) and y = R1- limϕ are equivalent

because R1 = {A ⊆ [N]1 : {x ∈ N : {x} /∈ A} is finite}.
We omit the routine proof of the following observation.

2.5 Lemma. Let X be a Hausdorff space, let n ∈ N, let L and M be infinite sets, let
y ∈ X and let ϕ : [L ∪M ]n → X. If y = Rn(M)- limϕ and L \M is finite, then
y = Rn(L)- limϕ.

2.6 Lemma. Let X be a Hausdorff space, let n ∈ N, and let y ∈ X. If there exists
ϕ : [N]n 1-1−→X such that y = Rn- limϕ, then there exists τ : [N]n+1 1-1−→X such that
y = Rn+1- lim τ .

Proof. Let γ : N2 1-1−→N and define ψ : [N]n+1 1-1−→[N]n as follows. Let A ∈ [N]n+1 and
write A = {a0, a1, . . . , an} with a0 = minA. Let

ψ(A) = {γ(a0, a1), γ(a0, a2), . . . , γ(a0, an)} .

Now let τ = ϕ ◦ ψ. We claim that y = Rn+1- lim τ . So let U be a neighborhood
of y and let B ∈ [N]ω. We need to show that there is some A ∈ [B]n+1 such that
τ(A) ∈ U . Let a0 = minB and let C = {γ(a0, b) : b ∈ B and b > a0}. Then C ∈ [N]ω

so pick D = {c1, c2, . . . , cn} ∈ [C]n such that ϕ(C) ∈ U . For i ∈ {1, 2, . . . , n} pick
ai ∈ B such that ai > a0 and γ(a0, ai) = ci. Then A = {a0, a1, . . . , an} ∈ [B]n+1 and
τ(A) = ϕ(D) ∈ U .

We shall have need of the Canonical Ramsey Theorem (Theorem 2.8). To state it
conveniently, we introduce some notation.

2.7 Definition. Let F be a finite subset of N. If F = ∅, then for all A ⊆ N, νF (A) = ∅.
Otherwise, let n = |F | and let k = maxF . Then νF : {A ⊆ N : |A| ≥ k} → [N]n is
defined as follows. Given A ⊆ N such that |A| ≥ k, let a1 < a2 < . . . < ak be the first
k members of A. Then νF (A) = {ai : i ∈ F}.

2.8 Theorem (Erdős and Rado). Let n ∈ N, let C ∈ [N]ω, and let ψ be any function
with domain containing [C]n. Then there exist M ∈ [C]ω and F ⊆ {1, 2, . . . , n} such
that for all A,B ∈ [M ]n, ψ(A) = ψ(B) if and only if νF (A) = νF (B).

Proof. [3], or see [6, Theorem 5.3].

2.9 Lemma. Let X be a Hausdorff space, let n ∈ N, and let y ∈ X. If y is a nontrivial
n-Ramsey limit in X, then there exists ϕ : [N]n 1-1−→X \ {y} such that y = Rn- limϕ. In
particular y is also a nontrivial (n+ 1)-Ramsey limit in X.
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Proof. Pick η : [N]n → X such that y = Rn- lim η and η−1[{y}] /∈ Rn. Pick C ∈ [N]ω

such that [C]n ∩ η−1[{y}] = ∅.
Pick by Theorem 2.8 some M ∈ [C]ω and some F ⊆ {1, 2, . . . , n} such that for all

A,B ∈ [M ]n, η(A) = η(B) if and only if νF (A) = νF (B).

We first note that F 6= ∅. Indeed, suppose F = ∅ and let x be the constant value
of η on [M ]n. Since M ⊆ C, x 6= y so pick a neighborhood U of y such that x /∈ U .
Then [M ]n ∩ η−1[U ] 6= ∅, a contradiction.

Let m = |F |. Pick N ∈ [M ]ω with the property that for all B ∈ [N ]m there is some
A ∈ [M ]n such that B = νF (A). (For example, N could consist of every nth member of
M .) Let ψ : [N ]m → [M ]n be a function such that for each B ∈ [N ]m, νF

(
ψ(B)

)
= B.

Then given A ∈ [N ]n, νF
(
ψ

(
νF (A)

))
= νF (A) so η

(
ψ

(
νF (A)

))
= η(A).

Let µ : N 1-1−→N and define τ : [N]m 1-1−→X by τ(B) = η
(
ψ(µ[B])

)
. (To see that

τ is injective, let B,D ∈ [N]m and assume that τ(B) = τ(D). Since η
(
ψ(µ[B])

)
=

η
(
ψ(µ[D])

)
, we have µ[B] = νF

(
ψ(µ[B])

)
= νF

(
ψ(µ[D])

)
= µ[D] so B = D.)

We claim that y = Rm- lim τ . To see this, let U be a neighborhood of y and
let E ∈ [N]ω. Then µ[E] ∈ [N ]ω so pick A ∈

[
µ[E]

]n such that η(A) ∈ U . Let
B = µ−1[νF (A)]. Then B ∈ [E]m and τ(B) = η

(
ψ(µ[B])

)
= η

(
ψ

(
νF (A)

))
= η(A) ∈ U .

Since m ≤ n we have by Lemma 2.6 that there exists ϕ : [N]n 1-1−→X such that
y = Rn- limϕ.

For the “in particular” conclusion, apply Lemma 2.6.

The following lemma, in conjunction with Lemma 2.9, shows that the property of
being a nontrivial (n+1)-Ramsey limit is strictly stronger than that of being a nontrivial
n-Ramsey limit.

2.10 Lemma. Let n ∈ N, let X = [N]n+1 ∪ {∞}, and let X have the topology T =
P([N]n+1) ∪

{
{∞} ∪ A : A ∈ Rn+1

}
. Then ∞ is a nontrivial (n + 1)-Ramsey limit in

X, but no point of X is a nontrivial n-Ramsey limit in X.

Proof. Let ι : [N]n+1 → [N]n+1 be the identity function. Then ∞ = Rn+1- lim ι.

Now suppose that ∞ is a nontrivial n-Ramsey limit and pick by Lemma 2.9
ϕ : [N]n 1-1−→X \ {∞} such that ∞ = Rn- limϕ.

Notice that for any L ∈ [N]ω there is some B ∈ [N]ω such that [B]n+1 ⊆ ϕ
[
[L]n

]
.

(We have that [L]n ∩ϕ−1
[
X \ϕ

[
[L]n

]]
= ∅, so X \ϕ

[
[L]n

]
is not a neighborhood of ∞

and thus [N]n+1 \ ϕ
[
[L]n

]
/∈ Rn+1.)

For each t ∈ {1, 2, . . . , n+ 1}, define ft : [N]n → [N]n as follows. Given A ∈ [N]n, if
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ϕ(A) = {b1, b2, . . . , bn+1} and b1 < b2 < . . . < bn+1, then ft(A) = ϕ(A) \ {bt}. We note
that ft is not injective on [L]n for any L ∈ [N]ω. To see this pick some B ∈ [N]ω such
that [B]n+1 ⊆ ϕ

[
[L]n

]
. Pick b1 < b2 < . . . < bn+2 in B and let E = {b1, b2, . . . , bn+2}.

Pick C,D ∈ [L]n such that ϕ(C) = E \ {bt} and ϕ(D) = E \ {bt+1} Then ft(C) =
ft(D) = E \ {bt, bt+1}, while C 6= D because ϕ(C) 6= ϕ(D).

Let L0 = N and inductively for t ∈ {1, 2, . . . , n + 1} pick by Theorem 2.8 Lt ∈
[Lt−1]ω and Gt ⊆ {1, 2, . . . , n} such that for all C,D ∈ [Lt]n, ft(C) = ft(D) if and only
if νGt

(C) = νGt
(D). Since ft is not injective on [Lt]n, we have that Gt 6= {1, 2, . . . , n}

so pick σ(t) ∈ {1, 2, . . . , n} \Gt.
Pick t 6= s in {1, 2, . . . , n+ 1} such that σ(t) = σ(s) and pick a1 < a2 < . . . < an+1

in Ln+1, let A = {a1, a2, . . . , an+1}, let B = A \ {aσ(t)} and let C = A \ {aσ(t)+1}. If
B = {b1, b2, . . . , bn}, C = {c1, c2, . . . , cn}, b1 < b2 < . . . < bn, and c1 < c2 < . . . < cn

then

bi =
{

ai if i < σ(t)
ai+1 if i ≥ σ(t) and ci =

{
ai if i ≤ σ(t)
ai+1 if i > σ(t) .

Therefore bi = ci for all i ∈ Gt and bi = ci for all i ∈ Gs and thus ft(B) = ft(C) and
fs(B) = fs(C). But then ϕ(B) = ϕ(C), contradicting the fact that ϕ is injective.

3. Discrete Images of n-element Sets

We show in this section that any Hausdorff space X has the property that for any n ∈ N
and any function from [N]n to X there is an infinite B ⊆ N such that the image of [B]n

is discrete.

We show first that it suffices to consider injective functions.

3.1 Lemma. Let X be a Hausdorff space and assume that whenever n ∈ N and
ψ : [N]n 1-1−→X there exists B ∈ [N]ω such that ψ

[
[B]n

]
is discrete. Then whenever

n ∈ N and ψ : [N]n → X there exists B ∈ [N]ω such that ψ
[
[B]n

]
is discrete.

Proof. Let n ∈ N and let ψ : [N]n → X. Pick by Theorem 2.8 some F ⊆ {1, 2, . . . ,
n} and some M ∈ [N]ω such that for all A,B ∈ [M ]n, ψ(A) = ψ(B) if and only if
νF (A) = νF (B). If F = ∅, then ψ is constant on [M ]n and so ψ

[
[M ]n

]
is discrete. If

F = {1, 2, . . . , n}, then ψ is injective on [M ]n so our assumption applies. So we may
assume that 0 < |F | < n.

Let k = |F | and pick L ∈ [M ]ω such that for every C ∈ [L]k there is some A ∈ [M ]n

such that C = νF (A). (One may have L consist of every nth member of M .) Pick
τ : [L]k → [M ]n such that for all C ∈ [L]k, νF

(
τ(C)

)
= C. Let µ = ψ ◦ τ . We claim
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that µ : [L]k 1-1−→X. To see this, let C,D ∈ [L]k and assume that µ(C) = µ(D). Then
ψ

(
τ(C)

)
= ψ

(
τ(D)

)
so C = νF

(
τ(C)

)
= νF

(
τ(D)

)
= D.

By assumption we may pick B ∈ [L]ω such that µ
[
[B]k] is discrete. To complete

the proof it suffices to show that ψ
[
[B]n

]
⊆ µ

[
[B]k]. So let D ∈ [B]n. Then νF (D) ∈

[B]k and νF ◦ τ is the identity on [L]k so νF (D) = νF
(
τ
(
νF (D)

))
and thus ψ(D) =

ψ
(
τ
(
νF (D)

))
= µ

(
νF (D)

)
∈ µ

[
[B]k

]
.

We now establish two technical lemmas. The first is a simple combinatorial conse-
quence of Ramsey’s theorem and is in the folklore.

3.2 Lemma. Suppose Y is an infinite set and k ∈ ω. If h : [Y ]k → P(Y ) has the
property that h(A) 6⊆ A for all A ∈ [Y ]k then there is an infinite Z ⊆ Y such that
h(A) 6⊆ Z for all A ∈ [Z]k.

Proof. Without loss of generality, Y = N.

Choose g : [N]k → N so that g(A) ∈ h(A) \A for all A ∈ [N]k.

Let i ∈ N with 1 ≤ i ≤ k+1. For A ∈ [N]k+1, let A− be A\{the ith element of A}.
Let C1 = {A ∈ [N]k+1 : g(A−) is the ith element of A} and let C0 = [N]k+1 \C0. Notice
that there can be no infinite Z ⊆ N such that [Z]k+1 is a subset of C1. (Consider two
elements of [Z]k+1 which differ only at the ith element.) By Ramsey’s theorem, the
collection Di = {Z ∈ [N]ω : [Z]k+1 ⊆ C0} is downward cofinal. Moreover, Di is clearly
downward closed.

Let Z be in each of the collections Di for 1 ≤ i ≤ k + 1. Then Z has the desired
properties.

3.3 Lemma. Let X be a Hausdorff space, let n ∈ N, and let ψ : [N]n 1-1−→X. For each
k ∈ {0, 1, . . . , n−1} and each B ∈ [N]k define fB : [N\B]n−k → X by fB(C) = ψ(B∪C).
There exists M ∈ [N]ω such that for all A ∈ [M ]n, all k ∈ {0, 1, . . . , n−1}, all B ∈ [M ]k,
and all L ∈ [M ]ω, ψ(A) is not Rn−k(L \B)- lim fB.

Proof. We first show that we can chooseK ∈ [N]ω such that for each k ∈ {0, 1, . . . , n−1}
and each B ∈ [N]k, either Rn−k(K \ B)- lim fB exists or for all L ∈ [K]ω,
Rn−k(L \ B)- lim fB does not exist. To see this, enumerate

⋃n−1
k=0 [N]k as 〈Bt〉∞t=1.

Let K0 = N. Let t ∈ N and assume that Kt−1 has been chosen. Let k = |Bt|.
If there is some Kt ∈ [Kt−1 \ Bt]ω such that Rn−k(Kt)- lim fBt

exists, choose such.
Otherwise let Kt = Kt−1. The induction being complete, choose for each t ∈ N,
xt ∈ Kt \ {x1, x2, . . . , xt−1}, and let K = {xt : t ∈ N}. Using Lemma 2.5 one easily
establishes that K is as required.
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For each k ∈ {0, 1, . . . , n − 1} choose hk : [K]k → P(N) such that hk(B) 6⊆ B and
hk(B) = A if Rn−k(K \ B)- lim fB = ψ(A) (notice that since ψ is injective, if such
A exists then it is unique). By the previous lemma, there is an M ∈ [K]ω such that
hk(B) 6⊆M for all k ∈ {0, 1, . . . , n− 1} and B ∈ [M ]k.

To see that M has the desired properties, argue by contradiction and assume that
A ∈ [M ]n, k ∈ {0, 1, . . . , n− 1}, B ∈ [M ]k, L ∈ [M ]ω and ψ(A) = Rn−k(L \B)- lim fB .
By Lemma 2.5 and the choice of K, Rn−k(K \ B)- lim fB = ψ(A). This implies that
A = hk(B) 6⊆M , a contradiction.

3.4 Theorem. Let X be a Hausdorff space, let n ∈ N, and let ψ : [N]n → X. There
exists L ∈ [N]ω such that ψ

[
[L]n

]
is discrete.

Proof. By Lemma 3.1 we may assume that ψ : [N]n 1-1−→X.

For each k ∈ {0, 1, . . . , n − 1} and each B ∈ [N]k define fB : [N \ B]n−k → X by
fB(C) = ψ(B ∪ C).

Pick M0 ∈ [N]ω as guaranteed by Lemma 3.3. Inductively, let m ∈ N and assume
that we have chosen l1 < l2 < . . . < lm−1 and infinite M0 ⊇ M1 ⊇ . . . ⊇ Mm−1 such
that for each t ∈ {1, 2, . . . ,m − 1}, if A ∈ [{l1, l2, . . . , lt}]n then there is a neighbor-
hood of ψ(A) which is disjoint from fB

[
[Mt]n−k

]
whenever k ∈ {0, 1, . . . , n − 1} and

B ∈ [{l1, l2, . . . , lt}]k. Notice that we may also assume that ψ(A′) is not in the given
neighborhood for the finitely many A′ 6= A in [{l1, l2, . . . , lt}]n.

Let lm be the least element of Mm−1. For each A ∈ [{l1, l2, . . . , lm}]n, k ∈
{0, 1, . . . , n − 1} and B ∈ [{l1, l2, . . . , lm}]k, let DA,B =

{
M ∈ [Mm−1 \ {lm}]ω : there

is a neighborhood of ψ(A) which is disjoint from fB
[
[M ]n−k

]}
. By the choice of M0,

DA,B is a downward cofinal and downward closed subset of [Mm−1 \ {lm}]ω. Choose
Mm in the intersection of the finitely many DA,B .

The main induction being complete, let L = {lm : m ∈ N}. To see that L is as
required, let A ∈ [L]n. Letm = max{t : lt ∈ A} and let U a neighborhood of ψ(A) which
is disjoint from fB

[
[Mm]n−k

]
whenever k ∈ {0, 1, . . . , n− 1} and B ∈ [{l1, l2, . . . , lm}]k.

As noted above, we may also assume that ψ(A′) is not in U whenever A′ 6= A is in
[{l1, l2, . . . , lm}]n. Since L ⊆ {l0, l1, . . . , lm} ∪Mm, U ∩ ψ

[
[L]n

]
= {ψ(A)}.

4. Discrete n-tuples

In this section we answer Question 1.1.

4.1 Definition. Given k ≤ n in N and f : {1, 2, . . . , n} → {1, 2, . . . , k}, define
µf : [N]k → Nn by taking µf (A)j to be the f(j)th member of A.
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For example, if n = 4, k = 3, f(1) = f(3) = 2, f(2) = 1, and f(4) = 3, then
µf ({7, 10, 30}) = (10, 7, 10, 30). We omit the routine proof of the following lemma.

4.2 Lemma. If n ∈ N, ~l ∈ Nn, k = |{l1, l2, . . . , ln}|, and

f : {1, 2, . . . , n} onto−→{1, 2, . . . , k}

is defined by f(j) = i if and only if lj is the ith member of {l1, l2, . . . , ln}, then
µf ({l1, l2, . . . , ln}) = ~l.

4.3 Lemma. Let X be a Hausdorff space, let n ∈ N, and let x be an element of X
which is not a nontrivial n-Ramsey limit point. If ψ : [N]n → X, then for all M ∈ [N]ω

there exist L ∈ [M ]ω and a neighborhood U of x with U ∩ ψ
[
[L]n

]
⊆ {x}.

Proof. Choose τ : N 1-1−→M . Define γ : [N]n → X by γ(A) = ψ(τ [A]).

Assume first that γ−1[{x}] ∈ Rn. Pick by Ramsey’s Theorem some B ∈ [N]ω

such that [B]n ⊆ γ−1[{x}] or [B]n ∩ γ−1[{x}] = ∅. Since γ−1[{x}] ∈ Rn, the latter
is impossible so [B]n ⊆ γ−1[{x}]. Let L = τ [B] and let U = X. If A ∈ [L]n, then
τ−1[A] ∈ [B]n so ψ(A) = ψ

(
τ
[
τ−1[A]

])
= γ(τ−1[A]) = x.

Now assume that γ−1[{x}] /∈ Rn and consequently that x 6= Rn- lim γ. Pick a
neighborhood U of x such that γ−1[U ] /∈ Rn and pick B ∈ [N]ω such that [B]n∩γ−1[U ] =
∅. Let L = τ [B]. If A ∈ [L]n, then τ−1[A] ∈ [B]n so ψ(A) = γ(τ−1[A]) /∈ U .

4.4 Lemma. Let X be a Hausdorff space, let n ∈ N, and let x be an element of X
which is not a nontrivial n-Ramsey limit. If Γ : Nn → X, then for all M ∈ [N]ω there
exist L ∈ [M ]ω and a neighborhood U of x with U ∩ Γ[Ln] ⊆ {x}.

Proof. Let F =
{
f : (∃k ∈ {1, 2, . . . , n})

(
f : {1, 2, . . . , n} onto−→{1, 2, . . . , k})}. For each

f ∈ F , pick k such that f : {1, 2, . . . , n} onto−→{1, 2, . . . , k} and let Df =
{
L ∈ [N]ω : there

is a neighborhood U of x such that U∩
(
Γ◦µf

[
[L]k

])
⊆ {x}

}
. Since x is not a nontrivial

k-Ramsey limit point of X for any k ≤ n by Lemma 2.9, Lemma 4.3 implies that Df
is downward cofinal for each f ∈ F . Since each Df is clearly downward closed, we can
choose L ∈ [M ]ω in the intersection of the finitely many sets Df .

For each f ∈ F , there is a neighborhood Uf of x such that U ∩
(
Γ◦µf

[
[L]k

])
⊆ {x}.

Let U =
⋂
f∈F Uf . To see that U∩Γ[Ln] ⊆ {x}, let ~l ∈ Ln and define f as in Lemma 4.2.

Let k = |{l1, l2, . . . , ln}|. Then {l1, l2, . . . , ln} ∈ [L]k so Γ(~l ) = Γ
(
µf ({l1, l2, . . . , ln})

)
/∈

Uf \ {x}.

4.5 Lemma. Let X be a Hausdorff space, let n ∈ N \ {1} and let x be an element of X
which is not a nontrivial (n−1)-Ramsey limit. If Γ : Nn → X and G ∈ Pf (N) then for all
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M ∈ [N]ω there exist L ∈ [M ]ω and a neighborhood U of x with U∩Γ[(G∪L)n\Ln] ⊆ {x}.

Proof. Let F = {f : (∃H)(∅ 6= H ⊆6 {1, 2, . . . , n} and f : H → G)}. Suppose f ∈ F , let
H = domain(f), and list {1, 2, . . . , n}\H in order as j1, j2, . . . , jk. Define ηf : Nk → Nn

by

ηf (~y )i =
{
f(i) if i ∈ H
ys if i = js

for i ∈ {1, 2, . . . , n} and ~y ∈ Nk. Then Γ ◦ ηf : Nk → X and x is not a nontrivial
k-Ramsey limit point of X so by Lemma 4.4 the set Df is downward cofinal where
Df =

{
L ∈ [N]ω : there is a neighborhood U of x such that U ∩ (Γ ◦ ηf [Lk]) ⊆ {x}

}
.

Since each Df is clearly downward closed, we can pick L ∈ [M ]ω which is in each Df .
For each f ∈ F let k = n − |domain(f)| and pick a neighborhood Uf of x such that
Uf ∩ (Γ ◦ ηf [Lk]) ⊆ {x}. Let U ′ =

⋂
f∈F Uf .

Let D = {~y ∈ Gn : Γ(~y ) 6= x} and pick a neighborhood V of x such that for all
~y ∈ D, Γ(~y ) /∈ V . Let U = V ∩ U ′. Now let ~y ∈ (G ∪ L)n \ Ln and assume that
Γ(~y ) 6= x. If ~y ∈ Gn, then Γ(~y ) /∈ V . So assume that ~y /∈ Gn. Let H = {i : yi ∈ G}.
Define f : H → G by f(i) = yi. Enumerate {1, 2, . . . , n} \H in order as j1, j2, . . . , jk.
For i ∈ {1, 2, . . . , k}, let zi = yji . Then ~z ∈ Lk so either Γ◦ηf (~z ) = x or Γ◦ηf (~z ) /∈ U ′.
Since ηf (~z ) = ~y, we have Γ(~y ) /∈ U ′.

4.6 Lemma. Let X be a Hausdorff space, let n ∈ N, and let x be an element of X
which is not a nontrivial n-Ramsey limit. If Γ : Nn → X and G is a finite subset
of N, then for all M ∈ [N]ω there exist L ∈ [M ]ω and a neighborhood U of x with
U ∩ Γ[(G ∪ L)n] ⊆ {x}.

Proof. IfG = ∅, this is Lemma 4.4, so assume thatG 6= ∅. If n = 1, pick a neighborhood
V of x and L ∈ [M ]ω as guaranteed by Lemma 4.4 and pick a neighborhood U of x
with U ⊆ V such that Γ(y) /∈ U \ {x} for each y ∈ G.

Now assume that n > 1. Pick a neighborhood V of x and N ∈ [M ]ω as guaranteed
by Lemma 4.4. By Lemma 2.9 x is not a nontrivial (n − 1)-Ramsey limit point in
X so pick a neighborhood W of x and L ∈ [N ]ω as guaranteed by Lemma 4.5. Let
U = V ∩W .

The following theorem answers Question 1.1 for the case of arbitrary functions. It
is a curiosity that, while the characterization given by Theorem 4.7 and its proof are
simpler than the characterization and proof for the other two cases given in Theorem
4.9, we discovered those latter characterizations first. This is at least partly due to the
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fact that we were initially concerned with injective functions for our Ramsey Theoretic
applications.

Our referee noted that “Theorems 3.4 and 4.7 show that the behavior of functions
f : [N]n → X and g : Nn → X are very different.” The referee then suggested that we
add statements (c) and (d) to Theorem 4.7, noting that “concerning discrete images,
the behavior of the functions Γ : Nn → X are the same as the behavior of functions
Γ : [N]n → [X]k.”

4.7 Theorem. Let X be a Hausdorff space and let n ∈ N\{1}. The following statements
are equivalent.

(a) Whenever G is a finite collection of functions from Nn to X there exists B ∈ [N]ω

such that
⋃

Γ∈G Γ[Bn] is discrete.

(b) Whenever Γ : Nn → X there exists B ∈ [N]ω such that Γ[Bn] is discrete.

(c) Whenever G is a finite collection of functions from [N]n to X there exists B ∈ [N]ω

such that
⋃
ψ∈G ψ

[
[B]n

]
is discrete.

(d) Whenever ψ1 and ψ2 are functions from [N]n to X there exists B ∈ [N]ω such that
ψ1

[
[B]n

]
∪ ψ2

[
[B]n

]
is discrete.

(e) There are no nontrivial n-Ramsey limit points in X.

Proof. Clearly, (a) implies both (b) and (c) and (c) implies (d). A moment’s thought
shows that (b) implies (d): given ψ1 and ψ2 apply (b) to Γ : Nn → X where Γ(x1, . . . , xn)
is defined to be ψ1({x1, . . . , xn}) if x1 < · · · < xn, ψ2({x1, . . . , xn}) if x1, . . . , xn are
distinct but not in increasing order, and arbitrary otherwise.

(d) implies (e). Suppose x is a nontrivial n-Ramsey limit point in X. Pick by
Lemma 2.9 ψ1 : [N]n → X \ {x} such that x = Rn- limψ. Let ψ2 : [N]n → X be the
constant function with value x. For any B ∈ [N]ω, x is a limit point of ψ1

[
[B]n

]
by the

choice of ψ1 and x ∈ ψ2

[
[B]n

]
implying that ψ1

[
[B]n

]
∪ ψ2

[
[B]n

]
is not discrete.

(e) implies (a). Let C0 = N, let m ∈ N, and assume that we have chosen infinite
C0 ⊇ C1 ⊇ . . . ⊇ Cm−1 and distinct a1, a2, . . . , am−1 such that for Γ ∈ G and ~x ∈
{a1, a2, . . . , am−1}n (if any) we have chosen a neighborhood UΓ

~x of Γ(~x ) so that if k =
max{t : some xi = at}, then UΓ

~x ∩
⋃

∆∈G ∆[({a1, a2, . . . , ak}∪Ck)n] ⊆ {Γ(~x )}. Pick am ∈
Cm−1 \{a1, a2, . . . , am−1}. Let T = {a1, a2, . . . , am}n \{a1, a2, . . . , am−1}n. By Lemma
4.6, for each Γ ∈ G and ~x ∈ T the set DΓ

~x is downward cofinal where DΓ
~x =

{
L ∈ [N]ω :

there is a neighborhood U of Γ(~x ) such that U ∩
⋃

∆∈G ∆[({a1, a2, . . . , am} ∪ L)n] ⊆
{Γ(~x )}

}
. Since each DΓ

~x is clearly closed downward, there is Cm ∈ [Cm−1]ω which is
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in each DΓ
~x . For each Γ ∈ G and ~x ∈ T pick a neighborhood UΓ

~x of Γ(~x ) such that
UΓ
~x ∩

⋃
∆∈G ∆[({a1, a2, . . . , am} ∪ Cm)n] ⊆ {Γ(~x )}.

The induction being complete, let B = {am : m ∈ N}. Given ~x ∈ Bn, let m =
max{t : some xi = at}. Then for any ~y ∈ Bn, ~y ∈ ({a1, a2, . . . , am} ∪ Cm)n so Γ(~y ) /∈
UΓ
~x \ {Γ(~x )}.

Note that the characterization of Theorem 4.7 is not valid in the case n = 1 because
statement (a) holds in any Hausdorff space. We need one more lemma before we can
address the other two parts of Question 1.1.

4.8 Lemma. Let X be a Hausdorff space, let n ∈ N, and let Γ be a finite to one function
from Nn to X. There exist N ∈ [N]ω and a finite set X0 of nontrivial n-Ramsey limit
points in X such that for all x ∈ X \X0 and all M ∈ [N ]ω there exist L ∈ [M ]ω and a
neighborhood U of x with U ∩ Γ[Ln] = ∅.

Proof. Let F =
{
f : (∃k ∈ {1, 2, . . . , n})

(
f : {1, 2, . . . , n} onto−→{1, 2, . . . , k})}. Given

f ∈ F , pick k ∈ {1, 2, . . . , n} such that f : {1, 2, . . . , n} onto−→{1, 2, . . . , k} and let Df =
{N ∈ [N]ω : either Rk(N)- lim(Γ ◦ µf ) exists or Rk(N ′)- lim(Γ ◦ µf ) does not exist
for any N ′ ∈ [N ]ω}. Then each Df is downward cofinal and downward closed so pick
N ∈

⋂
f∈F Df . Let X0 = {x ∈ X : there exist f ∈ F and k ∈ {1, 2, . . . , n} such that

x = Rk(N)- lim(Γ ◦µf )}. Given x ∈ X0, k ∈ {1, 2, . . . , n}, and f : {1, 2, . . . , n} onto−→{1, 2,
. . . , k} such that x = Rk(N)- lim(Γ ◦ µf ), we have that µf is injective so Γ ◦ µf is finite
to one, and thus x is a nontrivial k-Ramsey limit point in X. Therefore by Lemma 2.9,
each element of X0 is a nontrivial n-Ramsey limit point in X.

Assume x ∈ X \X0 and M ∈ [N ]ω. For each f ∈ F , let Ef = {L ∈ [N ]ω : there is a
neighborhood U of x with U ∩

(
Γ ◦ µf

[
[L]k

])
= ∅}, where f : {1, 2, . . . , n} onto−→{1, 2, . . . ,

k}. By the choice of N and X0, each Ef is downward cofinal, and is clearly downward
closed. Pick L ∈

⋂
f∈F Ef and a neighborhood U of x as guaranteed by the fact that

L ∈ Ef for each f ∈ F .

4.9 Theorem. Let n ∈ N and let X be a Hausdorff topological space. The following
statements are equivalent.

(a) Whenever G is a finite collection of finite to one functions from Nn+1 to X there
exists B ∈ [N]ω such that

⋃
Γ∈G Γ[Bn+1] is discrete.

(b) Whenever Γ is an injective function from Nn+1 to X there exists B ∈ [N]ω such
that Γ[Bn+1] is discrete.

(c) The set of nontrivial n-Ramsey limit points in X is finite.
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Proof. That (a) implies (b) is trivial.

(b) implies (c). Let Y = {y ∈ X : y is a nontrivial n-Ramsey limit in X} and
suppose that Y is infinite. Pick an infinite discrete subset M of Y and let 〈yt〉∞t=1 be an
injective sequence in M such that M \ {yt : t ∈ N} is infinite.

For each t ∈ N, pick by Lemma 2.9 ψt : [N]n 1-1−→X \ {yt} such that yt = Rn- limψt

and pick a neighborhood Ut of yt such that Ut ∩M = {yt}. Pick by Lemma 2.3 some
Bt ∈ [N]ω such that ψt

[
[Bt]n

]
⊆ Ut\{yt} and minBt > t. We shall define for each t ∈ N

an increasing function ft : {s ∈ N : s > t} → Bt such that whenever t < l1 < l2 < . . . <

ln, s < m1 < m2 < . . . < mn, and s 6= t, one has that ψt({ft(l1), ft(l2), . . . , ft(ln)}) 6=
ψs({fs(m1), fs(m2), . . . , fs(mn)}).

We remark that if X is regular, one may assume that Ut ∩ Us = ∅ when s 6= t so
that ft can simply be taken to be any increasing function from {s ∈ N : s > t} to Bt.
The following construction need only be used if X is not regular.

Let f1(2) = minB1. Inductively, let k ∈ N \ {1} and assume that we have de-
fined ft(k) for all t < k such that whenever t < l1 < l2 < . . . < ln ≤ k, s <

m1 < m2 < . . . < mn ≤ k, and s 6= t, one has that ψt({ft(l1), ft(l2), . . . , ft(ln)}) 6=
ψs({fs(m1), fs(m2), . . . , fs(mn)}). We shall define ft(k+ 1) for t ≤ k. If t+ n > k+ 1,
let ft(k + 1) be any member of Bt such that ft(k + 1) > ft(k) if k > t. We define
ft(k + 1) for t ≤ k + 1 − n (if any) inductively. So let t ∈ {1, 2, . . . , k + 1 − n} and
assume that fs(k + 1) has been defined for s ∈ {1, 2, . . . , t− 1} (if any). Let Ft =

{ψs({fs(m1), fs(m2), . . . , fs(mn)}) : t < s < m1 < m2 < . . . < mn ≤ k or
t > s and s < m1 < m2 < . . . < mn ≤ k + 1} .

Then Ft is finite, so for each choice of l1, l2, . . . , ln−1 with t < l1 < l2 < . . . < ln−1 ≤ k,
{x ∈ Bt : ψt({ft(l1), ft(l2), . . . , ft(ln−1), x}) ∈ Ft} is finite so we may pick ft(k+1) ∈ Bt
such that ft(k + 1) > ft(k) if k > t and

{ψt({ft(l1), ft(l2), . . . , ft(ln−1), ft(k + 1)}) : t < l1 < l2 < . . . < ln−1 < k + 1} ∩ Ft = ∅ .

Having defined ft for each t we now define Γ : Nn+1 1-1−→X. First for each t,
let Γ(t, t, . . . , t) = yt. Next given t < l1 < l2 < . . . < ln, Γ(t, l1, l2, . . . , ln) =
ψt({ft(l1), ft(l2), . . . , ft(ln)}). Extend Γ to the rest of Nn+1 so that

Nn+1 \ ({(t, t, . . . , t) : t ∈ N} ∪ {(t, l1, l2, . . . , ln) : t < l1 < l2 < . . . < ln})

is mapped injectively into M \ {yt : t ∈ N}. (Notice that all of the values previously
defined lie in

⋃∞
t=1 Ut.)
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Now pick C ∈ [N]ω such that Γ[Cn+1] is discrete. Let t = minC. Since yt ∈
Γ[Cn+1], pick a neighborhood V of yt such that V ∩Γ[Cn+1] = {yt}. Now ft[C] ∈ [N]ω so
pick by Lemma 2.3 some D ∈

[
ft[C]

]ω such that ψt
[
[D]n

]
⊆ V . Pick l1 < l2 < . . . < ln

in ft
−1[D] with l1 > t. Then {ft(l1), ft(l2), . . . , ft(ln)} ∈ [D]n so Γ(t, l1, l2, . . . , ln) =

ψt({ft(l1), ft(l2), . . . , ft(ln)}) ∈ V \ {yt} while (t, l1, l2, . . . , ln) ∈ Cn+1, a contradiction.

(c) implies (a). We will choose distinct l1, l2, . . . in N and infinite subsets L0 ⊇
L1 ⊇ L2 ⊇ . . . of N inductively such that for each m ∈ N, lm ∈ Lm−1, lm < minLm
and whenever Γ ∈ G and ~x ∈ {l0, l1, . . . , lm}n+1 there is a neighborhood UΓ

~x of Γ(~x)
such that UΓ

~x ∩
⋃

∆∈G ∆[({l0, l1, . . . , lm} ∪ Lm)n+1] = {Γ(~x)}. Fix N ∈ [N]ω such that
whenever x is not a nontrivial n-Ramsey limit point in X and M ∈ [N ]ω there exist
L ∈ [M ]ω and a neighborhood U of x with U ∩

⋃
∆∈G ∆[Ln+1] = ∅. We may do this by

Lemma 4.8. Since Γ is finite to one, we may also assume that for all ~x ∈ Nn+1, Γ(~x) is
not a nontrivial n-Ramsey limit point in X.

Let L0 = N , let m ∈ N, and assume that lt and Lt have been chosen for t ∈ {0, 1,
. . . ,m− 1}. Let lm be the least element of Lm−1.

For the moment, fix Γ ∈ G and ~x ∈ {l0, l1, . . . , lm}n+1 in which lm appears. Let DΓ
~x

consist of all L ∈ [N]ω such that for some neighborhood U of Γ(~x),

U ∩
⋃

∆∈G ∆[({l0, l1, . . . , lm} ∪ L)n+1 \ Ln+1] = {Γ(~x)} .

By Lemma 4.5, DΓ
~x is downward cofinal in [N]ω. Clearly, DΓ

~x is also downward closed.
Let EΓ

~x = {L ∈ [N ]ω : for some neighborhood U of Γ(~x), U ∩
⋃

∆∈G ∆[Ln+1] = ∅}. By
the choice of N , EΓ

~x is downward cofinal in [N ]ω. Clearly, EΓ
~x is also downward closed.

Choose Lm ∈ [Lm−1 \ {lm}]ω in the intersection of all DΓ
~x and EΓ

~x . By the choice
of Lm, for each Γ ∈ G and ~x ∈ {l0, l1, . . . , lm}n+1 an appropriate UΓ

~x can be chosen.

The induction being complete, let B = {lm : m ∈ N}.
To see that

⋃
Γ∈G Γ[Bn+1] is discrete, let Γ ∈ G and ~x ∈ Bn+1 and let

m = max{j : some xi = lj} .

Since B ⊆ {l1, l2, . . . , lm} ∪ Lm, UΓ
~x ∩

⋃
∆∈G ∆[Bn+1] = {Γ(~x)}.

Notice that, as a consequence of Theorem 4.7 and 4.9 we have that for any n ∈
N\{1}, ifX is a Hausdorff space satisfying Theorem 4.7(b), then it also satisfies Theorem
4.9(b). On the other hand, if X is the one point compactification of N, then for any
n ∈ N, there is exactly one nontrivial n-Ramsey limit point of X so statements (a) and
(b) of Theorem 4.9 hold while (if n > 1) statement (b) of Theorem 4.7 does not hold.
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Notice also that, using Lemma 2.10 one sees easily that the conditions of Theorems
4.7 and 4.9 are strictly increasing in strength as n increases.

5. Spaces Good for all n

Recall that our original motivation for studying Question 1.1 was our desire to establish
that, at least in case n = 2 and Γ is injective, the Stone-Čech compactification of a
discrete space satisfies the conclusion. In this section, we investigate the following class,
showing in particular that if D is a discrete space, then βD ∈ D.

5.1 Definition. D is the class of all Hausdorff spaces with the property that whenever
n ∈ N and Γ : Nn → X, there is some B ∈ [N]ω such that Γ[Bn] is discrete.

Equivalently, by Theorem 4.7, D is the class of all Hausdorff spaces that have no
non-trivial n-Ramsey limit points for all n ∈ N.

5.2 Theorem. The class D hereditary and is finitely productive.

Proof. Trivially D is hereditary. To see that D is finitely productive, let X and Y be
members of D. Let n ∈ N and let Γ : Nn → X × Y . We can choose A ∈ [N]ω such that
π1 ◦ Γ[An] is discrete and then choose B ∈ [A]ω such that π2 ◦ Γ[Bn] is discrete. Then
Γ[Bn] is discrete.

Notice that D is not infinitely productive. Indeed, an infinite product of spaces,
each of which has more than one point, can never be in D because every point in a
product of this kind is the limit of an injective convergent sequence. We observe also
that if we modify the definition of D to require that whenever n ∈ N and Γ : Nn 1-1−→X,
there is some B ∈ [N]ω such that Γ[Bn] is discrete, then the resulting class is not finitely
productive. Indeed, if X and Y are Hausdorff spaces, n ∈ N, and x is a nontrivial n-
Ramsey limit in X, then for each y ∈ Y , (x, y) is a nontrivial n-Ramsey limit in X×Y .

The class of spaces in the following theorem includes the class of F-spaces. This
follows from the well-known fact, which is an immediate consequence of [4, Exercise
14N.5], that, if A and B are countable subsets of an F-space for which A∩B = A∩B = ∅,
then A∩B = ∅. So this class includes the Stone-Čech compactification of any F-space.
In particular, it includes the Stone-Čech compactification of any discrete space. It also
includes all spaces of the form βS \ S, where S is locally compact and σ-compact. (An
F-space is a completely regular Hausdorff space with the property that disjoint cozero
sets are completely separated. See [4] for a wealth of information about such spaces.)
That this class properly includes the class of F-spaces is shown in Theorem 5.4 below.
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5.3 Theorem. Let X be a Hausdorff space with the property that whenever C and D
are disjoint subsets of some countable discrete subset of X, one has c`C ∩ c`D = ∅.
Then X is a member of the class D.

Proof. Let n ∈ N and suppose we have a nontrivial n-Ramsey limit point x in X. Pick
by Lemma 2.9 some ψ : [N]n 1-1−→X \ {x} such that x = Rn- limψ. Choose by Theorem
3.4 some B ∈ [N]ω such that ψ

[
[B]n

]
is discrete. Then whenever C ∈ [B]ω and U is a

neighborhood of x, [C]n ∩ ψ−1[U ] 6= ∅. Partition B into disjoint infinite sets C and D.
Then x ∈ c`

(
ψ

[
[C]n

])
∩ c`

(
ψ

[
[D]n

])
, a contradiction.

We remark that the hypothesis of Theorem 5.3 is not necessary for X to be in D.
For example, βN× βN is in D by Theorem 5.2, but it does not satisfy this hypothesis.
(Pick any p ∈ βN \ N, let C = {p} × N and let D = N × {p}. Then C ∪D is discrete
and (p, p) ∈ c`C ∩ c`D.)

We thank Alan Dow for bringing the argument in the proof of the following theorem
to our attention. In its essential details it first appeared in the concluding remarks of
[9] where it is attributed to C. F. Mills.

5.4 Theorem. There is a countable space X which satisfies the hypotheses of Theorem
5.3 and is not an F-space.

Proof. Pick disjoint infinite subsets A and B of ω. By [9, Theorem 0.1] there exist a
countable subspace Y of βA \A, a countable subspace Z of βB \B, a point y ∈ βA \Y ,
and a point z ∈ βB \Z such that y ∈ cl(Y ) and z ∈ c`(Z), but y is not in the closure of
any discrete countable subset of (βω \ω)\{y} and z is not in the closure of any discrete
countable subset of (βω \ ω) \ {z}. Let X denote the quotient space of Y ∪ Z ∪ {y, z}
obtained by identifying y and z. Then X satisfies the hypotheses of Theorem 5.3.
However, since Y ∩ clX(Y ′) = clX(Y ) ∩ Y ′ = ∅, but clX(Y ) ∩ clX(Y ′) 6= ∅, X is not an
F-space.
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