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Discrete Groups in βN
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and

Dona Strauss

Abstract. We show that every maximal group in the smallest ideal of (βN, +) contains
2c discrete copies of (Z, +) the closures of any two of which intersect only at the
identity. We also show that the same conclusion applies to copies of the free group on
two generators (and consequently the free group on countably many generators).

1. Introduction

Of course topological copies of Z (i.e., countably infinite discrete sets) are plentiful in the
Stone-Čech compactification βN of the set N of positive integers. And algebraic copies
of (Z,+) are also easy to come by; given any idempotent p = p+p in βN, {n+p : n ∈ Z}
is an algebraic copy of Z. However, a subgroup of N∗ of this kind cannot be discrete.
Further, discrete algebraic copies of N are plentiful. If for example p ∈ c`{2n : n ∈ N},
then {p, p+ p, p+ p+ p, . . .} is discrete.

We show in this paper that discrete algebraic copies of Z as well as the discrete free
semigroup on two generators are also plentiful.

Let us begin with a brief review of the algebraic structure of (βN,+). We view βN
as the set of ultrafilters on N, identifying the points of N with the principal ultrafilters.
The operation + extends to βN making (βN,+) a compact right topological semigroup
(meaning that for each p ∈ βN, the function ρp defined by ρp(q) = q + p is continuous)
with N contained in its topological center (meaning that for each x ∈ N, the function
λx defined by λx(q) = x + q is continuous). As with any compact (Hausdorff) right
topological semigroup, (βN,+) has a smallest two sided ideal K(βN). This ideal is the
union of all of the minimal right ideals as well as the union of all of the minimal left
ideals. The intersection of any minimal left ideal with any minimal right ideal is a group,
and any two such groups are isomorphic. In βN there are 2c minimal right ideals and
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2c minimal left ideals, and consequently 2c maximal groups in the smallest ideal. Given
p and q in βN and A ⊆ N, A ∈ p + q if and only if {x ∈ N : −x + A ∈ q} ∈ p, where
−x + A = {y ∈ N : x + y ∈ A}. See [1] for more details and any unfamiliar algebraic
facts encountered in this paper.

Any idempotent p of βN, whether in the smallest ideal or not, is the identity of a
maximal group H(p). It is consistent that this maximal group is as small as possible,
namely {n+p : n ∈ Z}, which is an algebraic copy of Z [1, Theorem 12.42]. Notice that
such a copy cannot be discrete because p = p + p ∈ c`{n + p : n ∈ N}. The maximal
groups in the smallest ideal are all as large as possible; they each contain a copy of the
free group on 2c generators ([2], or see [1, Corollary 7.37]). It is a result of Y. Zelenyuk
[4] that there are no nontrivial finite groups in βN.

In Section 2 we show that there are 2c discrete copies of Z in each of the maximal
groups in the smallest ideal, and that any two of these meet only in the identity. In
Section 3 we show that the same statement holds for the free group on 2 generators.
Since the free group on 2 generators contains copies of Z, the results of Section 2 are a
corollary of those of Section 3. We present them separately because the proof for Z is
simpler and the conclusion for Z is of independent interest.

2. Copies of Z

We write N∗ for βN\N and denote the set of finite nonempty subsets of a setX by Pf (X).
Also ω = N ∪ {0}. Given x ∈ N, supp(x) is the H ∈ Pf (ω) such that x =

∑
t∈H 2t.

We will have use for a particular subsemigroup of βN, namely H =
⋂∞

n=1 2nN. By [1,
Lemma 6.6] all idempotents of (βN,+) lie in H.

2.1 Theorem. Let A and B be infinite disjoint subsets of N. Let q = q + q ∈ K(βN),
let u ∈ N∗ ∩ c`{2n : n ∈ A}, and let v ∈ N∗ ∩ c`{2n : n ∈ B}. Let ϕ and ψ be
the homomorphisms from Z into the group q + βN + q such that ϕ(1) = q + u + q

and ψ(1) = q + v + q. Then c`
{
ϕ(n) : n ∈ Z \ {0}

}
∩ c`

{
ψ(n) : n ∈ Z \ {0}

}
= ∅.

If q /∈ c`
{
ϕ(n) : n ∈ Z \ {0}

}
, then {ϕ(n) : n ∈ Z} is a discrete copy of Z. If

q /∈ c`
{
ψ(n) : n ∈ Z \ {0}

}
, then {ψ(n) : n ∈ Z} is a discrete copy of Z.

Proof. Notice that ψ[Z]∪ϕ[Z] ⊆ H. We show first that for any m ∈ Z and any n ∈ N,

{x ∈ N : |supp(x) ∩A| ≡ 0 (mod n)} ∈ ψ(m) and
{x ∈ N : |supp(x) ∩B| ≡ 0 (mod n)} ∈ ϕ(m) .

It suffices to establish the former. Let C = {x ∈ N : |supp(x) ∩ A| ≡ 0 (mod n)}. We
show first that C ∈ q. Pick i ∈ {0, 1, . . . , n− 1} such that D = {x ∈ N : |supp(x)∩A| ≡

2



i (mod n)} ∈ q. Then {x ∈ N : −x+D ∈ q} ∈ q so pick x ∈ D such that −x+D ∈ q.
Let t = max supp(x) and pick y ∈ (−x+D)∩D∩ 2t+1N. Then i ≡ |supp(x+ y)∩A| =
|supp(x) ∩A|+ |supp(y) ∩A| ≡ i+ i (mod n) so i = 0. That is D = C.

Now we show by induction on m ∈ ω that C ∈ ψ(m). We have just shown that
C ∈ ψ(0). Assume that m ∈ ω and C ∈ ψ(m). Now ψ(m+ 1) = ψ(m) + v + q. To see
that C ∈ ψ(m) + v + q, we show that C ⊆ {x ∈ N : −x+ C ∈ v + q}, so let x ∈ C. Let
t = max supp(x). We claim that {2s : s ∈ B and s > t} ⊆ {z ∈ N : −z+(−x+C) ∈ q}.
So let s ∈ B with s > t. We claim that C∩2s+1N ⊆ −2s+(−x+C). So let y ∈ C∩2s+1N.
Then since s /∈ A, |supp(x+ 2s + y) ∩A| = |supp(x) ∩A|+ |supp(y) ∩A| ≡ 0 (mod n).

To complete this portion of the proof, we letm ∈ N and show that C ∈ ψ(−m). Pick
i ∈ {0, 1, . . . , n− 1} such that D = {x ∈ N : |supp(x)∩A| ≡ i (mod n)} ∈ ψ(−m). Now
C ∈ q = ψ(−m) +ψ(m) so pick x ∈ D such that −x+C ∈ ψ(m). Let t = max supp(x)
and pick y ∈ (−x + C) ∩ C ∩ 2t+1N. Then 0 ≡ |supp(x + y) ∩ A| = |supp(x) ∩ A| +
|supp(y) ∩A| ≡ i+ 0 (mod n) so i = 0. That is D = C.

By a nearly identical proof one can also establish that for any m ∈ Z and any n ∈ N

{x ∈ N : |supp(x) ∩A| ≡ m (mod n)} ∈ ϕ(m) and
{x ∈ N : |supp(x) ∩B| ≡ m (mod n)} ∈ ψ(m) .

Notice in particular that this shows that if k 6= m in Z, then ψ(k) 6= ψ(m) and ϕ(k) 6=
ϕ(m).

Now suppose that c`
{
ϕ(n) : n ∈ Z \ {0}

}
∩ c`

{
ψ(n) : n ∈ Z \ {0}

}
6= ∅. Then

by [1, Theorem 3.40] either
{
ϕ(n) : n ∈ Z \ {0}

}
∩ c`

{
ψ(n) : n ∈ Z \ {0}

}
6= ∅ or{

ψ(n) : n ∈ Z \ {0}
}
∩ c`

{
ϕ(n) : n ∈ Z \ {0}

}
6= ∅. Assume without loss of generality

that the former holds and pick m ∈ Z \ {0} such that ϕ(m) ∈ c`
{
ψ(n) : n ∈ Z \ {0}

}
.

But c`{x ∈ N : |supp(x) ∩ A| ≡ m (mod |m| + 1)} is a neighborhood of ϕ(m) which
misses {ψ(n) : n ∈ Z}, a contradiction.

To complete the proof, we may assume that q /∈ c`
{
ϕ(n) : n ∈ Z \ {0}

}
. Pick a

neighborhood U of q which misses
{
ϕ(n) : n ∈ Z \ {0}

}
. Given n ∈ Z \ {0}, U is a

neighborhood of ϕ(n)+ϕ(−n) so pick a neighborhood V of ϕ(n) such that V +ϕ(−n) ⊆
U . Then V ∩

{
ϕ(m) : m ∈ Z \ {n}

}
= ∅.

We now introduce a technique which we will use again in the next section.

2.2 Corollary. Let q = q + q ∈ K(βN). For each p ∈ N∗ ∩ {2n : n ∈ N} let ϕp be
the homomorphism from Z to the group q + βN + q for which ϕp(1) = q + p + q. If
p 6= r ∈ N∗ ∩ {2n : n ∈ N}, then c`

{
ϕp(n) : n ∈ Z \ {0}

}
∩ c`

{
ϕr(n) : n ∈ Z \ {0}

}
= ∅

and for all but at most one p ∈ N∗, {ϕp(n) : n ∈ Z} is a discrete copy of Z.
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Proof. Let p 6= r ∈ N∗ ∩ {2n : n ∈ N}, pick disjoint subsets A and B of N such that
{2n : n ∈ A} ∈ p and {2n : n ∈ B} ∈ r, and apply Theorem 2.1.

It seems to us inconceivable that there should be any p ∈ N∗ for which c`{ϕp(n) :
n ∈ Z} is not discrete. But we cannot prove that this cannot happen.

3. Discrete free groups and semigroups in N*

We show here that each maximal group in the smallest ideal of βN contains 2c copies,
disjoint except at the identity, of the free group on 2 generators (and hence of the free
group on countably many generators).

3.1 Lemma. There is a compact topological group C which contains a free group F on
the distinct generators {a1, a2, a3, a4}.

Proof. This is well known. See for example [1, Theorem 2.24].

3.2 Lemma. Let C and F be as in Lemma 3.1. Let A1, A2, A3, and A4 be pairwise
disjoint infinite subsets of N and let q ∈ K(βN). For i ∈ {1, 2, 3, 4} pick

ui ∈ N∗ ∩ c`{2n : n ∈ Ai}

and let ri = q+ui + q. Let G be the subgroup of q+βN + q generated by {r1, r2, r3, r4}.
There is a continuous homomorphism σ : {0}∪H → C such that σ|G is an isomorphism
onto F and σ(ri) = ai for each i ∈ {1, 2, 3, 4}.

Proof. Denote the identity of C by e. Define f : ω → C as follows. For n ∈ ω,

f(2n) =
{
ai if n ∈ Ai

e if n /∈
⋃4

i=1Ai .

Given L ∈ Pf (ω), f(
∑

n∈L 2n) =
∏

n∈L f(2n), where the product is taken in increasing
order of indices. And f(0) = e. Let f̃ : βω → C be the continuous extension of f and
let σ be the restriction of f̃ to {0} ∪ H. By [1, Theorem 4.21] applied to the collection
A = {2nω : n ∈ N}, σ is a homomorphism.

To see that σ[G] = F it suffices to let i ∈ {1, 2, 3, 4} and show that σ(ri) = ai.
Since f is constantly equal to ai on {2n : n ∈ Ai} we have that σ(ui) = ai. Since
q + q = q, σ(q) = e. Therefore σ(ri) = eaie = ai.

Now let h : F → G be the homomorphism such that h(ai) = ri for each i ∈
{1, 2, 3, 4} and note that h[F ] = G. Then σ ◦ h : F → F and σ ◦ h(ai) = ai for each
i ∈ {1, 2, 3, 4}, so σ ◦ h is the identity on F so σ is injective.
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3.3 Theorem. Let A1, A2, A3, A4, C, F , G, u1, u2, u3, u4, r1, r2, r3, r4, and σ be
as in Lemma 3.2. Let G1 be the subgroup of G generated by {r1, r2} and let G2 be the
subgroup of G generated by {r3, r4}. Then c`(G1 \ {q}) ∩ c`(G2 \ {q}) = ∅. If i ∈ {1, 2}
and q /∈ c`(Gi \ {q}), then Gi is a discrete copy of F .

Proof. Suppose that c`(G1 \ {q}) ∩ c`(G2 \ {q}) 6= ∅. By [1, Theorem 3.40], either
(G1 \ {q}) ∩ c`(G2 \ {q}) 6= ∅ or (G2 \ {q}) ∩ c`(G1 \ {q}) 6= ∅. Assume without loss of
generality that (G1 \ {q}) ∩ c`(G2 \ {q}) 6= ∅ and pick w in this intersection. We shall
show that w = q. Let s1 and s2 denote the inverses of r1 and r2 in G1. Pick m ∈ N and
p1, p2, . . . , pm ∈ {r1, r2, s1, s2} such that w = p1 + p2 + . . .+ pm.

Define θ : N → ω by θ(n) =
∑
{2t : t ∈ supp(n) ∩ (A1 ∪ A2)} and let θ̃ : βN → βω

be its continuous extension. By [1, Theorem 4.21] θ̃|H is a homomorphism. Also θ̃[H] ⊆
H ∪ {0} = domain(σ).

For i ∈ {1, 2}, θ is the identity on {2n : n ∈ Ai} so θ̃(ui) = ui and since q + q = q,
σ
(
θ̃(q)

)
= e. Thus for i ∈ {1, 2},

σ
(
θ̃(ri)

)
= σ

(
θ̃(q + ui + q)

)
= eσ(ui)e

= σ(q + ui + q)

= σ(ri) .

Also σ
(
θ̃(si)

)
= σ

(
θ̃(ri)

)−1 = σ(si).

Next we note that for i ∈ {3, 4}, σ
(
θ̃(ri)

)
= e for which it suffices to observe that

θ̃(ui) = 0 so θ̃(ri) = θ̃(q) + 0 + θ̃(q) = θ̃(q).

We thus have that σ ◦ θ̃[G2] = {e} and thus σ
(
θ̃(p1 + p2 + . . . + pm)

)
= e. But

σ
(
θ̃(p1 + p2 + . . . + pm)

)
= σ(p1 + p2 + . . . + pm) and σ is an isomorphism on G so

p1 + p2 + . . .+ pm = q.

As in the proof of Theorem 2.1 we have that if i ∈ {1, 2} and q /∈ c`(Gi \ {q}), then
Gi is a discrete copy of F .

3.4 Corollary. Let q = q + q ∈ K(βN). There exist 2c copies of the free group on 2
generators in (q + βN + q) ∩ H. The intersection of the closures of any two of these is
{q}.

Proof. Partition N∗ ∩{2n : n ∈ N} into two element subsets Hα = {xα, yα} for α < 2c.
For each α < 2c, let Gα be the subgroup of q + βN + q generated by q + xα + q and
q + yα + q. If α < β < 2c, we can choose disjoint subsets A1, A2, A3, A4 of N such that

5



{2n : n ∈ A1}, {2n : n ∈ A2}, {2n : n ∈ A3}, {2n : n ∈ A4} are members of xα, yα, xβ , yβ

respectively. So, by Theorem 3.3, there is at most one α < 2c for which there is some
δ 6= α with c`(Gα \ {q}) ∩ c`(Gδ \ {q}) 6= ∅.

Since the free group on 2 generators contains a copy of the free group on countably
many generators, Corollary 3.4 remains valid if “2” is replaced by “countably many”.
(If G is the free group on the generators {a, b}, then {anbn : n ∈ N} generates a free
group on countably many generators.)

Recall that a semigroup (S, ·) is weakly left cancellative provided for all a, b ∈ S,
{x ∈ S : ax = b} is finite.

3.5 Corollary. Let S be an infinite discrete right cancellative and weakly left cancella-
tive semigroup. Let U be a Gδ subset of βS \S which contains an idempotent. There is
a set D ⊆ U of idempotents such that |D| = 2c and for each q ∈ D there exist 2c copies
of the free group on 2 generators in q · βS · q. The intersection of the closures of any
two of these is {q}.

Proof. By [1, Theorem 6.32] U contains a copy of H so Corollary 3.4 applies.

Note that one can take U = βS \ S in Corollary 3.5, so any right cancellative and
weakly left cancellative semigroup S has these discrete copies of the free group on 2
generators in βS \ S.

Notice that one cannot have a discrete subset D of βN with |D| > c since there are
only c sets of the form c`A for A ⊆ N, and these form a basis for the topology of βN. We
do not know whether there is any discrete copy of a free group on uncountably many
generators in βN. We do have the following. Recall that a subset D of a topological
space X is strongly discrete provided there is an indexed family 〈Ux〉x∈D such that for
each x ∈ D, Ux is a neighborhood of x and Ux ∩ Uy = ∅ when x 6= y.

3.6 Theorem. There is a strongly discrete copy of the free semigroup with identity on
c generators in H (which is therefore discrete in N∗).

Proof. Pick an indexed family 〈Aα〉α<c of almost disjoint subsets of 2N + 1. (That
is, each Aα is infinite and if α 6= δ, then Aα ∩ Aδ is finite.) For each α < c pick
pα ∈ N∗ ∩ c`{2n : n ∈ Aα}. Pick q = q + q ∈ c`{x ∈ N : supp(x) ⊆ 2N}. (We have that
H∩c`{x ∈ N : supp(x) ⊆ 2N} is a compact subsemigroup of βN, so has an idempotent.)
For α < c let rα = q + pα + q and let S = {q} ∪ {rα : α < c}. Note that S ⊆ H.

For each finite sequence 〈α1, α2, . . . , αk〉 in c, let B(α1,α2,...,αk) = {x ∈ N : supp(x)∩
(2N + 1) = {n1, n2, . . . , nk} where n1 < n2 < . . . < nk and each ni ∈ Aαi

}. Notice that
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if k > 1, then B(α1,α2,...,αk−1) ⊆ {x ∈ N : −x + B(α1,α2,...,αk) ∈ rαk
}. (One establishes

this statement by an argument similar to that used in the proof of Theorem 2.1 to
show that C ∈ ψ(m) for all m.) Consequently one sees by induction on k that for each
〈α1, α2, . . . , αk〉, B(α1,α2,...,αk) ∈ rα1 + rα2 + . . .+ rαk

.

Let C = {x ∈ N : supp(x) ⊆ 2N}. Note that for each 〈α1, α2, . . . , αk〉,
C ∩ B(α1,α2,...,αk) = ∅. To complete the proof we show that if 〈α1, α2, . . . , αk〉 6=
〈δ1, δ2, . . . , δl〉, then B(α1,α2,...,αk) ∩ B(δ1,δ2,...,δl) ∩ H = ∅. If k 6= l, then B(α1,α2,...,αk) ∩
B(δ1,δ2,...,δl) = ∅, so assume that k = l and pick i ∈ {1, 2, . . . , k} such that αi 6= δi. Pick
m ∈ N such that Aαi

∩Aδi
⊆ {1, 2, . . . ,m}. Then B(α1,α2,...,αk)∩B(δ1,δ2,...,δl)∩2m+1N =

∅.

Strongly discrete subsets of N∗ of size c are easy to come by. (The set {pα : α < c}
in the proof above is one such.) The question naturally arises whether one can get a copy
of a free semigroup on c (or just uncountably many) generators which is strongly discrete
in N∗. The following simple result provides a strong negative answer. In fact there does
not exist a strongly discrete uncountable subsemigroup S of N∗ for which there is an
element of N∗ right cancellable on S. In particular, an uncountable subsemigroup of N∗

which has an identity cannot be strongly discrete in N∗.

3.7 Theorem. There do not exist p ∈ N∗ and a sequence 〈rα〉α<ω1 in N∗ such that
rα + p 6= rδ + p whenever α < δ < ω1 and {rα + p : α < ω1} is strongly discrete in N∗.

Proof. Suppose we have such p and 〈rα〉α<ω1 . Choose for each α < ω1 some Bα ∈
rα + p such that Bα ∩ Bδ is finite whenever α < δ < ω1. For each α < ω1 let Cα =
{x ∈ N : −x + Bα ∈ p} and note that Cα ∈ rα. The collection {Cα : α < ω1} cannot
be pairwise disjoint so pick α < δ < ω1 such that Cα ∩ Cδ 6= ∅ and pick x ∈ Cα ∩ Cδ.
Then (−x+Bα)∩ (−x+Bδ) ∈ p and is therefore infinite, and consequently Bα ∩Bδ is
infinite.

We close with the following questions.

3.8 Question. Is there a discrete copy of Z in N∗ which is not contained in H?

3.9 Question. Are there discrete copies of a free semigroup on uncountably many gen-
erators (with or without identity) contained in the maximal groups of K(βN)?

3.10 Question. Are there groups not contained in the free group on 2 generators for
which there are discrete copies in βN?
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The discrete groups produced in this paper are the first examples of which we are
aware of nontrivial topological groups in βN.

3.11 Question. Are there any nondiscrete topological groups contained in βN?

We observe that any countable topological group contained in βN has to be discrete.
To see this note that any countable subset of βN is extremally disconnected. (This is
immediate from [1, Theorem 3.40].) V. I. Malyhin has shown that every non-discrete
extremally disconnected topological group has an open subgroup of exponent two [3].
By Zelenyuk’s Theorem ([4] or see [1, Theorem 7.17]), a group of this kind cannot be
embedded algebraically in N∗, because it contains subgroups of order 2.

We remark that there is a simple direct proof that, if q = q+q ∈ N∗, the group Z+q
contained in N∗, cannot be a topological group. We have already remarked that it is
not discrete. To see that it is not a topological group, let A = {n ∈ N : min

(
supp(n)

)
∈

2ω + 1} and let B = {n ∈ N : min
(
supp(n)

)
∈ 2ω}. Using the fact that q ∈ H [1,

Lemma 6.8], it is easy to check that, for any n ∈ Z, n+ q ∈ A implies that 2n+ q ∈ B
and vice-versa. Pick a net 〈nι〉ι∈D in Z \ {0} such that 〈nι + q〉ι∈D converges to q. If
Z + q were a topological group, we would have that 〈2nι + q〉ι∈D also converges to q

because q = q + q and for ι ∈ D, nι + q + nι + q = 2nι + q.
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