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THE CENTER AND EXTENDED CENTER OF THE

MAXIMAL GROUPS IN THE SMALLEST IDEAL OF βN

NEIL HINDMAN AND DONA STRAUSS

Abstract. A good deal is known about the maximal groups in the
smallest ideal K(βN) of the compact right topological semigroup
(βN, +). For example they are pairwise isomorphic and highly non-
commutative � they contain a copy of the free group on 2c genera-
tors. If q is an idempotent in K(βN), then Z+q is contained in the
center of the maximal group q + βN + q. We do not know whether
that center is equal to Z+q. In this paper we investigate the center
of q + βN + q and the extended center consisting of all elements of
βN that commute with every element of q +βN + q. This extended
center trivially includes all idempotents r of βN such that q ≤ r as
well as elements of the form n+r for such r and for n ∈ Z. We show
for example that if those are the only elements of the extended cen-
ter, then there are no nontrivial continuous homomorphisms from
βN to βN \ N. This would answer a long standing open question.
We include several other open questions.

1. Introduction

Addition on the set N of positive integers extends to the Stone-�ech
compacti�cation βN of N making (βN,+) a right topological semigroup
(meaning that for each p ∈ βN, the function ρp : βN → βN is contin-
uous, where ρp(q) = q + p) with N contained in its topological center
(meaning that for each n ∈ N, the function λn : βN → βN is continuous,
where λn(q) = n + q). As with any compact Hausdorf right topological
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semigroup, (βN,+) has a smallest two sided ideal

K(βN) =
⋃
{L : L is a minimal left ideal of βN}

=
⋃
{R : R is a minimal right ideal of βN} .

Any left ideal contains a minimal left ideal, which is closed, and any right
ideal contains a minimal right ideal. If L is a minimal left ideal and R is a
minimal right ideal, then L∩R is a group and L∩R = q+βN+q where q
is the unique idempotent in L ∩R. Any two such groups are isomorphic.
If q and r are idempotents in the same minimal right ideal, then the
restriction of ρr to q + βN + q is an isomorphism and a homeomorphism
onto r + βN + r.

The facts just mentioned about K(βN) are true in any compact Haus-
dor� right topological semigroup. Many additional facts are known about
K(βN) that do not hold in all such semigroups. We know for example
that there are 2c minimal right ideals and 2c minimal left ideals and the
maximal groups in K(βN) each contain a copy of the free group on 2c

generators. We also know that the center of βZ is Z so if q is an idempo-
tent in K(βN), then Z + q is contained in the center of q + βN + q. We
do not know whether the center of q+ βN + q is equal to Z + q. It is this
question which is the primary focus of this paper.

We take the points of βN to be the ultra�lters on N, identifying the
principal ultra�lters with the points of N. Given A ⊆ N, the closure A
of A in βN is {p ∈ βN : A ∈ p} and {A : A ⊆ N} is a basis for the open
sets of βN. See [4] for an elementary introduction to the topology and
the algebraic structure of βS where S is an in�nite discrete semigroup, as
well as for proofs of all of the facts mentioned in the paragraphs above.
(The original references for these facts are [1], [2], [3], [5], [6], and [7].)

De�nition 1.1. Let q be an idempotent in K(βN). Gq = q+βN+ q and
Dq = {u ∈ N∗ : (∀v ∈ Gq)(u+ v = v + u)}.

Of course, the center Z(Gq) = Dq∩Gq. We call Dq the extended center

of Gq.

De�nition 1.2. (1) I =
⋂∞

n=1 nN.
(2) H =

⋂∞
n=1 2nN.

(3) For A ⊆ βN, E(A) = {q ∈ βN : q + q = q}.

In Section 2 of this paper we present some basic results, including the
fact that for any q ∈ E(βN), Dq ⊆ Z + I.

In Section 3 we investigate more deeply the structure of Dq, establish-
ing the fact mentioned in the abstract that either there is no nontrivial
continuous homomorphism from βN to N∗ = βN\N, or there is a member
of Dq ∩ I which is not an idempotent. We also include in this section a
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proof that Dq contains a decreasing sequence of idempotents of order type
(ω + 1)∗, that is the reverse of ω + 1.

Section 4 consists primarily of a derivation of the fact that, if the center
of Gq is not trivial, then Gq contains a copy of Z× Z.

2. Basic Facts About the Extended Center

We begin by observing that the only elements in the extended center
that are not in the center lie outside of the smallest ideal.

Theorem 2.1. Let q ∈ E
(
K(βN)

)
. Then Z(Gq) = Dq ∩K(βN).

Proof. Trivially Z(Gq) ⊆ Dq ∩ K(βN). For the reverse inclusion, let
x ∈ Dq ∩ K(βN). Since q ∈ K(βN), βN + q is a minimal left ideal and
q + βN is a minimal right ideal so Gq = (βN + q) ∩ (q + βN). Thus if
x /∈ Gq, then either x /∈ βN + q or x /∈ q + βN. So either x and q are
in di�erent minimal left ideals of βN or x and q are in di�erent minimal
right ideals of βN. In either case, x+ q 6= q + x. �

The idempotents of βN are partially ordered by the relation ≤, de�ned
by e ≤ f if and only if e = e+f = f+e. By [4, Theorem 2.9] e is minimal
with respect to this order if and only if e ∈ K(βN). Further, given any
non minimal idempotent e in βN, by [4, Theorem 1.60] there is a minimal
idempotent q ∈ K(βN) with q ≤ e. So the following lemma shows that
for at least some q ∈ K(βN), Dq 6= Z(Gq).

Lemma 2.2. Let q ∈ E
(
K(βN)

)
. Then {e ∈ E(βN) : q ≤ e} = E(Dq).

Proof. Let e ∈ E(βN) such that q ≤ e and let x ∈ Gq. Then e + x =
e+ q + x = q + x = x+ q = x+ q + e = x+ e and so e ∈ Dq.

Conversely, let e ∈ E(Dq). Since e+ q = q + e, e+ q is an idempotent
in the same minimal right ideal and the same minimal left ideal as q. So
e+ q = q + e = q and q ≤ e.

�

The remainder of this section will be devoted to a proof, as a conse-
quence of a more general theorem, that Dq ⊆ Z + I.

It is well known, and routine to verify, that each member of N has
a unique factorial representation. That is, a representation of the form∑

n∈H an ·n! where H is a �nite nonempty subset of N and for each n ∈ H,
an ∈ {1, 2, . . . , n}.

De�nition 2.3. De�ne d : N → ×∞
n=1{0, 1, . . . , n} by, for each y ∈ N,

y =
∑∞

n=1 d(y)(n) · n! . For y ∈ N, let suppf (y) = {n ∈ N : d(y)(n) 6= 0}
and let c(y) = |suppf (y)|. Let d̃ : βN →×∞

n=1{0, 1, . . . , n} and c̃ : βN →
βN be the continuous extensions of d and c respectively.
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Lemma 2.4. Let x ∈ N∗. If x /∈ Z + I, then

(1) {n ∈ N : d̃(x)(n) 6= 0} is in�nite,

(2) {n ∈ N : d̃(x)(n) < n} is in�nite, and

(3) {n ∈ N : either 0 < d̃(x)(n) < n or both d̃(x)(n) = n and

d̃(x)(n+ 1) = 0} is in�nite.

Proof. (1) Suppose that {n ∈ N : d̃(x)(n) 6= 0} is �nite and let k =
max{n ∈ N : d̃(x)(n) 6= 0}. Let m =

∑k
n=1 d̃(x)(n) · n!. We claim that

x ∈ m+ I. To see this, let l > k. To see that x ∈ −m+ Nl!, pick A ∈ x

such that d̃(x)[A ] ⊆×l
n=1π

−1
n [{d̃(x)(n)}] and let y ∈ A. Pick j > l such

that j! > y. Then

y −m =
∑j

n=l+1 d(y)(n) · n! +
∑l

n=1 d̃(x)(n) · n!−
∑k

n=1 d̃(x)(n) · n!
=

∑j
n=l+1 d(y)(n) · n!

since d̃(x)(n) · n! = 0 for n > k.
(2) Suppose that {n ∈ N : d̃(x)(n) < n} is �nite and pick k ∈ N such

that for all n > k, d̃(x)(n) = n. Let m = 1 +
∑k

n=1

(
n− d̃(x)(n)

)
· n! We

claim that x ∈ −m + I. To see this, let l > k. To see that x ∈ m + Nl!,
pick A ∈ x such that d̃(x)[A ] ⊆ ×l

n=1π
−1
n [{d̃(x)(n)}] and let y ∈ A.

Pick j > l such that j! > y. Then m+ y− 1 =
∑k

n=1

(
n− d̃(x)(n)

)
· n! +∑l

n=1 d̃(x)(n) ·n!+
∑j

n=l+1 d(y)(n) ·n! =
∑j

n=l+1 d(y)(n) ·n!+
∑l

n=1 n ·n!
and so (l + 1)! divides m+ y.

(3) Assume that {n ∈ N : 0 < d̃(x)(n) < n} is �nite. Pick k such
that for all n > k, d̃(x)(n) ∈ {0, n}. Then by (1) and (2), both {n ∈ N :
d̃(x)(n) = 0} and {n ∈ N : d̃(x)(n) = n} are in�nite and consequently
{n ∈ N : d̃(x)(n) = n and d̃(x)(n+ 1) = 0} is in�nite. �

Lemma 2.5. Let x ∈ N∗ and let q, r ∈ I. If q + x + r ∈ Z + I, then

x ∈ Z + I.

Proof. Assume thatm ∈ Z, z ∈ I, and q+x+r = m+z. Given any n ∈ N,
{k ∈ N : k ≡ m (mod n!)} ∈ q+x+r and {k ∈ N : k ≡ 0 (mod n!)} ∈ q∩r,
so {k ∈ N : k ≡ m (mod n!)} ∈ x. �

Lemma 2.6. Let q ∈ E
(
K(βN)

)
and let x ∈ Z(Gq). Then x ∈ Z + I.

Proof. Suppose that x /∈ Z + I and let

E = {n ∈ N : either 0 < d̃(x)(n) < n or both
d̃(x)(n) = n and d̃(x)(n+ 1) = 0} .

Then by Lemma 2.4(3), E is in�nite so pick p ∈ N∗ such that
{n! : n ∈ E} ∈ p. We shall show that
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(a) c̃(x+ p+ q) = c̃(x+ q) + 1 and
(b) c̃(q + p+ x) = c̃(q + x).

This will su�ce because (using the fact that x + q = q + x = x) we will
then have that c̃(x+ q+ p+ q) = c̃(x+ p+ q) = c̃(x+ q) + 1 = c̃(x) + 1 6=
c̃(x) = c̃(q + x) = c̃(q + p+ x) = c̃(q + p+ q + x).

To verify (a), it su�ces that c̃ ◦ ρp+q and ρ1 ◦ c̃ ◦ ρq agree on N, so
let y ∈ N be given. To see that c̃(y + p + q) = c̃(y + q) + 1, it su�ces
that c̃ ◦ λy ◦ ρq is constantly equal to c̃(y+ q) + 1 on {n! : n ∈ N and n >
max suppf (y)}, so let n ∈ N such that n > max suppf (y). To see that
c̃(y + n! + q) = c̃(y + q) + 1, it su�ces that c̃ ◦ λy+n! and ρ1 ◦ c̃ ◦ λy

agree on N(n + 1)!, so let z ∈ N(n + 1)!. Then suppf (y + n! + z) =
suppf (y) ∪ {n} ∪ suppf (z) and suppf (y + z) = suppf (y) ∪ suppf (z).

To verify (b), it su�ces that c̃ ◦ ρp+x and c̃ ◦ ρx agree on N so let y ∈ N
and pick a ∈ E such that a > max suppf (y). To see that c̃(y + p + x) =
c̃(y + x) it su�ces that c̃ ◦ λy ◦ ρx is constantly equal to c̃(y + x) on
{n! : n ∈ E and n > a+ 2} so let b ∈ E such that b > a+ 2. Pick A ∈ x
such that d̃[A ] ⊆

⋂b+1
n=1 π

−1
n [{d̃(x)(n)}]. To see that c̃(y+b!+x) = c̃(y+x),

it su�ces that c̃ ◦ λy+b! agrees with c̃ ◦ λy on A, so let z ∈ A. We need
to show that c(y + b! + z) = c(y + z).

Pick l > b + 1 such that l! > z. Then z =
∑l

n=b+2 d(z)(n) · n! +∑b+1
n=1 d̃(x)(n) · n!. Since b > a + 2 > a > max suppf (y), there is no

carrying beyond position a + 1 when the factorial representations of z
and y are added. (Either d̃(x)(a) < n, in which case there is no carrying
beyond position a, or d̃(x)(a) = n and d̃(x)(a + 1) = 0.) Thus z + y =∑l

n=b+2 d(z)(n) · n! +
∑b+1

n=a+2 d̃(x)(n) · n! +
∑a+1

n=1 d(z + y)(n) · n!.
Assume �rst that 0 < d̃(x)(b) < n. Then

y + b! + z =
∑l

n=b+2 d(z)(n) · n! + d̃(x)(b+ 1) · (b+ 1)! +
(d̃(x)(b) + 1) · b! +

∑b−1
n=a+2 d̃(x)(n) · n! +

∑a+1
n=1 d(z + y)(n) · n! ,

so suppf (y + b! + z) = suppf (y + z).
Now assume that d̃(x)(b) = n and d̃(x)(b+ 1) = 0. Then y + b! + z =∑l
n=b+2 d(z)(n) ·n!+(b+1)!+

∑b−1
n=a+2 d̃(x)(n) ·n!+

∑a+1
n=1 d(z+y)(n) ·n! ,

so suppf (y + b! + z) = (suppf (y + z) \ {b}) ∪ {b+ 1}. �

Theorem 2.7. Let u, v, x ∈ βN. If x commutes with every member of

u+ βN + v, then either x ∈ N or x ∈ Z + I.

Proof. Assume that x /∈ N. Pick a minimal right ideal R and a minimal
left ideal L of βN such that R ⊆ u + βN and L ⊆ βN + v. Let q be the
identity of R ∩ L. Then q + βN + q ⊆ u + βN + v and so x commutes
with every member of q+βN+ q and consequently so does q+x+ q. (Let
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p ∈ q+ βN + q. Then p+ q = q+ p = p so q+ x+ q+ p = q+ x+ p+ q =
q + p+ x+ q = p+ q + x+ q.) By Lemma 2.6, q + x+ q ∈ Z + I and so
by Lemma 2.5, x ∈ Z + I. �

The following corollary is an immediate consequence of Theorem 2.7.

Corollary 2.8. Let q ∈ E
(
K(βN)

)
. Then Dq ⊆ Z + I.

3. The Structure of the Extended Center

Section 1.7 of [4] has a large number of results whose hypothesis asserts
the existence of a minimal left ideal with an idempotent. The following
theorem puts all of those results at our disposal.

Theorem 3.1. Let q ∈ E
(
K(βN)

)
. Then Dq is a semigroup and Dq∩Gq

is both a minimal left ideal of Dq with an idempotent and a minimal right

ideal of Dq.

Proof. Trivially Dq is a semigroup. To see that Dq ∩Gq is an ideal of Dq,
let x ∈ Dq ∩ Gq and let y ∈ Dq. Then y + x = y + q + x = q + y + x =
q+ y+x+ q ∈ Gq and x+ y = x+ q+ y = x+ y+ q = q+x+ y+ q ∈ Gq.
Since Dq ∩ Gq = Z(Gq), Dq ∩ Gq is a group and is therefore a minimal
left ideal and a minimal right ideal and has an idempotent. �

Among the consequences of the existence of a minimal left ideal in a
semigroup is the fact that the smallest ideal exists.

Corollary 3.2. Let q ∈ E
(
K(βN)

)
. Then Dq ∩Gq = K(Dq).

Proof. Since K(Dq) is the union of all of the minimal left ideals of Dq,
we have by Theorem 3.1 that Dq ∩Gq ⊆ K(Dq). Since Dq ∩Gq is a two
sided ideal of Dq we have that K(Dq) ⊆ Dq ∩Gq. �

Lemma 3.3. Let q ∈ E
(
K(βN)

)
and let x ∈ Dq. There is some y ∈

Dq ∩Gq such that y + x = x+ y = q.

Proof. Since Dq contains a minimal left ideal with an idempotent, we
have by [4, Corollary 1.47 and Theorem 1.56] that Dq + x contains a
minimal left ideal of Dq with an idempotent, and this idempotent is in
K(Dq) = Dq ∩ Gq. Since q is the only idempotent in Gq, q ∈ Dq + x.
Pick w ∈ Dq such that q = w+ x. Let y = q +w+ q. Then y ∈ Dq ∩Gq.
Also, y+x = q+w+ q+x = q+w+x+ q = q+ q+ q = q. Since y ∈ Dq,
we also have that x+ y = q. �

Theorem 3.4. Let q ∈ E
(
K(βN)

)
and let x ∈ Dq. Then

Gq = x+Gq + x = x+Gq = Gq + x.
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Proof. Pick by Lemma 3.3 some y ∈ Dq ∩Gq such that y+x = x+y = q.
Since x ∈ Dq, we have that x + Gq = Gq + x. We shall show that
Gq ⊆ x + Gq + x ⊆ x + Gq ⊆ Gq. Let w ∈ Gq. Then w = q + w + q =
x+ y + w + y + x ∈ x+Gq + x.

To see that x+Gq +x ⊆ x+Gq, let w ∈ Gq and pick z ∈ Gq such that
z + y = w. Then x+ w + x = x+ z + y + x = x+ z + q = x+ z.

To see that x + Gq ⊆ Gq, let w ∈ Gq and pick z ∈ Gq such that
y + z = w. Then x+ w = x+ y + z = q + z = z. �

Corollary 3.5. Let q ∈ E
(
K(βN)

)
. For any distinct x, y ∈ Dq, x ∈

βN + y or y ∈ βN + x.

Proof. By Theorem 3.4, q ∈ (Gq + x) ∩ (Gq + y). So our claim follows
from [4, Corollary 6.21]. �

Corollary 3.6. Let q ∈ E
(
K(βN)

)
. If M is a Gδ subset of N∗, then

Dq ∩M is nowhere dense in M . In particular, Dq ∩ I is nowhere dense

in I and Dq ∩H is nowhere dense in H.

Proof. We �rst observe that N∗ \ (N∗ + N∗) contains a dense open subset
U of N∗. This follows from the fact that, if p ∈ N∗ and B ∈ p, we can
choose a sequence 〈xn〉∞n=1 contained in B such that xn+1 − xn > n for
every n ∈ N. So, if A = {xn : n ∈ N}, A ⊆ B and, by [4, Exercise 4.1.7],
A ∩ (N∗ + N∗) = ∅.

If there exists an element x ∈ Dq ∩ (N∗ \ (N∗+N∗)), then, by Corollary
3.5, for any element y ∈ Dq ∩ (N∗ \ (N∗+N∗)), x ∈ N+y or y ∈ N+x. So
Dq ∩ (N∗ \ (N∗+N∗)) = Z+x. Since Z+x is countable, Z+x is nowhere
dense in N∗ ([4, Corollary 3.37]). Put V = U if no such element x exists;
otherwise put V = U \ cl(Z + x). Then V is a dense open subset of N∗
and V ∩Dq = ∅.

It follows from [4, Theorem 3.36] that intN∗(M) is dense in M . So
V ∩M is a dense open subset of M disjoint from Dq. �

Given q ∈ E
(
K(βN)

)
, we know

(
Z + E(Dq)

)
⊆ Dq and we know, by

Lemma 2.2 that E(Dq) = {e ∈ E(βN) : q ≤ e}. So the only things that
we know are in Dq ∩ I are the idempotents above q. It is a longstanding
open problem as to whether there are any nontrivial continuous homo-
morphisms from βN to N∗. The following theorem connects our lack of
knowledge about these two issues.

Theorem 3.7. If for all q ∈ E
(
K(βN)

)
, Dq ∩ I ⊆ E(βN), then there is

no nontrivial continuous homomorphism from βN to N∗.

Proof. Let q ∈ E
(
K(βN)

)
and suppose that Dq ∩ I ⊆ E(βN) and that

there is a nontrivial continuous homomorphism from βN to N∗. By [4,
Corollary 10.20], pick e ∈ E(βN) and p 6= e such that p + p = p + e =
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e+ p = e. Pick q ∈ E
(
K(βN)

)
such that q ≤ e. Then p+ q = p+ e+ q =

e+q = q = q+e = q+e+p = q+p. We claim that p ∈ Dq, so let w ∈ Gq.
Then p + w = p + q + w = q + w = w = w + q = w + q + p = w + p.
Thus p ∈ Dq. Since p + q = q we also have that p ∈ I. But p is not an
idempotent. �

We do not know whether there are any maximal idempotents in βN or
even whether there are maximal idempotents in K(βN), so as far as we
know, it is possible that for some q ∈ E

(
K(βN)

)
, the extended center Dq

of Gq is equal to the center of Gq. We shall show in Theorem 3.9 that for
many q ∈ E

(
K(βN)

)
, Dq ∩ c`K(βN) contains an in�nite decreasing chain

of idempotents. As a corollary, we obtain the fact that c`K(βN) contains
a decreasing sequence of idempotents of reverse order type ω+ 1. (It was
previously known that it contains such a sequence of reverse order type
ω.)

Lemma 3.8. Let R be a minimal right ideal of βN. There is an injective

sequence 〈qn〉∞n=1 of idempotents in R such that, if p is an accumulation

point of 〈qn〉∞n=1, then p /∈ Z∗ + Z∗. In particular any accumulation point

of 〈qn〉∞n=1 is right cancelable in βZ.
Proof. Pick an injective sequence 〈vn〉∞n=1 in

{2n : n ∈ N}∗ = {2n : n ∈ N} \ N .

We claim that (βN+vn)∩ (βN+vm) = ∅ when n 6= m. To see this, de�ne
φ : N → ω by φ(n) = max

(
supp(n)

)
, where supp(n) is the binary support

of n. That is, n =
∑

t∈supp(n) 2t. Let φ̃ : βN → βω be the continuous

extension of φ. By [4, Exercise 3.4.1] φ̃ is injective on {2n : n ∈ N} and
by [4, Lemma 6.8], for each n ∈ N, φ̃[βN + vn] = { φ̃(vn) }, so the claim is
established.

For each n ∈ N choose an idempotent qn ∈ R∩(βN+vn) and note that
qn 6= qm if n 6= m. Let p be an accumulation point of 〈qn〉∞n=1 and suppose
that p = x+y for some x, y ∈ Z∗. By [4, Exercise 4.3.5], y ∈ N∗. Note that
there is at most one n ∈ Z such that n+y ∈ H. (If n < m and 2k > m−n,
then (−n+2kN)∩ (−m+2kN) = ∅.) Let X = {n ∈ Z : n+ y /∈ H}. Then
X ∈ x. If n 6= m, we have that φ̃(qn) = φ̃(vn) 6= φ̃(vm) = φ̃(qm), so there
are at most three values of n ∈ N for which

φ̃(qn) ∈ {φ̃(y)− 1, φ̃(y), φ̃(y) + 1} .

Let M =
{
n ∈ N : φ̃(qn) /∈ {φ̃(y)− 1, φ̃(y), φ̃(y) + 1}

}
. Then

p ∈ c`{qn : n ∈M} ∩ c`(X + y)

so by [4, Theorem 3.40], either there is some n ∈ X such that n + y ∈
c`{qn : n ∈M} or there is some n ∈M such that qn ∈ c`(X+y) = X+y.
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Suppose �rst that we have n ∈ X such that n + y ∈ c`{qn : n ∈ M}.
By [4, Lemma 6.8], {qn : n ∈ M} ⊆ H, so n + y ∈ H, contradicting the
fact that n ∈ X.

Now assume that we have n ∈M such that qn ∈ X+y and pick z ∈ X
such that qn = z + y. Then φ̃(qn) /∈ {φ̃(y) − 1φ̃(y), φ̃(y) + 1} so pick
A ∈ φ̃(qn) such that N \A ∈ φ̃(y)− 1, N \A ∈ φ̃(y), and N \A ∈ φ̃(y)+1.
Pick B ∈ z such that φ̃[B + y] ⊆ A and pick k ∈ B. Then φ̃(k + y) ∈ A

so pick C ∈ y such that φ̃[k + C ] ⊆ A. Since N \ A ∈ φ̃(y) − 1, N \ A ∈
φ̃(y), and N \ A ∈ φ̃(y) + 1, pick D ∈ y such that φ̃[D ] − 1 ⊆ N \A,
φ̃[D ] ⊆ N \A, and φ̃[D ] + 1 ⊆ N \A. Pick r ∈ C ∩D such that r > k.
Then φ(k + r) = φ(r)− 1, φ(k + r) = φ(r), or φ(k + r) = φ(r) + 1. Since
φ(k + r) ∈ A, this says that φ(r) − 1 ∈ A, φ(r) ∈ A, or φ(r) + 1 ∈ A, a
contradiction.

The �in particular� conclusion follows from [4, Theorem 8.18]. �

Theorem 3.9. Let R be a minimal right ideal of βN. There is a decreas-

ing sequence 〈pn〉∞n=1 of idempotents in c`K(βN) such that

|{q ∈ E(R) : {pn : n ∈ N} ⊆ Dq}| = 2c .

Proof. Choose a sequence 〈qn〉∞n=1 as guaranteed by Lemma 3.8 and pick
an accumulation point x of this sequence. Then x is right cancelable in
βZ. Since each qn is in R and each idempotent in R is a right identity
for R, we have that for each n ∈ N and each p ∈ E(R), qn + p = p, and
consequently for each p ∈ E(R), x+ p = p. Let M =

⋂
{C ⊆ βZ : C is a

compact subsemigroup of βZ and x ∈ C}. Note that M ⊆ βN. For each
p ∈ E(R), {z ∈ βN : z + p = p} is a compact subsemigroup of βZ with x
as a member, so we have that for all z ∈M and all p ∈ E(R), z + p = p.

By [4, Corollary 8.54], pick a decreasing sequence 〈pn〉∞n=1 inM and let
w be a cluster point of 〈pn〉∞n=1. By [4, Lemma 9.22], w is right cancelable
in βZ and for each n ∈ N, w ∈ βZ + pn. By [4, Theorem 6.56], βN + w
contains 2c pairwise disjoint left ideals. Let L be one of these and pick
an idempotent q ∈ R ∩ L. To complete the proof, we show that for each
n ∈ N, q ≤ pn (so by Corollary 2.2, {pn : n ∈ N} ⊆ Dq). Let n ∈ N. Then
L ⊆ βN + w ⊆ βZ + pn so q + pn = q. Also, pn ∈ M and q ∈ E(R), so
pn + q = q. �

Corollary 3.10. There exist decreasing chains of idempotents in

c`K(βN) of reverse order type ω + 1.

Proof. Pick a minimal right ideal R of βN, pick a sequence 〈pn〉∞n=1 as
guaranteed by Theorem 3.9, and pick q ∈ E(R) such that

{pn : n ∈ N} ⊆ Dq .
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By Corollary 2.2, given n ∈ N, q ≤ pn and since pn+1 < pn, q < pn. �

4. Copies of Z× Z in Gq

We know, of course, that if q ∈ E
(
K(βN)

)
, then the center of Gq

contains Z + q. We show in this section that if it is not equal to Z + q,
then Gq contains an algebraic copy of Z× Z.

De�nition 4.1. Let k ∈ N, let B1, B2, . . . , Bk be pairwise disjoint in�nite
subsets of ω, and let m,x ∈ N.

(a) supp(x) is the binary support of x.
(b) cB1(x) = |supp(x) ∩B1|.
(c) cB1,...,Bk

(x) =
|{(i1, i2, . . . , ik) ∈

(
supp(x)

)k : i1 < . . . < ik and each it ∈ Bt}|.
(d) cB1,m(x) ∈ Zm and cB1,m(x) ≡ cB1(x) (mod m).
(e) cB1,...,Bk,m(x) ∈ Zm and cB1,...,Bk,m(x) ≡ cB1,...,Bk

(x) (mod m).

Lemma 4.2. Let u, v ∈ H, let k ∈ N, let B1, B2, . . . , Bk be pairwise

disjoint in�nite subsets of ω, and let m ∈ N.

(1) c̃B1,m(u+ v) = c̃B1,m(u) + c̃B1,m(v).
(2) If k > 1, then c̃B1,...,Bk,m(u+v) = c̃B1,...,Bk,m(u)+c̃B1,...,Bk,m(v)+∑k−1

t=1 c̃B1,...,Bt,m(u) · c̃Bt+1,...,Bk,m(v).

Proof. (1) It su�ces that c̃B1,m ◦ ρv and ρc̃B1,m(v) ◦ c̃B1,m agree on N, so
let x ∈ N. Let k = max supp(x)+1. It su�ces to observe that c̃B1,m ◦ λx

and λcB1,m(x) ◦ c̃B1,m agree on N2k.
(2) Note that singletons are open in Zm. Pick C ∈ u such that for all

x ∈ C, c̃B1,...,Bk,m(x + v) = c̃B1,...,Bk,m(u + v) and for t ∈ {1, 2, . . . , k},
c̃B1,...,Bt,m(x) = c̃B1,...,Bt,m(u). Pick x ∈ C and let l = max supp(x) + 1.
Pick D ∈ v such that for all y ∈ D, cB1,...,Bk,m(x+y) = c̃B1,...,Bk,m(x+v)
and for t ∈ {1, 2, . . . , k − 1}, cBt+1,...,Bk,m(y) = c̃Bt+1,...,Bk,m(v). Pick
y ∈ D ∩N2l. Then cB1,...,Bk,m(x+ y) = cB1,...,Bk,m(x) + cB1,...,Bk,m(y) +∑k−1

t=1 cB1,...,Bt,m(x) · cBt+1,...,Bk,m(y). �

Lemma 4.3. Let q ∈ E
(
K(βN)

)
, let k ∈ N, let B1, B2, . . . , Bk be pairwise

disjoint in�nite subsets of ω, and let m ∈ N. Then c̃B1,...,Bk,m(q) = 0.

Proof. This follows immediately by induction on k from Lemma 4.2. �

Lemma 4.4. Let q ∈ E
(
K(βN)

)
, let k ∈ N, let B1, B2, . . . , Bk be pairwise

disjoint in�nite subsets of ω, let m ∈ N, and let u ∈ H ∩ Dq. Then

c̃B1,...,Bk,m(u) = 0.

Proof. We show �rst that it su�ces to show this under the additional
assumption that N \

⋃k
i=1Bi is in�nite. Suppose we have done this and
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let B′k and B′′k be disjoint in�nite subsets of Bk with B′k ∪ B′′k = Bk.
Note that for all x ∈ N, cB1,...,Bk,m(x) = cB1,...,B′

k,m(x) + cB1,...,B′′
k ,m(x)

so c̃B1,...,Bk,m(u) = c̃B1,...,B′
k,m(u) + c̃B1,...,B′′

k ,m(u) = 0 + 0.
So assume that Bk+1N\

⋃k
i=1Bi is in�nite. Pick p ∈ {2n : n ∈ Bk+1}∗.

Note that for all n ∈ Bk+1, cBk+1,m(2n) = 1, and if t ∈ {1, 2, . . . , k}, then
cB1,...,Bt,m(2n) = cBt,...,Bk+1,m(2n) = 0. Therefore c̃Bk+1,m(p) = 1, and
if t ∈ {1, 2, . . . , k}, then c̃B1,...,Bt,m(p) = c̃Bt,...,Bk+1,m(p) = 0. Since all
terms of the expansions given in Lemma 4.2 except one involve q, and are
therefore 0, we have that c̃Bk+1,m(p+ q) = 1, and if t ∈ {1, 2, . . . , k}, then
c̃B1,...,Bt,m(p+ q) = c̃Bt,...,Bk+1,m(p+ q) = 0 and c̃Bk+1,m(q + p) = 1, and
if t ∈ {1, 2, . . . , k}, then c̃B1,...,Bt,m(q + p) = c̃Bt,...,Bk+1,m(q + p) = 0.

Next note that
c̃B1,...,Bk+1,m(q + u+ p+ q) =
c̃B1,...,Bk+1,m(q) + c̃B1,...,Bk+1,m(u+ p+ q) +∑k

t=1 c̃B1,...,Bt,m(q) · c̃Bt+1,...,Bk+1,m(u+ p+ q) =
c̃B1,...,Bk+1,m(u+ p+ q) and
c̃B1,...,Bk+1,m(q + p+ u+ q) =
c̃B1,...,Bk+1,m(q + p+ u) + c̃B1,...,Bk+1,m(q) +∑k

t=1 c̃B1,...,Bt,m(q + p+ u) · c̃Bt+1,...,Bk+1,m(q) =
c̃B1,...,Bk+1,m(q + p+ u) .

Since
c̃B1,...,Bk+1,m(q + u+ p+ q) = c̃B1,...,Bk+1,m(u+ q + p+ q)

= c̃B1,...,Bk+1,m(q + p+ q + u)
= c̃B1,...,Bk+1,m(q + p+ u+ q)

we therefore have that c̃B1,...,Bk+1,m(u+ p+ q) = c̃B1,...,Bk+1,m(q+ p+u).
Now

c̃B1,...,Bk+1,m(u+ p+ q) = c̃B1,...,Bk+1,m(u) + c̃B1,...,Bk+1,m(p+ q)
+

∑k
t=1 c̃B1,...,Bt,m(u) · c̃Bt+1,...,Bk+1,m(p+ q)

= c̃B1,...,Bk+1,m(u) + c̃B1,...,Bk,m(u) and
c̃B1,...,Bk+1,m(q + p+ u) = c̃B1,...,Bk+1,m(q + p) + c̃B1,...,Bk+1,m(u)

+
∑k

t=1 c̃B1,...,Bt,m(q + p) · c̃Bt+1,...,Bk+1,m(u)
= c̃B1,...,Bk+1,m(u) .

Consequently c̃B1,...,Bk+1,m(u) + c̃B1,...,Bk,m(u) = c̃B1,...,Bk+1,m(u) so
c̃B1,...,Bk,m(u) = 0. �

Lemma 4.5. Let q ∈ E
(
K(βN)

)
, let p ∈ {2n : n ∈ N}∗, and let

ψp : Z → Gq be the homomorphism such that ψp(1) = q+ p+ q. Then for

all n ∈ Z \ {0}, ψp(n) /∈ Dq.

Proof. Pick in�nite B ⊆ N such that {2n : n ∈ B} ∈ p. Then for each
m ∈ N \ {1}, c̃B,m(q + p + 1) = 1 so for all n ∈ N and all m > n,



12 NEIL HINDMAN AND DONA STRAUSS

c̃B,m

(
ψp(n)

)
= n and thus ψp(n) /∈ Dq by Lemma 4.4. Now Dq ∩Gq is a

group, so if n ∈ N and ψp(−n) ∈ Dq, so is ψp(n). �

Theorem 4.6. Let q ∈ E
(
K(βN)

)
, let p ∈ {2n : n ∈ N}∗, and let

ψp : Z → Gq be the homomorphism such that ψp(1) = q + p+ q. Assume

that u ∈ H∩Gq ∩Dq \{q} and let ϕ : Z → Gq be the homomorphism such

that ϕ(1) = u. De�ne τ : Z× Z → Gq by τ(m,n) = ϕ(m) + ψp(n). Then

τ is an injective homomorphism.

Proof. Given (m,n) and (k, l) in Z×Z, one has that τ
(
(m,n) + (k, l)

)
=

τ(m,n) + τ(k, l) because ϕ(k) ∈ Dq. Now assume that (m,n) ∈ Z × Z
and τ(m,n) = q. Then ϕ(m) + ψp(n) = q so ϕ(m) = ψp(−n) and
thus ψp(−n) ∈ Dq so that n = 0 by Lemma 4.5. Therefore ϕ(m) = q.
By Zelenyuk's Theorem [8] (or see [4, Theorem 7.17]), βN contains no
notrivial �nite groups. If one had m 6= 0, then ϕ[Z] would be a nontrivial
�nite group, so m = 0. �

Corollary 4.7. Let q ∈ E
(
K(βN)

)
. If the center of Gq is not equal to

Z + q, then Gq contains an algebraic copy of Z× Z.

Proof. Assume we have x ∈ Z(Gq)\(Z+q). Then by Lemma 2.6, x ∈ Z+I
so pick n ∈ Z and u ∈ I such that x = n+u. Then u ∈ H∩Gq ∩Dq \{q}.
Pick any p ∈ {2n : n ∈ N}∗. De�ne τ as in Theorem 4.6. Then τ is an
injective homomorphism. �

We conclude by listing some of the tantalising open questions that have
arisen in the study of the center and extended center of Gq.

Questions 4.8. (1) Let q ∈ E
(
K(βN)

)
. Does Z(Gq) = Z + q?

(2) Let q ∈ E
(
K(βN)

)
. Is Dq ⊆ Z + E(βN)?

(3) Does there exist q ∈ E
(
K(βN)

)
for which E(Dq) is �nite?

(4) Does there exist q ∈ E
(
K(βN)

)
for which E(Dq) is uncountable?

(5) Let q1, q2 ∈ E
(
K(βN)

)
. Are Dq1 and Dq2 isomorphic?
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