This paper was published in Topology Proceedings 42 (2013), 107-119. To the best of my knowledge, this is the final version as it was submitted to the publisher. -NH

THE CENTER AND EXTENDED CENTER OF THE MAXIMAL GROUPS IN THE SMALLEST IDEAL OF $\beta \mathbb{N}$

NEIL HINDMAN AND DONA STRAUSS

Abstract

A good deal is known about the maximal groups in the smallest ideal $K(\beta \mathbb{N})$ of the compact right topological semigroup $(\beta \mathbb{N},+)$. For example they are pairwise isomorphic and highly noncommutative - they contain a copy of the free group on $2^{\mathfrak{c}}$ generators. If q is an idempotent in $K(\beta \mathbb{N})$, then $\mathbb{Z}+q$ is contained in the center of the maximal group $q+\beta \mathbb{N}+q$. We do not know whether that center is equal to $\mathbb{Z}+q$. In this paper we investigate the center of $q+\beta \mathbb{N}+q$ and the extended center consisting of all elements of $\beta \mathbb{N}$ that commute with every element of $q+\beta \mathbb{N}+q$. This extended center trivially includes all idempotents r of $\beta \mathbb{N}$ such that $q \leq r$ as well as elements of the form $n+r$ for such r and for $n \in \mathbb{Z}$. We show for example that if those are the only elements of the extended center, then there are no nontrivial continuous homomorphisms from $\beta \mathbb{N}$ to $\beta \mathbb{N} \backslash \mathbb{N}$. This would answer a long standing open question. We include several other open questions

1. Introduction

Addition on the set \mathbb{N} of positive integers extends to the Stone-Cech compactification $\beta \mathbb{N}$ of \mathbb{N} making ($\beta \mathbb{N},+$) a right topological semigroup (meaning that for each $p \in \beta \mathbb{N}$, the function $\rho_{p}: \beta \mathbb{N} \rightarrow \beta \mathbb{N}$ is continuous, where $\left.\rho_{p}(q)=q+p\right)$ with \mathbb{N} contained in its topological center (meaning that for each $n \in \mathbb{N}$, the function $\lambda_{n}: \beta \mathbb{N} \rightarrow \beta \mathbb{N}$ is continuous, where $\left.\lambda_{n}(q)=n+q\right)$. As with any compact Hausdorf right topological

[^0]semigroup, $(\beta \mathbb{N},+)$ has a smallest two sided ideal
\[

$$
\begin{aligned}
K(\beta \mathbb{N}) & =\bigcup\{L: L \text { is a minimal left ideal of } \beta \mathbb{N}\} \\
& =\bigcup\{R: R \text { is a minimal right ideal of } \beta \mathbb{N}\} .
\end{aligned}
$$
\]

Any left ideal contains a minimal left ideal, which is closed, and any right ideal contains a minimal right ideal. If L is a minimal left ideal and R is a minimal right ideal, then $L \cap R$ is a group and $L \cap R=q+\beta \mathbb{N}+q$ where q is the unique idempotent in $L \cap R$. Any two such groups are isomorphic. If q and r are idempotents in the same minimal right ideal, then the restriction of ρ_{r} to $q+\beta \mathbb{N}+q$ is an isomorphism and a homeomorphism onto $r+\beta \mathbb{N}+r$.

The facts just mentioned about $K(\beta \mathbb{N})$ are true in any compact Hausdorff right topological semigroup. Many additional facts are known about $K(\beta \mathbb{N})$ that do not hold in all such semigroups. We know for example that there are $2^{\mathfrak{c}}$ minimal right ideals and $2^{\mathfrak{c}}$ minimal left ideals and the maximal groups in $K(\beta \mathbb{N})$ each contain a copy of the free group on $2^{\mathfrak{c}}$ generators. We also know that the center of $\beta \mathbb{Z}$ is \mathbb{Z} so if q is an idempotent in $K(\beta \mathbb{N})$, then $\mathbb{Z}+q$ is contained in the center of $q+\beta \mathbb{N}+q$. We do not know whether the center of $q+\beta \mathbb{N}+q$ is equal to $\mathbb{Z}+q$. It is this question which is the primary focus of this paper.

We take the points of $\beta \mathbb{N}$ to be the ultrafilters on \mathbb{N}, identifying the principal ultrafilters with the points of \mathbb{N}. Given $A \subseteq \mathbb{N}$, the closure \bar{A} of A in $\beta \mathbb{N}$ is $\{p \in \beta \mathbb{N}: A \in p\}$ and $\{\bar{A}: A \subseteq \mathbb{N}\}$ is a basis for the open sets of $\beta \mathbb{N}$. See [4] for an elementary introduction to the topology and the algebraic structure of βS where S is an infinite discrete semigroup, as well as for proofs of all of the facts mentioned in the paragraphs above. (The original references for these facts are [1], [2], [3], [5], [6], and [7].)

Definition 1.1. Let q be an idempotent in $K(\beta \mathbb{N})$. $G_{q}=q+\beta \mathbb{N}+q$ and $D_{q}=\left\{u \in \mathbb{N}^{*}:\left(\forall v \in G_{q}\right)(u+v=v+u)\right\}$.

Of course, the center $Z\left(G_{q}\right)=D_{q} \cap G_{q}$. We call D_{q} the extended center of G_{q}.
Definition 1.2. (1) $I=\bigcap_{n=1}^{\infty} \overline{n \bar{N}}$.
(2) $\mathbb{H}=\bigcap_{n=1}^{\infty} \overline{2^{n} \mathbb{N}}$.
(3) For $A \subseteq \beta \mathbb{N}, E(A)=\{q \in \beta \mathbb{N}: q+q=q\}$.

In Section 2 of this paper we present some basic results, including the fact that for any $q \in E(\beta \mathbb{N}), D_{q} \subseteq \mathbb{Z}+I$.

In Section 3 we investigate more deeply the structure of D_{q}, establishing the fact mentioned in the abstract that either there is no nontrivial continuous homomorphism from $\beta \mathbb{N}$ to $\mathbb{N}^{*}=\beta \mathbb{N} \backslash \mathbb{N}$, or there is a member of $D_{q} \cap I$ which is not an idempotent. We also include in this section a
proof that D_{q} contains a decreasing sequence of idempotents of order type $(\omega+1)^{*}$, that is the reverse of $\omega+1$.

Section 4 consists primarily of a derivation of the fact that, if the center of G_{q} is not trivial, then G_{q} contains a copy of $\mathbb{Z} \times \mathbb{Z}$.

2. Basic Facts About the Extended Center

We begin by observing that the only elements in the extended center that are not in the center lie outside of the smallest ideal.

Theorem 2.1. Let $q \in E(K(\beta \mathbb{N}))$. Then $Z\left(G_{q}\right)=D_{q} \cap K(\beta \mathbb{N})$.
Proof. Trivially $Z\left(G_{q}\right) \subseteq D_{q} \cap K(\beta \mathbb{N})$. For the reverse inclusion, let $x \in D_{q} \cap K(\beta \mathbb{N})$. Since $q \in K(\beta \mathbb{N}), \beta \mathbb{N}+q$ is a minimal left ideal and $q+\beta \mathbb{N}$ is a minimal right ideal so $G_{q}=(\beta \mathbb{N}+q) \cap(q+\beta \mathbb{N})$. Thus if $x \notin G_{q}$, then either $x \notin \beta \mathbb{N}+q$ or $x \notin q+\beta \mathbb{N}$. So either x and q are in different minimal left ideals of $\beta \mathbb{N}$ or x and q are in different minimal right ideals of $\beta \mathbb{N}$. In either case, $x+q \neq q+x$.

The idempotents of $\beta \mathbb{N}$ are partially ordered by the relation \leq, defined by $e \leq f$ if and only if $e=e+f=f+e$. By [4, Theorem 2.9] e is minimal with respect to this order if and only if $e \in K(\beta \mathbb{N})$. Further, given any non minimal idempotent e in $\beta \mathbb{N}$, by [4, Theorem 1.60] there is a minimal idempotent $q \in K(\beta \mathbb{N})$ with $q \leq e$. So the following lemma shows that for at least some $q \in K(\beta \mathbb{N}), D_{q} \neq Z\left(G_{q}\right)$.
Lemma 2.2. Let $q \in E(K(\beta \mathbb{N}))$. Then $\{e \in E(\beta \mathbb{N}): q \leq e\}=E\left(D_{q}\right)$.
Proof. Let $e \in E(\beta \mathbb{N})$ such that $q \leq e$ and let $x \in G_{q}$. Then $e+x=$ $e+q+x=q+x=x+q=x+q+e=x+e$ and so $e \in D_{q}$.

Conversely, let $e \in E\left(D_{q}\right)$. Since $e+q=q+e, e+q$ is an idempotent in the same minimal right ideal and the same minimal left ideal as q. So $e+q=q+e=q$ and $q \leq e$.

The remainder of this section will be devoted to a proof, as a consequence of a more general theorem, that $D_{q} \subseteq \mathbb{Z}+I$.

It is well known, and routine to verify, that each member of \mathbb{N} has a unique factorial representation. That is, a representation of the form $\sum_{n \in H} a_{n} \cdot n$! where H is a finite nonempty subset of \mathbb{N} and for each $n \in H$, $a_{n} \in\{1,2, \ldots, n\}$.
Definition 2.3. Define $d: \mathbb{N} \rightarrow X_{n=1}^{\infty}\{0,1, \ldots, n\}$ by, for each $y \in \mathbb{N}$, $y=\sum_{n=1}^{\infty} d(y)(n) \cdot n!$. For $y \in \mathbb{N}$, let $\operatorname{supp}_{f}(y)=\{n \in \mathbb{N}: d(y)(n) \neq 0\}$ and let $c(y)=\left|\operatorname{supp}_{f}(y)\right|$. Let $\widetilde{d}: \beta \mathbb{N} \rightarrow \times_{n=1}^{\infty}\{0,1, \ldots, n\}$ and $\widetilde{c}: \beta \mathbb{N} \rightarrow$ $\beta \mathbb{N}$ be the continuous extensions of d and c respectively.

Lemma 2.4. Let $x \in \mathbb{N}^{*}$. If $x \notin \mathbb{Z}+I$, then
(1) $\{n \in \mathbb{N}: \widetilde{d}(x)(n) \neq 0\}$ is infinite,
(2) $\{n \in \mathbb{N}: \widetilde{d}(x)(n)<n\}$ is infinite, and
(3) $\{n \in \mathbb{N}$: either $0<\widetilde{d}(x)(n)<n$ or both $\widetilde{d}(x)(n)=n$ and $\widetilde{d}(x)(n+1)=0\}$ is infinite.
Proof. (1) Suppose that $\{n \in \mathbb{N}: \widetilde{d}(x)(n) \neq 0\}$ is finite and let $k=$ $\max \{n \in \mathbb{N}: \widetilde{d}(x)(n) \neq 0\}$. Let $m=\sum_{n=1}^{k} \widetilde{d}(x)(n) \cdot n!$. We claim that $x \in m+I$. To see this, let $l>k$. To see that $x \in-m+\mathbb{N} l!$, pick $A \in x$ such that $\widetilde{d}(x)[\bar{A}] \subseteq \times_{n=1}^{l} \pi_{n}^{-1}[\{\widetilde{d}(x)(n)\}]$ and let $y \in A$. Pick $j>l$ such that $j!>y$. Then

$$
\begin{aligned}
y-m & =\sum_{n=l+1}^{j} d(y)(n) \cdot n!+\sum_{n=1}^{l} \widetilde{d}(x)(n) \cdot n!-\sum_{n=1}^{k} \widetilde{d}(x)(n) \cdot n! \\
& =\sum_{n=l+1}^{j} d(y)(n) \cdot n!
\end{aligned}
$$

since $\widetilde{d}(x)(n) \cdot n!=0$ for $n>k$.
(2) Suppose that $\{n \in \mathbb{N}: \widetilde{d}(x)(n)<n\}$ is finite and pick $k \in \mathbb{N}$ such that for all $n>k, \widetilde{d}(x)(n)=n$. Let $m=1+\sum_{n=1}^{k}(n-\widetilde{d}(x)(n)) \cdot n$! We claim that $x \in-m+I$. To see this, let $l>k$. To see that $x \in m+\mathbb{N} l$!, pick $A \in x$ such that $\widetilde{d}(x)[\bar{A}] \subseteq \times_{n=1}^{l} \pi_{n}^{-1}[\{\widetilde{d}(x)(n)\}]$ and let $y \in A$. Pick $j>l$ such that $j!>y$. Then $m+y-1=\sum_{n=1}^{k}(n-\widetilde{d}(x)(n)) \cdot n!+$ $\sum_{n=1}^{l} \widetilde{d}(x)(n) \cdot n!+\sum_{n=l+1}^{j} d(y)(n) \cdot n!=\sum_{n=l+1}^{j} d(y)(n) \cdot n!+\sum_{n=1}^{l} n \cdot n!$ and so $(l+1)$! divides $m+y$.
(3) Assume that $\{n \in \mathbb{N}: 0<\widetilde{d}(x)(n)<n\}$ is finite. Pick k such that for all $n>k, \widetilde{d}(x)(n) \in\{0, n\}$. Then by (1) and (2), both $\{n \in \mathbb{N}$: $\widetilde{d}(x)(n)=0\}$ and $\{n \in \mathbb{N}: \widetilde{d}(x)(n)=n\}$ are infinite and consequently $\{n \in \mathbb{N}: \widetilde{d}(x)(n)=n$ and $\widetilde{d}(x)(n+1)=0\}$ is infinite.
Lemma 2.5. Let $x \in \mathbb{N}^{*}$ and let $q, r \in I$. If $q+x+r \in \mathbb{Z}+I$, then $x \in \mathbb{Z}+I$.

Proof. Assume that $m \in \mathbb{Z}, z \in I$, and $q+x+r=m+z$. Given any $n \in \mathbb{N}$, $\{k \in \mathbb{N}: k \equiv m(\bmod n!)\} \in q+x+r$ and $\{k \in \mathbb{N}: k \equiv 0(\bmod n!)\} \in q \cap r$, so $\{k \in \mathbb{N}: k \equiv m(\bmod n!)\} \in x$.

Lemma 2.6. Let $q \in E(K(\beta \mathbb{N}))$ and let $x \in Z\left(G_{q}\right)$. Then $x \in \mathbb{Z}+I$.
Proof. Suppose that $x \notin \mathbb{Z}+I$ and let

$$
\begin{array}{ll}
E=\{n \in \mathbb{N}: & \text { either } 0<\widetilde{d}(x)(n)<n \text { or both } \\
& \widetilde{d}(x)(n)=n \text { and } \widetilde{d}(x)(n+1)=0\}
\end{array}
$$

Then by Lemma $2.4(3), E$ is infinite so pick $p \in \mathbb{N}^{*}$ such that $\{n!: n \in E\} \in p$. We shall show that
(a) $\widetilde{c}(x+p+q)=\widetilde{c}(x+q)+1$ and
(b) $\widetilde{c}(q+p+x)=\widetilde{c}(q+x)$.

This will suffice because (using the fact that $x+q=q+x=x$) we will then have that $\widetilde{c}(x+q+p+q)=\widetilde{c}(x+p+q)=\widetilde{c}(x+q)+1=\widetilde{c}(x)+1 \neq$ $\widetilde{c}(x)=\widetilde{c}(q+x)=\widetilde{c}(q+p+x)=\widetilde{c}(q+p+q+x)$.

To verify (a), it suffices that $\tilde{c} \circ \rho_{p+q}$ and $\rho_{1} \circ \tilde{c} \circ \rho_{q}$ agree on \mathbb{N}, so let $y \in \mathbb{N}$ be given. To see that $\widetilde{c}(y+p+q)=\widetilde{c}(y+q)+1$, it suffices that $\widetilde{c} \circ \lambda_{y} \circ \rho_{q}$ is constantly equal to $\widetilde{c}(y+q)+1$ on $\{n!: n \in \mathbb{N}$ and $n>$ $\left.\max _{\operatorname{supp}}^{f}(y)\right\}$, so let $n \in \mathbb{N}$ such that $n>\max ^{(y) p p}{ }_{f}(y)$. To see that $\widetilde{c}(y+n!+q)=\widetilde{c}(y+q)+1$, it suffices that $\widetilde{c} \circ \lambda_{y+n!}$ and $\rho_{1} \circ \widetilde{c} \circ \lambda_{y}$ agree on $\mathbb{N}(n+1)$!, so let $z \in \mathbb{N}(n+1)$!. Then $\operatorname{supp}_{f}(y+n!+z)=$ $\operatorname{supp}_{f}(y) \cup\{n\} \cup \operatorname{supp}_{f}(z)$ and $\operatorname{supp}_{f}(y+z)=\operatorname{supp}_{f}(y) \cup \operatorname{supp}_{f}(z)$.

To verify (b), it suffices that $\widetilde{c} \circ \rho_{p+x}$ and $\widetilde{c} \circ \rho_{x}$ agree on \mathbb{N} so let $y \in \mathbb{N}$ and pick $a \in E$ such that $a>\max _{\operatorname{supp}}^{f}(y)$. To see that $\widetilde{c}(y+p+x)=$ $\widetilde{c}(y+x)$ it suffices that $\widetilde{c} \circ \lambda_{y} \circ \rho_{x}$ is constantly equal to $\widetilde{c}(y+x)$ on $\{n!: n \in E$ and $n>a+2\}$ so let $b \in E$ such that $b>a+2$. Pick $A \in x$ such that $\widetilde{d}[\bar{A}] \subseteq \bigcap_{n=1}^{b+1} \pi_{n}^{-1}[\{\widetilde{d}(x)(n)\}]$. To see that $\widetilde{c}(y+b!+x)=\widetilde{c}(y+x)$, it suffices that $\widetilde{c} \circ \lambda_{y+b!}$ agrees with $\widetilde{c} \circ \lambda_{y}$ on A, so let $z \in A$. We need to show that $c(y+b!+z)=c(y+z)$.

Pick $l>b+1$ such that $l!>z$. Then $z=\sum_{n=b+2}^{l} d(z)(n) \cdot n!+$ $\sum_{n=1}^{b+1} \widetilde{d}(x)(n) \cdot n!$. Since $b>a+2>a>\operatorname{maxsupp}_{f}(y)$, there is no carrying beyond position $a+1$ when the factorial representations of z and y are added. (Either $\widetilde{d}(x)(a)<n$, in which case there is no carrying beyond position a, or $\widetilde{d}(x)(a)=n$ and $\widetilde{d}(x)(a+1)=0$.) Thus $z+y=$ $\sum_{n=b+2}^{l} d(z)(n) \cdot n!+\sum_{n=a+2}^{b+1} \widetilde{d}(x)(n) \cdot n!+\sum_{n=1}^{a+1} d(z+y)(n) \cdot n!$.

Assume first that $0<\widetilde{d}(x)(b)<n$. Then

$$
\begin{aligned}
& y+b!+z=\sum_{n=b+2}^{l} d(z)(n) \cdot n!+\widetilde{d}(x)(b+1) \cdot(b+1)!+ \\
& (\widetilde{d}(x)(b)+1) \cdot b!+\sum_{n=a+2}^{b-1} \widetilde{d}(x)(n) \cdot n!+\sum_{n=1}^{a+1} d(z+y)(n) \cdot n!,
\end{aligned}
$$

$\operatorname{sosupp}_{f}(y+b!+z)=\operatorname{supp}_{f}(y+z)$.
Now assume that $\widetilde{d}(x)(b)=n$ and $\widetilde{d}(x)(b+1)=0$. Then $y+b!+z=$ $\sum_{n=b+2}^{l} d(z)(n) \cdot n!+(b+1)!+\sum_{n=a+2}^{b-1} \widetilde{d}(x)(n) \cdot n!+\sum_{n=1}^{a+1} d(z+y)(n) \cdot n!$,

Theorem 2.7. Let $u, v, x \in \beta \mathbb{N}$. If x commutes with every member of $u+\beta \mathbb{N}+v$, then either $x \in \mathbb{N}$ or $x \in \mathbb{Z}+I$.

Proof. Assume that $x \notin \mathbb{N}$. Pick a minimal right ideal R and a minimal left ideal L of $\beta \mathbb{N}$ such that $R \subseteq u+\beta \mathbb{N}$ and $L \subseteq \beta \mathbb{N}+v$. Let q be the identity of $R \cap L$. Then $q+\beta \mathbb{N}+q \subseteq u+\beta \mathbb{N}+v$ and so x commutes with every member of $q+\beta \mathbb{N}+q$ and consequently so does $q+x+q$. (Let
$p \in q+\beta \mathbb{N}+q$. Then $p+q=q+p=p$ so $q+x+q+p=q+x+p+q=$ $q+p+x+q=p+q+x+q$.) By Lemma $2.6, q+x+q \in \mathbb{Z}+I$ and so by Lemma 2.5, $x \in \mathbb{Z}+I$.

The following corollary is an immediate consequence of Theorem 2.7.
Corollary 2.8. Let $q \in E(K(\beta \mathbb{N}))$. Then $D_{q} \subseteq \mathbb{Z}+I$.

3. The Structure of the Extended Center

Section 1.7 of [4] has a large number of results whose hypothesis asserts the existence of a minimal left ideal with an idempotent. The following theorem puts all of those results at our disposal.

Theorem 3.1. Let $q \in E(K(\beta \mathbb{N}))$. Then D_{q} is a semigroup and $D_{q} \cap G_{q}$ is both a minimal left ideal of D_{q} with an idempotent and a minimal right ideal of D_{q}.
Proof. Trivially D_{q} is a semigroup. To see that $D_{q} \cap G_{q}$ is an ideal of D_{q}, let $x \in D_{q} \cap G_{q}$ and let $y \in D_{q}$. Then $y+x=y+q+x=q+y+x=$ $q+y+x+q \in G_{q}$ and $x+y=x+q+y=x+y+q=q+x+y+q \in G_{q}$. Since $D_{q} \cap G_{q}=Z\left(G_{q}\right), D_{q} \cap G_{q}$ is a group and is therefore a minimal left ideal and a minimal right ideal and has an idempotent.

Among the consequences of the existence of a minimal left ideal in a semigroup is the fact that the smallest ideal exists.
Corollary 3.2. Let $q \in E(K(\beta \mathbb{N}))$. Then $D_{q} \cap G_{q}=K\left(D_{q}\right)$.
Proof. Since $K\left(D_{q}\right)$ is the union of all of the minimal left ideals of D_{q}, we have by Theorem 3.1 that $D_{q} \cap G_{q} \subseteq K\left(D_{q}\right)$. Since $D_{q} \cap G_{q}$ is a two sided ideal of D_{q} we have that $K\left(D_{q}\right) \subseteq D_{q} \cap G_{q}$.

Lemma 3.3. Let $q \in E(K(\beta \mathbb{N}))$ and let $x \in D_{q}$. There is some $y \in$ $D_{q} \cap G_{q}$ such that $y+x=x+y=q$.

Proof. Since D_{q} contains a minimal left ideal with an idempotent, we have by [4, Corollary 1.47 and Theorem 1.56] that $D_{q}+x$ contains a minimal left ideal of D_{q} with an idempotent, and this idempotent is in $K\left(D_{q}\right)=D_{q} \cap G_{q}$. Since q is the only idempotent in $G_{q}, q \in D_{q}+x$. Pick $w \in D_{q}$ such that $q=w+x$. Let $y=q+w+q$. Then $y \in D_{q} \cap G_{q}$. Also, $y+x=q+w+q+x=q+w+x+q=q+q+q=q$. Since $y \in D_{q}$, we also have that $x+y=q$.

Theorem 3.4. Let $q \in E(K(\beta \mathbb{N}))$ and let $x \in D_{q}$. Then $G_{q}=x+G_{q}+x=x+G_{q}=G_{q}+x$.

Proof. Pick by Lemma 3.3 some $y \in D_{q} \cap G_{q}$ such that $y+x=x+y=q$. Since $x \in D_{q}$, we have that $x+G_{q}=G_{q}+x$. We shall show that $G_{q} \subseteq x+G_{q}+x \subseteq x+G_{q} \subseteq G_{q}$. Let $w \in G_{q}$. Then $w=q+w+q=$ $x+y+w+y+x \in x+G_{q}+x$.

To see that $x+G_{q}+x \subseteq x+G_{q}$, let $w \in G_{q}$ and pick $z \in G_{q}$ such that $z+y=w$. Then $x+w+x=x+z+y+x=x+z+q=x+z$.

To see that $x+G_{q} \subseteq G_{q}$, let $w \in G_{q}$ and pick $z \in G_{q}$ such that $y+z=w$. Then $x+w=x+y+z=q+z=z$.
Corollary 3.5. Let $q \in E(K(\beta \mathbb{N}))$. For any distinct $x, y \in D_{q}, x \in$ $\beta \mathbb{N}+y$ or $y \in \beta \mathbb{N}+x$.
Proof. By Theorem 3.4, $q \in\left(G_{q}+x\right) \cap\left(G_{q}+y\right)$. So our claim follows from [4, Corollary 6.21].
Corollary 3.6. Let $q \in E(K(\beta \mathbb{N}))$. If M is a G_{δ} subset of \mathbb{N}^{*}, then $D_{q} \cap M$ is nowhere dense in M. In particular, $D_{q} \cap I$ is nowhere dense in I and $D_{q} \cap \mathbb{H}$ is nowhere dense in \mathbb{H}.

Proof. We first observe that $\mathbb{N}^{*} \backslash\left(\mathbb{N}^{*}+\mathbb{N}^{*}\right)$ contains a dense open subset U of \mathbb{N}^{*}. This follows from the fact that, if $p \in \mathbb{N}^{*}$ and $B \in p$, we can choose a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ contained in B such that $x_{n+1}-x_{n}>n$ for every $n \in \mathbb{N}$. So, if $A=\left\{x_{n}: n \in \mathbb{N}\right\}, \bar{A} \subseteq \bar{B}$ and, by [4, Exercise 4.1.7], $\bar{A} \cap\left(\mathbb{N}^{*}+\mathbb{N}^{*}\right)=\emptyset$.

If there exists an element $x \in D_{q} \cap\left(\mathbb{N}^{*} \backslash\left(\mathbb{N}^{*}+\mathbb{N}^{*}\right)\right)$, then, by Corollary 3.5 , for any element $y \in D_{q} \cap\left(\mathbb{N}^{*} \backslash\left(\mathbb{N}^{*}+\mathbb{N}^{*}\right)\right), x \in \mathbb{N}+y$ or $y \in \mathbb{N}+x$. So $D_{q} \cap\left(\mathbb{N}^{*} \backslash\left(\mathbb{N}^{*}+\mathbb{N}^{*}\right)\right)=\mathbb{Z}+x$. Since $\mathbb{Z}+x$ is countable, $\mathbb{Z}+x$ is nowhere dense in \mathbb{N}^{*} ([4, Corollary 3.37]). Put $V=U$ if no such element x exists; otherwise put $V=U \backslash \operatorname{cl}(\mathbb{Z}+x)$. Then V is a dense open subset of \mathbb{N}^{*} and $V \cap D_{q}=\emptyset$.

It follows from [4, Theorem 3.36] that $\operatorname{int}_{\mathbb{N}^{*}}(M)$ is dense in M. So $V \cap M$ is a dense open subset of M disjoint from D_{q}.

Given $q \in E(K(\beta \mathbb{N}))$, we know $\left(\mathbb{Z}+E\left(D_{q}\right)\right) \subseteq D_{q}$ and we know, by Lemma 2.2 that $E\left(D_{q}\right)=\{e \in E(\beta \mathbb{N}): q \leq e\}$. So the only things that we know are in $D_{q} \cap I$ are the idempotents above q. It is a longstanding open problem as to whether there are any nontrivial continuous homomorphisms from $\beta \mathbb{N}$ to \mathbb{N}^{*}. The following theorem connects our lack of knowledge about these two issues.
Theorem 3.7. If for all $q \in E(K(\beta \mathbb{N}))$, $D_{q} \cap I \subseteq E(\beta \mathbb{N})$, then there is no nontrivial continuous homomorphism from $\beta \mathbb{N}$ to \mathbb{N}^{*}.

Proof. Let $q \in E(K(\beta \mathbb{N}))$ and suppose that $D_{q} \cap I \subseteq E(\beta \mathbb{N})$ and that there is a nontrivial continuous homomorphism from $\beta \mathbb{N}$ to \mathbb{N}^{*}. By [4, Corollary 10.20], pick $e \in E(\beta \mathbb{N})$ and $p \neq e$ such that $p+p=p+e=$
$e+p=e$. Pick $q \in E(K(\beta \mathbb{N}))$ such that $q \leq e$. Then $p+q=p+e+q=$ $e+q=q=q+e=q+e+p=q+p$. We claim that $p \in D_{q}$, so let $w \in G_{q}$. Then $p+w=p+q+w=q+w=w=w+q=w+q+p=w+p$. Thus $p \in D_{q}$. Since $p+q=q$ we also have that $p \in I$. But p is not an idempotent.

We do not know whether there are any maximal idempotents in $\beta \mathbb{N}$ or even whether there are maximal idempotents in $K(\beta \mathbb{N})$, so as far as we know, it is possible that for some $q \in E(K(\beta \mathbb{N}))$, the extended center D_{q} of G_{q} is equal to the center of G_{q}. We shall show in Theorem 3.9 that for many $q \in E(K(\beta \mathbb{N})), D_{q} \cap c \ell K(\beta \mathbb{N})$ contains an infinite decreasing chain of idempotents. As a corollary, we obtain the fact that $c \ell K(\beta \mathbb{N})$ contains a decreasing sequence of idempotents of reverse order type $\omega+1$. (It was previously known that it contains such a sequence of reverse order type ω.)
Lemma 3.8. Let R be a minimal right ideal of $\beta \mathbb{N}$. There is an injective sequence $\left\langle q_{n}\right\rangle_{n=1}^{\infty}$ of idempotents in R such that, if p is an accumulation point of $\left\langle q_{n}\right\rangle_{n=1}^{\infty=1}$, then $p \notin \mathbb{Z}^{*}+\mathbb{Z}^{*}$. In particular any accumulation point of $\left\langle q_{n}\right\rangle_{n=1}^{\infty}$ is right cancelable in $\beta \mathbb{Z}$.
Proof. Pick an injective sequence $\left\langle v_{n}\right\rangle_{n=1}^{\infty}$ in

$$
\left\{2^{n}: n \in \mathbb{N}\right\}^{*}=\overline{\left\{2^{n}: n \in \mathbb{N}\right\}} \backslash \mathbb{N}
$$

We claim that $\left(\beta \mathbb{N}+v_{n}\right) \cap\left(\beta \mathbb{N}+v_{m}\right)=\emptyset$ when $n \neq m$. To see this, define $\phi: \mathbb{N} \rightarrow \omega$ by $\phi(n)=\max (\operatorname{supp}(n))$, where $\operatorname{supp}(n)$ is the binary support of n. That is, $n=\sum_{t \in \operatorname{supp}(n)} 2^{t}$. Let $\widetilde{\phi}: \beta \mathbb{N} \rightarrow \beta \omega$ be the continuous extension of ϕ. By [4, Exercise 3.4.1] $\widetilde{\phi}$ is injective on $\overline{\left\{2^{n}: n \in \mathbb{N}\right\}}$ and by [4, Lemma 6.8], for each $n \in \mathbb{N}, \widetilde{\phi}\left[\beta \mathbb{N}+v_{n}\right]=\left\{\widetilde{\phi}\left(v_{n}\right)\right\}$, so the claim is established.

For each $n \in \mathbb{N}$ choose an idempotent $q_{n} \in R \cap\left(\beta \mathbb{N}+v_{n}\right)$ and note that $q_{n} \neq q_{m}$ if $n \neq m$. Let p be an accumulation point of $\left\langle q_{n}\right\rangle_{n=1}^{\infty}$ and suppose that $p=x+y$ for some $x, y \in \mathbb{Z}^{*}$. By [4, Exercise 4.3.5], $y \in \mathbb{N}^{*}$. Note that there is at most one $n \in \mathbb{Z}$ such that $n+y \in \mathbb{H}$. (If $n<m$ and $2^{k}>m-n$, then $\left(-n+2^{k} \mathbb{N}\right) \cap\left(-m+2^{k} \mathbb{N}\right)=\emptyset$.) Let $X=\{n \in \mathbb{Z}: n+y \notin \mathbb{H}\}$. Then $X \in x$. If $n \neq m$, we have that $\widetilde{\phi}\left(q_{n}\right)=\widetilde{\phi}\left(v_{n}\right) \neq \widetilde{\phi}\left(v_{m}\right)=\widetilde{\phi}\left(q_{m}\right)$, so there are at most three values of $n \in \mathbb{N}$ for which

$$
\widetilde{\phi}\left(q_{n}\right) \in\{\widetilde{\phi}(y)-1, \widetilde{\phi}(y), \widetilde{\phi}(y)+1\}
$$

Let $M=\left\{n \in \mathbb{N}: \widetilde{\phi}\left(q_{n}\right) \notin\{\widetilde{\phi}(y)-1, \widetilde{\phi}(y), \widetilde{\phi}(y)+1\}\right\}$. Then

$$
p \in c \ell\left\{q_{n}: n \in M\right\} \cap c \ell(X+y)
$$

so by [4, Theorem 3.40], either there is some $n \in X$ such that $n+y \in$ $c \ell\left\{q_{n}: n \in M\right\}$ or there is some $n \in M$ such that $q_{n} \in c \ell(X+y)=\bar{X}+y$.

Suppose first that we have $n \in X$ such that $n+y \in c \ell\left\{q_{n}: n \in M\right\}$. By [4, Lemma 6.8], $\left\{q_{n}: n \in M\right\} \subseteq \mathbb{H}$, so $n+y \in \mathbb{H}$, contradicting the fact that $n \in X$.

Now assume that we have $n \underset{\sim}{\in} M$ such that $q_{n} \in \underset{\sim}{X}+\underset{\sim}{y}$ and pick $z \in \bar{X}$ such that $q_{n}=z+y$. Then $\underset{\sim}{\phi}\left(q_{n}\right) \notin\left\{\widetilde{\phi}(y) \underset{\sim}{\sim}(\widetilde{\phi}(y), \widetilde{\phi}(y)+1\}_{\sim}\right.$ so pick $A \in \widetilde{\phi}\left(q_{n}\right)$ such that $\mathbb{N} \backslash A \in \widetilde{\phi}(y)-1, \mathbb{N} \backslash A \in \widetilde{\phi}(y)$, and $\mathbb{N} \backslash \underset{\sim}{A} \in \widetilde{\phi}(y)+1$. Pick $B \in z$ such that $\widetilde{\phi}[\bar{B}+y] \subseteq \bar{A}$ and pick $k \in B$. Then $\widetilde{\phi}(k+y) \in \bar{A}$ so pick $C \in y$ such that $\widetilde{\phi}[k+\bar{C}] \subseteq \bar{A}$. Since $\mathbb{N} \backslash A \in \widetilde{\phi}(y)-1, \mathbb{N} \backslash A \in$ $\widetilde{\phi}(y)$, and $\mathbb{N} \backslash A \in \underset{\sim}{\boldsymbol{\phi}}(y)+1$, pick $D \in y$ such that $\widetilde{\phi}[\bar{D}]-1 \subseteq \overline{\mathbb{N} \backslash A}$, $\widetilde{\phi}[\bar{D}] \subseteq \overline{\mathbb{N} \backslash A}$, and $\widetilde{\phi}[\bar{D}]+1 \subseteq \overline{\mathbb{N} \backslash A}$. Pick $r \in C \cap D$ such that $r>k$. Then $\phi(k+r)=\phi(r)-1, \phi(k+r)=\phi(r)$, or $\phi(k+r)=\phi(r)+1$. Since $\phi(k+r) \in A$, this says that $\phi(r)-1 \in A, \phi(r) \in A$, or $\phi(r)+1 \in A$, a contradiction.

The "in particular" conclusion follows from [4, Theorem 8.18].
Theorem 3.9. Let R be a minimal right ideal of $\beta \mathbb{N}$. There is a decreasing sequence $\left\langle p_{n}\right\rangle_{n=1}^{\infty}$ of idempotents in $c \nmid K(\beta \mathbb{N})$ such that

$$
\left|\left\{q \in E(R):\left\{p_{n}: n \in \mathbb{N}\right\} \subseteq D_{q}\right\}\right|=2^{\mathfrak{c}}
$$

Proof. Choose a sequence $\left\langle q_{n}\right\rangle_{n=1}^{\infty}$ as guaranteed by Lemma 3.8 and pick an accumulation point x of this sequence. Then x is right cancelable in $\beta \mathbb{Z}$. Since each q_{n} is in R and each idempotent in R is a right identity for R, we have that for each $n \in \mathbb{N}$ and each $p \in E(R), q_{n}+p=p$, and consequently for each $p \in E(R), x+p=p$. Let $M=\bigcap\{C \subseteq \beta \mathbb{Z}: C$ is a compact subsemigroup of $\beta \mathbb{Z}$ and $x \in C\}$. Note that $M \subseteq \beta \mathbb{N}$. For each $p \in E(R),\{z \in \beta \mathbb{N}: z+p=p\}$ is a compact subsemigroup of $\beta \mathbb{Z}$ with x as a member, so we have that for all $z \in M$ and all $p \in E(R), z+p=p$.

By [4, Corollary 8.54], pick a decreasing sequence $\left\langle p_{n}\right\rangle_{n=1}^{\infty}$ in M and let w be a cluster point of $\left\langle p_{n}\right\rangle_{n=1}^{\infty}$. By [4, Lemma 9.22], w is right cancelable in $\beta \mathbb{Z}$ and for each $n \in \mathbb{N}, w \in \beta \mathbb{Z}+p_{n}$. By [4, Theorem 6.56], $\beta \mathbb{N}+w$ contains $2^{\mathfrak{c}}$ pairwise disjoint left ideals. Let L be one of these and pick an idempotent $q \in R \cap L$. To complete the proof, we show that for each $n \in \mathbb{N}, q \leq p_{n}$ (so by Corollary $2.2,\left\{p_{n}: n \in \mathbb{N}\right\} \subseteq D_{q}$). Let $n \in \mathbb{N}$. Then $L \subseteq \beta \mathbb{N}+w \subseteq \beta \mathbb{Z}+p_{n}$ so $q+p_{n}=q$. Also, $p_{n} \in M$ and $q \in E(R)$, so $p_{n}+q=q$.

Corollary 3.10. There exist decreasing chains of idempotents in $c \ell K(\beta \mathbb{N})$ of reverse order type $\omega+1$.

Proof. Pick a minimal right ideal R of $\beta \mathbb{N}$, pick a sequence $\left\langle p_{n}\right\rangle_{n=1}^{\infty}$ as guaranteed by Theorem 3.9, and pick $q \in E(R)$ such that

$$
\left\{p_{n}: n \in \mathbb{N}\right\} \subseteq D_{q}
$$

By Corollary 2.2, given $n \in \mathbb{N}, q \leq p_{n}$ and since $p_{n+1}<p_{n}, q<p_{n}$.
4. Copies of $\mathbb{Z} \times \mathbb{Z}$ in G_{q}

We know, of course, that if $q \in E(K(\beta \mathbb{N}))$, then the center of G_{q} contains $\mathbb{Z}+q$. We show in this section that if it is not equal to $\mathbb{Z}+q$, then G_{q} contains an algebraic copy of $\mathbb{Z} \times \mathbb{Z}$.

Definition 4.1. Let $k \in \mathbb{N}$, let $B_{1}, B_{2}, \ldots, B_{k}$ be pairwise disjoint infinite subsets of ω, and let $m, x \in \mathbb{N}$.
(a) $\operatorname{supp}(x)$ is the binary support of x.
(b) $c_{B_{1}}(x)=\left|\operatorname{supp}(x) \cap B_{1}\right|$.
(c) $c_{B_{1}, \ldots, B_{k}}(x)=$

$$
\mid\left\{\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in(\operatorname{supp}(x))^{k}: i_{1}<\ldots<i_{k} \text { and each } i_{t} \in B_{t}\right\} \mid
$$

(d) $c_{B_{1}, m}(x) \in \mathbb{Z}_{m}$ and $c_{B_{1}, m}(x) \equiv c_{B_{1}}(x)(\bmod m)$.
(e) $c_{B_{1}, \ldots, B_{k}, m}(x) \in \mathbb{Z}_{m}$ and $c_{B_{1}, \ldots, B_{k}, m}(x) \equiv c_{B_{1}, \ldots, B_{k}}(x)(\bmod m)$.

Lemma 4.2. Let $u, v \in \mathbb{H}$, let $k \in \mathbb{N}$, let $B_{1}, B_{2}, \ldots, B_{k}$ be pairwise disjoint infinite subsets of ω, and let $m \in \mathbb{N}$.
(1) $\widetilde{c}_{B_{1}, m}(u+v)=\widetilde{c}_{B_{1}, m}(u)+\widetilde{c}_{B_{1}, m}(v)$.
(2) If $k>1$, then $\widetilde{c}_{B_{1}, \ldots, B_{k}, m}(u+v)=\widetilde{c}_{B_{1}, \ldots, B_{k}, m}(u)+\widetilde{c}_{B_{1}, \ldots, B_{k}, m}(v)+$ $\sum_{t=1}^{k-1} \widetilde{c}_{B_{1}, \ldots, B_{t}, m}(u) \cdot \widetilde{c}_{B_{t+1}, \ldots, B_{k}, m}(v)$.
Proof. (1) It suffices that $\widetilde{c}_{B_{1}, m} \circ \rho_{v}$ and $\rho_{\tilde{c}_{B_{1}, m}(v)} \circ \widetilde{c}_{B_{1}, m}$ agree on \mathbb{N}, so let $x \in \mathbb{N}$. Let $k=\operatorname{maxsupp}(x)+1$. It suffices to observe that $\widetilde{c}_{B_{1}, m} \circ \lambda_{x}$ and $\lambda_{c_{B_{1}, m}(x)} \circ \widetilde{c}_{B_{1}, m}$ agree on $\mathbb{N} 2^{k}$.
(2) Note that singletons are open in \mathbb{Z}_{m}. Pick $C \in u$ such that for all $x \in C, \widetilde{c}_{B_{1}, \ldots, B_{k}, m}(x+v)=\widetilde{c}_{B_{1}, \ldots, B_{k}, m}(u+v)$ and for $t \in\{1,2, \ldots, k\}$, $\widetilde{c}_{B_{1}, \ldots, B_{t}, m}(x)=\widetilde{c}_{B_{1}, \ldots, B_{t}, m}(u)$. Pick $x \in C$ and let $l=\max \operatorname{supp}(x)+1$. Pick $D \in v$ such that for all $y \in D, c_{B_{1}, \ldots, B_{k}, m}(x+y)=\widetilde{c}_{B_{1}, \ldots, B_{k}, m}(x+v)$ and for $t \in\{1,2, \ldots, k-1\}, c_{B_{t+1}, \ldots, B_{k}, m}(y)=\widetilde{c}_{B_{t+1}, \ldots, B_{k}, m}(v)$. Pick $y \in D \cap \mathbb{N} 2^{l}$. Then $c_{B_{1}, \ldots, B_{k}, m}(x+y)=c_{B_{1}, \ldots, B_{k}, m}(x)+c_{B_{1}, \ldots, B_{k}, m}(y)+$ $\sum_{t=1}^{k-1} c_{B_{1}, \ldots, B_{t}, m}(x) \cdot c_{B_{t+1}, \ldots, B_{k}, m}(y)$.
Lemma 4.3. Let $q \in E(K(\beta \mathbb{N}))$, let $k \in \mathbb{N}$, let $B_{1}, B_{2}, \ldots, B_{k}$ be pairwise disjoint infinite subsets of ω, and let $m \in \mathbb{N}$. Then $\widetilde{c}_{B_{1}, \ldots, B_{k}, m}(q)=0$.

Proof. This follows immediately by induction on k from Lemma 4.2.
Lemma 4.4. Let $q \in E(K(\beta \mathbb{N}))$, let $k \in \mathbb{N}$, let $B_{1}, B_{2}, \ldots, B_{k}$ be pairwise disjoint infinite subsets of ω, let $m \in \mathbb{N}$, and let $u \in \mathbb{H} \cap D_{q}$. Then $\widetilde{c}_{B_{1}, \ldots, B_{k}, m}(u)=0$.
Proof. We show first that it suffices to show this under the additional assumption that $\mathbb{N} \backslash \bigcup_{i=1}^{k} B_{i}$ is infinite. Suppose we have done this and
let B_{k}^{\prime} and $B_{k}^{\prime \prime}$ be disjoint infinite subsets of B_{k} with $B_{k}^{\prime} \cup B_{k}^{\prime \prime}=B_{k}$. Note that for all $x \in \mathbb{N}, c_{B_{1}, \ldots, B_{k}, m}(x)=c_{B_{1}, \ldots, B_{k}^{\prime}, m}(x)+c_{B_{1}, \ldots, B_{k}^{\prime \prime}, m}(x)$ so $\widetilde{c}_{B_{1}, \ldots, B_{k}, m}(u)=\widetilde{c}_{B_{1}, \ldots, B_{k}^{\prime}, m}(u)+\widetilde{c}_{B_{1}, \ldots, B_{k}^{\prime \prime}, m}(u)=0+0$.

So assume that $B_{k+1} \mathbb{N} \backslash \bigcup_{i=1}^{k} B_{i}$ is infinite. Pick $p \in\left\{2^{n}: n \in B_{k+1}\right\}^{*}$. Note that for all $n \in B_{k+1}, c_{B_{k+1}, m}\left(2^{n}\right)=1$, and if $t \in\{1,2, \ldots, k\}$, then $c_{B_{1}, \ldots, B_{t}, m}\left(2^{n}\right)=c_{B_{t}, \ldots, B_{k+1}, m}\left(2^{n}\right)=0$. Therefore $\widetilde{c}_{B_{k+1}, m}(p)=1$, and if $t \in\{1,2, \ldots, k\}$, then $\widetilde{c}_{B_{1}, \ldots, B_{t}, m}(p)=\widetilde{c}_{B_{t}, \ldots, B_{k+1}, m}(p)=0$. Since all terms of the expansions given in Lemma 4.2 except one involve q, and are therefore 0 , we have that $\widetilde{c}_{B_{k+1}, m}(p+q)=1$, and if $t \in\{1,2, \ldots, k\}$, then $\widetilde{c}_{B_{1}, \ldots, B_{t}, m}(p+q)=\widetilde{c}_{B_{t}, \ldots, B_{k+1}, m}(p+q)=0$ and $\widetilde{c}_{B_{k+1}, m}(q+p)=1$, and if $t \in\{1,2, \ldots, k\}$, then $\widetilde{c}_{B_{1}, \ldots, B_{t}, m}(q+p)=\widetilde{c}_{B_{t}, \ldots, B_{k+1}, m}(q+p)=0$.

Next note that

$$
\begin{aligned}
& \widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(q+u+p+q)= \\
& \widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(q)+\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(u+p+q)+ \\
& \sum_{t=1}^{k} \widetilde{c}_{B_{1}, \ldots, B_{t}, m}(q) \cdot \widetilde{c}_{B_{t+1}, \ldots, B_{k+1}, m}(u+p+q)= \\
& \widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(u+p+q) \text { and } \\
& \widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(q+p+u+q)= \\
& \widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(q+p+u)+\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(q)+ \\
& \sum_{t=1}^{k} \widetilde{c}_{B_{1}, \ldots, B_{t}, m}(q+p+u) \cdot \widetilde{c}_{B_{t+1}, \ldots, B_{k+1}, m}(q)= \\
& \widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(q+p+u) .
\end{aligned}
$$

Since

$$
\begin{aligned}
\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(q+u+p+q) & =\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(u+q+p+q) \\
& =\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(q+p+q+u) \\
& =\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(q+p+u+q)
\end{aligned}
$$

we therefore have that $\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(u+p+q)=\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(q+p+u)$.
Now

$$
\begin{aligned}
\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(u+p+q) & =\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(u)+\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(p+q) \\
& +\sum_{t=1}^{k} \widetilde{c}_{B_{1}, \ldots, B_{t}, m}(u) \cdot \widetilde{c}_{B_{t+1}, \ldots, B_{k+1}, m}(p+q) \\
& =\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(u)+\widetilde{c}_{B_{1}, \ldots, B_{k}, m}(u) \text { and } \\
\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(q+p+u) & =\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(q+p)+\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(u) \\
& +\sum_{t=1}^{k} \widetilde{c}_{B_{1}, \ldots, B_{t}, m}(q+p) \cdot \widetilde{c}_{B_{t+1}, \ldots, B_{k+1}, m}(u) \\
& =\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(u) .
\end{aligned}
$$

Consequently $\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(u)+\widetilde{c}_{B_{1}, \ldots, B_{k}, m}(u)=\widetilde{c}_{B_{1}, \ldots, B_{k+1}, m}(u)$ so $\widetilde{c}_{B_{1}, \ldots, B_{k}, m}(u)=0$.
Lemma 4.5. Let $q \in E(K(\beta \mathbb{N}))$, let $p \in\left\{2^{n}: n \in \mathbb{N}\right\}^{*}$, and let $\psi_{p}: \mathbb{Z} \rightarrow G_{q}$ be the homomorphism such that $\psi_{p}(1)=q+p+q$. Then for all $n \in \mathbb{Z} \backslash\{0\}, \psi_{p}(n) \notin D_{q}$.
Proof. Pick infinite $B \subseteq \mathbb{N}$ such that $\left\{2^{n}: n \in B\right\} \in p$. Then for each $m \in \mathbb{N} \backslash\{1\}, \widetilde{c_{B, m}}(q+p+1)=1$ so for all $n \in \mathbb{N}$ and all $m>n$,
$\widetilde{c_{B, m}}\left(\psi_{p}(n)\right)=n$ and thus $\psi_{p}(n) \notin D_{q}$ by Lemma 4.4. Now $D_{q} \cap G_{q}$ is a group, so if $n \in \mathbb{N}$ and $\psi_{p}(-n) \in D_{q}$, so is $\psi_{p}(n)$.

Theorem 4.6. Let $q \in E(K(\beta \mathbb{N}))$, let $p \in\left\{2^{n}: n \in \mathbb{N}\right\}^{*}$, and let $\psi_{p}: \mathbb{Z} \rightarrow G_{q}$ be the homomorphism such that $\psi_{p}(1)=q+p+q$. Assume that $u \in \mathbb{H} \cap G_{q} \cap D_{q} \backslash\{q\}$ and let $\varphi: \mathbb{Z} \rightarrow G_{q}$ be the homomorphism such that $\varphi(1)=u$. Define $\tau: \mathbb{Z} \times \mathbb{Z} \rightarrow G_{q}$ by $\tau(m, n)=\varphi(m)+\psi_{p}(n)$. Then τ is an injective homomorphism.

Proof. Given (m, n) and (k, l) in $\mathbb{Z} \times \mathbb{Z}$, one has that $\tau((m, n)+(k, l))=$ $\tau(m, n)+\tau(k, l)$ because $\varphi(k) \in D_{q}$. Now assume that $(m, n) \in \mathbb{Z} \times \mathbb{Z}$ and $\tau(m, n)=q$. Then $\varphi(m)+\psi_{p}(n)=q$ so $\varphi(m)=\psi_{p}(-n)$ and thus $\psi_{p}(-n) \in D_{q}$ so that $n=0$ by Lemma 4.5. Therefore $\varphi(m)=q$. By Zelenyuk's Theorem [8] (or see [4, Theorem 7.17]), $\beta \mathbb{N}$ contains no notrivial finite groups. If one had $m \neq 0$, then $\varphi[\mathbb{Z}]$ would be a nontrivial finite group, so $m=0$.

Corollary 4.7. Let $q \in E(K(\beta \mathbb{N}))$. If the center of G_{q} is not equal to $\mathbb{Z}+q$, then G_{q} contains an algebraic copy of $\mathbb{Z} \times \mathbb{Z}$.

Proof. Assume we have $x \in Z\left(G_{q}\right) \backslash(\mathbb{Z}+q)$. Then by Lemma 2.6, $x \in \mathbb{Z}+I$ so pick $n \in \mathbb{Z}$ and $u \in I$ such that $x=n+u$. Then $u \in \mathbb{H} \cap G_{q} \cap D_{q} \backslash\{q\}$. Pick any $p \in\left\{2^{n}: n \in \mathbb{N}\right\}^{*}$. Define τ as in Theorem 4.6. Then τ is an injective homomorphism.

We conclude by listing some of the tantalising open questions that have arisen in the study of the center and extended center of G_{q}.

Questions 4.8. (1) Let $q \in E(K(\beta \mathbb{N}))$. Does $Z\left(G_{q}\right)=\mathbb{Z}+q$?
(2) Let $q \in E(K(\beta \mathbb{N}))$. Is $D_{q} \subseteq \mathbb{Z}+E(\beta \mathbb{N})$?
(3) Does there exist $q \in E(K(\beta \mathbb{N}))$ for which $E\left(D_{q}\right)$ is finite?
(4) Does there exist $q \in E(K(\beta \mathbb{N}))$ for which $E\left(D_{q}\right)$ is uncountable?
(5) Let $q_{1}, q_{2} \in E(K(\beta \mathbb{N}))$. Are $D_{q_{1}}$ and $D_{q_{2}}$ isomorphic?

References

[1] J. Baker and P. Milnes, The ideal structure of the Stone-Čech compactification of a group, Math. Proc. Cambr. Phil. Soc. 82 (1977), 401-409.
[2] C. Chou, On a geometric property of the set of invariant means on a group, Proc. Amer. Math. Soc. 30 (1971), 296-302.
[3] N. Hindman and J. Pym, Free groups and semigroups in $\beta \mathbb{N}$, Semigroup Forum 30 (1984), 177-193.
[4] N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification: theory and applications, 2nd edition, de Gruyter, Berlin, 2012.
[5] D. Rees, On semi-groups, Math. Proc. Cambr. Phil. Soc. 36 (1940), 387-400.
[6] W. Ruppert, Rechstopologische Halbgruppen, J. Reine Angew. Math. 261 (1973), 123-133.
[7] A. Suschkewitsch, Über die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit, Math. Annalen 99 (1928), 30-50.
[8] Y. Zelenyuk, Finite groups in $\beta \mathbb{N}$ are trivial, Semigroup Forum 55 (1997), 131-132.
Department of Mathematics, Howard University, Washington, DC 20059, USA

E-mail address: nhindman@aol.com
Department of Pure Mathematics, University of Leeds, Leeds LS2 9J2, UK

E-mail address: d.strauss@hull.ac.uk

[^0]: 2010 Mathematics Subject Classification. Primary 54D80, 22A15; Secondary 54H13.

 Key words and phrases. Stone-Čech compactification, center, extended center, smallest ideal, maximal groups.

 The first author acknowledges support received from the National Science Foundation via Grants DMS-0852512 and DMS-1160566.

