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FACTORING A MINIMAL ULTRAFILTER INTO A

THICK PART AND A SYNDETIC PART

WILL BRIAN AND NEIL HINDMAN

Abstract. Let S be an in�nite discrete semigroup. The operation on
S extends uniquely to its Stone-�ech compacti�cation βS, making βS a
compact right topological semigroup with S contained in its topological
center. As such, βS has a smallest two-sided ideal, K(βS). An ultra�lter
p on S is minimal if and only if p ∈ K(βS).

We show that any minimal ultra�lter p factors into a thick part and
a syndetic part. That is, there exist �lters F and G such that F consists
only of thick sets, G consists only of syndetic sets, and p is the unique
ultra�lter containing F ∪ G.

Letting L = F̂ and C = Ĝ, the sets of ultra�lters containing F and G
respectively, we have that L is a minimal left ideal of βS, C meets every
minimal left ideal of βS in exactly one point, and L∩C = {p}. We show
further that K(βS) can be partitioned into relatively closed sets, each
of which meets each minimal left ideal in exactly one point.

With some weak cancellation assumptions on S, we prove also that
for each minimal ultra�lter p, S∗ \ {p} is not normal. In particular, if
p is a member of either of the disjoint sets K(βN,+) or K(βN, ·), then
N∗ \ {p} is not normal.

1. Introduction

Throughout this paper S will denote an in�nite discrete semigroup with
operation ·. The Stone-�ech compacti�cation βS of S is the set of ultra�lters
on S, with the principal ultra�lters being identi�ed with the points of S.
We let S∗ = βS \ S. The operation · extends to βS so that (βS, ·) is a
right topological semigroup, meaning that for each p ∈ βS, the function ρp
de�ned by ρp(q) = q · p is continuous, with S contained in the topological
center, meaning that for each x ∈ S, the function λx de�ned by λx(q) = x ·q
is continuous. Given p, q ∈ βS and A ⊆ S, we have A ∈ p · q if and only if
{x ∈ S : x−1A ∈ q} ∈ p, where x−1A = {y ∈ S : x · y ∈ A}.
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As does any compact Hausdor� right topological semigroup, βS has a
smallest two sided ideal, K(βS). According to the structure theorem [7,
Theorem 1.64]), we have

K(βS) =
⋃
{L ⊆ βS : L is a minimal left ideal}

=
⋃
{R ⊆ βS : R is a minimal right ideal} ,

where each of these unions is a disjoint union. The minimal left ideals are
closed while the minimal right ideals are usually not closed. Furthermore,
if L is a minimal left ideal and R is a minimal right ideal then

• L ∩R = R · L 6= ∅;
• L∩R is a group, and it contains exactly one element of the set E(R)

of idempotents in R, namely the identity of the group.

In fact, the structure theorem says more than this, but this summary is
su�cient for what follows. Furthermore,

• If G = L∩R, then the map (p, e) 7→ p·e is a bijection G×E(R)→ R.

This last assertion follows from [7, Theorem 2.11(b)], which asserts that if
L′ is a minimal left ideal of βS and e is the identity of L′ ∩ R, then the
restriction of ρe to G = L∩R is an isomorphism and a homeomorphism onto
L′∩R. The idempotent ultra�lters inK(βS) are called minimal idempotents
and the elements of K(βS) are called minimal ultra�lters.

We will show in Theorem 2.1 that if L is a minimal left ideal of βS,
R is a minimal right ideal, p ∈ L ∩ R, and C = p · E(R), then L ∩
C = {p} and C meets each each minimal left ideal in exactly one point.
Further, {q · E(R′) : R′ is a minimal right ideal and q ∈ L ∩R′} partitions
K(βS)

into relatively closed sets. The fact that the partition elements are closed
in K(βS) can be seen as a topological addition to the (algebraic) structure
theorem described above. Particularly, in the �nal bullet point, our result
shows that the given bijection has at least one nice topological property: the
images of the �vertical sections� {p} × E(R) of G× E(R), namely the sets
of the form p · E(R), are closed in R. (Note that the images of horizontal
sections are also closed in R, but this is not di�cult to prove; it follows from
the fact that minimal left ideals of βS are closed.)

Closed subsets of βS correspond naturally to �lters on S. For a �lter F
on S, let F̂ = {p ∈ βS : F ⊆ p} =

⋂
{A : A ∈ F}. Given any nonempty

subset X of βS,
⋂
X is a �lter, and if F =

⋂
X, then F̂ = X. In terms

of �lters, our results show that every minimal ultra�lter p on S can be
�factored� into two �lters F and G, where F consists entirely of thick sets
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and G consists entirely of syndetic sets. The ultra�lter p factors into F and
G in the sense that p is the �lter generated by F ∪ G.

One immediate consequence of this factorization is that every minimal
ultra�lter p on N is a butter�y point of N∗. (When we refer to a minimal
ultra�lter on N without specifying the operation, we mean a member of
K(βN,+).) Recall that a butter�y point of a space X is a point p such that,
for some A,B ⊆ X \ {p}, we have A ∩ B = {p}. It is an open problem
whether every point of N∗ is a butter�y point (e.g., it is �classic problem
IX" in Peter Nyikos's Classic Problems in Topology series [10]).

With a little more work, we show that every minimal ultra�lter p is a
non-normality point of N∗, which means that N∗ \ {p} is not normal. It is
a longstanding open problem whether every point of N∗ is a non-normality
point (e.g., it is problem 3 on Jan van Mill's list of open problems in [9]). This
problem is closely related to the one mentioned in the previous paragraph,
because every non-normality point is also a butter�y point. It is known that
the answer to both problems is consistently positive: for example, CH implies
that every point of N∗ is a non-normality point. (This is due to Rajagopalan
[11] and Warren [12] independently.) It is also known that, using only ZFC,
at least some points of N∗ are non-normality points: for example, this holds
when p is not Rudin-Frolík minimal [2]. Our results add to the list of known
non-normality points of N∗.

The result that minimal ultra�lters are butter�y points (respectively,
non-normality points) will be proved in a general setting: it holds in S∗

whenever S satis�es certain cancellation properties. Under the additional
assumption that S is countable, we also prove that for a minimal right ideal
R of βS and any minimal ultra�lter p ∈ R, the spaces E(R) and p · E(R)

are P -spaces and not Borel in βS.

2. Closed transversals and factoring a minimal ultrafilter

In this section we establish results that do not require any cancellation
assumptions about S, beginning by producing closed transversals for the set
of minimal left ideals. (By a transversal for this set, we mean a set which
meets each minimal left ideal in exactly one point.)

A fact that we will use repeatedly is that if R is a minimal right ideal of
βS and e ∈ E(R), then e is a left identity for R, which means that e · p = p

for all p ∈ R. (In particular, if e, f ∈ E(R) then e · f = f and f · e = e.)
To see this, note that e · βS is a right ideal contained in R, so e · βS = R
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by minimality. Thus p ∈ R implies p = e · q for some q ∈ βS, so that
p = e · q = e · e · q = e · p.

Theorem 2.1. Let L and R be minimal left and right ideals of βS, respec-
tively, and let p ∈ L ∩R. Then

L ∩ p · E(R) = {p}.

Furthermore,

(1) If L′ is any minimal left ideal of βS, then

L′ ∩ p · E(R) = {p · e}

where e is the (unique) idempotent contained in L′∩R. In particular,
p · E(R) meets every minimal left ideal in exactly one point.

(2) {q · E(R) : q ∈ L ∩R} is a partition of R into relatively closed sets
(i.e., they are closed in R), and

{q · E(R′) : R′ is a minimal right ideal and q ∈ L ∩R′}

is a partition of K(βS) into relatively closed sets.

Proof. Let p be a minimal ultra�lter in βS, let L and R denote the minimal
left and right ideals of βS, respectively, that contain p, and let f be the
identity of L ∩R. Then p = p · f so p ∈ L ∩ p · E(R).

Suppose q ∈ L ∩ p · E(R). We will show that p = q. Let R′ denote the
minimal right ideal of βS containing q. For each e ∈ E(R), we have e ·f = f

so p · e · f = p · f = p. Thus the function ρf is constant on the set p ·E(R),
with value p. But ρf is continuous on all of βS, so this means that ρf is
constant on p · E(R) with value p. In particular, q · f = p. Because R′ is a
right ideal containing q we have q · f ∈ R′; but p ∈ R, so it follows that
R′ = R. Thus q and p are both members of the group L ∩ R. As f is the
identity element of this group, q ·f = p implies q = p, as desired, completing
the proof that L ∩ p · E(R) = {p}.

To prove (1), suppose L′ is any minimal left ideal of βS, and let e denote
the identity element of the group L′ ∩ R. Then p · e ∈ L′ ∩ R and e ·
E(R) = E(R) so by what we proved in the paragraph above, {p · e} =

L′ ∩ p · e · E(R) = L′ ∩ p · E(R).
To prove (2), let G = L ∩ R and let h : G × E(R) → R be the func-

tion h(q, e) = q · e. We noted in the introduction that h is a bijection,
which implies that {q · E(R) : q ∈ G} is a partition of R, which implies
that {q · E(R′) : R′ is a minimal right ideal and q ∈ L ∩R′} is a partition
of K(βS). Finally, all sets of the form q ·E(R) are closed in K(βS), because
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any point of
(
K(βS) ∩ q · E(R)

)
\ q · E(R) would be a member of some

minimal left ideal, and this contradicts (1). �

Given a set X, we let Pf (X) be the set of �nite nonempty subsets of X.
A subset A of S is called

• thick if for each F ∈ Pf (S), there exists x ∈ S such that Fx ⊆ A, or,
equivalently, if the collection of all sets of the form {s−1A : s ∈ S}
has the �nite intersection property.
• syndetic if there is some F ∈ Pf (S) such that S =

⋃
s∈F s

−1A.

Notice that if A is thick and B is syndetic, then A∩B 6= ∅. (To see this, pick
F ∈ Pf (S) such that S =

⋃
s∈F s

−1B and pick x ∈ S such that Fx ⊆ A.
Pick s ∈ F such that sx ∈ B. Then sx ∈ A ∩B.)

For the semigroup (N,+), A ⊆ N is thick if and only if it contains
arbitrarily long intervals, and is syndetic if and only if it has bounded gaps,
which means that there is some k ∈ N such that every interval of length k
contains a point of A.

Let Θ denote the family of thick subsets of S, and let Σ denote the family
of syndetic subsets of S. These two families of sets are dual to each other,
in the following sense, which follows immediately from the de�nitions.

Lemma 2.2. A set is thick if and only if its complement fails to be syndetic,
and it is syndetic if and only if its complement fails to be thick.

The families Θ and Σ are related to K(βS) by the following lemma.

Lemma 2.3. If A ⊆ S then

(1) A ∈ Θ if and only if A contains a minimal left ideal of βS.
(2) A ∈ Σ if and only if A meets every minimal left ideal of βS.

Proof. This is part of [1, Theorem 2.9], or see [7, Theorem 4.48]. �

Let us say that a �lter F on S is Θ-maximal if F ⊆ Θ, and if every
�lter properly extending F contains some set not in Θ. Similarly, let us say
that a �lter G on S is Σ-maximal if G ⊆ Σ, and if every �lter properly
extending G contains some set not in Σ. The existence of Θ-maximal �lters
and Σ-maximal �lters is ensured by Zorn's Lemma.

Note that Θ-maximal �lters on N are never ultra�lters: for example, they
will contain neither the set of even numbers nor the set of odd numbers.
Neither are Σ-maximal ultra�lters on N ever maximal. In fact, if one identi-
�es subsets of N with points of the Cantor space via characteristic functions,
then one can show that Σ is a meager, measure-zero subset of the Cantor
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space. Hence every Σ-maximal �lter on N is also meager and null; in this
sense, these �lters are very far from being ultra�lters.

Lemma 2.4. A �lter F on S is a Θ-maximal �lter if and only if F̂ is a
minimal left ideal of βS.

Proof. This is [4, Proposition 3.2]. �

Lemma 2.5. Let F be a �lter on S. Then

(1) F ⊆ Θ if and only if F̂ contains a minimal left ideal.
(2) F ⊆ Σ if and only if F̂ meets every minimal left ideal.

Proof. If F ⊆ Θ, then, by an application of Zorn's Lemma, F can be ex-
tended to a Θ-maximal �lter G. But then F̂ ⊇ Ĝ, so F̂ contains a minimal
left ideal by Lemma 2.4. This proves the �only if� direction of (1).

If F 6⊆ Θ, then there is some A ∈ F \Θ. But then A ⊇ F̂ , so F̂ contains
no minimal left ideals by Lemma 2.3. This proves the �if� direction of (1).

The �if� direction of (2) is proved just as it was for (1). Supposing F 6⊆ Σ,
there is some A ∈ F \Σ. But then A ⊇ F̂ , so F̂ fails to meet some minimal
left ideal by Lemma 2.3.

For the �only if� direction of (2), suppose F ⊆ Σ and let L be any
minimal left ideal. L is closed in βS, hence compact, and

{
A ∩ L : A ∈ F

}
is a collection of closed subsets of L with the �nite intersection property (by
Lemma 2.3, because F ⊆ Σ). Thus

F̂ ∩ L =
(⋂{

A : A ∈ F
})
∩ L =

⋂{
A ∩ L : A ∈ F

}
6= ∅

by compactness. As L was arbitrary, F̂ meets every minimal left ideal. �

In light of this lemma, one might hope that the Σ-maximal �lters corre-
spond precisely to closed transversals for the set of minimal left ideals, in
the same way that Θ-maximal �lters correspond to the minimal left ideals
themselves. We show in Section 4 below that this is at least consistently
not the case. However, the transversals that we found in Theorem 2.1 do all
correspond to Σ-maximal �lters:

Lemma 2.6. Let R be a minimal right ideal of βS, let p ∈ R, and let
G =

⋂(
p · E(R)

)
. Then G is a Σ-maximal �lter on S.

Proof. By Theorem 2.1 Ĝ = p · E(R) meets every minimal left ideal, so by
Lemma 2.5, G ⊆ Σ. Now suppose we have a �lter H ⊆ Σ such that G ( H
and pick A ∈ H \ G. Since A /∈ G, pick f ∈ E(R) such that A /∈ p · f . Let
L = βS · f . By Lemma 2.5, Ĥ ∩ L 6= ∅ so pick q ∈ Ĥ ∩ L. Since Ĥ ⊆ Ĝ,
q ∈ p · E(R).
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Since A /∈ p · f , q 6= p · f , contradicting Theorem 2.1(1). �

Theorem 2.7. Let p be a minimal ultra�lter on S. Then there exist a Θ-
maximal �lter F and a Σ-maximal �lter G such that p is the ultra�lter
generated by F ∪G. Speci�cally, if L and R are respectively the minimal left
and right ideals of βS containing p, then F =

⋂
L and G =

⋂(
p · E(R)

)
are two such �lters.

Moreover, F is the only Θ-maximal �lter contained in p, and

F =
{
A ∈ p : s−1A ∈ p for all s ∈ S

}
.

Proof. Let p be a minimal ultra�lter on S. Let L and R denote respectively
the minimal left and right ideals of βS containing p. Let F =

⋂
L and let

G =
⋂(

p · E(R)
)
.

F is Θ-maximal by Lemma 2.4 and G is Σ-maximal by Lemma 2.6.
Since any thick set meets any syndetic set, F ∪G generates a �lter U . Then
∅ 6= Û ⊆ F̂ ∩ Ĝ = L∩ p · E(R) = {p} by Theorem 2.1. Hence Û = {p}, and
this means U = p.

To prove the �moreover� assertion of the theorem, suppose F ′ is any Θ-
maximal �lter contained in p. Then p ∈ F̂ ′, and F̂ ′ is a minimal left ideal
by Lemma 2.4. This implies F̂ ′ = L, because the minimal left ideals of βS
are disjoint. F̂ ′ = L = F̂ implies F ′ = F , so F is the only Θ-maximal �lter
contained in p.

It remains to show F = {A ∈ p : s−1A ∈ p for all s ∈ S}. Let

H =
{
A ⊆ S : s−1A ∈ p for all s ∈ S

}
.

By [7, Theorem 6.18], Ĥ = βS · p = L. Since p ∈ L,

H =
{
A ∈ p : s−1A ∈ p for all s ∈ S

}
.

Since Ĥ = L = F̂ , H = F . �

While a minimal ultra�lter contains exactly one Θ-maximal �lter by the
previous theorem, we see now that it may contain more than one Σ-maximal
�lter.

Theorem 2.8. There is a minimal ultra�lter on N that contains more than
one Σ-maximal �lter.

Proof. Let E be the set of even numbers, let O be the set of odd numbers, let
A =

⋃∞
n=0{22n, 22n+1, 22n+2, . . . , 22n+1−1}, and let B = (E∩A)∪(O\A).

Then B has no gaps longer than 2, so B is syndetic. By a routine application
of Zorn's Lemma, there is a Σ-maximal �lter H such that B ∈ H. Let L be
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a minimal left ideal. Then Ĥ∩L 6= ∅ by Lemma 2.5; thus there is a minimal
ultra�lter p ∈ Ĥ ∩ L.

Let R be the minimal right ideal with p ∈ R and let G =
⋂(

p+E(R)
)
.

By Theorem 2.7, G is Σ-maximal and G ⊆ p. We claim that G 6= H. To see
this, note that E(R) ⊆ E∗ so if p ∈ E∗, then p + E(R) ⊆ E∗ so E ∈ G. If
p ∈ O∗, then p + E(R) ⊆ O∗ so O ∈ G. But B ∈ H and neither B ∩ E nor
B ∩O is syndetic so neither E nor O is a member of H. �

To end this section, we will demonstrate a technique for building Σ-
maximal �lters on N that o�ers some control over the �lter obtained (more
control, anyway, than is given by Zorn's Lemma). This accomplishes two
things. One is to demonstrate that there are many closed transversals for
the set of minimal left ideals other than the ones of the form p · E(R). The
second is an improvement on Theorem 2.8: we will show that every minimal
ultra�lter on N contains more than one Σ-maximal �lter.

Lemma 2.9. Let n ∈ N and assume 〈Xi〉ni=1 is a sequence of pairwise
disjoint subsets of S such that

(
∀G ∈ Pf (S)

)(
∃H ∈ Pf (S)

)
(∀x ∈ S)

(∃y ∈ S)(∃i ∈ {1, 2, . . . , n})
(
Gy ⊆ (Hx ∩ Xi)

)
. Then for each minimal

left ideal L of βS, there is some i ∈ {1, 2, . . . , n} such that L ⊆ Xi.

Proof. Let L be a minimal left ideal of βS. Aiming for a contradiction,
suppose that for each i ∈ {1, 2, . . . , n}, L \ Xi 6= ∅. Let F =

⋂
L. By

Lemma 2.4, F is Θ-maximal. We claim that for each i, there exists Bi ∈ F
such that Bi ∩ Xi is not thick. If L ∩ Xi = ∅, one may let Bi = S \ Xi. If
L ∩Xi 6= ∅, then Gi =

⋂
(L ∩Xi) = {C ⊆ S : (∃B ∈ F)(B ∩Xi ⊆ C)} is a

�lter properly containing F . (The containment is proper because L\Xi 6= ∅
so Xi ∈ Gi \F .) Hence one may pick Bi ∈ F such that Bi ∩Xi is not thick.

For each j ∈ {1, 2, . . . , n}, let Dj = (
⋂n
i=1 Bi) ∩ Xj. Then for j ∈

{1, 2, . . . , n}, Dj is not thick so pick Gj ∈ Pf (S) such that for all y ∈ S,
Gjy 6⊆ Dj. Let G =

⋃n
j=1Gj and pick H ∈ Pf (S) as guaranteed by the

hypothesis. Now
⋂n
i=1 Bi ∈ F , so in particular

⋂n
i=1Bi is thick. Pick x ∈ S

such that Hx ⊆
⋂n
i=1Bi. Pick y ∈ S and j ∈ {1, 2, . . . , n} such that

Gy ⊆ (Hx ∩Xj). Then Gjy ⊆ Dj, a contradiction. �

Note that, as a consequence of the following theorem, for each n ∈ N,
there is a partition of K(βN) into n sets, each clopen in K(βN), so that
every minimal left ideal is contained in one cell of the partition.

Theorem 2.10. Let n ∈ N and let 〈Zj〉nj=1 be a partition of N. Let 〈It〉∞t=1 be
a partition of N into intervals such that lim

t→∞
|It| =∞. For j ∈ {1, 2, . . . , n},
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let Xj =
⋃
t∈Zj It. Then for each for each minimal left ideal L of βN, there

exists j ∈ {1, 2, . . . , n} such that L ⊆ Xj. If Zj is in�nite, then Xj contains
a minimal left ideal of βN.

Proof. We may presume that for each t ∈ N, max It + 1 = min It+1. If Zj is
in�nite, thenXj is thick, so the second conclusion is immediate. To establish
the �rst conclusion we invoke Lemma 2.9. That is, we show that(

∀G ∈ Pf (N)
)(
∃H ∈ Pf (N)

)
(∀x ∈ N)(∃y ∈ N)

(∃i ∈ {1, 2, . . . , n})(G+ y ⊆ (H + x) ∩Xi) .

So let G ∈ Pf (N) and let k = maxG. Pick M ∈ N such that for all
r ≥ M , the length of Ir is at least k. Let m = max IM and let H =

{1, 2, . . . ,m + k}. Note that m ≥ k. Let x ∈ N. Pick the largest r such
that z = max Ir ≤ x + k + m. Note that r ≥ M , so that the length of
Ir and the length of Ir+1 are both at least k. Thus {z − k + 1, z − k +

2, . . . , z} ⊆ Ir and {z+1, z+2, . . . , z+k} ⊆ Ir+1. If z−k ≥ x, let y = z−k
so that G + y ⊆ {y + 1, y + 2, . . . , y + k} = {y + 1, y + 2, . . . , z}. Now
{y + 1, y + 2, . . . , z} ⊆ {x + 1, x + 2, . . . , x + m + k} because x ≤ y and
z ≤ x + m + k, and {y + 1, y + 2, . . . , z} ⊆ Ir because y + 1 = z − k + 1.
Thus G+ y ⊆ {x+ 1, x+ 2, . . . , x+m+ k} ∩ Ir ⊆ (H + x) ∩ Ir. If instead
z − k < x, let y = max{x, z}. If x ≤ z then z − k < x ≤ z and so
G + y ⊆ {y + 1, y + 2, . . . , y + k} = {z + 1, z + 2, . . . , z + k} ⊆ Ir+1 ∩
{x + 1, x + 2, . . . , x + 2k} ⊆ (H + x) ∩ Ir+1. If z < x then our choice of r
guarantees max Ir+1 > x+k+m, so that G+y ⊆ {y+1, y+2, . . . , y+k} =

{x+ 1, x+ 2, . . . , x+ k} ⊆ (x+H) ∩ Ir+1. �

We remark that if S is the free semigroup on a �nite alphabet (where
the operation · is concatenation), if n ∈ N, Xj is as in Theorem 2.10 for
j ∈ {1, 2, . . . , n}, and Yj = {w ∈ S : the length of w is in Xj}, then each
minimal left ideal of βS is contained in Yj for some j ∈ {1, 2, . . . , n}. We
leave the details to the reader.

Theorem 2.11. Let R be a �nite set of minimal right ideals of βN. There
is a Σ-maximal �lter G on N such that Ĝ is a closed transversal for the
minimal left ideals of βN, K(βN) ∩ Ĝ ⊆

⋃
R, and Ĝ ∩ R 6= ∅ for every

R ∈ R. Furthermore, if p is any minimal ultra�lter contained in one of the
members of R, then we may �nd such a �lter G with p ∈ Ĝ.

Proof. Enumerate R as 〈Ri〉ni=1, and �x p ∈ R1. Let 〈Xj〉nj=1 be as in The-
orem 2.10, assuming that each Zj is in�nite. Without loss of generality (by
relabelling the Zj if necessary) we may assume that p ∈ X1. Let

G =
⋂((

(p+ E(R1)) ∩X1

)
∪
⋃n
i=2(E(Ri) ∩Xi)

)
.
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We show �rst that if L is a minimal left ideal of βN, i ∈ {1, 2, . . . , n}, and
L ⊆ Xi, then either

• i = 1 and Ĝ ∩ L = {p+ f}, where f is the identity of L ∩R1, or
• i > 1 and Ĝ ∩ L = {f}, where f is the identity of L ∩Ri.

This will establish that Ĝ is a transversal for the minimal left ideals of
βN and that p ∈ Ĝ. It will also establish that Ĝ ∩ Ri 6= ∅ for each i ∈
{1, 2, . . . , n}, because each Xi is thick, which implies that for each i there
is some minimal left ideal L with L ⊆ Xi.

Observe that

(∗)
Ĝ =

(
(p+ E(R1)) ∩X1

)
∪
⋃n
i=2(E(Ri) ∩Xi)

= (p+ E(R1)) ∩X1 ∪
⋃n
i=2E(Ri) ∩Xi

=
(
p+ E(R1) ∩X1

)
∪
⋃n
i=2(E(Ri) ∩Xi) .

(The third line follows from the second because the Xi are not only closed,
but clopen.)

For the �rst bullet point, suppose i = 1, let L ⊆ X1 be a minimal left
ideal, and let f be the identity of L∩R1. By Theorem 2.1, L∩p+ E(R1) =

{p + f}. Since L ⊆ X1, and since Xj ∩ X1 = ∅ for j 6= 1, (∗) implies that
Ĝ ∩ L = p+ E(R1) ∩ L = {p+ f}.

For the second bullet point, suppose i 6= 1, let L ⊆ Xi be a minimal left
ideal, and let f be the identity of L∩Ri. By Theorem 2.1, L∩E(Ri) = {f}.
Since L ⊆ Xi, and since Xj ∩ Xi = ∅ for j 6= i, (∗) implies that Ĝ ∩ L =

E(Ri) ∩ L = {f}.
Ĝ meets every minimal left ideal, so G ⊆ Σ by Lemma 2.5. To �nish

the proof, we must show that G is Σ-maximal. Aiming for a contradiction,
suppose that H is a �lter contained in Σ which properly contains G and
pick A ∈ H \ G. Since A /∈ G, pick

f ∈
(
(p+ E(R1)) ∩X1

)
∪
⋃n
i=2(E(Ri) ∩Xi)

such that A /∈ f . Either

• f ∈ (p+ E(R1)) ∩X1, or
• f ∈ E(Rj) ∩Xj for some j 6= 1.

In either case, let L = βN + f . By Lemma 2.5, L ∩ Ĥ 6= ∅ so pick q ∈
L ∩ Ĥ. Since A ∈ q we have q 6= f . But q ∈ L ∩ Ĥ ⊆ L ∩ Ĝ = {f}, a
contradiction. �

Corollary 2.12. Every minimal ultra�lter on N contains more than one
Σ-maximal �lter.
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Proof. Let p be a minimal ultra�lter, let R be the minimal right ideal con-
taining p, and let R′ be any other minimal right ideal. By Theorem 2.7,
G =

⋂
(p + E(R)) is a Σ-maximal �lter contained in p. By the previous

theorem, there is a Σ-maximal �lter H contained in p such that Ĥ∩R′ 6= ∅.
Theorem 2.1 implies that Ĝ ∩K(βN) ⊆ p+E(R) ⊆ R, so that Ĝ ∩R′ = ∅.
Thus G 6= H. �

3. Topology in K(βS)

A set F ⊆ S is a left solution set (respectively a right solution set) if and
only if there exist a, b ∈ S such that F = {x ∈ S : ax = b} (respectively
F = {x ∈ S : xa = b}). If every left solution set and every right solution
set is �nite, then S is called weakly cancellative. If |S| = κ and the union of
fewer than κ solution sets (left or right) always has cardinality less than κ,
then S is called very weakly cancellative. Of course, if κ = ω, then �weakly
cancellative� and �very weakly cancellative� mean the same thing. We let
U(S) denote the set of uniform ultra�lters on S. By [7, Lemma 6.34.3], if S
is very weakly cancellative, then U(S) is an ideal of βS.

The easy results of the following lemma do not appear to have been
written down before.

Lemma 3.1. Assume that S is very weakly cancellative. Then K(βS) =

K
(
U(S)

)
, the minimal left ideals of βS and U(S) are the same, and the

minimal right ideals of βS and U(S) are the same. If L is a minimal left
ideal of βS and p ∈ L, then L = βS · p = S∗ · p = U(S) · p.

Proof. Since U(S) is an ideal of βS,K(βS) ⊆ U(S) and thus by [7, Theorem
1.65], K

(
U(S)

)
= K(βS).

Let T be a minimal left ideal of U(S). Since U(S) is a left ideal of βS,
by [7, Lemma 1.43(c)], T is a minimal left ideal of βS. Then L ⊆ K(βS) =

K
(
U(S)

)
⊆ U(S). Thus L is a left ideal of U(S) so pick a minimal left ideal

T of U(S) such that T ⊆ L. As we just saw, T is a left ideal of βS so T = L.
The arguments in the paragraph above were completely algebraic, so by

a left-right switch, we have that the minimal right ideals of βS and U(S)

are the same.
Finally, let L be a minimal left ideal of βS and let p ∈ L. Then βS · p

is a left ideal of βS contained in L, so L = βS · p. Also, U(S) · p is a left
ideal of U(S) contained in L, so L = U(S) · p. Thus L = U(S) · p ⊆ S∗ · p ⊆
βS · p = L. �
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Note the similarity of this lemma with [7, Theorems 4.36 and 4.37], which
state that S is weakly cancellative if and only if S∗ is an ideal of βS, in which
caseK(S∗) = K(βS), and a set is a minimal left ideal (respectively, minimal
right ideal) for S∗ if and only if it is a minimal left ideal (respectively,
minimal right ideal) for βS.

Note that very weak cancellativity does not imply S∗ is an ideal of βS
(because this is equivalent to weak cancellativity); in general, it may not
even be a sub-semigroup of βS. However, as an immediate corollary to
Lemma 3.1, if S is very weakly cancellative then K(βS) ⊆ S∗.

Most of the results of this section (all except for the next four, Lemma
3.2 through Corollary 3.5) assume that S is very weakly cancellative. Un-
der the additional assumption that there is a uniform, �nite bound on
|{x ∈ S : xa = a}| for each a ∈ S, we establish that if p is a minimal ultra-
�lter on S, then

• p is a butter�y point of S∗ and, furthermore,
• S∗ \ {p} is not normal.

Under the additional assumption that S is countable, we also show that if
R is the minimal right ideal containing p, then

• p · E(R) is a P -space, and
• p · E(R) is not Borel in βS.

Note in particular that these results apply to the semigroups (N,+) and
(N, ·), which are easily seen to satisfy all of the above assumptions. The
proofs proceed by extracting the topological content of Theorem 2.7, which
provides a canonical (and useful) basis for the space p · E(R).

Lemma 3.2. Let R be a minimal right ideal of βS and let p ∈ R. If q ∈
p · E(R), then q · E(R) = p · E(R).

Proof. Assume that q ∈ p · E(R) and pick e ∈ E(R) such that q = p · e.
Given any f ∈ E(R), q · f = p · e · f = p · f so q ·E(R) ⊆ p ·E(R). Now let
L be the minimal left ideal with p ∈ L and let f be the identity of L ∩ R.
Then q · f = p · f = p so p ∈ q ·E(R) so, as above, p ·E(R) ⊆ q ·E(R). �

For a ∈ S, let Fix(a) = {x ∈ S : xa = a}. Several results in this
section use the hypothesis that there is a uniform, �nite bound on the size
of the sets Fix(a). The left-right switch of [6, Theorem 4.11] shows that this
assumption is strictly weaker than the assertion that there is a �nite bound
on the size of right solution sets.

Lemma 3.3. Let k ∈ N and assume that for each a ∈ S, |Fix(a)| ≤ k.
Then for each p ∈ S∗, |{x ∈ S : x · p = p}| ≤ k.
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Proof. Let p ∈ S∗ and suppose we have distinct x1, x2, . . . , xk+1 in S such
that xip = p for each i. For i ∈ {1, 2, . . . , k+ 1}, let Di = {a ∈ S : xia = a}.
Since each λxi is continuous, we have by [7, Theorem 3.35] that each Di ∈ p.
Pick a ∈

⋂k+1
i=1 Di. Then {x1, x2, . . . , xk+1} ⊆ Fix(a), a contradiction. �

Let us note that the conclusion of this lemma is not a consequence of very
weak cancellativity, or even of weak cancellativity. The semigroup (N,∨),
where a ∨ b = max{a, b}, is weakly cancellative, but n ∨ p = p for every
p ∈ N∗ and n ∈ N.

Theorem 3.4. Let p be a minimal ultra�lter on S, and let L and R denote
the minimal left and right ideals of βS containing p. Then

{A∗ ∩B∗ : L ⊆ A∗ and p · E(R) ⊆ B∗}

is a local basis for p in S∗.

Proof. Let F =
⋂
L and G =

⋂(
p · E(R)

)
. By Theorem 2.7, p is the �lter

generated by F∪G. That is, p = {C ⊆ S : (∃A ∈ F)(∃B ∈ G)(A∩B ⊆ C)}.
Thus, given C ∈ p, pick A ∈ F and B ∈ G such that A ∩ B ⊆ C. Then
p ∈ A∗ ∩B∗ ⊆ C∗. �

Corollary 3.5.

(1) If L is a minimal left ideal of βS, then {B∗ ∩ L : B ∈ Σ} is a basis
for L.

(2) If R is a minimal right ideal and p ∈ R, then {A∗ ∩ p · E(R) : A ∈ Θ}
is a basis for p · E(R).

Proof. To establish (1), assume that L is a minimal left ideal, let C ⊆ S such
that C∗∩L 6= ∅, and pick p ∈ C∗∩L. Let R be the minimal right ideal with
p ∈ R. By Theorem 3.4 pick A,B ⊆ S such that L ⊆ A∗, p · E(R) ⊆ B∗,
and p ∈ A∗ ∩B∗ ⊆ C∗. By Theorem 2.1, p · E(R) meets every minimal left
ideal so by Lemma 2.3, B ∈ Σ. Also C∗ ∩ L ⊇ A∗ ∩B∗ ∩ L = B∗ ∩ L.

To establish (2), let R be a minimal right ideal and let p ∈ R. Let C ⊆ S

such that C∗ ∩
(
p · E(R)

)
6= ∅, and pick q ∈ C∗ ∩

(
p · E(R)

)
. Let L be the

minimal left ideal with q ∈ L. Then q · E(R) = p · E(R) by Lemma 3.2
so by Theorem 3.4 pick A,B ⊆ S such that L ⊆ A∗, q · E(R) ⊆ B∗, and
q ∈ A∗∩B∗ ⊆ C∗. Since L ⊆ A∗, A ∈ Θ by Lemma 2.3, and C∗∩

(
p·E(R)

)
⊇

A∗ ∩B∗ ∩
(
p · E(R)

)
= A∗ ∩

(
p · E(R)

)
. �

Lemma 3.6. Assume S is very weakly cancellative and |S| = κ. Let A be
a thick subset of S and let F ⊆ S such that |F | < κ. Then A \ F is thick.
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Proof. Pick a minimal left ideal L of βS such that L ⊆ A. As we have noted,
U(S) is an ideal of βS, which implies that L ⊆ U(S). Now F ∩ U(S) = ∅
so L ⊆ A \ F = A \ F . �

Lemma 3.7. Assume that S is very weakly cancellative, |S| = κ, and A is
a thick subset of S. Then A contains κ pairwise disjoint thick sets.

Proof. Enumerate κ×κ as 〈δ(σ), τ(σ)〉σ<κ and enumerate Pf (S) as 〈Fι〉ι<κ.
We inductively choose 〈xσ〉σ<κ such that for σ < κ, Fδ(σ) · xσ ⊆ A and
for µ < σ < κ, Fδ(σ) · xσ ∩ Fδ(µ) · xµ = ∅. Having chosen 〈xµ〉µ<σ, let
H =

⋃
µ<σ Fδ(µ) · xµ. Then |H| < κ so by Lemma 3.6, A \H is thick, so we

may pick xσ with Fδ(σ) ·xσ ⊆ A\H. Having chosen 〈xσ〉σ<κ, for each η < κ,
let Aη =

⋃
{Fδ(σ) · xσ : τ(σ) = η}. Then 〈Aη〉η<κ is a sequence of κ pairwise

disjoint thick subsets of A. �

Lemma 3.8. Suppose S is very weakly cancellative and let L and R be
minimal left and right ideals of βS.

(1) If there is a uniform, �nite bound on |Fix(a)| for a ∈ S, then L has
no isolated points in the topology inherited from S∗.

(2) If p ∈ R, then p · E(R) has no isolated points in the topology it
inherits from S∗.

Proof. (1) Suppose that q is an isolated point of L. Pick A ∈ q such that
A∗ ∩ L = {q}. Now L is a minimal left ideal of βS and q ∈ L = S∗ · q by
Lemma 3.1, so pick r ∈ S∗ such that q = r ·q. Then {x ∈ S : x−1A ∈ q} ∈ r.
Let F = {x ∈ S : x · q = q}. Then F is �nite by Lemma 3.3, so pick
x ∈ S \F such that x−1A ∈ q. Then A ∈ x · q so x · q ∈ A∗∩L and x · q 6= q,
a contradiction.

(2) Suppose q ∈ p ·E(R), and let U be a neighborhood of q in p ·E(R).
By Corollary 3.5, there is some thick set A such that A∗ ∩ (p · E(R)) ⊆ U .
By combining Lemma 3.7 with Lemma 2.3, A∗ contains more than one
minimal left ideal. Each minimal left ideal contains a point of p · E(R) by
Theorem 2.1, so this shows that A∗, hence U , contains more than one point
of p · E(R). �

Let us note that weak cancellativity alone is not enough to prove Lemma
3.8(1). The semigroup (N,∨) is weakly cancellative, but q ∨ p = p for every
p, q ∈ N∗. This means that {p} is a minimal left ideal for every p ∈ N∗.

Theorem 3.9. Suppose S is very weakly cancellative and has a uniform,
�nite bound on |Fix(a)| for a ∈ S. Then every minimal ultra�lter on S is a
butter�y point of S∗.
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Proof. Let L and R be the minimal left and right ideals containing p. The-
orem 2.1 asserts that {p} = L ∩ p · E(R). Neither L nor p · E(R) has any
isolated points by Lemma 3.8, so this makes p a butter�y point. �

We have included the proof of Theorem 3.9 because of its naturalness and
simplicity. But we prove next a stronger result that supersedes Theorem 3.9
by showing, under the same assumptions, that every minimal ultra�lter is
a non-normality point of S∗.

Lemma 3.10. Let S be a very weakly cancellative semigroup with |S| = κ,
and let U be a collection of open subsets of S∗ with |U| ≤ κ. If

⋂
U contains

a minimal left ideal of βS, then
⋂
U contains 22κ distinct minimal left ideals

of βS.

Proof. Let L be a minimal left ideal of βS with L ⊆
⋂
U . We claim that

for each U ∈ U , there exists BU ⊆ S such that L ⊆ B∗U ⊆ U . Let U ∈ U .
For each p ∈ L pick Cp ∈ p such that C∗p ⊆ U . Using the compactness of L,
pick a �nite F ⊆ L such that L ⊆

⋃
p∈F C

∗
p , and let BU =

⋃
p∈F Cp. Then

B∗U =
⋃
p∈F C

∗
p ⊆ U , as claimed. Let

B =
{⋂

F : F ∈ Pf ({BU : U ∈ U})
}
.

Observe that B is a set of at most κ subsets of S, L ⊆
⋂
B∈B B

∗ ⊆
⋂
U , and

B is closed under �nite intersections.
Enumerate S as 〈sσ : σ < κ〉 and enumerate B × Pf (S) as 〈Dσ : σ < κ〉.

For σ < κ, let Eσ =
⋂
s∈F s

−1B, where (B,F ) = Dσ.
We claim that |Eσ| = κ for each σ < κ. To see this, let p ∈ L, let σ < κ,

and let (B,F ) = Dσ. For each s ∈ F , s · p ∈ L ⊆ B, which implies that
s−1B ∈ p, which implies that Eσ ∈ p. From this and [7, Lemma 6.34.3], it
follows that |Eσ| = κ.

We now construct a sequence of elements of S by trans�nite recursion.
To begin, pick t0 ∈ E0. Given 0 < µ < κ, assume we have chosen 〈tσ : σ < µ〉
already such that

(1) if σ < µ, then tσ ∈ Eσ,
(2) if σ < δ < µ, then tσ 6= tδ, and
(3) if σ < µ, η < σ, ν < σ, and τ < σ, then sη · tν 6= sτ · tσ.

Given η < µ, ν < µ, and τ < µ, let Aη,ν,τ = {t ∈ S : sη · tν = sτ · t}. Then
each Aη,ν,τ is a left solution set, so |

⋃
η<µ

⋃
ν<µ

⋃
τ<µAη,ν,τ | < κ. Pick

tµ ∈ Eµ \ ({tσ : σ < µ} ∪
⋃
η<µ

⋃
ν<µ

⋃
τ<µAη,ν,τ ) .

The three hypotheses are again satis�ed at the next stage of the recursion,
and this completes the construction of our sequence 〈tσ : σ < κ〉.
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Claim. If p and q are distinct uniform ultra�lters on T = {tσ : σ < κ},
then βS · p ∩ βS · q = ∅.

Proof of claim. Assume P and Q are disjoint subsets of T , with P ∈ p and
Q ∈ q. Then we claim that

βS · p ⊆ {sη · tσ : tσ ∈ P and η < σ}.

To see this, it su�ces to show that S · p ⊆ {sη · tσ : tσ ∈ P and η < σ}. Let
sν ∈ S. As p is uniform, {tσ : tσ ∈ P and ν < σ} ∈ p, so that sν · {tσ : tσ ∈
P and ν < σ} ∈ sν · p and sν · {tσ : tσ ∈ P and ν < σ} ⊆ {sη · tσ : tσ ∈
P and η < σ}. Similarly,

βS · q ⊆ {sν · tδ : tδ ∈ Q and ν < δ}.

Because {sη · tσ : tσ ∈ P and η < σ} ∩ {sν · tδ : tδ ∈ Q and ν < δ} = ∅ by
construction, we have that βS · p ∩ βS · q = ∅, as desired. �

Consider the relation on {Dσ : σ < κ} de�ned by

Dσ ≺ Dτ if and only if π1(Dτ ) ⊆ π1(Dσ) and π2(Dσ) ⊆ π2(Dτ )

where, as usual, π1(B,F ) = B and π2(B,F ) = F . Observe that, by our
choice of B and the de�nition of the Dσ, any �nitely many members of
{Dσ : σ < κ} have a common upper bound with respect to≺. In other words,
{Dσ : σ < κ} is directed by ≺.

For each σ < κ, let Tσ = {tτ : Dσ ≺ Dτ}. We claim that {Tσ : σ < κ} has
the κ-uniform �nite intersection property. (This means that the intersection
of �nitely many of the Tσ has size κ.) To see this, �rst observe that each Tσ
has size κ, because if Tσ = (B,F ) then for any s ∈ S\F , Dσ ≺ (B,F ∪{s}).
Then, if H ∈ Pf (κ), pick τ such that Dσ ≺ Dτ for each σ ∈ H, and observe
that |

⋂
σ∈H Tσ| ≥ |Tτ | = κ.

By [7, Theorem 3.62], there are 22κ distinct uniform ultra�lters on S

containing {Tσ : σ < κ}. For each such ultra�lter p, let Lp denote a minimal
left ideal contained in βS · p. (One must exist, because βS · p is a left ideal.)
If p 6= q, then Lp 6= Lq, because βS · p and βS · q are disjoint by the claim
above. To complete the proof of the theorem, we will show that each such
Lp is contained in

⋂
U .

Let p be a uniform ultra�lter on S containing {Tσ : σ < κ}. If B ∈ B and
s ∈ S, then pick σ < κ such that Dσ = (B, {s}), and observe that Tσ ∈ p. If
τ < κ and Dσ ≺ Dτ = (C,F ), then tτ ∈ Eτ =

⋂
r∈F r

−1C ⊆ s−1B, so that
s · p ∈ B. Because s and B were arbitrary, this shows that S · p ⊆ B for all
B ∈ B. By the continuity of ρp, this implies βS · p ⊆ B for all B ∈ B. Thus

Lp ⊆ βS · p ⊆
⋂{

B : B ∈ B
}
⊆
⋂
U ,
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completing the proof of the lemma. �

Theorem 3.11. Let S be a very weakly cancellative semigroup with |S| = κ,
and assume there is a uniform, �nite bound on |Fix(a)| for a ∈ S. Then for
every minimal ultra�lter p on S, S∗ \ {p} is not normal.

Proof. Let L and R be the minimal left and right ideals respectively with
p ∈ L∩R. Let e be the identity of L∩R. Let C = p · E(R). We claim that
L \ {p} and C \ {p} cannot be separated by open sets in S∗ \ {p}. Suppose
instead that we have open subsets U and V of S∗ such that L \ {p} ⊆ U ,
C \ {p} ⊆ V , and U ∩ V ⊆ {p}. Let D = {s ∈ S : s · p 6= p} and observe
that, by Lemma 3.3, S \D is �nite.

For each s ∈ D, let Ws = S∗ \ s · C. Now �x s ∈ D. Because λs is
continuous, Ws is open in S∗. We claim also that p ∈ Ws. We know that
p ·E(R) ·e = {p ·e} = {p}. Because ρe

(
p ·E(R)

)
= {p}, and ρe is continuous

on all of βS, we have

C · e = ρe
(
p · E(R)

)
= ρe(p · E(R)) = {p}.

If p ∈ s · C, then p = p · e ∈ s · C · e = {s · p}, so p = s · p. This contradicts
the assumption that s ∈ D, so we may conclude that Ws is a neighborhood
of p. Hence L ⊆ U ∪Ws. Furthermore, because s was an arbitrary element
of D, L ⊆

⋂
s∈D(U ∪Ws).

By Lemma 3.10, there is a minimal left ideal L′ of βS such that L′ 6= L

and L′ ⊆
⋂
s∈D(U ∪Ws). Let f be the identity of L′∩R. Now p ∈ L = S∗ ·p

so p = q ·p for some q ∈ S∗. Since q ∈ S∗, D ∈ q and so p ∈ D · p. Therefore
p · f = ρf (p) ∈ ρf

(
D · p

)
= D · p · f .

We claim L′∩
⋂
s∈DWs∩ (D · p · f) = ∅. Suppose instead that s ∈ D and

s · p · f ∈ L′ ∩
⋂
t∈DWt. Then, in particular, s · p · f ∈ Ws. But p · f ∈ C, so

s · p · f ∈ s · C = S∗ \Ws, a contradiction.
As p · f ∈ D · p · f and L′ ∩

⋂
s∈DWs ∩ (D · p · f) = ∅, we have that

L′ ∩
⋂
s∈DWs is not a neighborhood of p · f in L′.

Now p ·f ∈ C \{p} ⊆ V and V is open in S∗, so L′∩V is a neighborhood
of p · f in L′. Therefore L′ ∩ V cannot be contained in L′ ∩

⋂
s∈DWs. Pick

q ∈ L′ ∩ V \ (L′ ∩
⋂
s∈DWs), and pick s ∈ D such that q /∈ Ws. Because

L′ ⊆ U ∪
⋂
t∈DWt, we must have q ∈ U ∩V and q /∈ Ws. But q /∈ Ws implies

q 6= p, so this shows that U ∩ V 6⊆ {p}, as desired. �

Corollary 3.12. Let p ∈ K(βN,+). Then N∗ \ {p} is not normal.

Proof. (N,+) is cancellative and for a ∈ N, {x ∈ N : x+ a = a} = ∅. �

Corollary 3.13. Let p ∈ K(βN, ·). Then N∗ \ {p} is not normal.
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Proof. (N, ·) is cancellative and for a ∈ N, {x ∈ N : xa = a} = {1}. �

K(βN,+)∩K(βN, ·) = ∅ by [7, Corollary 13.15], so the results of Corol-
laries 3.12 and 3.13 do not overlap.

Let us note that while Theorems 3.9 and 3.11 are stated for the space
S∗, the conclusions also hold when S∗ is replaced with either βS or U(S).
For βS, this can be deduced directly from Theorems 3.9 and 3.11 (using
the fact that if p is a butter�y/non-normality point a closed subspace of
X, then it is one in X too). For U(S), it follows from making a few trivial
modi�cations to the proofs presented already.

We turn now to the last two results of this section, which give two curious
topological properties of the spaces of the form p · E(R). These results are
proved under the extra assumption that S is countable.

Recall that x is a P -point of a space X if every countable intersection of
neighborhoods of x is a neighborhood of x.X is a P -space if all its points are
P -points or, equivalently, if countable intersections of open sets are open.

Theorem 3.14. Suppose S is countable, weakly cancellative, and has a
uniform, �nite bound on |Fix(a)| for a ∈ S. Let R be a minimal right ideal
of S∗ and let r ∈ R. Then every q ∈ r · E(R) is a P -point of r · E(R). In
particular, r · E(R) is a P -space.

Proof. Let q ∈ r · E(R), and let U1, U2, U3, . . . be open neighborhoods of q
in C = r · E(R). Let L denote the minimal left ideal of S∗ containing q.

Setting Kn = C \ Un for every n ∈ N, we have

L ∩
⋃
n∈NKn ⊆ L ∩ C = {q}

by Theorem 2.1. Let {dn : n ∈ N} be a countable dense subset of L that
does not contain q. (Such a set exists because L is separable, as L = S · q,
{x ∈ S : x · q = q} is �nite by Lemma 3.3, and L has no isolated points
by Lemma 3.8). Taking A =

⋃
n∈NKn and B = {dn : n ∈ N}, A and B are

σ-compact subsets of βN such that A∩B = ∅ and B ∩A = ∅. By Theorem
3.40 in [7], this implies A ∩ B = ∅. As q ∈ B, we have q /∈ A. Taking
complements, this implies q is in the interior of

⋂
n∈N Un. This shows q is a

P -point of C. �

Corollary 3.15. Suppose S is countable, weakly cancellative, and has a
uniform, �nite bound on |Fix(a)| for a ∈ S. Let R be a minimal right ideal
of S∗. Then E(R) is not Borel in βS, nor is q · E(R) for any q ∈ R.

Proof. Since q ·E(R) = E(R) if q ∈ E(R), it su�ces to establish the second
conclusion. By (a very special case of) Lemma 3.10, there are 2c minimal left
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ideals in βS and q·E(R) meets each of them, so |q·E(R)| = 2c. Theorem 3.14
implies that any compact subset of q ·E(R) is �nite (because every subspace
of a P -space is a P -space, but in�nite compact spaces are never P -spaces by
[5, Exercise 4K1]). Applying Lemma 3.1 from [8], this implies that q ·E(R)

is not Borel in βS. (Lemma 3.1 of [8] says that any Borel subset of βN is
the union of at most c compact sets, but the proof only uses the fact that
N is countable.) �

Once again, we note that weak cancellativity alone is not enough to
prove Theorem 3.14 or Corollary 3.15. The semigroup (N,∨) is weakly
cancellative, but it has a single minimal right ideal, namely N∗ itself, and
E(N∗) = N∗. Clearly N∗ is not a P -space, and it is Borel in βN.

4. A negative result

In this �nal section, we address the natural question of whether, given
a Θ-maximal �lter F and a Σ-maximal �lter G, their union F ∪ G must
generate an ultra�lter. We show that it is consistent with ZFC that the
answer is negative. More precisely, we will use the hypothesis p = c (a weak
form of Martin's Axiom) to construct a Θ-maximal �lter F on N and a
Σ-maximal �lter G on N such that F ∪ G does not generate an ultra�lter.

In light of Lemma 2.4, the assertion that some such F and G exist is
equivalent to the assertion that there is a minimal left ideal L and a Σ-
maximal �lter G such that L ∩ Ĝ contains more than one point. In other
words, it is equivalent to the assertion that not every Σ-maximal �lter cor-
responds to a closed transversal for the minimal left ideals.

The hypothesis p = c is used indirectly in order to invoke a result from
[3] to prove Lemma 4.2 below. In order to keep this section relatively self-
contained, we also include a (short) derivation of Lemma 4.2 from CH. This
latter hypothesis is stronger (i.e., CH implies p = c) so that proving the
result from p = c is �better� in some sense. But either hypothesis is, of
course, adequate to establish consistency with ZFC, and the reader who
wishes to do so may ignore any further mention of p and c and read this
section as a self-contained proof carried out in ZFC + CH.

Lemma 4.1. For every thick set A ⊆ N, there is a thick B ⊆ A such that
A \B is also thick.

Proof. Suppose A is thick. Then we may �nd a sequence I0, I1, I2, I3 . . .

of pairwise disjoint intervals contained in A such that limn→∞ |In| = ∞.
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Taking B =
⋃
{In : n is even}, it is clear that B is thick and that A \ B ⊇⋃

{In : n is odd} is also thick. �

Lemma 4.2. Assume p = c (or CH). If α is an ordinal with α < c and
〈Aβ : β < α〉 is a sequence of thick subsets of N, well-ordered in type α,
such that A∗β ⊇ A∗γ whenever β < γ, then there is a thick set Aα such that
A∗β ⊇ A∗α for all β < α.

Proof. This follows from [3, Theorem 3.4].
More precisely, in [3] the cardinal number tΘ is de�ned to be the least

cardinal κ such that the conclusion of the present lemma is true for all
α < κ. Thus the present lemma can be rephrased as follows: if p = c, then
tΘ = c. But Theorem 3.4 in [3] asserts that tΘ = t, and it is known that
p ≤ t ≤ c. Hence p = c implies tΘ = c, as claimed. �

Proof of Lemma 4.2 from CH. If α = δ + 1, let Aα = Aδ. So assume α is
a (nonzero) limit ordinal. We claim that for each F ∈ Pf (α),

⋂
δ∈F Aδ is

thick. For such F , let γ = maxF . Then A∗γ ⊆
⋂
δ∈F A

∗
δ = (

⋂
δ∈F Aδ)

∗ so
G = Aγ \

⋂
δ∈F Aδ is �nite. Since Aγ is thick, by Lemma 3.6, Aγ \G is thick

and Aγ \G ⊆
⋂
δ∈F Aδ.

Now α is countable, by CH. Thus we may enumerate {Aδ : δ < α} as
〈Bn〉∞n=1. For each n, let Cn =

⋂n
t=1Bt. Then each Cn is thick. For n ∈ N,

pick xn ∈ N such that {xn + 1, xn + 2, . . . , xn + n} ⊆ Cn and let Aα =⋃∞
n=1{xn+1, xn+2, . . . , xn+n}. Then Aα is thick. Given δ < α, pick n ∈ N

such that Aδ = Bn. Then Aα \ Aδ ⊆
⋃n−1
t=1 {xt + 1, xt + 2, . . . , xt + t}, so

A∗α ⊆ A∗δ . �

Lemma 4.3. Assuming p = c (or CH), there is a sequence 〈Bα : α < c〉 of
thick subsets of N such that

• if β < α, then Bα \Bβ is �nite; i.e., Bα ⊆∗ Bβ.
• if β < α, then Bβ \Bα is thick.
• {Bα : α < c} is a basis for a Θ-maximal �lter on N.

Proof. Fix an enumeration {Aα : α < c} of Θ. The sequence 〈Bα : α < c〉 is
constructed via trans�nite recursion. For the base stage of the recursion, set
B0 = N.

At the successor stage α + 1 of the recursion, assuming Bα has already
been de�ned, there are two cases. If Bα ∩ Aα /∈ Θ, then choose Bα+1 to be
any thick subset of Bα such that Bα \ Bα+1 is thick. (This is possible by
Lemma 4.1.) If Bα ∩ Aα ∈ Θ, then let Bα+1 be some thick set contained
in Bα ∩ Aα with the property that Bα \ Bα+1 is also thick. (Again, this is
possible by Lemma 4.1.)
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If α is a limit ordinal with α < c, then at stage α of the recursion we
will have a sequence 〈Bβ : β < α〉 of thick sets such that B∗β ⊇ B∗γ whenever
β < γ. By Lemma 4.2, there is a thick set Bα such that B∗β ⊇ B∗α for all
β < α. This completes the recursion.

It is clear that 〈Bα : α < c〉 is a sequence of thick sets, and it follows easily
from our construction that if β < α then Bα \ Bβ is �nite and Bβ \ Bα ⊇∗

Bβ \ Bβ+1 is thick. It remains to check that {Bα : α < c} is a basis for a
Θ-maximal �lter on N.

Let F = {X ⊆ N : X ⊇∗ Bα for some α < c}. Then F is a �lter. We shall
show that in fact F = {X ⊆ N : X ⊇ Bα for some α < c} and consequently
{Bα : α < c} is a basis for F . One inclusion is trivial. Let X ∈ F and pick
α < c such that X ⊇∗ Bα. Let F = Bα \X. Then F is �nite so Bα \ F is
thick so Bα \ F = Aδ for some δ < c. Then Bα ∩ Bδ is thick so Aδ ∩ Bδ is
thick. Then by contstruction, Bδ+1 ⊆ Aδ ∩Bδ ⊆ Aδ ⊆ X.

If A ∈ Θ, then A = Aα for some α < c. At stage α + 1 of our recursion,
we ensured that either Bα+1 ∩ Aα /∈ Θ or that Bα+1 ⊆ Aα (which implies
Aα ∈ F). Thus A ∈ Θ implies that either A ∈ F or A ∩ B /∈ Θ for some
B ∈ F . Thus no proper extension of F contains only thick sets, which means
that F is a Θ-maximal �lter. �

Theorem 4.4. Assuming p = c (or CH), there is a Θ-maximal �lter F on
N such that

(1) for each n > 0, there is a Σ-maximal �lter G on N such that F ∪ G
extends to exactly n distinct ultra�lters.

(2) there is a Σ-maximal �lter G on N such that F ∪ G extends to 22ℵ0

distinct ultra�lters.

Proof. Let 〈Bα : α < c〉 be a sequence of thick subsets of N having the prop-
erties described in Lemma 4.3, and let F be the Θ-maximal �lter generated
by {Bα : α < c}. For each α < c, because Bα \ Bα+1 is thick there is some
Zα ⊆ Bα \Bα+1 such that Zα is an in�nite union of increasingly long inter-
vals. Note that if α 6= β, then Zα ∩ Zβ is �nite (because if say β < α, then
Zβ ∩Bβ+1 = ∅ and Bβ+1 ⊇∗ Bα ⊇ Zα.)

By Lemma 2.4, F̂ is a minimal left ideal of βN so there there are 22ℵ0

ultra�lters extending F by [7, Theorem 6.9].
To prove (1), �x n > 0 and let p0, p1, . . . , pn−1 be any n distinct ultra�l-

ters extending F . We shall �nd a Σ-maximal �lter G such that the set of all
ultra�lters extending F ∪ G is precisely {p0, p1, . . . , pn−1}. For each k < n,
let Gk be a Σ-maximal �lter such that F ∪ Gk generates the ultra�lter pk.
(Some such Gk exists by Theorem 2.7.)
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For every ordinal α, let intn(α) denote the integer part of α modulo n:
i.e., intn(α) is equal to the unique k ∈ {0, 1, . . . , n − 1} with the property
that α = n · β + k for some ordinal β.

Given an n-tuple ~A = 〈A0, A1, . . . , An−1〉 ∈ G0 × G1 × · · · × Gn−1 and a
�nite F ⊆ c, de�ne

Y (F, ~A) =
⋃{

Zα ∩ Aintn(α) : α ∈ F
}
∪
(⋃

k<nAk \
⋃
{Zα : α ∈ F}

)
.

We claim that each set of this form is syndetic. To see this, �x some
tuple ~A = 〈A0, A1, . . . , An−1〉 ∈ G0×G1× · · · × Gn−1 and some �nite F ⊆ c.
For each k < n, the set Ak is syndetic, so there is some mk ∈ N such
that every interval in N of length at least mk contains a point of Ak. Let
m = max{m0,m1, . . . ,mn−1}. Recall that if α 6= β then Zα ∩ Zβ is �nite,
and that each Zα is a union of intervals of increasing length. Hence there is
some N ∈ N such that on [N,∞), the Zα, for α ∈ F , are pairwise disjoint,
and each Zα consists of intervals all of length at least m. Now suppose
I ⊆ [N,∞) is an interval of length at least 3m. Then either I contains
m consecutive points from some particular Zα for α ∈ F , in which case I
contains a point of Zα∩Aintn(α), or else I contains m consecutive points not
in any Zα, which case I contains a point of

⋃
k<nAk\

⋃
{Zα : α ∈ F}. Either

way, I contains a point of Y (F, ~A). Thus Y (F, ~A) meets every interval in N
of length at least 3m+N , so Y (F, ~A) is syndetic as claimed.

If ~A = 〈A0, . . . , An−1〉 and ~B = 〈B0, . . . , Bn−1〉 are both in G0 × · · · ×
Gn−1 and if Bk ⊆ Ak for every k < n, then it is clear that Y (F, ~B) ⊆
Y (F, ~A) for any �xed �nite F ⊆ c. Similarly, if ~A ∈ G0 × · · · × Gn−1 is
�xed then for any �nite F,G ⊆ c, F ⊆ G implies Y (G, ~A) ⊆∗ Y (F, ~A)

because Y (G, ~A)\Y (F, ~A) ⊆
⋃
α∈G\F

⋃
δ∈F (Zα∩Zδ). Thus, if for any tuples

~A, ~B ∈ G0 × · · · × Gn−1 we denote by ~A ∧ ~B the tuple obtained by taking
intersections coordinate-wise, we have

Y (F, ~A) ∩ Y (G, ~B) ⊇∗ Y (F ∪G, ~A ∧ ~B)

whenever F,G are �nite subsets of c and ~A, ~B ∈ G0 × · · · × Gn−1. Hence

H0 = {X ⊆ N : there exist �nite F ⊆ c and ~A ∈ G0 × G1 × · · · × Gn−1

such that Y (F , ~A) ⊆∗ X}

is a �lter. By the previous paragraph, H0 ⊆ Σ. Using Zorn's Lemma, extend
H0 to a Σ-maximal �lter G on N.

Because F ⊆ Θ and G ⊆ Σ, A ∩ B 6= ∅ for every A ∈ F and B ∈ G.
Thus F ∪ G generates a �lter. To �nish the proof of (1), we must show that
there are exactly n ultra�lters extending this �lter, namely p0, p1, . . . , pn−1.
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Fix k < n, and suppose (aiming for a contradiction) that pk does not
extend the �lter generated by F ∪ G. Then there are some A ∈ G, B ∈ F ,
and C ∈ pk such that A ∩ B ∩ C = ∅. Because pk is the �lter generated
by F ∪ Gk, there are some D ∈ F and E ∈ Gk such that D ∩ E ⊆ C and
(consequently) A ∩ B ∩ D ∩ E = ∅. Because B,D ∈ F and F is a �lter,
B ∩D ∈ F . Because {Bα : α < c} is a �lter base for F , there is some α < c

such that Bα ⊆ B ∩ D. Let β ≥ α with intn(β) = k. Observe that β ≥ α

implies Bβ ⊆∗ Bα, so

Bβ ∩ A ∩ E ⊆∗ Bα ∩ A ∩ E ⊆ B ∩D ∩ A ∩ E = ∅

or, in other words, Bβ ∩A∩E is �nite. Let ~Ek = 〈N, . . . ,N, E,N, . . . ,N〉 be
the n-tuple that has N in every coordinate except the kth coordinate, where
it has E instead. Observe that

Y ({β}, ~Ek) = (Zβ ∩ E) ∪ (N \ Zβ).

This implies Zβ ∩ Y ({β}, ~Ek) = Zβ ∩ E ⊆ Bβ ∩ E. Hence

Zβ ∩ Y ({β}, ~Ek) ∩ A ⊆ Bβ ∩ E ∩ A.

On the one hand, Bβ ∩ E ∩ A is �nite. On the other, A and Y ({β}, ~Ek)
are both in G, so A ∩ Y ({β}, ~Ek) ∈ G and in particular, A ∩ Y ({β}, ~Ek)
is syndetic. Thus the intersection of the thick set Zβ with the syndetic set
A ∩ Y ({β}, ~Ek) is �nite. This is a contradiction. Thus pk extends the �lter
generated by F ∪ G.

To �nish the proof of (1), it remains to show that if q is an ultra�lter
extending F ∪ G, then q = pk for some k < n. Let q be an ultra�lter
extending F , and suppose q /∈ {p0, p1, . . . , pn−1}. We shall show that q does
not extend G. For every k < n, q 6= pk implies there is some Ck ∈ pk such
that Ck /∈ q. Because pk is the unique ultra�lter extending F ∪Gk, there are
B ∈ F and Ak ∈ Gk such that Ak ∩ B ⊆ Ck /∈ q. But B ∈ F and q ⊇ F ,
so B ∈ q. Thus Ak /∈ q. Because this holds for every k < n, and because q
is an ultra�lter, we have

⋃
k<nAk /∈ q. However, if ~A = 〈A1, A2, . . . , An−1〉

then Y (∅, ~A) =
⋃
k<nAk ∈ H0 ⊆ G. Thus q does not extend G.

This �nishes the proof of (1), and in fact establishes something slightly
stronger than stated in the theorem: any �nite subset of F̂ may be obtained
as the set of ultra�lters extending F ∪G for some Σ-maximal �lter G on N.

The proof of (2) is similar to the proof of (1), but with a few key dif-
ferences (some of which make the proof easier). The main di�erence is that
rather than choosing beforehand the set of ultra�lters that will extend F∪G,
we choose an in�nite collection of disjoint syndetic sets, and de�ne G so that
F ∪ G must contain at least one ultra�lter containing each of these sets.
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Let 〈Bα : α < c〉 and 〈Zα : β < c〉 be as above. For each n ≥ 0, de�ne

En = {k · 2n : k ∈ N is odd}

and observe that {En : n ≥ 0} is a partition of N into pairwise disjoint syn-
detic sets.

For every ordinal α, let int(α) denote the integer part of α: i.e., if α < ω

then int(α) = α, and if α ≥ ω then int(α) denotes the unique n ∈ ω such
that α = λ+ n for some limit ordinal λ. Given some �nite F ⊆ c, de�ne

Y (F ) =
⋃{

Zα ∩ Eint(α) : α ∈ F
}
∪ (N \

⋃
{Zα : α ∈ F}) .

We claim that each set of this form is syndetic. To see this, �x some �nite
F ⊆ c. Let M = max {int(α) : α ∈ F}. Recall that if α 6= β then Zα ∩ Zβ is
�nite, and that each Zα is a union of intervals of increasing length. Hence
there is some N ∈ N such that on [N,∞), the Zα, for α ∈ F , are pairwise
disjoint, and each Zα consists of intervals all of length at least 2M+1. Now
suppose I ⊆ [N,∞) is an interval of length at least 2M+2. Then either I
contains a point not in any Zα for α ∈ F , or else I contains 2M+1 consecutive
points from some particular Zα for α ∈ F , and because M ≥ int(α) this
implies I contains a point of Zα ∩ Eint(α). Either way, I contains a point of
Y (F ). Thus Y (F ) meets every interval in N of length at least 2M+2 +N , so
Y (F ) is syndetic as claimed.

If F,G ⊆ c are �nite and F ⊆ G, then Y (F ) ⊇∗ Y (G) because Y (G) \
Y (F ) ⊆

⋃
α∈G\F

⋃
δ∈F (Zα ∩ Zδ). Therefore, if F,G ⊆ c are �nite, then

Y (F ∪G) ⊆∗ Y (F ) ∩ Y (G). This shows that

G0 = {X ⊆ N : X ⊇∗ Y (F ) for some �nite F ⊆ c}

is a �lter, and by the previous paragraph, G0 ⊆ Σ. Using Zorn's Lemma,
extend G0 to a Σ-maximal �lter G on N.

To �nish the proof of the theorem, we must show that there are 22ℵ0

distinct ultra�lters extending F ∪G. In fact, it su�ces to show that for any
n ≥ 0, F ∪ G ∪ {En} generates a �lter. This su�ces because it shows that
F ∪ G can be extended to in�nitely many distinct ultra�lters on N, and it
is known that if a �lter on N extends to in�nitely many distinct ultra�lters,
then it extends to 22ℵ0 distinct ultra�lters [7, Theorem 3.59].

Fix n ≥ 0, and suppose that F ∪ G ∪ {En} does not generate a �lter.
This means that there is some B ∈ F and A ∈ G such that A∩B ∩En = ∅.
Because {Bα : α < c} is a �lter base for F , there is some α < c such that
Bα ⊆ B, which implies Bα∩A∩En = ∅. Fix β ≥ α with int(β) = n. Observe
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that β ≥ α implies Bβ ⊆∗ Bα, so

Bβ ∩ A ∩ En ⊆∗ Bα ∩ A ∩ En = ∅

or, in other words, Bβ ∩ A ∩ En is �nite. Observe that

Y ({β}) = (Zβ ∩ En) ∪ (N \ Zβ)

which implies Zβ ∩ Y ({β}) = Zβ ∩ En ⊆ Bβ ∩ En. Hence

Zβ ∩ Y ({β}) ∩ A ⊆ Bβ ∩ A ∩ En.

On the one hand, Bβ ∩ A ∩ En is �nite. On the other, A and Y ({β}) are
both in G, so A ∩ Y ({β}) ∈ G and in particular, A ∩ Y ({β}) is syndetic.
Thus the intersection of the thick set Zβ with the syndetic set A ∩ Y ({β})
is �nite. This is a contradiction, so F ∪ G ∪ {En} generates a �lter. �

The proof of this theorem raises two questions. The �rst (and perhaps
obvious) question is whether the hypothesis p = c is really necessary.

Question. Is it consistent that for every Θ-maximal �lter F and every
Σ-maximal �lter G, there is a unique ultra�lter extending F ∪ G?

The second question is whether our use of a �special� �lter F in the proof
was really necessary. For all we know, it may be true that (in ZFC alone)
there is some Θ-maximal �lter F that such that the join of F with any
Σ-maximal �lter is an ultra�lter.

Question. Is there some Θ-maximal ultra�lter F such that F∪G generates
an ultra�lter for every Σ-maximal �lter G? Is it consistent that there is such
a �lter?
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