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Abstract
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We present here some new characterizations and consequences of
image partition regularity and investigate some issues raised by these.
One of our characterizations is that the image partition regular ma-
trices are precisely those that preserve a certain notion of largeness
(“central sets”) — we examine what happens for other well known
notions of largeness. Another property of image partition regular ma-
trices is that (except in trivial cases) the entries of AZ may be chosen
to be distinct — we investigate when we may choose the entries to be
“close together” or “far apart” in various senses.

1 Introduction

Consider the following classical theorems of Ramsey Theory. (We take N =
{1,2,3,...} and w = NU{0}.)

Theorem 1.1 (Hilbert) Let r € N and let N = U]_; D;. For each m € N
there exist i € {1,2,...,r}, a € N, and a sequence (x,)n, in N such that
for each nonempty FF C {1,2,...,m}, a+ Y cr 1 € D;.

Proof. [9]. O

We are using here “partition” terminology (at least if one assumes that
D; N D; = () when i # j). In the alternative “coloring” terminology which
we will also use on occasion, the following theorem would say: “Whenever N
is finitely colored, there must exist xz,y € N with {z,y, 2 + y} monochrome.”

Theorem 1.2 (Schur) Let r € N and let N = U;_, D;. There exist i €
{1,2,...,r} and x and y in ben with {z,y,z +y} C D;.

Proof. [15]. O

Theorem 1.3 (van der Waerden) Let r € N and let N = U_, D;. For
eachl € N there existi € {1,2,...,r} and a,d € N such that {a,a+d, ..., a+
ld} C D;.

Proof. [16]. O

Consider also the matrices



1 1 0 0 1 0
1 0 1 0 1 1
1 1 1 0 1 0 1 2
A = 100 1], B = 0 1], and C = 1 3
1 1 0 1 1 1 1 4
1 0 1 1 1 5
1 1 1 1 1 6

The case m = 3 of Theorem 1.1 is the assertion that whenever r € N and
N = U, D;, there exist i € {1,2,...,r} and ¥ € N* such that AZ € DI.
(We use the notation & for both row vectors and column vectors, expecting
the reader to rely on the context to tell which is intended.) Theorem 1.2 is
the assertion that whenever r € N and N = /_, D;, there exist ¢ € {1,2,
...,r}and Z € N? such that B# € D}. The case [ = 6 of Theorem 1.3 is the
assertion that whenever r € N and N = UJ]_, D;, there exist i € {1,2,...,r}
and # € N? such that C# € D]. That is, each instance of Theorems 1.1, 1.2,
and 1.3, is the assertion that a particular matrix is image partition reqular.

Definition 1.4 Let u,v € N and let A be a v X v matrix with entries from
Q. The matrix A is image partition reqular if and only if whenever r € N and
N =Ui_, D;, there exist i € {1,2,...,r} and & € N” such that AZ € D}".

Notice that in each case the correspondence is natural. No great amount
of thought is required to produce the matrix corresponding to the particular
theorem. Consider by way of contrast the notion of kernel partition reqularity.
(The terminology in both cases, based on the interpretation of A as a map
from Q" to Q", was suggested by W. Deuber.)

Definition 1.5 Let u,v € N and let A be a u X v matrix with entries from
Q. The matrix A is kernel partition regular if and only if whenever r € N
and N = U;_, D;, there exist i € {1,2,...,r} and & € D} such that A¥ = 0.

In a justly celebrated result, R. Rado obtained in 1933 a combinatorial
characterization of kernel partition regular matrices. This characterization
(which we shall present below) can be used to establish each of Theorems
1.1, 1.2, and 1.3.

Schur’s Theorem asks that there exist a,b,c € D; such that a = z, b =
y, and ¢ = x + y. That is, there must exist a, b, and ¢ in D; such that
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a + b = c. Consequently, Theorem 1.2 is precisely the assertion that the
matrix (1 1 —1) is kernel partition regular.

We remark that, although van der Waerden’s Theorem is naturally stated
in terms of image partition regularity, one needs to be careful when stating
it in terms of kernel partition regularity. For example, if one has just [ + 1
variables y1, Yo, . .., yi+1 and the equations stating that y;11 —vy; = Yito — Yiv1
foralli e {1,2,...,l—1}, then this allows the trivial solution in which all y;’s
are equal. So van der Waerden’s Theorem is not equivalent to the statement
that matrices of the form

1 -1 0 o --- 0
0o 1 -1 0 0
0 0 1 -1 0
0 O 0 o --- -1

are kernel partition regular. However, a stronger version of van der Waerden'’s
Theorem, in which the differences y;11 — y; are required to have the same
color as the y;’s, is equivalent to the statement that matrices of the form

11 -1 0 o 0 --- 0
1 0o 1 -1 0 0 --- 0
1 0 0 1 -1 0 --- 0
1 0 0 0 o 0 --- -1

are kernel partition regular.

The reader is invited to try to represent the case m = 2 of Theorem 1.1
by equations.

There is thus a natural interest in determining those matrices that are
image partition regular. Further, one of the major problems in this area was
solved using certain image partition regular matrices. That is, W. Deuber
[4] showed that those sets that always contained solutions to every kernel
partition regular matrix were themselves partition regular using (m, p, ¢) sets,
which are the images of certain image partition regular matrices.

The determination of those matrices that are image partition regular was
finally accomplished in 1993 [10], when several equivalent characterizations
of the problem were given, including some that made the problem effectively
computable (see later). Some of these characterizations involved convert-
ing the problem into one about kernel partition regular matrices, thereby
allowing the use of Rado’s Theorem.



Definition 1.6 Let u,v € N, let A be a u X v matrix with entries from

Q, and let ¢, ¢s,...,¢, be the columns of A. The matrix A satisfies the
columns condition if and only if there exist m € N and I, Is, ..., I, such
that

(1) {6, Is,...,L,} is a partition of {1,2,..., v},

(2) Sier, & =0, and

(3) if m > 1 and ¢t € {2,3,...,m}, then Y ;c;, & is a linear combination
of {& i e U ;}.

It was shown by Rado that A is kernel partition regular if and only if it
satisfies the columns condition.

Here, for example, is one of the characterizations of a u x v image partition
regular matrix A presented in Theorem 2.10:
There exist by, by, ..., b, € Q" such that the matriz

by 0 0O --- 0
0 b 0 -+ 0
0 0 b3 --- O
N = : : : :
0O 0 0 --- b,

15 1mage partition reqular.
That is, we can insist that certain multiples of the z;’s are themselves the
same color as the image vector.

Several characterizations of image partition regular matrices involve the
notion of a “first entries matrix”, a concept based on Deuber’s (m, p, ¢) sets.
We follow here, and elsewhere, the custom of denoting the entries of a matrix
by the lower case letter corresponding to the upper case letter denoting the
matrix. Thus a;; denotes the entry of the matrix A in the i row and j
column. Similarly, x; denotes the i*® entry of the vector 7.

Definition 1.7 Let A be a v X v matrix with rational entries. Then A is a
first entries matrix if and only if

(1) no row of A is 0,
(2) the first nonzero entry of each row is positive, and



(3) the first nonzero entries of any two rows are equal if they occur in the
same column.

If A is a first entries matrix and d is the first nonzero entry of some row of
A, then d is called a first entry of A.

Thus the “first entries” of A are those numbers that actually occur as the
first nonzero entry of some row of A. For example,

-2 2

o O O =
o O O
S o ot O
S Wk W
~N O N

is a first entries matrix with first entries 1, 5 and 7.

We remark that it is not hard to show that the columns condition (Defi-
nition 1.6) is equivalent to the statement that AB = O for some first entries
matrix B.

We shall show that all first entry matrices are image partition regular.
This implies Theorems 1.1, 1.2 and 1.3, because we have seen that each of
these classical theorems is equivalent to the statement that a certain first
entries matrix is image partition regular.

Some of the characterizations of image partition regularity that we shall
give involve “central” sets. Central sets were introduced by Furstenberg [5]
and defined in terms of notions of topological dynamics. These sets enjoy
very strong combinatorial properties. (See [5, Proposition 8.21] or [12, Chap-
ter 14].) They have a nice characterization in terms of the algebraic structure
of AN, the Stone-Cech compactification of N. We shall present this charac-
terization below, after introducing the necessary background information.

Let (S,+) be an infinite discrete semigroup. We take the points of S
to be the ultrafilters on S, the principal ultrafilters being identified with the
points of S. Givenaset AC S, A={peBS:Aecp} Theset {A: AC S}
is a basis for the open sets (as well as a basis for the closed sets) of 35.

There is a natural extension of the operation + of S to 4S5, making 35S
a compact right topological semigroup with S contained in its topological
center. This says that for each p € 3S the function p, : S — BS is
continuous and for each z € S, the function A\, : S — (S is continuous,
where p,(q) = ¢+ p and \,(¢) = =z +¢q. Given p,q € 35S and A C S,
one has that A € p+ ¢ if and only if {x € S : —z+ A € ¢} € p, where
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—c+A={yeS:x+ye A}. See[12] for an elementary introduction to
the semigroup 3S.

We are denoting the operation of the semigroup by + because we shall be
almost exclusively concerned with the semigroups (N, +), (Z,+), (Q, +), and
(N”,4). The reader should be cautioned, however, that while the semigroup
(S, +) may very well be commutative, the semigroup (395, +) almost never
is. (See [12, Theorem 4.27].)

Any compact Hausdorff right topological semigroup (7', +) has a smallest
two sided ideal K(T') which is the union of all of the minimal left ideals of
T, each of which is closed [12, Theorem 2.8] and any compact right topo-
logical semigroup contains idempotents. Since the minimal left ideals are
themselves compact right topological semigroups, this says in particular that
there are idempotents in the smallest ideal. There is a partial ordering of the
idempotents of T determined by p < gif and only if p=p+g=qg+p. An
idempotent p is minimal with respect to this order if and only if p € K(T)
[12, Theorem 1.59]. Such an idempotent is called simply “minimal”

Definition 1.8 Let (S,4) be an infinite discrete semigroup. A set A C S is
central if and only if there is some minimal idempotent p such that A € p.

See [12, Theorem 19.27] for a proof of the equivalence of the definition
above with the original dynamical definition. (In [7, Proposition 4.6] S.
Glasner anticipated this result by showing that, if .S is a countable abelian
group, then a subset of S is central as defined above if and only if it satisfies
conditions similar to Furstenberg’s dynamical definition of “central”.)

Central sets are interesting combinatorial objects because of the fact (a
part of Theorem 2.10 below) that they contain images of any image partition
regular matrix, because any finite partition of N is guaranteed to have one
cell which is central, and because they satisfy the Central Sets Theorem [5,
Proposition 8.21] (or see [12, Theorem 14.11]), which guarantees the existence
of elaborate combinatorial structures in any central set.

In Section 2 we shall present most of the previously known characteriza-
tions of image partition regular matrices, as well as several new ones. Two
of the new ones are of special interest to us, namely statements (n) and (c)
of Theorem 2.10.

Consider the matrix A = ( L3

2 2
regular because any vector & with x; = x5 necessarily has all entries of AZ

monochrome with respect to any coloring. Theorem 2.10(n) tells us that it

) . This matrix is trivially image partition
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also is nontrivially image partition regular. Namely, given any finite coloring
there must exist x; # xo with the entries of AZ monochrome and distinct.
This fact raises two natural questions. Under what conditions can we force
the ratios between entries of # to be bounded? And, under what conditions
can we force the ratios between entries of ¥ to be unbounded? We investigate
these questions in Section 3. The second question turns out to be especially
interesting because of its answer, namely exactly when A is a first entries
matrix. (Recall that, in the guise of Deuber’s (m,p,c) sets, these matrices
have long played a role in the theory of partition regularity of matrices.)

Theorem 2.10(c) says that, whenever C' is a central set and A is a u X v
image partition regular matrix, not only is there some ¥ € N" such that
A7 € C*, but in fact {# € N” : such that A7 € C*} is central in N”. This
characterization is one of a growing body (see [6], [2], and [1]) of results in
which, given as input a suitably large set, one obtains a correspondingly large
set of “good” results. We investigate this phenomenon further in Section 4.

Throughout this paper, we shall use Q" for the set of positive rational
numbers.

2 Characterizations of Image Partition Reg-
ular Matrices

We present in this section several characterizations of finite image partition
regular matrices.

In Theorem 2.10, we give several characterizations of image partition
regular matrices. Some of the equivalences are proved in [10]. Nevertheless,
we provide proofs of several of these equivalences rather than just referring
the reader to [10], because the proofs are fairly short and it may be more
helpful to the reader to be given a proof.

We shall need the following fact, which is well known but is not mentioned
in [12]. Notice that in this lemma, the notation « - p refers to multiplication
in (8Qy,-), where Qg denotes the rationals with the discrete topology. In
particular, if & € N, a - p is not the sum of p with itself a times (which is
simply p, if p is idempotent).

Lemma 2.1 Let p be a minimal idempotent in (N, +) and let « € Q with
a > 0. Then a-p is also a minimal idempotent in BN. Consequently, if C
is central in (N,+), then so is (aC) N N.
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Proof. The function [, : N — Q defined by /,(7) = - is a homomorphism,
hence so is its continuous extension I, : SN — 3Q, by [12, Corollary 4.22].
Further o - p = l,(p). Thus « - p is an idempotent and « - p € [,[K(ON)] =
K(aN). (The latter equality holds by [12, Exercise 1.7.3].) Assume that
o = % with a,b € N. Then bN C o 'aN and thus aN € « - p because bN € p
by [12, Lemma 6.6]. In particular, o -p € N. Also a-p € K(aN)NaN
and aN C aN and consequently K(aN) = K(aN) NaN by [12, Theorem
1.65]. Since every idempotent in AN is in aN by [12, Lemma 6.6], we have
that aN N K(BN) # @ and consequently K(aN) = aN N K(8N), again by
[12, Theorem 1.65]. Thus (« - p) € K(ON) as required.

For the second assertion, let C' be central in (N, +) and pick a minimal
idempotent p with C € p. Then aC NN € « - p. O

Lemma 2.2 Let A be a uxv matriz with entries from Z, define ¢ : N* — Z"
by p(Z) = AZ, and let ¢ : B(N”) — (BZ)" be its continuous extension. Let p
be a minimal idempotent in BN with the property that for every C € p there
exists T € N” such that AT € C* and let p = (p,p,...,p)T. Then there is a
minimal idempotent g € B(N") such that ¢(q) = Pp.

Proof. By [12, Exercise 4.3.5 and Theorem 1.65] p € K($Z) and so by [12,
Theorem 2.23|, p € K((BZ)"). By [12, Corollary 4.22], ¢ : B(N") — (8Z)" is
a homomorphism.

We claim that p € ¢[F(N")] so suppose instead that p ¢ @[3(N")], which
is closed, and pick a neighborhood U of p such that U N ¢[B(N")] = 0. Pick
D € p such that D* C U and pick # € N° such that AZ € D*. Then
o(Z) € UN @[B(N)], a contradiction.

Let M = {q € B(N’) : ¢(q) = p}. Then M is a compact subsemigroup
of B(N), so pick an idempotent w € M by [12, Theorem 2.5]. By [12,
Theorem 1.60], pick a minimal idempotent ¢ € G(N") with ¢ < w. Since @ is
a homomorphism, ¢(q) < ¢(w) = P so, since P is minimal in (8Z)", we have
that ¢(q) = p. O

The following coloring is very important to us.

Lemma 2.3 Let € > 0. There is a finite coloring of N such that, if y and z
are positive integers with the same color and y > z, then either J <l+e€or
z
1
LS
z €



Proof. Choose a € (1,1 + ¢) and r € N satisfying » > 1 + log,, % For
each i € {0,1,2,...,r — 1}, let P, = {n € N : |log,n| = i(modr)}. Let
ie{l,2,...,r} and let y, z € P, with y > z. Then |log, y| > |log, z].

If |log, y| > |log, z], then |log, y| > |log, z] +r and thus y > z-a" ! >

1
z-—. If |log,y] = |log, 2], then y < a -2z < (1 +¢€) - 2. O
€

Lemma 2.4 Let A be a u X v image partition reqular matriz over Q. There
exist m € N and a partition {1, I, ..., L,} of {1,2,. u} with the following
property: for every e > 0, there emsts Z € N such that y = Ax € N" and, if

1€ 1, and j € I, thenl—e<‘%<1—|—ezfr—sand—<ezfr<s

[ 7

Proof. Suppose that 0 < ¢ < %. Choose a coloring of N guaranteed
by Lemma 2.3 and a vector © € NY for which the entries of §y = AZ are

monochrome positive integers. We define a relation ~ on {1,2,...,u} by

putting ¢ &~ jif and only if 1 —¢ < Y < 14e Sincee < (1—€)* < (1+4¢)?

it is easy to verify that this is an equlvalence relation. It therefore defines a
partition P(e) = {I1(€), [a(€), ..., In(€)} of {1,2,...,u}. We can arrange
the sets in this partition so that, if y; € I,(¢), y; € Is(e), and r < s, then
y; < y; and so Y < €. Since there are only finitely many partitions of {1, 2,

1
.,u}, by the pigeon hole principle, there is an infinite sequence of values
of € converging to 0 for which the partitions P(e) are all the same. O

Lemma 2.5 Let ¢, ¢, ..., Cn be vectors in QY. Suppose that the equation
0= > ;G holds for real numbers xy1,xa, ..., Ty. Then we also have 0=
S 1iC;, for rational numbers 1,1y, . .., Ty, with the property that, for every
ie{l,2,...om},r; >0 ifx; >0, r;, <0ifx; <0, and r; =0 if x; = 0.

Proof. Let P={ie€ {1,2,...,m}:2; >0} and Q = {i € {1,2,...,m}:
x; < 0}. Let B denote the row reduced echelon matrix obtained by applying
elementary row operations to the matrix whose columns are the vectors ¢;
with ¢ € PU Q. Let I denote the set of pivot columns, that is the values
of i € PUQ for which the i*" column of B contains the first nonzero entry
of some row, and let J = (PUQ)\I. If J = (), then the only solution to
0= > iepug ¥iC; has each y; = 0. But then P = ) = () and we are done. So
assume that J # (). Then the equation 0 = > iepug YiCi holds if and only if,
for every i € I, y; = — > ;e bijy;-
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We are assuming that there exists (y;)jc; € R”, such that y; > 0 if j €
JﬂP, Yy < Olf] € JﬂQ, _Zjeri,jyj >0ifz € INP and _Zjejbi,jyj <0
if i € I N Q. These inequalities define a neighborhood of (x;);c; in R”, and

this contains an element (r;);e; of Q”. For i € I, let r; = — Y ;¢; bijr; and
fori e {1,2,...,m}\(PUQ), let r; = 0. We then have 0= >, 1iCi, where
ri>0ifie P,ry<0ifie@,andr; =01ifi ¢ PUQ. O
Corollary 2.6 . Let 6281,5’2, ..., Cm be vectors in QY. Suppose that the
equation d = " ;6 holds for real numbers xy,xo,...,Ty. Then we also
have d = > 16, for rational numbers ry,ra, . .., T, with the property that,

for everyi € {1,2,...,m}, r; >0 ifx; >0, r; <0 ifz; <0, and r; =0 if
Proof. This follows by applyng Lemma 2.5 to the equation 0= —d+
Z;il IZE; O

Lemma 2.7 Let ¢y, 0, ..., Cn be vectors in Q° and let P,Q C {1,2,...,m}
be disjoint. Let C' = {x1¢) +x2Co+ ...+ TpCp : cachz; ER, x; > 0 if 1 € P,
and z; <0 ifi € Q}. Then C is closed in R.

Proof. This was proved in [12, Lemma 15.23] in the case in which @ = 0.
The general case follows from this one, by replacing each ¢; by —c; if j € @,
replacing P by PUQ and Q by 0. O

Lemma 2.8 Let u,v € N, let A be a u X v first entries matrix with entries
from Q, and let C be a central subset of N. Then there exists ¥ € NY for
which Ax € C*.

Proof. This is an immediate consequence of [10, Theorem 2.11]. (Or see
[12, Theorem 15.5] replacing the first sentence of the proof with: “If 0 were
a minimal idempotent, then S = 0+ 35S = S + 0 would be a minimal
left ideal and a minimal right ideal, hence a group by Theorem 1.61. In
particular, S would be cancellative so by Corollary 4.33, S* would be a left
ideal properly contained in 35, a contradiction. Thus we may presume that

0¢C.) O

We now give a proof of Rado’s Theorem.
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Theorem 2.9 (Rado) Letu,v € N and let A be a ux v matriz with entries
from Q. The matrix A s kernel partition reqular if and only if A satisfies
the columns condition.

Proof. We have observed that A satisfies the columns condition if and only
if AB = O for some first entries matrix B.

Suppose that A is kernel partition regular. By Lemma 2.3, for each ¢ > 0,
there exists 7(e) € N such that Ag(e) = 0 and, for each i, € {1,2,---,v},
y(e); > y(e); implies that 3((;); < l+4+c¢€or 382 > 1 By the argument
used in the proof of Lemma 2.4, there is a sequence (€,)7°, of positive
numbers converging to 0 and a partition {Iy, I5,--- I, } of {1,2,--- v} with
the following property: for every n € N, ¢ € [, and j € I, implies that
1—€, < ZEZZ)Z <1l+e¢,ifr=sand Z((Zgz <e, ifr<s.

For each j € {1,2,---,m}, choose k € I;,. For each n € N and each

ie{l,2,---,v}, put (2(4,n)), = % We observe that AZ(j,n) = 0, that
1 —¢, <(2(4,n)); <1l+e if i € I; and that (2(j,n)); < €, if i € Ujs; Lo
Let & denote the i*® unit vector in Q. Put 7(j,n) = ZiGUl>j 1, (2(4,n))i€;.
Since AZ(j,n) = 0, it follows that A#(j,n) € —AL(j), where L(j) denotes
the linear span of {¢; : i € U;; i} in QY= (We put L(1) = {0}.) Now
U(j,n) — Yier, € as n — o0. Since —AL(j) is closed, we have A( Y/ €; +
wW(5)) = 0 for some @(j) € L(j). Let w(j) = ZiEUKj 1, 7ij€. 1f B denotes

the v x m matrix defined by

Tij if 1 € Ul<j I
bij = 1 if 1 € ]j s
0 ifielUs;
then B is a first entries matrix for which AB = O.

Conversely, suppose that AB = O for some first entries matrix B. By
[12, Lemma 15.14], we may suppose that the entries of B are in w. Since B
is image partition regular, by Lemma 2.8, it follows immediately that A is
kernel partition regular. O

The equivalence of statements (h), (i), and (I) with statement (a) of the
following theorem was established in [10, Theorem 3.1] and the equivalence
of statement (g) was established in [12, Theorem 15.24]. The others are new.
Notice that statement (i) can be used to check whether a given matrix is
image partition regular. (See the conclusion of [10] for a discussion of this
and two other effectively computable characterizations.)
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Welet Q" = {z € Q: x> 0}.

Theorem 2.10 Let u,v € N and let A be a u X v matriz with entries from
Q. The following statements are equivalent.

(a) A is image partition regular.

(b) For every central set C' in N, there exists & € N” such that AZ € C".

(¢) For every central set C'in N, {Z € N": A¥ € C"} is central in N’.

(d) There existm € N, a v Xm matriz G with non-negative rational entries
and no row equal to 0, and a u X m first entries matrix B, with non-
negative entries and all its first entries equal to 1, such that AG = B.

(e) There exist m € N, a vxm matriz G with non-negative rational entries

and no row equal to 6, and a u X m first entries matriz B, with all its
first entries equal to 1, such that AG = B.

(f) There exist m € N, a v x m matriz G with entries from w and no row
equal to 0, a u x m first entries matrix B with entries from w, and
¢ € N such that ¢ is the only first entry of B and AG = B.

(9) There exist m € N, a u x m first entries matrix B with all entries
from w, and ¢ € N such that c is the only first entry of B and for each
y € N there exists ¥ € N” such that A¥ = By.

(h) There exist m € N and a u x m first entries matriz B such that for
each i € N™ there exists ¥ € N such that A¥ = By.

(i) There exist ty,ts,...,t, € Q" such that the matriz

tiarg tears tsars - tyar, —1 0 0 --- 0
t1a2,1 t2a272 t3(l273 ce tUCLQ’U 0 -1 o -- 0
M = | tiazq  teazs tzazs - l,a3, o o0 -1 --- 0
tay1  Toaya t3ay3 -+ TGy 0 0 0o --- -1

)

18 kernel partition reqular.
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(j) There exist ty,ts,...,t, € Q" such that the matriz

1 0 0 0

0 1 0 0

0 0 1 0

P 0 0 0 . 1
| tiary toarn tzarz ... fuary,
tiagq  taagp tzansz ... tyag,
tiasy toazp  t3zazsz ... a3,
tlau,l t2au,2 t3au,3 s tvau,v

15 1mage partition reqular.
(k) There exist by, by, ..., b, € Q" such that the matriz

b 0 0 --- 0
0 b 0 --- 0
0 0 by --- 0
N = : : : :
0O 0 0 - b
A

18 1mage partition reqular.
(1) For each 7€ Q"\{0} there exists b € Q\{0} such that

(%)

(m) Whenever m € N, ¢1,¢9,...,0, are nonzero linear mappings from
Q" to Q, there exists b e Q™ such that, whenever C is central in N,
there exists ¥ € NYfor which AX € C* and, for eachi € {1,2,...,m},
bipi(%) € C, and in particular ¢;(Z) # 0.

(n) For every central set C' in N, there exists ¥ € N” such that § = AT €
C", all entries of & are distinct, and for alli,j € {1,2,...,u}, if rows
it and j of A are unequal, then y; # y;.

15 1mage partition reqular.
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Proof. We show first that statements (a), (b), (c), (d), (e), (f), (g) and (h)
are equivalent.

(a) = (d). Let ¢1,0,...,¢, denote the columns of A and let €; denote
the i*® unit vector in R*. Let {I;, I, ..., I,,} be the partition of {1,2,...,u}
guaranteed by Lemma 2.4. We claim that for each k € {1,2,...,m},

Yoner, €n € cl{Y)_) a;Ci— S Sner, 0n€y t each o > 0 and each 6, > 0} .

To see this, let k € {1,2,...,m} and let € > 0. Choose & € N’ such that § =

Ax € N"and, if i € [, andjefs,thenl—e<y] < l+eifr = sand Ui < eif
Yi Yi

r<s.Pickl el Forje{l,2,...,v}, leta; = x—, noting that a;; > 0. For
Yi

ne U L, let 8, n. Then >7%_; a;c; — Sk Znef 0n€n — Xoner, €n =72
yz
where

I e Urn,, L
Y
=01 ifnel
Yi
0 ifneUi
In particular, |z,| < € for each n € {1,2,...,u}. Thus, by Corollary 2.6
and Lemma 2.7, we may pick nonnegative g;, € Q for j € {1,2,...,v}
and nonnegative b, for n € Uf:_f I; such that 3°,cp €, = Z}’:l 9ikCj —
S ner bug€n. Forn € Iy, let by, = 1 and for n € U™, I, let b, = 0.
We have thus defined a v X m matrix G with nonnegative rational entries
and a u x m first entries matrix B with all first entries equal to 1 such that
AG = B. It may happen that G has some row equal to 0. In this case, pick
¢ € NY such that the entries of Ac are all positive (which one may do since
A is image partition regular). Letting G’ = ( G ¢ ) and B' = AG' we have
that B’ is a first entries matrix with all first entries equal to 1.

(d) = (e). This is trivial.

(d) = (f). Assume that (d) holds. We may suppose that the entries of
G and AG are integers, because this can be achieved by multiplying G by a
suitable positive integer. The first entries of B are then all equal.

(f) = (g). Let B and G be as guaranteed by (f). Given y € N™, let
7= Gy.

15



() = (h) This follows immediately from the observation that we can
choose n € N so that the entries of nG' are in w and that nB is then a first
entries matrix.

(9) = (h). This is trivial.

(h) = (b). Let B be as guaranteed by (h) and let C' be a central set in
N. Pick by Lemma 2.8 some 3 € N such that By € C*, and pick & such
that A7 = By.

(b) = (c). Pick d € N such that all entries of dA are in Z. We claim that
for every central set C' in N, there exists © € N” such that dA¥ € C". By
Lemma 2.1 (3C N N) is central, so pick € N” such that A7 € (5C N N)“.
Then dAZ € C".

Let C' be a central subset of N and pick a minimal idempotent p € SN such
that C' € p. Define ¢ : N — Z" by ¢(7) = dAZ and let ¢ : B(NY) — (BZ)"
be its continuous extension. Now dp is a minimal idempotent by Lemma 2.1.
Define dp = (dp, dp, . ..,dp)T and pick by Lemma 2.2, a minimal idempotent
q € B(NY) such that ¢(q) = dp. Now X} ,dC is a neighborhood of dp so
pick B € ¢ such that ¢[B] C X} ,dC. Then B C {# € N : AT € C*}, so
{¥ e N’ : A7 € C"} is central in N".

(¢) = (a). This is immediate because some cell of any finite partition of
N must be central.

Now we establish that statements (i), (j), and (k) are equivalent to each
of the statements (a) through (h).
(f) = (). For each i € {1,2,...,v}, let k; be the first nonzero entry in

rowiofG,letsi:gandti:;. Let
s; 0 -+ 0
s=| 0 =Y
0 0 - s

and let I be the u X u identity matrix. Then M = (AS™' —T) and

G
u(%)=B-B=0.

Also SG is a first entries matrix with all first entries equal to ¢ and so (SBG >

is a (u+v) x m first entries matrix. To see that M is kernel partition regular,

16



let 7 € Nand let N=J_, C;. Picki € {1,2,...,r} such that C; is central
and pick by Lemma 2.8 some #* € N™ such that

7= (SBG)fe crty.
Then M7 = 0.
(i) = (j). Let
tiarn  toara ... tyGi,
tias  taaza ... tyaa,
B = | tiasy teaz2 ... tyasy,
tlau,l t2au,2 s tvau,v

and let I, and I, be the u x v and v X v identity matrices respectively. Then

P = (g) and M = (B —1I,). To see that P is image partition regular,

let N be finitely colored and pick Z € N*** such that MZ = 0 and the entries

—

of Z' are monochrome. Let ¥ € N” and ¢ € N" such that 2' = <g,> Then

62M§=Bf—gj’andson:(§,):Z_’.

1
(7) = (k). For each i € {1,2,...,v}, let b; = : and let

7

ty 0 -+ 0
s= VY
0 0 - t

Then P = NS. Pick d € N such that {dt,dts,...,dt,} € N. We show
that statement (b) holds for N. Let C' be central in N and pick a minimal
idempotent p € GN such that C' € p. By [12, Lemma 6.6], Nd € p so C N Nd
is central. We have already shown that statement (a) implies statement
(b), so statement (b) holds for the matrix P. Pick z € NY such that P €
(C' N Nd)**¥. Then the entries of ¥ are the first v entries of PZ, hence are
multiples of d. Therefore ¥ = S¥ € N” and Ny = P¥ € C*t".

(k) = (a). This is trivial.

17



Finally we show that statements (1), (m), and (n) are equivalent to each
of the statements (a) through (k).

(e) = (I). If 7G # 0, we can choose b so that the first entry of b7G is
1. If 7G = 0, we can choose ¢ € N” such that 7- ¢ # 0 and add ¢ to G as
a new final column. In this case, we choose b so that br'- ¢ = 1. In either

br’ . . o .
case, <£) G is a first entries matrix with all first entries equal to 1 and so

statement (e) holds for <ZZ)

() = (m). For each i € {1,2,...,m}, there exists 7; € Q"\{0} such that
¢i(¥) = ;- & for all ¥ € Q. By applying statement (/) m times in succession
(using the fact that at each stage the new matrix satisfies (1) because (a)
implies (1) ), we can choose by, by, ..., b, € Q for which the matrix

b1
17

bm Fm

A

is image partition regular. The conclusion then follows from the fact that
every image partition regular matrix satisfies statement (b).

(m) = (n). We may presume that A has no repeated rows so that the

conclusion regarding 1/ becom@he statement that all entries of 4/ are distinct.
For i # jin {1,2,...,v}, let ¢, ; be the linear mapping from Q" to Q taking
- S, — . .
T tox; —xj. Fori# jin {1,2,...,u}, let ¢;; be the linear mapping from
Q" to Q taking @ to >-;_;(a;s — aj.) - ;. Applying statement (m) to the set
{pij i # 7in{1,2,...,0}}U{¢; : i # jin {1,2,...,u}}, we reach the
desired conclusion.

(n) = (b). This is trivial. O

As illustrated by the proofs of statements (m) and (n) of Theorem 2.10,
the fact, guaranteed by statement (), that finite image partition regular ma-
trices can be almost arbitrarily extended is very useful. Another important
property, originally established by W. Deuber in [4] in terms of first entries
matrices, is given by the following corollary.
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Corollary 2.11 Let A and B be finite image partition reqular matrices.
Then the matriz
(6 5)
O B

1s also image partition reqular.

Proof. Let C be a central set in N. Pick 7 and ¢ with entries from N such
that all entries of AZ and all entries of By are in C. Then all entries of

(0 %) ()

are in C. O

3 Bounded and Unbounded Ratios in Solu-
tions

Recall that we have seen in Theorem 2.10(n) that for any ux v image partition
regular matrix A and any finite coloring of N, there must be ¥ € N” with the
entries of A7 monochrome and with the entries of Z distinct. We note now,
that in fact one can require that the gaps between the entries of ¥ and the
gaps between the entries of A7 be as large as we please.

Theorem 3.1 Let A be a u X v image partition reqular matrix with entries
from Q such that no two rows of A are identical. There exist permutations o
of {1,2,...;u} and 7 of {1,2,... v} with the property that for every k € N
and every finite coloring of N, there exists ¥ € NY such that

(i) all entries of Y = AZ are monochrome,
(ii) forie {1,2,...,0 =1}, 2. >k + Tr441), and
(iii) fori e {1,2,...,u =1}, Yoii) > Kk + Yo(ir1) -
Proof. The conclusions are trivial if © = 1 so we assume that v > 2. Let

w = (g) + (g) . We apply Theorem 2.10(l) a total of w times to produce

a (u+ w) X v image partition regular matrix B such that

(1) the first u rows of B are the rows of A,
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(2) for each pair i < j of members of {1,2,...,v} there exist b € Q\{0}
and a row of B consisting of all 0’s except for a b in column ¢ and a —b
in column 7, and

(3) for each pair i < j of members of {1,2,...,u} there exist ¢ € Q\{0}

and a row of B which is ¢ times the difference between rows ¢ and j of
A.

We define the permutations as follows. Pick Z € NY such that if = BZ €
N“*"_ Let ¢ and 7 be the permutations of {1,2,...,u} and {1,2,...,v} such
that z-) > @r@2) > ... > Ty and Yo1) > Yor2) > ... > Yo(u). Notice that
the permutations chosen are independent of the choice of Z. (If for example
the row of B guaranteed by (2) for {1,3} has a positive b in column 1 and
—b in column 3, then bz — bzs € N so x; > x3.)

Pick m € N such that for each pair {i,j} of distinct members of {1,2,
...,v}, if b is the number guaranteed for {7, j} by (2), then || < m.

Now, let £ € N and a finite coloring v of N be given. Define a coloring
7" of N by agreeing that 7/(a) = +/(b) if and only if either a = b < mk
or a > mk, b > mk, y(a) = v(b), and @ = b(mod k + 1). Pick 7 € N"
such that all entries of iy = BZ are monochrome with respect to 7. We
know that y,1) > ¥ (2) and consequently it must be the case that for each
ie{l,2,...,ut+w}, y;, > mk.

We have that for all i € {1,2,...,u — 1} Yo) > Yo(ir1) and Yo =
Yo (i+1) (mod k+ 1) and thus Yo(i) > k + Yo(i+1)-

Finally, let i € {1,2,...,u—1} and pick b € Q\{0} and a row ¢ of B with
all zero entries except for a b in column 7(7) and a —b in column 7(i+1). Then
mk <y = b(Tr0) — Trr1)) < M(Tr) — Trg1)) and thus z-) > k 4+ 241
as required. O

Theorem 3.1 raises its own questions. Namely, how large (or small) can
we insist the ratios between ;) and x,;41) be? And how large (or small)
can we insist the ratios between y,;) and y,(+1) be? We address now the
first of these questions.

First entries matrices have been important for some time in the theory
of partition regularity of matrices. In [4], Deuber showed that any subset
of N contains solutions to all kernel partition regular matrices if and only
if it contains images of all first entries matrices. He showed further that
the property of containing images of all first entries matrices is partition
regular, thereby answering the old question of Rado’s about the property of
containing solutions to all kernel partition regular matrices.
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It was therefore not surprising when image partition regular matrices
were characterized as those intimately related to first entries matrices. (See
Theorem 2.10(d), (e), (f), (g9), and (h).) In the following theorem, we see
that it is not just an intimate relation, but that first entries matrices are
precisely the answer to our question.

Theorem 3.2 Let A be a u x v matrix with entries from Q. The following
statements are equivalent.

(a) For any k € N and any finite coloring of N, there exists ¥ € N” with
all entries of AT monochrome and x; > kx; 1 for every i € {1,2,...,
v—1}.

(b) A is a first entries matriz.

Proof. (a) = (b). Suppose that the first nonzero entries of the I*® and m'™

rows of A both occur in the 7™ column. For every k € N, there exists 7 in
N” such that ¥ = AZ € N* and x; > kw;yq for alli € {1,2,...,0 — 1}. By

choosing k large enough, we can ensure that I s arbitrarily close to a; ;.
L
a/ .
So a;; > 0 and, similarly, a,, ; > 0. Now s arbitrarily close to b By

Ym G,mJ'
Lemma 2.3, we may also suppose that Y i arbitrarily close to 1. (Given
Ym
ai; Qg
e > 0 with € < min{l’J,’J}, we may suppose that ;/—l,% < % Then
Am,j  Qj m
1 Y
<= <1l+e€) Thusa.;=a,,,;.
) 1+e Y + ) l,j »J
(b) = (a). Let dy,ds,...,d, € Q" be chosen so that d; is equal to the
first entry of any row of A whose first entry is in the j®* column. Let k € N

and a coloring v of N be given. Let

YL Um 1 4
ym ' Yl Te

di  —kdsy 0 0 0
0 do —kds - 0 0
0 0 ds 0 0
B = : : : : :
0 0 0 s dyy —kd,
A

and note that B is a first entries matrix, hence image partition regular. Pick
Z € N” such that the entries of B are monochrome with respect to v. Then
for each i € {1,2,...,v — 1}, dyx; — kd;z; 11 > 0. O
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The idea in the proof that (b) implies (a) of forcing the inequality d;z; —
kd;z;y 1 > 0 by requiring that d;x; — kd;x; 11 be in the same cell of a coloring
of N has been previously used in [11].

We now turn our attention to the other side of the coin and ask when
we can guarantee the existence of a bound £ so that whenever N is finitely
colored there must exist @ with the entries of AZ monochrome and the ratio
betweem entries of £ bounded by k. There is a trivial sufficient condition.

Lemma 3.3 Let A be a u X v matriz with entries from Q and assume that
there exists T € (QM)Y such that AT = 1, where 1 is the vector in N* with
all entries equal to 1. Then there exists k € N such that whenever N is
finitely colored there must exist ¥ € NY with the entries of AT monochrome

and = < k wheneveri,j € {1,2,...,v}.
Ly

Proof. Pick # € (Q")? such that AZ = T and let

k:max{xi i€ {1,2,...,1}}} .

L

Pick d € N such that dZ € N". Then the entries of A(dZ) are monochrome
with respect to any coloring of N. O

If all entries of A are nonnegative, we shall see in Corollary 3.5 that this
trivial condition is also necessary.

The condition of Lemma 3.3 is not necessary for an arbitrary matrix to
guarantee monochrome solutions with bounded ratios, as may be seen by

1 _01> If A% = T, then 75 = 0. On the other

hand, given any finite coloring and any § > 1, there exist ¥ € N? with the
entries of A7 monochrome and x5 < 7 < dxs. To see this, pick any color
class with infinitely many members and pick y; and 3o > %yl in the same
color class. Let x1 = yo and z9 = yo — 1.

One of the general characterizations involves a version of the columns
condition.

considering the matrix A = (

Theorem 3.4 Let A be a u X v matriz with entries from Q. The following
statements are equivalent.
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(a) There exists k € N such that whenever N is finitely colored there must
Ty
exist ¥ € N with the entries of A¥ monochrome and — < k whenever
L
i,je{l,2,... v}
(b) For somen € N, there is a v X n matriz B over Q, with all its entries

non-negative and all those in the first column positive, for which AB
1S a first entries matrix.

(c) There exist ti,to, ..., t, € QT such that the matriz

tiarn  taarp  tzang -+ tyay, -1 0 0 - 0
tiagq  toags tzass -+ tyaz, 0 -1 0 --- 0
M = | tiazq  taa32 tzazz - t,a3, o o0 -1 --- 0
iy tolyus 13043 - Ty 0 0 o --- -1

satisfies the columns condition (Definition 1.6) with {1,2,... v} C I;.

Proof. (a) = (b). By Lemma thAa, for every ¢ > 0, we can choose # € N"

€ ..
so that ¥ = A¥ € N, — < k for all 4,5 € {1,2,...,v} and, for every
Lj
. Yt Yt 1
s, t € {1,2,...,u} such that ys < y;, either — < 14+¢€ or = > —. (Of course,
y €

Ys s
Z and 3 depend on e. We do not indicate this in the notation, in order to
avoid equations that would be quite cumbersome.) Choose m € {1,2,...,u}

such that vy, = max{y; : i € {1,2,...,u}}. Foreachi € {1,2,... ,u}, we

have 377, aij—Lt = Ym Yi. We note that, for every i € {1,2,...,u}, 1 —€e<
Ty T1 Ym

Yi Yi 1 .

~— < 1or = < e. Furthermore, — < — < k for every j € {1,2,...,v}

Ym yTUn k I

and 7% < k > " |am,;]. So the numbers Im ave an upper bound independent
X -_ T
j=1
of e. We can choose a sequence of values of € converging to 0 for which the
x .
numbers —2 converge to a limit d;, which is necessarily positive; and the
I

values 2™ converge to a limit d > 0. We may also suppose that the numbers
T

i converge to a limit w; € {0,1}. Let &,¢,...,¢, denote the columns of

Ym
A. Then >%_, d;¢; = dw for some w € {0,1}*. By Lemma 2.5, we have
>j_17;C; = rw, where each r; € Q" and r € QN [0,00). By Theorem
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2.10(d), there exist m € N and a v x m matrix G with non-negative rational

entries for which AG is a first entries matrix. Let b = (ry o ... 1y )T.
If B=(b G),then AB is a first entries matrix.

(b) = (a). Choose d € N such that all entries of G = dB are in Z. Then
AG is a first entries matrix. Pick » > 2 such that for all t € {1,2,...,v} and
3
all j € {1,2,....m}, gr; < g - ga and pick k € N such that k > > I gy
gn,l
every t,n € {1,2,...,v}.
Let N be finitely colored, and pick by Theorem 3.2 ¥ € N such that the

entries of AGZ are monochrome and for alli € {1,2,... ,m—1}, x; > r-x;41.
Let 2= GZ and let ¢t,n € {1,2,...,v}. Then
2= 25 Gty T
,
< 9t71‘$1+22n:21'9t,1'ﬁ'$1
1 m
= g1 %1 (1+4er—2
7j=2
3
< G171 5
z 3
Now z, > gn1 - x1. Thus aia < - gu.1 <k
Zn gn,l

(b) = (c¢). We note that statement (c) is equivalent to stating that there
exists m € N such that (AT —I)M = O, for some diagonal v X v matrix
T with positive rational diagonal entries and some first entries (u + v) x m
matrix M, for which all the first v entries in the first column are positive.

We may suppose that all the first entries of AB are equal to 1, since this
could be achieved by multiplying each column of B by a suitable positive
rational number. We can choose a diagonal v x v matrix S, with positive
rational diagonal entries equal to the reciprocals of the entries in the first
column of B, for which SB is a first entries matrix with all its first entries

equal to 1. Then (AS™! —T) <ig) = O, where I denotes the u X u

identity matrix. Now (SB> is a first entries matrix with all of the first

AB
v entries in the first column equal to 1. So statement (c¢) follows, with
t1,ta, ..., t, denoting the diagonal entries of S~!.

(¢) = (b). We may suppose that all the entries of M are non-negative,
because we can replace M by ME, where E is an m x m matrix for which
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ei; =N"ifi < jande; =0if i > j, where X is chosen to be a suitably
large rational number (see [12, Lemma 15.14]). Then (b) follows immediately

o B . . .
by writing M = (C)’ where B is a v X m matrix and C' a v X m matrix. O

Corollary 3.5 Let A be a u X v matriz with entries from Q and all entries
nonnegative. The following statements are equivalent.

(a) There exists & € (Q1)” such that AT =1,
(b) There ezists k € N such that whenever N is finitely colored there must

T
exist ¥ € NY with the entries of AX monochrome and — < k whenever
L
i,jef{1,2,... v}

Proof. The fact that (a) implies (b) is a consequence of Lemma 3.3.
(b) = (a). Since the entries of A are nonnegative, this is an immediate
consequence of Theorem 3.4. 0O

We now turn our attention to the question of bounded and unbounded
ratios in the image. Notice the difference between the condition of statement
(a) in the following theorem and that in Corollary 3.5, where the entries of
Z are required to be positive. In particular, as a consequence of Corollary

3.5 and Theorem 3.6, we have that the matrix A = (1 é

finite coloring of N, monochrome solutions A¥ = i with 91 as close to 1 as

) has, for any

desired, but for any k there is a coloring so that any monochrome solution
T )
has — >k or — > k.
) T
Theorem 3.6 Let A be a u x v matrix over Q. The following statements
are equivalent.

(a) There exists Z € Q' such that AZ = 1 and for each i € {1,2,... v},
(b) There exists m € N such that, for every p € K(6N) for which mN € p,
every P € p, and every € > 0, there exists ¥ € N such that ¥ = AZ €

P" and for alli,j € {1,2,...,u}, LI 1+e.
Yj
(c) For every central set C' in N and every e > 0, there exists ¥ € N” such
that f = AZ € C" and for all i,5 € {1,2,...,u}, LI 1+e.
Yj
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(d) For every finite coloring of N and every ¢ > 0, there exists ¥ € N’
such that iy = Ax € N“, the entries of ij are monochrome and, for all
jefl2,.. . ul, L1t

Yj

(e) For every e > 0, there exists ¥ € NY such that j = AZ € N* and, for

ali,je{1,2,...u}, L <1+e
Yj

(f) There exists k,m € N such that, for every p in the smallest ideal of
ON for which mN € p and every P € p, there exists ¥ € NY such that
y = AZ € P" and, for all i, € {1,2,...,u}, Ly

Yj
(9) There exists k € N such that, for every finite coloring of N, there exists

T € NY such that y = AZ € N", the entries of y are monochrome, and

foralli,j €{1,2,...,u}, L
Yj

Proof. (a) = (b). Pick Z € Q" such that AZ = T and for each i € {1,2,
...,v}, z; > 0. Pick m € N such that mz' € w", let p € K(ON) such that

mN € p, let P € p, and let 0 < € < 1. Pick § € N’ such that all entries of
A5 are in Z and let = AS. Let

I = {(rty+nm,rto+nm, ... rt,+nm) : r,n € N and nm > for each i}

€

and let £ =1 U{(nm,nm,...,nm) :n € N}. Then E is a subsemigroup of
N* and [ is an ideal of E. Thus c/(gyy E is a subsemigroup of (SN)" and
clignyu 1 is an ideal of c¢fgny E by [12, Theorems 2.22 and 4.17].

Let = (p,p,...,p). Then since mN € p and (mN)* C E, we have

D € cliawy E. By [12, Theorem 2.23], K((8N)*) = (K(8N))" and so p €
K((ﬁN)“) N clpny E and thus by [12, Theorem 1.65], p € K(cl(gny E) and

4r tl
therefore p € cl(gn)« 1. Thus one may choose r,n € N with nm > L for

€
each i € {1,2,...,u} such that rt; + nm € P for each i.
Let 7 = r§+nmZ and let ¥ = AZ. Then ¥ € N” and for each i € {1,2,

cooub, y; =rti+nm. Let i, j € {1,2,...,u}. Then rt; +nm < nm-(l—i—i)
rt; +nm - I+ 5
rt;+nm 11— 3

(b) = (c¢). Pick a minimal idempotent p in SN such that C' € p. By [12,
Lemma 6.6], for every m € N, mN € p.

andrtj+nm>nm'(1—i)andso <l+e.
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It is obvious that (c¢) implies (d), (d) implies (e), (b) implies (f) and (f)
implies (¢). By Lemma 2.3, (¢g) implies (e).

To complete the proof, we shall show that (e) implies (a). Let ¢, ¢, .. ., €y
be the columns of A. By Lemmas 2.5 and 2.7 it suffices to show that 0 €
cé{zOIqL > 5-12iCj 1 20,21, -+, % € R, 20 <0, and z; > 0 for j € {1,2,...,

v}} (For then —2l = >_7—1 2iC; for some 2,21, ..., 2, € Q with z < 0 and

z; > 0for j € {1,2,...,v}.) To see this, let 0 < € < 0 and pick ¥ € N” such

that ¥ = A¥ € N and, for all ,5 € {1,2,...,u}, Yi o 1+e Let zg=—1
Y

j
and for j € {1,2,..., v}, let z; = Y Then for each i € {1,2,...,u} we have
Y1
—1+Zy—12jaij:—1+&and1—e< L <%<1+6. O
. 7 Y1 l+€¢

Theorem 3.7 Let A be a u x v matrix over Q. The following statements
are equivalent:

(a) For every k € N, there exists ¥ € NY such that ¥ = Az € N and, for
everyi € {1,2,...,u— 1}, y; > kyiq1.

(b) There exists a v X u matriz B over Q with non-negative entries, such
that AB is an upper triangular matriz with positive diagonal entries.

(c) For every k € N and every finite coloring of N, there ezists ¥ € N” such
that ¥ = Ax € N", the entries of i are monochrome, and y; > ky;i1
for everyi e {1,2,...,u—1}.

Proof. (a) = (b). Given € > 0, choose k € N such that ; < € and let 7 have
the properties guaranteed by (a). For every i,m € {1,2,...,u}, we have

-1 aij - = 2= Note that = = 1if i = m and = < e if i > m. Thus,
if €, denotes the m™ unit vector in R*, every neighborhood of é,, contains
a vector which is a linear combination of the columns of A and the vectors
€1,€2,...,Em_1, with the coefficients of the columns of A being positive. It
follows from Corollary 2.6 and Lemma 2.7 that there exists I;m € Q", with
non-negative entries, such that the i entry of Al;m is 1 if ©+ = m and 0 if
1 > m. If B denotes the matrix with columns 51, 52, e ,gu, then AB is an
upper triangular matrix with all diagonal entries equal to 1.

(b) = (c). Let k € N and let a finite coloring of N be given. We can
multiply B by a suitable positive integer to obtain a matrix C, with entries
in w, for which AC' = D is a first entries matrix in which, for each ¢ €
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{1,2,...,u}, the first entry of the i*® row occurs in the i*" column. We may
suppose that C' has no row equal to 0, because we can add any column with
entries in N to C' as a new final column. Let w denote the number of columns

of D (so w =wu or w=wu+1). Choose € satisfying 0 < € < il min{diyi ;

ie{l,2,... ,u}} and then choose m € N such that 3°%, [d; ;| < me for every
i€{l1,2,...,u}. By Theorem 3.2, there exists & € N* such that x; > mx;

for every ¢ € {1,2,...,w — 1} and ¢ = DZ € N* has monochrome entries.
For each i € {1,2,...,u — 1}, one has that 37, |d; ;| - v; < x; - € and
Yi _ >l di
Yir1 Z}U:iﬂ dz‘+1,jIj
Yi di; — € .
so that > — > k. Thus (c) follows from the observation that

Yi+1 €
Dz = A(CZ) and C¥ € N".

This completes the proof, since (¢) obviously implies (a). O

In Corollary 3.5 and Theorem 3.6 we had conditions involving 1 being in
the positive and nonnegative spans of the columns of A respectively. In the
following theorem we explore the implications of 1 being in the range of A.

Theorem 3.8 Let A be a u X v image partition reqular matriz over Q. The
following are equivalent:

(a) There exists § € QY such that A5 =1.

(b) There exists | € N such that, if p is in the smallest ideal of SN and
IN € p, then, for every P € p, there exists ¥ € NY such that AZ € P".

(c) There exists k € N such that, given any finite coloring of N, there
exists Z € 7' such that the entries of Y = AZ are monochrome positive
integers and satisfy LY’ for everyi,j € {1,2,...,u}.

Yj

(d) Given any € > 0 and any finite coloring of N, there exists Z € Z" such

that the entries of iy = AZ are monochrome positive integers and satisfy

Yi 1+e€ for everyi,5 € {1,2,...,u}.
Yj
(e) Given any € > 0, there exists 2 € Z° such that ¥ = AZ € N and

%<1+ef07“everyi,jE{l,2,...,u}.
J
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Proof. We first show that (a) and (b) are equivalent.

(a) = (b). We can choose Z € Z" and | € N such that AZ = [, where
[= (L7 - Z)T € N“. Suppose that p is in the smallest ideal of SN and
that IN € p. Let P € p. There exists a minimal idempotent ¢ € SN such that
p = p+q [12, Theorem 2.8 and Lemma 1.30]. Let P’ ={n € P: —n+P € ¢}.
Then P’ € p. Since IN € p we can choose m € N such that im € P’. Let
Q = —lm+ P € q. By Theorem 2.10(b), there exists ¥ € N” such that
AZ € QY and z; + mz; > 0 for every i € {1,2,...,v}. (The fact that the
entries of & can be chosen to be arbitrarily large follows from Lemma 2.2. For
every r € N, {Z € N” : z; > r for all i € {1,2,...,v}} is a member of every
idempotent in S(N").) Then mZ+ & € N” and A(mZ+ &) = ml + A% € P*.

(b) = (a). We may suppose that the entries of A are in Z, as we could
replace A by nA for a suitable n € N.

Suppose that 1 ¢ {AZ : & € Q"}. Then there exists @ € Z° such that
@-AZ =0 for every z € Q*, but @- 1 # 0.

Choose a prime number r satisfying > [ and r > |li - I|. Let ¢ be a
minimal idempotent in SN and let p = [+ ¢. Then P = {n € N : n =
[(mod r)} € p (by [12, Lemma 6.6]). It follows from (b) that there exists
7 € 7V such that A7 € P* and hence that A7 = I1 in Z,. This is a
contradiction, as @ - AT = 0 in Z,, but « - 17 #0in Z,.

We now show that (c¢), (d) and (e) are equivalent to (a) and (b). It is
immediate from Lemma 1.3 that (¢) and (d) are equivalent, and it is obvious
that (d) implies (e). Now (e) implies that 1 is in the closure of the range of
A and therefore in the range of A, since linear subspaces of Q" are closed.
So (e) implies (a). It is trivial that (a) implies (e). O

4 Preserving Large Sets

In this section we investigate questions raised by the characterization in The-
orem 2.10(c¢). There are several notions of largeness that make sense in any
semigroup. The notion of “central” sets is one of these. Among the others
are the notions of “syndetic”, “piecewise syndetic”, “IP”, and “A” sets.

Definition 4.1 Let (S, +) be a semigroup and let B C S.

(a) The set B is syndetic if and only if there exists some G € Py(S) =
{H C S: H is finite and nonempty} such that S = U,c.¢ —t+ B.
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(b) The set B is piecewise syndetic if and only if there exists some G €
P(S) such that for every I € Ps(S) there exists € S such that
F+2zClUee —t+B.

(¢) The set B is an [P set if and only if there exists a sequence (x,,)2° in
S such that F'S((x,)22,) C B, where FS((x,)2,) = {>Xper on: F €
P¢(N)} and the sums are taken in increasing order of indices.

(d) The set B is a A set if and only if there exists a sequence (s,)5°, in
S such that for every n,m € N with n < m, s,, € (s, + B).

Notice that, if S can be embedded in a group G, B is a A set if and only if
there is a sequence (s,,)22 ; such that {—s, + s, : m,n € Nand n < m} C B.
Notice also that any IP set is a A set. (Given (x,)5, with F'S((z,)2>,) C B
and given n € N, let s, = >1 | 24.)

Given any property &£ of subsets of a set X, there is a dual property £*
defined by specifying that a subset B of X is an £* set if and only if BNA # ()
for every & set A.

Definition 4.2 Let (S,+) be a semigroup and let B C S. Then B is a
central* set if and only if BN A # () for every central set A in S. Also, B
is a PS* set if and only if BN A # 0 for every piecewise syndetic set A in
S, B is an IP* set if and only if BN A # () for every IP set Ain S, B is a
syndetic* set if and only if BN A # () for every syndetic set A in S, and B
is a A* set if and only if BN A # () for every A set A in S.

The concept of “syndetic*” is more commonly referred to as “thick”, and
we shall follow this practice.

The A sets and A* sets are interesting because they arise as sets of
recurrence, which in turn have significant combinatorial properties. (See
[5].) The other notions discussed above have simple, and useful, algebraic
characterizations in terms of 35.

Lemma 4.3 Let (S,+) be a semigroup and let B C S.

(a) A is piecewise syndetic if and only if AN K(BS) # 0.
(b) A is IP if and only if there is some idempotent of 3S in A.
(c) A is syndetic if and only if for every left ideal L of 3S, AN L # 0.

(d) é 1s central if and only if there is some minimal idempotent of 3S in

A.
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(e) A is central® if and only if every minimal idempotent of 3S is in A.
(f) A is thick if and only if A contains a left ideal of 3S.

(g9) A is IP*if and only if every idempotent of 3S is in A.

(h) A is PS*if and only if K(B8S) C A.

Proof. Statement (a) is [12, Theorem 4.40], (b) is [12, Theorem 5.12], (¢) is
[3, Theorem 2.9(d)], and (d) is the definition of central. Statements (e), (f),
(9), and (h) follow easily from statements (d), (¢), (b), and (a) respectively.

U

As a consequence of Lemma 4.3, and the observation already made that

any IP set is a A set, we see that the pattern of implications given below
holds.

A*

|

IP* PS*

N A

central® thick=syndetic*

e

syndetic central

N\

piecewise syndetic P

A

It is easy to produce examples in (N, +) showing that none of the missing
implications is valid in general. (Or see [1] for an explicit list of examples.)

The following theorem relates image partition regular matrices and piece-
wise syndetic sets.

Theorem 4.4 Let A be a u X v image partition reqular matriz over Q. The
following statements are equivalent:

(a) For every piecewise syndetic subset P of N, there exists ¥ € N such
that Ax € P*;

(b) There exists Z € Z° such that AZ = 1, where 1 denotes the vector in
N" whose entries are all equal to 1.
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Proof. This follows easily from Lemma 4.3(a) and the proof of (a) < (b) in
Theorem 3.8, taking [ = 1. O

¢

In [2] it was shown that if “large” meant any of “A”, “IP”  “central”,
“central®”, “IP*’ or “A*”, and B is a large subset of N, then for every
positive @ € R and every v € R with 0 < v < 1, {|an+ v] : n € B} is also
large (in the same sense). In [6] it was shown that if B is a piecewise syndetic
subset of Z, I € N, and AP, = {(a,a+d,...,a+ (I —1)d) : a,d € Z}, the
group of length [ arithmetic progressions (including the constant ones), then
B'N AP, is piecewise syndetic in AF,. In [1] a systematic study of this latter
phenomenon was undertaken. These results apply in the current context in
terms of when the set of images contained in a given set is large among the
set of all images.

Theorem 4.5 Let A be a u X v matriz with entries from Q, let I = {AZ :
ZeN}NNY and let C C N.

(a) If I # 0, “large” is any of “IP*”, “A*”, “PS*” or “central*”, and C
1s large in N, then I N C" s large in I.

(b) If 1 eI, “large” is any of “piecewise syndetic”, “central”, or “thick”,
and C is large in N, then I N C" is large in I.

Proof. (a) For IP* and A* [1, Corollary 2.3] requires only that I be a
subsemigroup of N“. For PS* and central*, [1, Corollary 2.7] requires in
addition that for each i € {1,2,...,u}, the i*" projection m;[I] be piecewise
syndetic in N. This trivially holds because, if d € m;[I], then dN C m;[I].

(b) Letting £ = I, we have that

a
raeN; CFH

a

so that [1, Theorem 3.7] applies. O

Notice that the hypothesis of Theorem 4.5(b) differs from that of Corollary
3.5 which asked that 1 be in the positive rational span of the columns of A.
If “large” is “piecewise syndetic”, some such distinction is necessary as can

be seen by considering the 1 x 1 matrix A = (2) and the piecewise syndetic
subset C' = 2N + 1 of N. For “central” and “thick” the proof of [1, Theorem
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3.7] can be modified to show that the assumption that 1 is in the positive
rational span of the columns of A is enough.

We shall be concerned for the rest of this section with establishing ana-
logues of Theorem 2.10(c) for the other notions of largeness. That is, we wish
to determine conditions that guarantee that if a set C'is “large” in N, then
{z e N": A7 € C"} is “large” in N".

Lemma 4.6 Let A be a uxv matriz with entries from Z, define o : N* — Z"
by p(Z) = AZ, and let ¢ : B(NY) — (BZ)" be its continuous extension. Then
@ is a homomorphism and K ((6N)*) = (K (6N))".

(a) If there exists & € N such that AZ € N, then @[B(N")|NK ((6N)*) # ().
(b) If for all ¥ € N, AZ € N*, then ¢|K(B(N"))] C K((SN)*).

Proof. By [12, Corollary 4.22] we have that ¢ is a homomorphism, and by
[12, Theorem 2.23] K((SN)*) = (K(8N))".

(a). Since ¢[B(N")] = cl{AZ : ¥ € N}, we need to show that c/{AZ :
7eN'}N(K(BN))" £ (.

Pick # € N” such that A7 = y € N“. Pick any minimal idempotent p in
ON. Then by Lemma 2.1 p'= yp € (K(SN))*. To see that p' € cl{AZ: 7 €
N}, let U be a neighborhood of p'and for each i € {1,2,...,u}, pick D; € p
such that X! y;D; C U. Pick a € Ny D;. Then A(aZ) = ay € U.

(b). By part (a), ¢[B(N”)] N K((BN)*) # 0, so by [12, Theorem 1.65],
K@) = FA0N)] 0 K((GN)*) (because G(B(NY)] C (BN)*). Also by
(12, Exercise 1.7.3], K(@[B(N")]) = ¢[K(B(N"))]. O

Theorem 4.7 Let A be a u x v matrix with entries from Q and assume that
for all ¥ € N”, every entry of AT is positive. If “large” is any of “IP*”,
“N*7or “central*”, and C' is large in N, then W = {¥ € N” : A¥ € C"} is
large in N".

Proof. We show first that it suffices to prove the theorem under the ad-
ditional assumption that all entries of A are in Z. Indeed, suppose we have
done so and pick d € N such that all entries of dA are in Z. We claim that
dC' is large in N, which we check individually.

Assume first that “large” is “IP*” and let a sequence (z,)%; in N be
given. By [12, Theorem 5.14 and Lemma 6.6] pick a sum subsystem (y,,)°,
of (z,)52, such that dly, for each n. Pick a € C' N FS((%)s2,). Then
da € dCNFS((x,)2 ).

33



Next assume that “large” is “A*”. Let a A set B in N be given and choose
a sequence (s,)>° ; such that for every n,m € N with n <m, s,, € (s, + B).
(In particular, for each n < m, s, < s,,.) By passing to a subsequence, we
may presume that for each n < m, s, = s,, (mod d). Pick i € {1,2,...,d}
such that for each n € N, s, +i = 0(mod d). Then ()2 | is a sequence
in N so pick n < m such that %ﬂl — S”TH € C. Then s,, — s, € dC.

Finally assume that “large” is “central®”. Let p be a minimal idempo-
tent in SN. By Lemma 2.1, ép is a minimal idempotent so C' € ép and
consequently dC' € p.

Since we have established that dC' is large, we have that {Z € N” : dA7 €

(dC)"} is large, and {¥ € N”: dAZ € (dC)*} = {Z € N : A¥ € C"}.

Thus we assume that all entries of A are in Z. Define ¢ : N — N“ by
o(Z) = AZ, and let ¢ : B(NY) — (SN)* be its continuous extension.

Assume first that “large” is “IP*”. Let p be an idempotent in 5(N”). We
need to show that W € p. Since ¢ is a homomorphism, $(p) is an idempotent
in (BN)* and so C" is a neighborhood of ¢(p), and hence W € p as required.

Next assume that “large” is “A*”. Let B be a A set in NY and pick a
sequence (Z(™)°° | in N” such that for every n,m € N with n < m, £™ ¢
(£ + B). In particular, for each n < m, we have #™ — 7™ € N”. We need
to show that there exists n < m such that ™ — 2™ ¢ W.

For each n € N, let 4™ = AZ™ . Notice that, for n < m we have that
all entries of A(z™) — Z(™) are positive, and consequently each entry of 7™
is larger than the corresponding entry of ™. By Ramsey’s Theorem [14]
(or see [8, Theorem 1.5] or [12, Theorem 18.2]), pick an infinite subset D; of
N such that for all n < m in Dy, y%m) — y%n) € Cor for all n < m in Dy,
ym i) e N\C. Since C'is a A* set, the latter alternative is impossible,
so the former must hold. Inductively, given ¢ € {1,2,...,u — 1}, choose by
Ramsey’s Theorem an infinite subset D;.; of D; such that for all n < m
in Djyq, yl(frnl) — yl(i)l € (. Having chosen D, pick n < m in D,. Then
zm — 7 e W,

Finally assume that “large” is “central*”, and let p be a minimal idempo-
tent in G(N"). By Lemma 4.6, ¢(p) is an idempotent and ¢(p) € (K(5N))"
so that @(p) € C". O

The requirement in Theorem 4.7 that for all ¥ € N, every entry of AZ
be positive may not be omitted. To see this, consider the 1 x 2 matrix
A= (1 —1)andlet C = N. Then W = {7 € N> : A7 € N} = {¥ €
N? : 2y > x,}. It is routine to check that N*\WW is thick and thus W is not
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syndetic, and hence is not central®, PS*, IP* or A*. (The fact that W is not
PS* tells us that this requirement cannot be eliminated from the following
theorem either.)

Theorem 4.8 Let A be a u X v matriz with entries from Z and assume
that for all ¥ € N’ every entry of A¥ € N*. If C is PS* in N, then
W ={FeN":A¥ € C"} is PS* in N".

Proof. Define ¢ : N* — N“ by p(Z) = AZ, and let ¢ : B(N”) — (BN)* be its
continuous extension. Let p € K(G(N")). By Lemma 4.6, ¢(p) € (K(8N))*
and thus @(p) € C" and thus W € p as required. O

The requirement that A have entries from Z cannot be reduced to a
requirement that entries come from Q in Theorem 4.8, as can be seen by
considering the 1 x 1 matrix A = (%) and C' = N. In this case one has
W = {z € N: Ax € N} = 2N which is neither PS* nor thick. (The latter
fact shows that this requirement cannot be eliminated from Theorem 4.10 as
well.)

The following is another well known fact that we cannot find in [12].

Lemma 4.9 Let p € K(ON). Then SZ + p = N+ p.

Proof. By [12, Corollary 4.33], N* is an ideal of SN so K(ON) C N*.
Therefore, by [12, Theorem 1.65], K(N*) = K(ON). Since p € K(N*),
p € N*+ p, so pick ¢ € N* such that p = ¢+ p. To see that fZ+ p C SN+ p,
let r € B7Z. By [12, Exercise 4.3.5], N* is a left ideal of SZ so r + ¢ € SN.
Thusr+p=r+q+pe N+np. O

Theorem 4.10 Let A be a u X v image partition reqular matrix with entries
from Z. If C is thick in N, then W = {# € N" : AZ € C"} is thick in N”.

Proof. Since C is thick, pick a left ideal L of 3N such that L C C. Pick
by [12, Corollary 2.6] a minimal idempotent p € L. Define ¢ : N¥ — Z*
by ¢(¥) = Az, and let ¢ : S(N”) — (GZ)" be its continuous extension. Let
p=(p,p,...,p)T and pick by Lemma 2.2 a minimal idempotent ¢ € 3(N")
such that ¢(q) = p. (By Theorem 2.10(b), p satisfies the hypotheses of
Lemma 2.2.)

We claim that ¢[B(N") + q] € C" so that B(N") + ¢ C W as required.
To this end, let r € S(NY) and let i € {1,2,...,u}. Then m; 0 @(r + q) =
mi(@(r)) +p € BZ+ p. By Lemma 4.9, Z+p=3N+pC L CC. O
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The requirement in Theorem 4.10 that A be image partition regular can-
not be reduced to requiring that its entries come from Z or even from N
;) and C' = {2**+i : n € N and
i €{1,2,...,n}}. Then C is thick in N and {x € N: Az € C*} = 0.

Finally, we observe that no analogous results are available for the notions
“syndetic” or “piecewise syndetic” (considering A = (2) and C = 2N +
1

as can be seen by considering A = (

1
1) nor for the notions “IP” or “A” (considering A = | 1 2 [ and C =

1 3
FS((22")72)- )
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