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We present here some new characterizations and consequences of
image partition regularity and investigate some issues raised by these.
One of our characterizations is that the image partition regular ma-
trices are precisely those that preserve a certain notion of largeness
(“central sets”) – we examine what happens for other well known
notions of largeness. Another property of image partition regular ma-
trices is that (except in trivial cases) the entries of A~x may be chosen
to be distinct – we investigate when we may choose the entries to be
“close together” or “far apart” in various senses.

1 Introduction

Consider the following classical theorems of Ramsey Theory. (We take N =
{1, 2, 3, . . .} and ω = N ∪ {0}.)

Theorem 1.1 (Hilbert) Let r ∈ N and let N =
⋃r

i=1Di. For each m ∈ N
there exist i ∈ {1, 2, . . . , r}, a ∈ N, and a sequence 〈xn〉mn=1 in N such that
for each nonempty F ⊆ {1, 2, . . . ,m}, a+

∑
t∈F xt ∈ Di.

Proof. [9].

We are using here “partition” terminology (at least if one assumes that
Di ∩ Dj = ∅ when i 6= j). In the alternative “coloring” terminology which
we will also use on occasion, the following theorem would say: “Whenever N
is finitely colored, there must exist x, y ∈ N with {x, y, x+ y} monochrome.”

Theorem 1.2 (Schur) Let r ∈ N and let N =
⋃r

i=1Di. There exist i ∈
{1, 2, . . . , r} and x and y in ben with {x, y, x+ y} ⊆ Di.

Proof. [15].

Theorem 1.3 (van der Waerden) Let r ∈ N and let N =
⋃r

i=1Di. For
each l ∈ N there exist i ∈ {1, 2, . . . , r} and a, d ∈ N such that {a, a+d, . . . , a+
ld} ⊆ Di.

Proof. [16].

Consider also the matrices
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A =



1 1 0 0
1 0 1 0
1 1 1 0
1 0 0 1
1 1 0 1
1 0 1 1
1 1 1 1


, B =

 1 0
0 1
1 1

 , and C =



1 0
1 1
1 2
1 3
1 4
1 5
1 6


.

The case m = 3 of Theorem 1.1 is the assertion that whenever r ∈ N and
N =

⋃r
i=1Di, there exist i ∈ {1, 2, . . . , r} and ~x ∈ N4 such that A~x ∈ D7

i .
(We use the notation ~x for both row vectors and column vectors, expecting
the reader to rely on the context to tell which is intended.) Theorem 1.2 is
the assertion that whenever r ∈ N and N =

⋃r
i=1Di, there exist i ∈ {1, 2,

. . . , r} and ~x ∈ N2 such that B~x ∈ D3
i . The case l = 6 of Theorem 1.3 is the

assertion that whenever r ∈ N and N =
⋃r

i=1Di, there exist i ∈ {1, 2, . . . , r}
and ~x ∈ N2 such that C~x ∈ D7

i . That is, each instance of Theorems 1.1, 1.2,
and 1.3, is the assertion that a particular matrix is image partition regular.

Definition 1.4 Let u, v ∈ N and let A be a u× v matrix with entries from
Q. The matrix A is image partition regular if and only if whenever r ∈ N and
N =

⋃r
i=1Di, there exist i ∈ {1, 2, . . . , r} and ~x ∈ Nv such that A~x ∈ Du

i .

Notice that in each case the correspondence is natural. No great amount
of thought is required to produce the matrix corresponding to the particular
theorem. Consider by way of contrast the notion of kernel partition regularity.
(The terminology in both cases, based on the interpretation of A as a map
from Qv to Qu, was suggested by W. Deuber.)

Definition 1.5 Let u, v ∈ N and let A be a u× v matrix with entries from
Q. The matrix A is kernel partition regular if and only if whenever r ∈ N
and N =

⋃r
i=1Di, there exist i ∈ {1, 2, . . . , r} and ~x ∈ Dv

i such that A~x = ~0.

In a justly celebrated result, R. Rado obtained in 1933 a combinatorial
characterization of kernel partition regular matrices. This characterization
(which we shall present below) can be used to establish each of Theorems
1.1, 1.2, and 1.3.

Schur’s Theorem asks that there exist a, b, c ∈ Di such that a = x, b =
y, and c = x + y. That is, there must exist a, b, and c in Di such that
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a + b = c. Consequently, Theorem 1.2 is precisely the assertion that the
matrix ( 1 1 −1 ) is kernel partition regular.

We remark that, although van der Waerden’s Theorem is naturally stated
in terms of image partition regularity, one needs to be careful when stating
it in terms of kernel partition regularity. For example, if one has just l + 1
variables y1, y2, . . . , yl+1 and the equations stating that yi+1−yi = yi+2−yi+1

for all i ∈ {1, 2, . . . , l−1}, then this allows the trivial solution in which all yi’s
are equal. So van der Waerden’s Theorem is not equivalent to the statement
that matrices of the form

1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
0 0 1 −1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · −1


are kernel partition regular. However, a stronger version of van der Waerden’s
Theorem, in which the differences yi+1 − yi are required to have the same
color as the yi’s, is equivalent to the statement that matrices of the form

1 1 −1 0 0 0 · · · 0
1 0 1 −1 0 0 · · · 0
1 0 0 1 −1 0 · · · 0
...

...
...

...
...

...
. . .

...
1 0 0 0 0 0 · · · −1


are kernel partition regular.

The reader is invited to try to represent the case m = 2 of Theorem 1.1
by equations.

There is thus a natural interest in determining those matrices that are
image partition regular. Further, one of the major problems in this area was
solved using certain image partition regular matrices. That is, W. Deuber
[4] showed that those sets that always contained solutions to every kernel
partition regular matrix were themselves partition regular using (m, p, c) sets,
which are the images of certain image partition regular matrices.

The determination of those matrices that are image partition regular was
finally accomplished in 1993 [10], when several equivalent characterizations
of the problem were given, including some that made the problem effectively
computable (see later). Some of these characterizations involved convert-
ing the problem into one about kernel partition regular matrices, thereby
allowing the use of Rado’s Theorem.
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Definition 1.6 Let u, v ∈ N, let A be a u × v matrix with entries from
Q, and let −→c1 ,−→c2 , . . . ,−→cv be the columns of A. The matrix A satisfies the
columns condition if and only if there exist m ∈ N and I1, I2, . . . , Im such
that

(1) {I1, I2, . . . , Im} is a partition of {1, 2, . . . , v},
(2)

∑
i∈I1

−→ci = ~0, and

(3) if m > 1 and t ∈ {2, 3, . . . ,m}, then
∑

i∈It

−→ci is a linear combination
of {−→ci : i ∈ ⋃t−1

j=1 Ij}.

It was shown by Rado that A is kernel partition regular if and only if it
satisfies the columns condition.

Here, for example, is one of the characterizations of a u×v image partition
regular matrix A presented in Theorem 2.10:
There exist b1, b2, . . . , bv ∈ Q+ such that the matrix

N =



b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 · · · 0
...

...
...

. . .
...

0 0 0 · · · bv

A


is image partition regular.
That is, we can insist that certain multiples of the xi’s are themselves the
same color as the image vector.

Several characterizations of image partition regular matrices involve the
notion of a “first entries matrix”, a concept based on Deuber’s (m, p, c) sets.
We follow here, and elsewhere, the custom of denoting the entries of a matrix
by the lower case letter corresponding to the upper case letter denoting the
matrix. Thus ai,j denotes the entry of the matrix A in the ith row and jth

column. Similarly, xi denotes the ith entry of the vector ~x.

Definition 1.7 Let A be a u× v matrix with rational entries. Then A is a
first entries matrix if and only if

(1) no row of A is ~0,

(2) the first nonzero entry of each row is positive, and
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(3) the first nonzero entries of any two rows are equal if they occur in the
same column.

If A is a first entries matrix and d is the first nonzero entry of some row of
A, then d is called a first entry of A.

Thus the “first entries” of A are those numbers that actually occur as the
first nonzero entry of some row of A. For example,

A =


1 −2 0 3 2
0 0 5 −1 2
0 0 5 3 0
0 0 0 0 7

 ,

is a first entries matrix with first entries 1, 5 and 7.
We remark that it is not hard to show that the columns condition (Defi-

nition 1.6) is equivalent to the statement that AB = O for some first entries
matrix B.

We shall show that all first entry matrices are image partition regular.
This implies Theorems 1.1, 1.2 and 1.3, because we have seen that each of
these classical theorems is equivalent to the statement that a certain first
entries matrix is image partition regular.

Some of the characterizations of image partition regularity that we shall
give involve “central” sets. Central sets were introduced by Furstenberg [5]
and defined in terms of notions of topological dynamics. These sets enjoy
very strong combinatorial properties. (See [5, Proposition 8.21] or [12, Chap-
ter 14].) They have a nice characterization in terms of the algebraic structure
of βN, the Stone-Čech compactification of N. We shall present this charac-
terization below, after introducing the necessary background information.

Let (S,+) be an infinite discrete semigroup. We take the points of βS
to be the ultrafilters on S, the principal ultrafilters being identified with the
points of S. Given a set A ⊆ S, A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S}
is a basis for the open sets (as well as a basis for the closed sets) of βS.

There is a natural extension of the operation + of S to βS, making βS
a compact right topological semigroup with S contained in its topological
center. This says that for each p ∈ βS the function ρp : βS → βS is
continuous and for each x ∈ S, the function λx : βS → βS is continuous,
where ρp(q) = q + p and λx(q) = x + q. Given p, q ∈ βS and A ⊆ S,
one has that A ∈ p + q if and only if {x ∈ S : −x + A ∈ q} ∈ p, where
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−x + A = {y ∈ S : x + y ∈ A}. See [12] for an elementary introduction to
the semigroup βS.

We are denoting the operation of the semigroup by + because we shall be
almost exclusively concerned with the semigroups (N,+), (Z,+), (Q,+), and
(Nv,+). The reader should be cautioned, however, that while the semigroup
(S,+) may very well be commutative, the semigroup (βS,+) almost never
is. (See [12, Theorem 4.27].)

Any compact Hausdorff right topological semigroup (T,+) has a smallest
two sided ideal K(T ) which is the union of all of the minimal left ideals of
T , each of which is closed [12, Theorem 2.8] and any compact right topo-
logical semigroup contains idempotents. Since the minimal left ideals are
themselves compact right topological semigroups, this says in particular that
there are idempotents in the smallest ideal. There is a partial ordering of the
idempotents of T determined by p ≤ q if and only if p = p + q = q + p. An
idempotent p is minimal with respect to this order if and only if p ∈ K(T )
[12, Theorem 1.59]. Such an idempotent is called simply “minimal”

Definition 1.8 Let (S,+) be an infinite discrete semigroup. A set A ⊆ S is
central if and only if there is some minimal idempotent p such that A ∈ p.

See [12, Theorem 19.27] for a proof of the equivalence of the definition
above with the original dynamical definition. (In [7, Proposition 4.6] S.
Glasner anticipated this result by showing that, if S is a countable abelian
group, then a subset of S is central as defined above if and only if it satisfies
conditions similar to Furstenberg’s dynamical definition of “central”.)

Central sets are interesting combinatorial objects because of the fact (a
part of Theorem 2.10 below) that they contain images of any image partition
regular matrix, because any finite partition of N is guaranteed to have one
cell which is central, and because they satisfy the Central Sets Theorem [5,
Proposition 8.21] (or see [12, Theorem 14.11]), which guarantees the existence
of elaborate combinatorial structures in any central set.

In Section 2 we shall present most of the previously known characteriza-
tions of image partition regular matrices, as well as several new ones. Two
of the new ones are of special interest to us, namely statements (n) and (c)
of Theorem 2.10.

Consider the matrixA =
(

1 3
2 2

)
. This matrix is trivially image partition

regular because any vector ~x with x1 = x2 necessarily has all entries of A~x
monochrome with respect to any coloring. Theorem 2.10(n) tells us that it
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also is nontrivially image partition regular. Namely, given any finite coloring
there must exist x1 6= x2 with the entries of A~x monochrome and distinct.
This fact raises two natural questions. Under what conditions can we force
the ratios between entries of ~x to be bounded? And, under what conditions
can we force the ratios between entries of ~x to be unbounded? We investigate
these questions in Section 3. The second question turns out to be especially
interesting because of its answer, namely exactly when A is a first entries
matrix. (Recall that, in the guise of Deuber’s (m, p, c) sets, these matrices
have long played a role in the theory of partition regularity of matrices.)

Theorem 2.10(c) says that, whenever C is a central set and A is a u× v
image partition regular matrix, not only is there some ~x ∈ Nv such that
A~x ∈ Cu, but in fact {~x ∈ Nv : such that A~x ∈ Cu} is central in Nv. This
characterization is one of a growing body (see [6], [2], and [1]) of results in
which, given as input a suitably large set, one obtains a correspondingly large
set of “good” results. We investigate this phenomenon further in Section 4.

Throughout this paper, we shall use Q+ for the set of positive rational
numbers.

2 Characterizations of Image Partition Reg-

ular Matrices

We present in this section several characterizations of finite image partition
regular matrices.

In Theorem 2.10, we give several characterizations of image partition
regular matrices. Some of the equivalences are proved in [10]. Nevertheless,
we provide proofs of several of these equivalences rather than just referring
the reader to [10], because the proofs are fairly short and it may be more
helpful to the reader to be given a proof.

We shall need the following fact, which is well known but is not mentioned
in [12]. Notice that in this lemma, the notation α · p refers to multiplication
in (βQd, ·), where Qd denotes the rationals with the discrete topology. In
particular, if α ∈ N, α · p is not the sum of p with itself α times (which is
simply p, if p is idempotent).

Lemma 2.1 Let p be a minimal idempotent in (βN,+) and let α ∈ Q with
α > 0. Then α · p is also a minimal idempotent in βN. Consequently, if C
is central in (N,+), then so is (αC) ∩ N.
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Proof. The function lα : N → Q defined by lα(x) = α·x is a homomorphism,
hence so is its continuous extension l̃α : βN → βQd by [12, Corollary 4.22].
Further α · p = l̃α(p). Thus α · p is an idempotent and α · p ∈ l̃α[K(βN)] =
K(αN ). (The latter equality holds by [12, Exercise 1.7.3].) Assume that
α = a

b
with a, b ∈ N. Then bN ⊆ α−1aN and thus aN ∈ α · p because bN ∈ p

by [12, Lemma 6.6]. In particular, α · p ∈ βN. Also α · p ∈ K(αN ) ∩ aN
and aN ⊆ αN and consequently K( aN ) = K(αN ) ∩ aN by [12, Theorem
1.65]. Since every idempotent in βN is in aN by [12, Lemma 6.6], we have
that aN ∩ K(βN) 6= ∅ and consequently K( aN ) = aN ∩ K(βN), again by
[12, Theorem 1.65]. Thus (α · p) ∈ K(βN) as required.

For the second assertion, let C be central in (N,+) and pick a minimal
idempotent p with C ∈ p. Then αC ∩ N ∈ α · p.

Lemma 2.2 Let A be a u×v matrix with entries from Z, define ϕ : Nv → Zu

by ϕ(~x) = A~x, and let ϕ̃ : β(Nv) → (βZ)u be its continuous extension. Let p
be a minimal idempotent in βN with the property that for every C ∈ p there
exists ~x ∈ Nv such that A~x ∈ Cu and let p = (p, p, . . . , p)T . Then there is a
minimal idempotent q ∈ β(Nv) such that ϕ̃(q) = p.

Proof. By [12, Exercise 4.3.5 and Theorem 1.65] p ∈ K(βZ) and so by [12,
Theorem 2.23], p ∈ K((βZ)u). By [12, Corollary 4.22], ϕ̃ : β(Nv) → (βZ)u is
a homomorphism.

We claim that p ∈ ϕ̃[β(Nv)] so suppose instead that p /∈ ϕ̃[β(Nv)], which
is closed, and pick a neighborhood U of p such that U ∩ ϕ̃[β(Nv)] = ∅. Pick
D ∈ p such that D

u ⊆ U and pick ~x ∈ Nv such that A~x ∈ Du. Then
ϕ(~x) ∈ U ∩ ϕ̃[β(Nv)], a contradiction.

Let M = {q ∈ β(Nv) : ϕ̃(q) = p}. Then M is a compact subsemigroup
of β(Nv), so pick an idempotent w ∈ M by [12, Theorem 2.5]. By [12,
Theorem 1.60], pick a minimal idempotent q ∈ β(Nv) with q ≤ w. Since ϕ̃ is
a homomorphism, ϕ̃(q) ≤ ϕ̃(w) = p so, since p is minimal in (βZ)u, we have
that ϕ̃(q) = p.

The following coloring is very important to us.

Lemma 2.3 Let ε > 0. There is a finite coloring of N such that, if y and z

are positive integers with the same color and y > z, then either
y

z
< 1 + ε or

y

z
>

1

ε
.
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Proof. Choose α ∈ (1, 1 + ε) and r ∈ N satisfying r > 1 + logα
1
ε
. For

each i ∈ {0, 1, 2, . . . , r − 1}, let Pi = {n ∈ N : blogα nc ≡ i(mod r)}. Let
i ∈ {1, 2, . . . , r} and let y, z ∈ Pi with y > z. Then blogα yc ≥ blogα zc.

If blogα yc > blogα zc, then blogα yc ≥ blogα zc+r and thus y > z ·αr−1 >

z · 1

ε
. If blogα yc = blogα zc, then y < α · z < (1 + ε) · z.

Lemma 2.4 Let A be a u× v image partition regular matrix over Q. There
exist m ∈ N and a partition {I1, I2, . . . , Im} of {1, 2, . . . , u} with the following
property: for every ε > 0, there exists ~x ∈ Nv such that ~y = A~x ∈ Nu and, if

i ∈ Ir and j ∈ Is, then 1− ε <
yj

yi

< 1 + ε if r = s and
yj

yi

< ε if r < s.

Proof. Suppose that 0 < ε < 1
4
. Choose a coloring of N guaranteed

by Lemma 2.3 and a vector ~x ∈ Nv for which the entries of ~y = A~x are
monochrome positive integers. We define a relation ≈ on {1, 2, . . . , u} by

putting i ≈ j if and only if 1−ε < yj

yi

< 1+ε. Since ε < (1−ε)2 < (1+ε)2 < 1
ε
,

it is easy to verify that this is an equivalence relation. It therefore defines a
partition P(ε) = {I1(ε), I2(ε), . . . , Im(ε)(ε)} of {1, 2, . . . , u}. We can arrange
the sets in this partition so that, if yi ∈ Ir(ε), yj ∈ Is(ε), and r < s, then

yj < yi and so
yj

yi

< ε. Since there are only finitely many partitions of {1, 2,

. . . , u}, by the pigeon hole principle, there is an infinite sequence of values
of ε converging to 0 for which the partitions P(ε) are all the same.

Lemma 2.5 Let ~c1,~c2, . . . ,~cm be vectors in Qv. Suppose that the equation
~0 =

∑m
i=1 xi~ci holds for real numbers x1, x2, . . . , xm. Then we also have ~0 =∑m

i=1 ri~ci, for rational numbers r1, r2, . . . , rm, with the property that, for every
i ∈ {1, 2, . . . ,m}, ri > 0 if xi > 0, ri < 0 if xi < 0, and ri = 0 if xi = 0.

Proof. Let P = {i ∈ {1, 2, . . . ,m} : xi > 0} and Q = {i ∈ {1, 2, . . . ,m} :
xi < 0}. Let B denote the row reduced echelon matrix obtained by applying
elementary row operations to the matrix whose columns are the vectors ~ci
with i ∈ P ∪ Q. Let I denote the set of pivot columns, that is the values
of i ∈ P ∪ Q for which the ith column of B contains the first nonzero entry
of some row, and let J = (P ∪ Q)\I. If J = ∅, then the only solution to
~0 =

∑
i∈P∪Q yi~ci has each yi = 0. But then P = Q = ∅ and we are done. So

assume that J 6= ∅. Then the equation ~0 =
∑

i∈P∪Q yi~ci holds if and only if,
for every i ∈ I, yi = −∑

j∈J bi,jyj.
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We are assuming that there exists 〈yj〉j∈J ∈ RJ , such that yj > 0 if j ∈
J ∩P , yj < 0 if j ∈ J ∩Q, −∑

j∈J bi,jyj > 0 if i ∈ I∩P and −∑
j∈J bi,jyj < 0

if i ∈ I ∩Q. These inequalities define a neighborhood of 〈xj〉j∈J in RJ , and
this contains an element 〈rj〉j∈J of QJ . For i ∈ I, let ri = −∑

j∈J bi,jrj and

for i ∈ {1, 2, . . . ,m}\(P ∪Q), let ri = 0. We then have ~0 =
∑m

i=1 ri~ci, where
ri > 0 if i ∈ P , ri < 0 if i ∈ Q, and ri = 0 if i /∈ P ∪Q.

Corollary 2.6 . Let ~d,~c1,~c2, . . . ,~cm be vectors in Qv. Suppose that the
equation ~d =

∑m
i=1 xi~ci holds for real numbers x1, x2, . . . , xm. Then we also

have ~d =
∑m

i=1 ri~ci, for rational numbers r1, r2, . . . , rm, with the property that,
for every i ∈ {1, 2, . . . ,m}, ri > 0 if xi > 0, ri < 0 if xi < 0, and ri = 0 if
xi = 0.

Proof. This follows by applyng Lemma 2.5 to the equation ~0 = −~d +∑m
i=1 xi~ci.

Lemma 2.7 Let ~c1,~c2, . . . ,~cm be vectors in Qv and let P,Q ⊆ {1, 2, . . . ,m}
be disjoint. Let C = {x1~c1 +x2~c2 + . . .+xm~cm : each xi ∈ R, xi ≥ 0 if i ∈ P ,
and xi ≤ 0 if i ∈ Q}. Then C is closed in Rv.

Proof. This was proved in [12, Lemma 15.23] in the case in which Q = ∅.
The general case follows from this one, by replacing each ~cj by −~cj if j ∈ Q,
replacing P by P ∪Q and Q by ∅.

Lemma 2.8 Let u, v ∈ N, let A be a u× v first entries matrix with entries
from Q, and let C be a central subset of N. Then there exists ~x ∈ Nv for
which A~x ∈ Cu.

Proof. This is an immediate consequence of [10, Theorem 2.11]. (Or see
[12, Theorem 15.5] replacing the first sentence of the proof with: “If 0 were
a minimal idempotent, then βS = 0 + βS = βS + 0 would be a minimal
left ideal and a minimal right ideal, hence a group by Theorem 1.61. In
particular, S would be cancellative so by Corollary 4.33, S∗ would be a left
ideal properly contained in βS, a contradiction. Thus we may presume that
0 /∈ C.”)

We now give a proof of Rado’s Theorem.
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Theorem 2.9 (Rado) Let u, v ∈ N and let A be a u×v matrix with entries
from Q. The matrix A is kernel partition regular if and only if A satisfies
the columns condition.

Proof. We have observed that A satisfies the columns condition if and only
if AB = O for some first entries matrix B.

Suppose that A is kernel partition regular. By Lemma 2.3, for each ε > 0,
there exists ~y(ε) ∈ Nv such that A~y(ε) = ~0 and, for each i, j ∈ {1, 2, · · · , v},
y(ε)i ≥ y(ε)j implies that y(ε)i

y(ε)j
< 1 + ε or y(ε)i

y(ε)j
> 1

ε
. By the argument

used in the proof of Lemma 2.4, there is a sequence 〈εn〉∞n=1 of positive
numbers converging to 0 and a partition {I1, I2, · · · Im} of {1, 2, · · · , v} with
the following property: for every n ∈ N, i ∈ Ir and j ∈ Is implies that
1− εn <

y(εn)j

y(εn)i
< 1 + εn if r = s and y(εn)j

y(εn)i
< εn if r < s.

For each j ∈ {1, 2, · · · ,m}, choose k ∈ Ij. For each n ∈ N and each

i ∈ {1, 2, · · · , v}, put (z(j, n))i = (y(εn))i

(y(εn))k
. We observe that A~z(j, n) = ~0, that

1− εn < (z(j, n))i < 1 + εn if i ∈ Ij and that (z(j, n))i < εn if i ∈ ⋃
l>j Il.

Let ~ei denote the ith unit vector in Qv. Put ~v(j, n) =
∑

i∈
⋃

l≥j
Il
(z(j, n))i~ei.

Since A~z(j, n) = ~0, it follows that A~v(j, n) ∈ −AL(j), where L(j) denotes

the linear span of {~ei : i ∈ ⋃
l<j Il} in Q|∪l<jIl|. (We put L(1) = {~0}.) Now

~v(j, n) → ∑
i∈Ij

~ei as n→∞. Since −AL(j) is closed, we have A(
∑

i∈Ij
~ej +

~w(j)) = ~0 for some ~w(j) ∈ L(j). Let ~w(j) =
∑

i∈
⋃

l<j
Il
xij~ei. If B denotes

the v ×m matrix defined by

bij =


xij if i ∈ ⋃

l<j Il
1 if i ∈ Ij
0 if i ∈ ⋃

l>j Il

,

then B is a first entries matrix for which AB = O.
Conversely, suppose that AB = O for some first entries matrix B. By

[12, Lemma 15.14], we may suppose that the entries of B are in ω. Since B
is image partition regular, by Lemma 2.8, it follows immediately that A is
kernel partition regular.

The equivalence of statements (h), (i), and (l) with statement (a) of the
following theorem was established in [10, Theorem 3.1] and the equivalence
of statement (g) was established in [12, Theorem 15.24]. The others are new.
Notice that statement (i) can be used to check whether a given matrix is
image partition regular. (See the conclusion of [10] for a discussion of this
and two other effectively computable characterizations.)
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We let Q+ = {x ∈ Q : x > 0}.

Theorem 2.10 Let u, v ∈ N and let A be a u × v matrix with entries from
Q. The following statements are equivalent.

(a) A is image partition regular.

(b) For every central set C in N, there exists ~x ∈ Nv such that A~x ∈ Cu.

(c) For every central set C in N, {~x ∈ Nv : A~x ∈ Cu} is central in Nv.

(d) There exist m ∈ N, a v×m matrix G with non-negative rational entries
and no row equal to ~0, and a u ×m first entries matrix B, with non-
negative entries and all its first entries equal to 1, such that AG = B.

(e) There exist m ∈ N, a v×m matrix G with non-negative rational entries
and no row equal to ~0, and a u×m first entries matrix B, with all its
first entries equal to 1, such that AG = B.

(f) There exist m ∈ N, a v ×m matrix G with entries from ω and no row
equal to ~0, a u × m first entries matrix B with entries from ω, and
c ∈ N such that c is the only first entry of B and AG = B.

(g) There exist m ∈ N, a u × m first entries matrix B with all entries
from ω, and c ∈ N such that c is the only first entry of B and for each
~y ∈ Nm there exists ~x ∈ Nv such that A~x = B~y.

(h) There exist m ∈ N and a u × m first entries matrix B such that for
each ~y ∈ Nm there exists ~x ∈ Nv such that A~x = B~y.

(i) There exist t1, t2, . . . , tv ∈ Q+ such that the matrix

M =



t1a1,1 t2a1,2 t3a1,3 · · · tva1,v −1 0 0 · · · 0
t1a2,1 t2a2,2 t3a2,3 · · · tva2,v 0 −1 0 · · · 0
t1a3,1 t2a3,2 t3a3,3 · · · tva3,v 0 0 −1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

t1au,1 t2au,2 t3au,3 · · · tvau,v 0 0 0 · · · −1


is kernel partition regular.
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(j) There exist t1, t2, . . . , tv ∈ Q+ such that the matrix

P =



1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
t1a1,1 t2a1,2 t3a1,3 . . . tva1,v

t1a2,1 t2a2,2 t3a2,3 . . . tva2,v

t1a3,1 t2a3,2 t3a3,3 . . . tva3,v
...

...
...

. . .
...

t1au,1 t2au,2 t3au,3 . . . tvau,v


is image partition regular.

(k) There exist b1, b2, . . . , bv ∈ Q+ such that the matrix

N =



b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 · · · 0
...

...
...

. . .
...

0 0 0 · · · bv

A


is image partition regular.

(l) For each ~r ∈ Qv\{~0} there exists b ∈ Q\{0} such that(
b~r
A

)
is image partition regular.

(m) Whenever m ∈ N, φ1, φ2, . . . , φm are nonzero linear mappings from

Qv to Q, there exists ~b ∈ Qm such that, whenever C is central in N,
there exists ~x ∈ Nvfor which A~x ∈ Cu and, for each i ∈ {1, 2, . . . ,m},
biφi(~x) ∈ C, and in particular φi(~x) 6= 0.

(n) For every central set C in N, there exists ~x ∈ Nv such that ~y = A~x ∈
Cu, all entries of ~x are distinct, and for all i, j ∈ {1, 2, . . . , u}, if rows
i and j of A are unequal, then yi 6= yj.
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Proof. We show first that statements (a), (b), (c), (d), (e), (f), (g) and (h)
are equivalent.

(a) ⇒ (d). Let ~c1,~c2, . . . ,~cv denote the columns of A and let ~ei denote
the ith unit vector in Ru. Let {I1, I2, . . . , Im} be the partition of {1, 2, . . . , u}
guaranteed by Lemma 2.4. We claim that for each k ∈ {1, 2, . . . ,m},∑

n∈Ik
~en ∈ c`{

∑v
j=1 αj~cj−

∑k−1
i=1

∑
n∈Ii

δn~en : each αj > 0 and each δn > 0} .

To see this, let k ∈ {1, 2, . . . ,m} and let ε > 0. Choose ~x ∈ Nv such that ~y =

A~x ∈ Nu and, if i ∈ Ir and j ∈ Is, then 1−ε < yj

yi

< 1+ε if r = s and
yj

yi

< ε if

r < s. Pick l ∈ Ik. For j ∈ {1, 2, . . . , v}, let αj =
xj

yl

, noting that αj > 0. For

n ∈ ⋃k−1
i=1 Ii, let δn =

yn

yl

. Then
∑v

j=1 αj~cj −
∑k−1

i=1

∑
n∈Ii

δn~en −
∑

n∈Ik
~en = ~z

where

zn =



yn

yl

if n ∈ ⋃m
i=k+1 Ii

yn

yl

− 1 if n ∈ Ik
0 if n ∈ ⋃k−1

i=1 Ii

.

In particular, |zn| < ε for each n ∈ {1, 2, . . . , u}. Thus, by Corollary 2.6
and Lemma 2.7, we may pick nonnegative gj,k ∈ Q for j ∈ {1, 2, . . . , v}
and nonnegative bn,k for n ∈ ⋃k−1

i=1 Ii such that
∑

n∈Ik
~en =

∑v
j=1 gj,k~cj −∑k−1

i=1

∑
n∈Ii

bn,k~en. For n ∈ Ik, let bn,k = 1 and for n ∈ ⋃m
i=k+1 Ii, let bn,k = 0.

We have thus defined a v×m matrix G with nonnegative rational entries
and a u×m first entries matrix B with all first entries equal to 1 such that
AG = B. It may happen that G has some row equal to ~0. In this case, pick
~c ∈ Nv such that the entries of A~c are all positive (which one may do since

A is image partition regular). Letting G′ =
(
G ~c

)
and B′ = AG′ we have

that B′ is a first entries matrix with all first entries equal to 1.

(d) ⇒ (e). This is trivial.

(d) ⇒ (f). Assume that (d) holds. We may suppose that the entries of
G and AG are integers, because this can be achieved by multiplying G by a
suitable positive integer. The first entries of B are then all equal.

(f) ⇒ (g). Let B and G be as guaranteed by (f). Given ~y ∈ Nm, let
~x = G~y.
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(e) ⇒ (h) This follows immediately from the observation that we can
choose n ∈ N so that the entries of nG are in ω and that nB is then a first
entries matrix.

(g) ⇒ (h). This is trivial.

(h) ⇒ (b). Let B be as guaranteed by (h) and let C be a central set in
N. Pick by Lemma 2.8 some ~y ∈ Nm such that B~y ∈ Cu, and pick ~x such
that A~x = B~y.

(b) ⇒ (c). Pick d ∈ N such that all entries of dA are in Z. We claim that
for every central set C in N, there exists ~x ∈ Nv such that dA~x ∈ Cu. By
Lemma 2.1 (1

d
C ∩ N) is central, so pick ~x ∈ Nv such that A~x ∈ (1

d
C ∩ N)u.

Then dA~x ∈ Cu.
Let C be a central subset of N and pick a minimal idempotent p ∈ βN such

that C ∈ p. Define ϕ : Nv → Zu by ϕ( ~x ) = dA~x and let ϕ̃ : β(Nv) → (βZ)u

be its continuous extension. Now dp is a minimal idempotent by Lemma 2.1.
Define dp = (dp, dp, . . . , dp)T and pick by Lemma 2.2, a minimal idempotent
q ∈ β(Nv) such that ϕ̃(q) = dp. Now ×u

i=1dC is a neighborhood of dp so
pick B ∈ q such that ϕ̃[B ] ⊆ ×u

i=1dC. Then B ⊆ {~x ∈ Nv : A~x ∈ Cu}, so
{~x ∈ Nv : A~x ∈ Cu} is central in Nv.

(c) ⇒ (a). This is immediate because some cell of any finite partition of
N must be central.

Now we establish that statements (i), (j), and (k) are equivalent to each
of the statements (a) through (h).

(f) ⇒ (i). For each i ∈ {1, 2, . . . , v}, let ki be the first nonzero entry in

row i of G, let si =
c

ki

and ti =
1

si

. Let

S =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sv


and let I be the u× u identity matrix. Then M = (AS−1 −I ) and

M
(
SG
B

)
= B −B = O .

Also SG is a first entries matrix with all first entries equal to c and so
(
SG
B

)
is a (u+v)×m first entries matrix. To see that M is kernel partition regular,
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let r ∈ N and let N =
⋃r

i=1Ci. Pick i ∈ {1, 2, . . . , r} such that Ci is central
and pick by Lemma 2.8 some ~x ∈ Nm such that

~y =
(
SG
B

)
~x ∈ Cu+v

i .

Then M~y = ~0.

(i) ⇒ (j). Let

B =



t1a1,1 t2a1,2 . . . tva1,v

t1a2,1 t2a2,2 . . . tva2,v

t1a3,1 t2a3,2 . . . tva3,v
...

...
. . .

...
t1au,1 t2au,2 . . . tvau,v


and let Iu and Iv be the u×u and v× v identity matrices respectively. Then

P =
(
Iv
B

)
and M = (B −Iu ). To see that P is image partition regular,

let N be finitely colored and pick ~z ∈ Nu+v such that M~z = ~0 and the entries

of ~z are monochrome. Let ~x ∈ Nv and ~y ∈ Nu such that ~z =
(
~x
~y

)
. Then

~0 = M~z = B~x− ~y and so P~x =
(
~x
~y

)
= ~z.

(j) ⇒ (k). For each i ∈ {1, 2, . . . , v}, let bi =
1

ti
and let

S =


t1 0 · · · 0
0 t2 · · · 0
...

...
. . .

...
0 0 · · · tv

 .

Then P = NS. Pick d ∈ N such that {dt1, dt2, . . . , dtv} ⊆ N. We show
that statement (b) holds for N . Let C be central in N and pick a minimal
idempotent p ∈ βN such that C ∈ p. By [12, Lemma 6.6], Nd ∈ p so C ∩Nd
is central. We have already shown that statement (a) implies statement
(b), so statement (b) holds for the matrix P . Pick x ∈ Nv such that P~x ∈
(C ∩ Nd)u+v. Then the entries of ~x are the first v entries of P~x, hence are
multiples of d. Therefore ~y = S~x ∈ Nv and N~y = P~x ∈ Cu+v.

(k) ⇒ (a). This is trivial.
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Finally we show that statements (l), (m), and (n) are equivalent to each
of the statements (a) through (k).

(e) ⇒ (l). If ~rG 6= ~0, we can choose b so that the first entry of b~rG is
1. If ~rG = ~0, we can choose ~c ∈ Nv such that ~r · ~c 6= ~0 and add ~c to G as
a new final column. In this case, we choose b so that b~r · ~c = 1. In either

case,
(
b~r
A

)
G is a first entries matrix with all first entries equal to 1 and so

statement (e) holds for
(
b~r
A

)
.

(l) ⇒ (m). For each i ∈ {1, 2, . . . ,m}, there exists ~ri ∈ Qv\{~0} such that
φi(~x) = ~ri ·~x for all ~x ∈ Qv. By applying statement (l) m times in succession
(using the fact that at each stage the new matrix satisfies (l) because (a)
implies (l) ), we can choose b1, b2, . . . , bm ∈ Q for which the matrix

b1~r1
b1~r2

...
bm~rm

A


is image partition regular. The conclusion then follows from the fact that
every image partition regular matrix satisfies statement (b).

(m) ⇒ (n). We may presume that A has no repeated rows so that the
conclusion regarding ~y becomes the statement that all entries of ~y are distinct.
For i 6= j in {1, 2, . . . , v}, let

−→
φi,j be the linear mapping from Qv to Q taking

~x to xi − xj. For i 6= j in {1, 2, . . . , u}, let
−→
ψi,j be the linear mapping from

Qv to Q taking ~x to
∑v

t=1(ai,t − aj,t) · xt. Applying statement (m) to the set
{φi,j : i 6= j in {1, 2, . . . , v}} ∪ {ψi,j : i 6= j in {1, 2, . . . , u}}, we reach the
desired conclusion.

(n) ⇒ (b). This is trivial.

As illustrated by the proofs of statements (m) and (n) of Theorem 2.10,
the fact, guaranteed by statement (l), that finite image partition regular ma-
trices can be almost arbitrarily extended is very useful. Another important
property, originally established by W. Deuber in [4] in terms of first entries
matrices, is given by the following corollary.
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Corollary 2.11 Let A and B be finite image partition regular matrices.
Then the matrix (

A O
O B

)
is also image partition regular.

Proof. Let C be a central set in N. Pick ~x and ~y with entries from N such
that all entries of A~x and all entries of B~y are in C. Then all entries of(

A O
O B

) (
~x
~y

)

are in C.

3 Bounded and Unbounded Ratios in Solu-

tions

Recall that we have seen in Theorem 2.10(n) that for any u×v image partition
regular matrix A and any finite coloring of N, there must be ~x ∈ Nv with the
entries of A~x monochrome and with the entries of ~x distinct. We note now,
that in fact one can require that the gaps between the entries of ~x and the
gaps between the entries of A~x be as large as we please.

Theorem 3.1 Let A be a u× v image partition regular matrix with entries
from Q such that no two rows of A are identical. There exist permutations σ
of {1, 2, . . . , u} and τ of {1, 2, . . . , v} with the property that for every k ∈ N
and every finite coloring of N, there exists ~x ∈ Nv such that

(i) all entries of ~y = A~x are monochrome,

(ii) for i ∈ {1, 2, . . . , v − 1}, xτ(i) > k + xτ(i+1), and

(iii) for i ∈ {1, 2, . . . , u− 1}, yσ(i) > k + yσ(i+1).

Proof. The conclusions are trivial if u = 1 so we assume that u ≥ 2. Let

w =
(
u
2

)
+

(
v
2

)
. We apply Theorem 2.10(l) a total of w times to produce

a (u+ w)× v image partition regular matrix B such that

(1) the first u rows of B are the rows of A,
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(2) for each pair i < j of members of {1, 2, . . . , v} there exist b ∈ Q\{0}
and a row of B consisting of all 0’s except for a b in column i and a −b
in column j, and

(3) for each pair i < j of members of {1, 2, . . . , u} there exist c ∈ Q\{0}
and a row of B which is c times the difference between rows i and j of
A.

We define the permutations as follows. Pick ~x ∈ Nv such that ~y = B~x ∈
Nu+w. Let σ and τ be the permutations of {1, 2, . . . , u} and {1, 2, . . . , v} such
that xτ(1) > xτ(2) > . . . > xτ(v) and yσ(1) > yσ(2) > . . . > yσ(u). Notice that
the permutations chosen are independent of the choice of ~x. (If for example
the row of B guaranteed by (2) for {1, 3} has a positive b in column 1 and
−b in column 3, then bx1 − bx3 ∈ N so x1 > x3.)

Pick m ∈ N such that for each pair {i, j} of distinct members of {1, 2,
. . . , v}, if b is the number guaranteed for {i, j} by (2), then |b| ≤ m.

Now, let k ∈ N and a finite coloring γ of N be given. Define a coloring
γ′ of N by agreeing that γ′(a) = γ′(b) if and only if either a = b ≤ mk
or a > mk, b > mk, γ(a) = γ(b), and a ≡ b (mod k + 1). Pick ~x ∈ Nv

such that all entries of ~y = B~x are monochrome with respect to γ′. We
know that yσ(1) > yσ(2) and consequently it must be the case that for each
i ∈ {1, 2, . . . , u+ w}, yi > mk.

We have that for all i ∈ {1, 2, . . . , u − 1} yσ(i) > yσ(i+1) and yσ(i) ≡
yσ(i+1) (mod k + 1) and thus yσ(i) > k + yσ(i+1).

Finally, let i ∈ {1, 2, . . . , u−1} and pick b ∈ Q\{0} and a row t of B with
all zero entries except for a b in column τ(i) and a−b in column τ(i+1). Then
mk < yt = b(xτ(i) − xτ(i+1)) ≤ m(xτ(i) − xτ(i+1)) and thus xτ(i) > k + xτ(i+1)

as required.

Theorem 3.1 raises its own questions. Namely, how large (or small) can
we insist the ratios between xτ(i) and xτ(i+1) be? And how large (or small)
can we insist the ratios between yσ(i) and yσ(i+1) be? We address now the
first of these questions.

First entries matrices have been important for some time in the theory
of partition regularity of matrices. In [4], Deuber showed that any subset
of N contains solutions to all kernel partition regular matrices if and only
if it contains images of all first entries matrices. He showed further that
the property of containing images of all first entries matrices is partition
regular, thereby answering the old question of Rado’s about the property of
containing solutions to all kernel partition regular matrices.
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It was therefore not surprising when image partition regular matrices
were characterized as those intimately related to first entries matrices. (See
Theorem 2.10(d), (e), (f), (g), and (h).) In the following theorem, we see
that it is not just an intimate relation, but that first entries matrices are
precisely the answer to our question.

Theorem 3.2 Let A be a u× v matrix with entries from Q. The following
statements are equivalent.

(a) For any k ∈ N and any finite coloring of N, there exists ~x ∈ Nv with
all entries of A~x monochrome and xi > kxi+1 for every i ∈ {1, 2, . . . ,
v − 1}.

(b) A is a first entries matrix.

Proof. (a) ⇒ (b). Suppose that the first nonzero entries of the lth and mth

rows of A both occur in the jth column. For every k ∈ N, there exists ~x in
Nv such that ~y = A~x ∈ Nu and xi > kxi+1 for all i ∈ {1, 2, . . . , v − 1}. By

choosing k large enough, we can ensure that
yl

xj

is arbitrarily close to al,j.

So al,j > 0 and, similarly, am,j > 0. Now
yl

ym

is arbitrarily close to
al,j

am,j

. By

Lemma 2.3, we may also suppose that
yl

ym

is arbitrarily close to 1. (Given

ε > 0 with ε < min

{
al,j

am,j

,
am,j

al,j

}
, we may suppose that yl

ym
, ym

yl
< 1

ε
. Then

yl

ym
, ym

yl
< 1 + ε.)

1

1 + ε
<

yl

ym

< 1 + ε.) Thus al,j = am,j.

(b) ⇒ (a). Let d1, d2, . . . , dv ∈ Q+ be chosen so that dj is equal to the
first entry of any row of A whose first entry is in the jth column. Let k ∈ N
and a coloring γ of N be given. Let

B =



d1 −kd2 0 · · · 0 0
0 d2 −kd3 · · · 0 0
0 0 d3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · dv−1 −kdv

A


and note that B is a first entries matrix, hence image partition regular. Pick
~x ∈ Nv such that the entries of B~x are monochrome with respect to γ. Then
for each i ∈ {1, 2, . . . , v − 1}, dixi − kdixi+1 > 0.
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The idea in the proof that (b) implies (a) of forcing the inequality dixi −
kdixi+1 > 0 by requiring that dixi − kdixi+1 be in the same cell of a coloring
of N has been previously used in [11].

We now turn our attention to the other side of the coin and ask when
we can guarantee the existence of a bound k so that whenever N is finitely
colored there must exist ~x with the entries of A~x monochrome and the ratio
betweem entries of ~x bounded by k. There is a trivial sufficient condition.

Lemma 3.3 Let A be a u × v matrix with entries from Q and assume that
there exists ~x ∈ (Q+)v such that A~x = ~1, where ~1 is the vector in Nu with
all entries equal to 1. Then there exists k ∈ N such that whenever N is
finitely colored there must exist ~x ∈ Nv with the entries of A~x monochrome

and
xi

xj

≤ k whenever i, j ∈ {1, 2, . . . , v}.

Proof. Pick ~x ∈ (Q+)v such that A~x = ~1 and let

k = max

{
xi

xj

: i, j ∈ {1, 2, . . . , v}
}
.

Pick d ∈ N such that d~x ∈ Nv. Then the entries of A(d~x) are monochrome
with respect to any coloring of N.

If all entries of A are nonnegative, we shall see in Corollary 3.5 that this
trivial condition is also necessary.

The condition of Lemma 3.3 is not necessary for an arbitrary matrix to
guarantee monochrome solutions with bounded ratios, as may be seen by

considering the matrix A =
(

1 −1
1 0

)
. If A~x = ~1, then x2 = 0. On the other

hand, given any finite coloring and any δ > 1, there exist ~x ∈ N2 with the
entries of A~x monochrome and x2 < x1 < δx2. To see this, pick any color
class with infinitely many members and pick y1 and y2 >

δ
δ−1

y1 in the same
color class. Let x1 = y2 and x2 = y2 − y1.

One of the general characterizations involves a version of the columns
condition.

Theorem 3.4 Let A be a u× v matrix with entries from Q. The following
statements are equivalent.
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(a) There exists k ∈ N such that whenever N is finitely colored there must

exist ~x ∈ Nv with the entries of A~x monochrome and
xi

xj

≤ k whenever

i, j ∈ {1, 2, . . . , v}.
(b) For some n ∈ N, there is a v × n matrix B over Q, with all its entries

non-negative and all those in the first column positive, for which AB
is a first entries matrix.

(c) There exist t1, t2, . . . , tv ∈ Q+ such that the matrix

M =



t1a1,1 t2a1,2 t3a1,3 · · · tva1,v −1 0 0 · · · 0
t1a2,1 t2a2,2 t3a2,3 · · · tva2,v 0 −1 0 · · · 0
t1a3,1 t2a3,2 t3a3,3 · · · tva3,v 0 0 −1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

t1au,1 t2au,2 t3au,3 · · · tvau,v 0 0 0 · · · −1


satisfies the columns condition (Definition 1.6) with {1, 2, . . . , v} ⊆ I1.

Proof. (a) ⇒ (b). By Lemma thAa, for every ε > 0, we can choose ~x ∈ Nv

so that ~y = A~x ∈ Nu,
xi

xj

≤ k for all i, j ∈ {1, 2, . . . , v} and, for every

s, t ∈ {1, 2, . . . , u} such that ys < yt, either
yt

ys

< 1+ ε or
yt

ys

>
1

ε
. (Of course,

~x and ~y depend on ε. We do not indicate this in the notation, in order to
avoid equations that would be quite cumbersome.) Choose m ∈ {1, 2, . . . , u}
such that ym = max{yi : i ∈ {1, 2, . . . , u}}. For each i ∈ {1, 2, . . . , u}, we

have
∑v

j=1 ai,j
xj

x1

=
ym

x1

yi

ym

. We note that, for every i ∈ {1, 2, . . . , u}, 1− ε <

yi

ym

≤ 1 or
yi

ym

< ε. Furthermore,
1

k
<
xj

x1

< k for every j ∈ {1, 2, . . . , v}

and
ym

x1

< k
v∑

j=1

|am,j|. So the numbers
ym

x1

have an upper bound independent

of ε. We can choose a sequence of values of ε converging to 0 for which the

numbers
xj

x1

converge to a limit dj, which is necessarily positive; and the

values
ym

x1

converge to a limit d ≥ 0. We may also suppose that the numbers

yi

ym

converge to a limit wi ∈ {0, 1}. Let ~c1,~c2, . . . ,~cv denote the columns of

A. Then
∑v

j=1 dj~cj = d~w for some ~w ∈ {0, 1}u. By Lemma 2.5, we have∑v
j=1 rj~cj = r ~w, where each rj ∈ Q+ and r ∈ Q ∩ [0,∞). By Theorem
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2.10(d), there exist m ∈ N and a v×m matrix G with non-negative rational

entries for which AG is a first entries matrix. Let ~b = ( r1 r2 . . . rv )T .
If B = (~b G ), then AB is a first entries matrix.

(b) ⇒ (a). Choose d ∈ N such that all entries of G = dB are in Z. Then
AG is a first entries matrix. Pick r ≥ 2 such that for all t ∈ {1, 2, . . . , v} and

all j ∈ {1, 2, . . . ,m}, gt,j ≤
r

4
· gt,1 and pick k ∈ N such that k >

3

2
· gt,1

gn,1

for

every t, n ∈ {1, 2, . . . , v}.
Let N be finitely colored, and pick by Theorem 3.2 ~x ∈ Nm such that the

entries of AG~x are monochrome and for all i ∈ {1, 2, . . . ,m−1}, xi > r ·xi+1.
Let ~z = G~x and let t, n ∈ {1, 2, . . . , v}. Then

zt =
∑m

j=1 gt,j · xj

≤ gt,1 · x1 +
∑m

j=2

r

4
· gt,1 ·

1

rj−1
· x1

= gt,1 · x1 ·

1 +
1

4

m∑
j=2

1

rj−2


≤ gt,1 · x1 ·

3

2
.

Now zn ≥ gn,1 · x1. Thus
zt

zn

≤ 3

2
· gt,1

gn,1

≤ k.

(b) ⇒ (c). We note that statement (c) is equivalent to stating that there
exists m ∈ N such that (AT −I )M = O, for some diagonal v × v matrix
T with positive rational diagonal entries and some first entries (u + v) ×m
matrix M , for which all the first v entries in the first column are positive.

We may suppose that all the first entries of AB are equal to 1, since this
could be achieved by multiplying each column of B by a suitable positive
rational number. We can choose a diagonal v × v matrix S, with positive
rational diagonal entries equal to the reciprocals of the entries in the first
column of B, for which SB is a first entries matrix with all its first entries

equal to 1. Then (AS−1 −I )
(
SB
AB

)
= O, where I denotes the u × u

identity matrix. Now
(
SB
AB

)
is a first entries matrix with all of the first

v entries in the first column equal to 1. So statement (c) follows, with
t1, t2, . . . , tv denoting the diagonal entries of S−1.

(c) ⇒ (b). We may suppose that all the entries of M are non-negative,
because we can replace M by ME, where E is an m ×m matrix for which
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ei,j = λj−i if i ≤ j and ei,j = 0 if i > j, where λ is chosen to be a suitably
large rational number (see [12, Lemma 15.14]). Then (b) follows immediately

by writing M =
(
B
C

)
, where B is a v×m matrix and C a u×m matrix.

Corollary 3.5 Let A be a u× v matrix with entries from Q and all entries
nonnegative. The following statements are equivalent.

(a) There exists ~x ∈ (Q+)v such that A~x = ~1.

(b) There exists k ∈ N such that whenever N is finitely colored there must

exist ~x ∈ Nv with the entries of A~x monochrome and
xi

xj

≤ k whenever

i, j ∈ {1, 2, . . . , v}.

Proof. The fact that (a) implies (b) is a consequence of Lemma 3.3.
(b) ⇒ (a). Since the entries of A are nonnegative, this is an immediate

consequence of Theorem 3.4.

We now turn our attention to the question of bounded and unbounded
ratios in the image. Notice the difference between the condition of statement
(a) in the following theorem and that in Corollary 3.5, where the entries of
~x are required to be positive. In particular, as a consequence of Corollary

3.5 and Theorem 3.6, we have that the matrix A =
(

1 1
1 2

)
has, for any

finite coloring of N, monochrome solutions A~x = ~y with
y1

y2

as close to 1 as

desired, but for any k there is a coloring so that any monochrome solution

has
x1

x2

> k or
x2

x1

> k.

Theorem 3.6 Let A be a u × v matrix over Q. The following statements
are equivalent.

(a) There exists ~z ∈ Qv such that A~z = ~1 and for each i ∈ {1, 2, . . . , v},
zi ≥ 0.

(b) There exists m ∈ N such that, for every p ∈ K(βN) for which mN ∈ p,
every P ∈ p, and every ε > 0, there exists ~x ∈ Nv such that ~y = A~x ∈
P u and for all i, j ∈ {1, 2, . . . , u}, yi

yj

< 1 + ε.

(c) For every central set C in N and every ε > 0, there exists ~x ∈ Nv such

that ~y = A~x ∈ Cu and for all i, j ∈ {1, 2, . . . , u}, yi

yj

< 1 + ε.
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(d) For every finite coloring of N and every ε > 0, there exists ~x ∈ Nv

such that ~y = A~x ∈ Nu, the entries of ~y are monochrome and, for all

i, j ∈ {1, 2, . . . , u}, yi

yj

< 1 + ε.

(e) For every ε > 0, there exists ~x ∈ Nv such that ~y = A~x ∈ Nu and, for

all i, j ∈ {1, 2, . . . , u}, yi

yj

< 1 + ε.

(f) There exists k,m ∈ N such that, for every p in the smallest ideal of
βN for which mN ∈ p and every P ∈ p, there exists ~x ∈ Nv such that

~y = A~x ∈ P u and, for all i, j ∈ {1, 2, . . . , u}, yi

yj

< k.

(g) There exists k ∈ N such that, for every finite coloring of N, there exists
~x ∈ Nv such that ~y = A~x ∈ Nu, the entries of ~y are monochrome, and

for all i, j ∈ {1, 2, . . . , u}, yi

yj

< k.

Proof. (a) ⇒ (b). Pick ~z ∈ Qv such that A~z = ~1 and for each i ∈ {1, 2,
. . . , v}, zi ≥ 0. Pick m ∈ N such that m~z ∈ ωv, let p ∈ K(βN) such that
mN ∈ p, let P ∈ p, and let 0 < ε < 1. Pick ~s ∈ Nv such that all entries of
A~s are in Z and let ~t = A~s. Let

I = {(rt1+nm, rt2+nm, . . . , rtu+nm) : r, n ∈ N and nm >
4r|ti|
ε

for each i}

and let E = I ∪ {(nm, nm, . . . , nm) : n ∈ N}. Then E is a subsemigroup of
Nu and I is an ideal of E. Thus c`(βN)u E is a subsemigroup of (βN)u and
c`(βN)u I is an ideal of c`(βN)u E by [12, Theorems 2.22 and 4.17].

Let p = (p, p, . . . , p). Then since mN ∈ p and (mN)u ⊆ E, we have

p ∈ c`(βN)u E. By [12, Theorem 2.23], K
(
(βN)u

)
=

(
K(βN)

)u
and so p ∈

K
(
(βN)u

)
∩ c`(βN)u E and thus by [12, Theorem 1.65], p ∈ K(c`(βN)u E) and

therefore p ∈ c`(βN)u I. Thus one may choose r, n ∈ N with nm >
4r|ti|
ε

for

each i ∈ {1, 2, . . . , u} such that rti + nm ∈ P for each i.
Let ~x = r~s + nm~z and let ~y = A~x. Then ~x ∈ Nv and for each i ∈ {1, 2,

. . . , u}, yi = rti +nm. Let i, j ∈ {1, 2, . . . , u}. Then rti +nm < nm · (1 +
ε

4
)

and rtj + nm > nm · (1− ε

4
) and so

rti + nm

rtj + nm
<

1 + ε
4

1− ε
4

< 1 + ε.

(b) ⇒ (c). Pick a minimal idempotent p in βN such that C ∈ p. By [12,
Lemma 6.6], for every m ∈ N, mN ∈ p.
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It is obvious that (c) implies (d), (d) implies (e), (b) implies (f) and (f)
implies (g). By Lemma 2.3, (g) implies (e).

To complete the proof, we shall show that (e) implies (a). Let ~c1,~c2, . . . ,~cv
be the columns of A. By Lemmas 2.5 and 2.7 it suffices to show that ~0 ∈
c`

{
z0
~1 +

∑v
j=1 zj~cj : z0, z1, . . . , zv ∈ R , z0 < 0 , and zj ≥ 0 for j ∈ {1, 2, . . . ,

v}
}
. (For then −z0

~1 =
∑v

j=1 zj~cj for some z0, z1, . . . , zv ∈ Q with z0 < 0 and

zj ≥ 0 for j ∈ {1, 2, . . . , v}.) To see this, let 0 < ε < 0 and pick ~x ∈ Nv such

that ~y = A~x ∈ Nu and, for all i, j ∈ {1, 2, . . . , u}, yi

yj

< 1 + ε. Let z0 = −1

and for j ∈ {1, 2, . . . , v}, let zj =
xj

y1

. Then for each i ∈ {1, 2, . . . , u} we have

−1 +
∑v

j=1 zjai,j = −1 +
yi

y1

and 1− ε <
1

1 + ε
<
yi

y1

< 1 + ε.

Theorem 3.7 Let A be a u × v matrix over Q. The following statements
are equivalent:

(a) For every k ∈ N, there exists ~x ∈ Nv such that ~y = A~x ∈ Nu and, for
every i ∈ {1, 2, . . . , u− 1}, yi > kyi+1.

(b) There exists a v × u matrix B over Q with non-negative entries, such
that AB is an upper triangular matrix with positive diagonal entries.

(c) For every k ∈ N and every finite coloring of N, there exists ~x ∈ Nv such
that ~y = A~x ∈ Nu, the entries of ~y are monochrome, and yi > kyi+1

for every i ∈ {1, 2, . . . , u− 1}.

Proof. (a) ⇒ (b). Given ε > 0, choose k ∈ N such that 1
k
< ε and let ~x have

the properties guaranteed by (a). For every i,m ∈ {1, 2, . . . , u}, we have∑v
j=1 ai,j

xj

ym
= yi

ym
. Note that yi

ym
= 1 if i = m and yi

ym
< ε if i > m. Thus,

if ~em denotes the mth unit vector in Ru, every neighborhood of ~em contains
a vector which is a linear combination of the columns of A and the vectors
~e1, ~e2, . . . , ~em−1, with the coefficients of the columns of A being positive. It
follows from Corollary 2.6 and Lemma 2.7 that there exists ~bm ∈ Qv, with
non-negative entries, such that the ith entry of A~bm is 1 if i = m and 0 if
i > m. If B denotes the matrix with columns ~b1,~b2, . . . ,~bu, then AB is an
upper triangular matrix with all diagonal entries equal to 1.

(b) ⇒ (c). Let k ∈ N and let a finite coloring of N be given. We can
multiply B by a suitable positive integer to obtain a matrix C, with entries
in ω, for which AC = D is a first entries matrix in which, for each i ∈
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{1, 2, . . . , u}, the first entry of the ith row occurs in the ith column. We may
suppose that C has no row equal to ~0, because we can add any column with
entries in N to C as a new final column. Let w denote the number of columns

of D (so w = u or w = u + 1). Choose ε satisfying 0 < ε <
1

k + 1
min

{
di,i :

i ∈ {1, 2, . . . , u}
}

and then choose m ∈ N such that
∑w

j=1 |di,j| < mε for every

i ∈ {1, 2, . . . , u}. By Theorem 3.2, there exists ~x ∈ Nw such that xi > mxi+1

for every i ∈ {1, 2, . . . , w − 1} and ~y = D~x ∈ Nu has monochrome entries.
For each i ∈ {1, 2, . . . , u− 1}, one has that

∑w
j=i+1 |di,j| · xj < xi · ε and

yi

yi+1

=

∑w
j=i dijxj∑w

j=i+1 di+1,jxj

so that
yi

yi+1

>
di,i − ε

ε
> k. Thus (c) follows from the observation that

D~x = A(C~x) and C~x ∈ Nv.

This completes the proof, since (c) obviously implies (a).

In Corollary 3.5 and Theorem 3.6 we had conditions involving ~1 being in
the positive and nonnegative spans of the columns of A respectively. In the
following theorem we explore the implications of ~1 being in the range of A.

Theorem 3.8 Let A be a u× v image partition regular matrix over Q. The
following are equivalent:

(a) There exists ~s ∈ Qv such that A~s = ~1.

(b) There exists l ∈ N such that, if p is in the smallest ideal of βN and
lN ∈ p, then, for every P ∈ p, there exists ~x ∈ Nv such that A~x ∈ P u.

(c) There exists k ∈ N such that, given any finite coloring of N, there
exists ~z ∈ Zv such that the entries of ~y = A~z are monochrome positive

integers and satisfy
yi

yj

< k for every i, j ∈ {1, 2, . . . , u}.

(d) Given any ε > 0 and any finite coloring of N, there exists ~z ∈ Zv such
that the entries of ~y = A~z are monochrome positive integers and satisfy
yi

yj

< 1 + ε for every i, j ∈ {1, 2, . . . , u}.

(e) Given any ε > 0, there exists ~z ∈ Zv such that ~y = A~z ∈ Nu and
yi

yj
< 1 + ε for every i, j ∈ {1, 2, . . . , u}.
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Proof. We first show that (a) and (b) are equivalent.

(a) ⇒ (b). We can choose ~z ∈ Zv and l ∈ N such that A~z = ~l, where
~l = ( l l · · · l )T ∈ Nu. Suppose that p is in the smallest ideal of βN and
that lN ∈ p. Let P ∈ p. There exists a minimal idempotent q ∈ βN such that
p = p+q [12, Theorem 2.8 and Lemma 1.30]. Let P ′ = {n ∈ P : −n+P ∈ q}.
Then P ′ ∈ p. Since lN ∈ p we can choose m ∈ N such that lm ∈ P ′. Let
Q = −lm + P ∈ q. By Theorem 2.10(b), there exists ~x ∈ Nv such that
A~x ∈ Qv and xi + mzi > 0 for every i ∈ {1, 2, . . . , v}. (The fact that the
entries of ~x can be chosen to be arbitrarily large follows from Lemma 2.2. For
every r ∈ N, {~x ∈ Nv : xi > r for all i ∈ {1, 2, . . . , v}} is a member of every

idempotent in β(Nv).) Then m~z+ ~x ∈ Nv and A(m~z+ ~x) = m~l+A~x ∈ P u.

(b) ⇒ (a). We may suppose that the entries of A are in Z, as we could
replace A by nA for a suitable n ∈ N.

Suppose that ~1 /∈ {A~x : ~x ∈ Qv}. Then there exists ~u ∈ Zv such that
~u · A~x = 0 for every x ∈ Qv, but ~u ·~1 6= 0.

Choose a prime number r satisfying r > l and r > |l~u · ~1|. Let q be a
minimal idempotent in βN and let p = l + q. Then P = {n ∈ N : n ≡
l (mod r)} ∈ p (by [12, Lemma 6.6]). It follows from (b) that there exists
~x ∈ Zv such that A~x ∈ P u and hence that A~x = l~1 in Zr. This is a
contradiction, as ~u · A~x = 0 in Zr, but ~u · l~1 6= 0 in Zr.

We now show that (c), (d) and (e) are equivalent to (a) and (b). It is
immediate from Lemma 1.3 that (c) and (d) are equivalent, and it is obvious
that (d) implies (e). Now (e) implies that ~1 is in the closure of the range of
A and therefore in the range of A, since linear subspaces of Qu are closed.
So (e) implies (a). It is trivial that (a) implies (e).

4 Preserving Large Sets

In this section we investigate questions raised by the characterization in The-
orem 2.10(c). There are several notions of largeness that make sense in any
semigroup. The notion of “central” sets is one of these. Among the others
are the notions of “syndetic”, “piecewise syndetic”, “IP”, and “∆” sets.

Definition 4.1 Let (S,+) be a semigroup and let B ⊆ S.

(a) The set B is syndetic if and only if there exists some G ∈ Pf (S) =
{H ⊆ S : H is finite and nonempty} such that S =

⋃
t∈G − t+B.
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(b) The set B is piecewise syndetic if and only if there exists some G ∈
Pf (S) such that for every F ∈ Pf (S) there exists x ∈ S such that
F + x ⊆ ⋃

t∈G − t+B.

(c) The set B is an IP set if and only if there exists a sequence 〈xn〉∞n=1 in
S such that FS(〈xn〉∞n=1) ⊆ B, where FS(〈xn〉∞n=1) = {∑n∈F xn : F ∈
Pf (N)} and the sums are taken in increasing order of indices.

(d) The set B is a ∆ set if and only if there exists a sequence 〈sn〉∞n=1 in
S such that for every n,m ∈ N with n < m, sm ∈ (sn +B).

Notice that, if S can be embedded in a group G, B is a ∆ set if and only if
there is a sequence 〈sn〉∞n=1 such that {−sn +sm : m,n ∈ N and n < m} ⊆ B.
Notice also that any IP set is a ∆ set. (Given 〈xn〉∞n=1 with FS(〈xn〉∞n=1) ⊆ B
and given n ∈ N, let sn =

∑n
t=1 xt.)

Given any property E of subsets of a set X, there is a dual property E*
defined by specifying that a subset B of X is an E* set if and only if B∩A 6= ∅
for every E set A.

Definition 4.2 Let (S,+) be a semigroup and let B ⊆ S. Then B is a
central* set if and only if B ∩ A 6= ∅ for every central set A in S. Also, B
is a PS* set if and only if B ∩ A 6= ∅ for every piecewise syndetic set A in
S, B is an IP* set if and only if B ∩ A 6= ∅ for every IP set A in S, B is a
syndetic* set if and only if B ∩ A 6= ∅ for every syndetic set A in S, and B
is a ∆* set if and only if B ∩ A 6= ∅ for every ∆ set A in S.

The concept of “syndetic*” is more commonly referred to as “thick”, and
we shall follow this practice.

The ∆ sets and ∆* sets are interesting because they arise as sets of
recurrence, which in turn have significant combinatorial properties. (See
[5].) The other notions discussed above have simple, and useful, algebraic
characterizations in terms of βS.

Lemma 4.3 Let (S,+) be a semigroup and let B ⊆ S.

(a) A is piecewise syndetic if and only if A ∩K(βS) 6= ∅.
(b) A is IP if and only if there is some idempotent of βS in A.

(c) A is syndetic if and only if for every left ideal L of βS, A ∩ L 6= ∅.
(d) A is central if and only if there is some minimal idempotent of βS in

A.
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(e) A is central* if and only if every minimal idempotent of βS is in A.

(f) A is thick if and only if A contains a left ideal of βS.

(g) A is IP* if and only if every idempotent of βS is in A.

(h) A is PS* if and only if K(βS) ⊆ A.

Proof. Statement (a) is [12, Theorem 4.40], (b) is [12, Theorem 5.12], (c) is
[3, Theorem 2.9(d)], and (d) is the definition of central. Statements (e), (f),
(g), and (h) follow easily from statements (d), (c), (b), and (a) respectively.

As a consequence of Lemma 4.3, and the observation already made that
any IP set is a ∆ set, we see that the pattern of implications given below
holds.

∆*
↓
IP* PS*
↘ ↙↓

central* thick=syndetic*

↙ ↓ ↙
syndetic central
↓ ↙ ↘

piecewise syndetic IP
↓
∆

It is easy to produce examples in (N,+) showing that none of the missing
implications is valid in general. (Or see [1] for an explicit list of examples.)

The following theorem relates image partition regular matrices and piece-
wise syndetic sets.

Theorem 4.4 Let A be a u× v image partition regular matrix over Q. The
following statements are equivalent:

(a) For every piecewise syndetic subset P of N, there exists ~x ∈ Nv such
that A~x ∈ P u;

(b) There exists ~z ∈ Zv such that A~z = ~1, where ~1 denotes the vector in
Nu whose entries are all equal to 1.
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Proof. This follows easily from Lemma 4.3(a) and the proof of (a) ⇔ (b) in
Theorem 3.8, taking l = 1.

In [2] it was shown that if “large” meant any of “∆”, “IP”, “central”,
“central*”, “IP*”, or “∆*”, and B is a large subset of N, then for every
positive α ∈ R and every γ ∈ R with 0 < γ < 1, {bαn + γc : n ∈ B} is also
large (in the same sense). In [6] it was shown that if B is a piecewise syndetic
subset of Z, l ∈ N, and APl = {(a, a + d, . . . , a + (l − 1)d) : a, d ∈ Z}, the
group of length l arithmetic progressions (including the constant ones), then
Bl ∩APl is piecewise syndetic in APl. In [1] a systematic study of this latter
phenomenon was undertaken. These results apply in the current context in
terms of when the set of images contained in a given set is large among the
set of all images.

Theorem 4.5 Let A be a u × v matrix with entries from Q, let I = {A~x :
~x ∈ Nv} ∩ Nu, and let C ⊆ N.

(a) If I 6= ∅, “large” is any of “IP*”, “∆*”, “PS*”, or “central*”, and C
is large in N, then I ∩ Cu is large in I.

(b) If ~1 ∈ I, “large” is any of “piecewise syndetic”, “central”, or “thick”,
and C is large in N, then I ∩ Cu is large in I.

Proof. (a) For IP* and ∆*, [1, Corollary 2.3] requires only that I be a
subsemigroup of Nu. For PS* and central*, [1, Corollary 2.7] requires in
addition that for each i ∈ {1, 2, . . . , u}, the ith projection πi[I] be piecewise
syndetic in N. This trivially holds because, if d ∈ πi[I], then dN ⊆ πi[I].

(b) Letting E = I, we have that

a
a
...
a

 : a ∈ N

 ⊆ E

so that [1, Theorem 3.7] applies.

Notice that the hypothesis of Theorem 4.5(b) differs from that of Corollary
3.5 which asked that ~1 be in the positive rational span of the columns of A.
If “large” is “piecewise syndetic”, some such distinction is necessary as can
be seen by considering the 1× 1 matrix A = (2) and the piecewise syndetic
subset C = 2N + 1 of N. For “central” and “thick” the proof of [1, Theorem
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3.7] can be modified to show that the assumption that ~1 is in the positive
rational span of the columns of A is enough.

We shall be concerned for the rest of this section with establishing ana-
logues of Theorem 2.10(c) for the other notions of largeness. That is, we wish
to determine conditions that guarantee that if a set C is “large” in N, then
{~x ∈ Nv : A~x ∈ Cu} is “large” in Nv.

Lemma 4.6 Let A be a u×v matrix with entries from Z, define ϕ : Nv → Zu

by ϕ(~x) = A~x, and let ϕ̃ : β(Nv) → (βZ)u be its continuous extension. Then
ϕ̃ is a homomorphism and K((βN)u) = (K(βN))u.

(a) If there exists ~x ∈ Nv such that A~x ∈ Nu, then ϕ̃[β(Nv)]∩K((βN)u) 6= ∅.
(b) If for all ~x ∈ Nv, A~x ∈ Nu, then ϕ̃[K(β(Nv))] ⊆ K((βN)u).

Proof. By [12, Corollary 4.22] we have that ϕ̃ is a homomorphism, and by
[12, Theorem 2.23] K((βN)u) = (K(βN))u.

(a). Since ϕ̃[β(Nv)] = c`{A~x : ~x ∈ Nv}, we need to show that c`{A~x :
~x ∈ Nv} ∩ (K(βN))u 6= ∅.

Pick ~x ∈ Nv such that A~x = ~y ∈ Nu. Pick any minimal idempotent p in
βN. Then by Lemma 2.1 ~p = ~yp ∈ (K(βN))u. To see that ~p ∈ c`{A~z : ~z ∈
Nv}, let U be a neighborhood of ~p and for each i ∈ {1, 2, . . . , u}, pick Di ∈ p
such that ×u

i=1yiDi ⊆ U . Pick a ∈ ⋂u
i=1Di. Then A(a~x) = a~y ∈ U .

(b). By part (a), ϕ̃[β(Nv)] ∩ K((βN)u) 6= ∅, so by [12, Theorem 1.65],
K(ϕ̃[β(Nv)]) = ϕ̃[β(Nv)] ∩ K((βN)u) (because ϕ̃[β(Nv)] ⊆ (βN)u). Also by
[12, Exercise 1.7.3], K(ϕ̃[β(Nv)]) = ϕ̃[K(β(Nv))].

Theorem 4.7 Let A be a u× v matrix with entries from Q and assume that
for all ~x ∈ Nv, every entry of A~x is positive. If “large” is any of “IP*”,
“∆*”, or “central*”, and C is large in N, then W = {~x ∈ Nv : A~x ∈ Cu} is
large in Nv.

Proof. We show first that it suffices to prove the theorem under the ad-
ditional assumption that all entries of A are in Z. Indeed, suppose we have
done so and pick d ∈ N such that all entries of dA are in Z. We claim that
dC is large in N, which we check individually.

Assume first that “large” is “IP*” and let a sequence 〈xn〉∞n=1 in N be
given. By [12, Theorem 5.14 and Lemma 6.6] pick a sum subsystem 〈yn〉∞n=1

of 〈xn〉∞n=1 such that d|yn for each n. Pick a ∈ C ∩ FS(〈yn

d
〉∞n=1). Then

da ∈ dC ∩ FS(〈xn〉∞n=1).
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Next assume that “large” is “∆*”. Let a ∆ set B in N be given and choose
a sequence 〈sn〉∞n=1 such that for every n,m ∈ N with n < m, sm ∈ (sn +B).
(In particular, for each n < m, sn < sm.) By passing to a subsequence, we
may presume that for each n < m, sn ≡ sm (mod d). Pick i ∈ {1, 2, . . . , d}
such that for each n ∈ N, sn + i ≡ 0 (mod d). Then 〈 sn+i

d
〉∞n=1 is a sequence

in N so pick n < m such that sm+i
d

− sn+i
d

∈ C. Then sm − sn ∈ dC.
Finally assume that “large” is “central*”. Let p be a minimal idempo-

tent in βN. By Lemma 2.1, 1
d
p is a minimal idempotent so C ∈ 1

d
p and

consequently dC ∈ p.
Since we have established that dC is large, we have that {~x ∈ Nv : dA~x ∈

(dC)u} is large, and {~x ∈ Nv : dA~x ∈ (dC)u} = {~x ∈ Nv : A~x ∈ Cu}.
Thus we assume that all entries of A are in Z. Define ϕ : Nv → Nu by

ϕ(~x) = A~x, and let ϕ̃ : β(Nv) → (βN)u be its continuous extension.
Assume first that “large” is “IP*”. Let p be an idempotent in β(Nv). We

need to show that W ∈ p. Since ϕ̃ is a homomorphism, ϕ̃(p) is an idempotent
in (βN)u and so C

u
is a neighborhood of φ̃(p), and hence W ∈ p as required.

Next assume that “large” is “∆*”. Let B be a ∆ set in Nv and pick a
sequence 〈~x(n)〉∞n=1 in Nv such that for every n,m ∈ N with n < m, ~x(m) ∈
(~x(n) +B). In particular, for each n < m, we have ~x(m)−~x(n) ∈ Nv. We need
to show that there exists n < m such that ~x(m) − ~x(n) ∈ W .

For each n ∈ N, let ~y(n) = A~x(n). Notice that, for n < m we have that
all entries of A(~x(m)− ~x(n)) are positive, and consequently each entry of ~y(m)

is larger than the corresponding entry of ~y(n). By Ramsey’s Theorem [14]
(or see [8, Theorem 1.5] or [12, Theorem 18.2]), pick an infinite subset D1 of

N such that for all n < m in D1, y
(m)
1 − y

(n)
1 ∈ C or for all n < m in D1,

y
(m)
1 − y

(n)
1 ∈ N\C. Since C is a ∆* set, the latter alternative is impossible,

so the former must hold. Inductively, given i ∈ {1, 2, . . . , u − 1}, choose by
Ramsey’s Theorem an infinite subset Di+1 of Di such that for all n < m

in Di+1, y
(m)
i+1 − y

(n)
i+1 ∈ C. Having chosen Du pick n < m in Du. Then

~x(m) − ~x(n) ∈ W .
Finally assume that “large” is “central*”, and let p be a minimal idempo-

tent in β(Nv). By Lemma 4.6, ϕ̃(p) is an idempotent and ϕ̃(p) ∈ (K(βN))u

so that ϕ̃(p) ∈ Cu
.

The requirement in Theorem 4.7 that for all ~x ∈ Nv, every entry of A~x
be positive may not be omitted. To see this, consider the 1 × 2 matrix
A = ( 1 −1 ) and let C = N. Then W = {~x ∈ N2 : A~x ∈ N} = {~x ∈
N2 : x1 > x2}. It is routine to check that N2\W is thick and thus W is not
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syndetic, and hence is not central*, PS*, IP*, or ∆*. (The fact that W is not
PS* tells us that this requirement cannot be eliminated from the following
theorem either.)

Theorem 4.8 Let A be a u × v matrix with entries from Z and assume
that for all ~x ∈ Nv, every entry of A~x ∈ Nu. If C is PS* in N, then
W = {~x ∈ Nv : A~x ∈ Cu} is PS* in Nv.

Proof. Define ϕ : Nv → Nu by ϕ(~x) = A~x, and let ϕ̃ : β(Nv) → (βN)u be its
continuous extension. Let p ∈ K(β(Nv)). By Lemma 4.6, ϕ̃(p) ∈ (K(βN))u

and thus ϕ̃(p) ∈ Cu
and thus W ∈ p as required.

The requirement that A have entries from Z cannot be reduced to a
requirement that entries come from Q in Theorem 4.8, as can be seen by
considering the 1 × 1 matrix A = (1

2
) and C = N. In this case one has

W = {x ∈ N : Ax ∈ N} = 2N which is neither PS* nor thick. (The latter
fact shows that this requirement cannot be eliminated from Theorem 4.10 as
well.)

The following is another well known fact that we cannot find in [12].

Lemma 4.9 Let p ∈ K(βN). Then βZ + p = βN + p.

Proof. By [12, Corollary 4.33], N∗ is an ideal of βN so K(βN) ⊆ N∗.
Therefore, by [12, Theorem 1.65], K(N∗) = K(βN). Since p ∈ K(N∗),
p ∈ N∗ + p, so pick q ∈ N∗ such that p = q+ p. To see that βZ + p ⊆ βN + p,
let r ∈ βZ. By [12, Exercise 4.3.5], N∗ is a left ideal of βZ so r + q ∈ βN.
Thus r + p = r + q + p ∈ βN + p.

Theorem 4.10 Let A be a u× v image partition regular matrix with entries
from Z. If C is thick in N, then W = {~x ∈ Nv : A~x ∈ Cu} is thick in Nv.

Proof. Since C is thick, pick a left ideal L of βN such that L ⊆ C. Pick
by [12, Corollary 2.6] a minimal idempotent p ∈ L. Define ϕ : Nv → Zu

by ϕ(~x) = A~x, and let ϕ̃ : β(Nv) → (βZ)u be its continuous extension. Let
p = (p, p, . . . , p)T and pick by Lemma 2.2 a minimal idempotent q ∈ β(Nv)
such that ϕ̃(q) = p. (By Theorem 2.10(b), p satisfies the hypotheses of
Lemma 2.2.)

We claim that ϕ̃[β(Nv) + q] ⊆ C
u

so that β(Nv) + q ⊆ W as required.
To this end, let r ∈ β(Nv) and let i ∈ {1, 2, . . . , u}. Then πi ◦ ϕ̃(r + q) =
πi(ϕ̃(r)) + p ∈ βZ + p. By Lemma 4.9, βZ + p = βN + p ⊆ L ⊆ C.
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The requirement in Theorem 4.10 that A be image partition regular can-
not be reduced to requiring that its entries come from Z or even from N
as can be seen by considering A =

(
1
2

)
and C = {22n + i : n ∈ N and

i ∈ {1, 2, . . . , n}}. Then C is thick in N and {x ∈ N : Ax ∈ C2} = ∅.
Finally, we observe that no analogous results are available for the notions

“syndetic” or “piecewise syndetic” (considering A = (2) and C = 2N +

1) nor for the notions “IP” or “∆” (considering A =

 1 1
1 2
1 3

 and C =

FS(〈22n〉∞n=1). )
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