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Abstract. Our main aim in this paper is to show that there is a partition of the reals
into finitely many classes with “many” forbidden distances, in the following sense: for
each positive real x there is a natural number n such that no two points in the same
class are at distance x/n. In fact, more generally, given any infinite set {cn : n < ω} of
positive rationals, there is a partition of the reals into three classes such that for each
positive real x there is some n such that no two points in the same class are at distance
cnx. This result is motivated by some questions in partition regularity.

1. Introduction

Let the reals be partitioned into finitely many classes: R =
⋃k

i=1 Ci. We say that a
positive real x is a forbidden distance for this partition if, for each i, no two points of
Ci are at distance x. Our main aim in this paper is to show that there exists a finite
partition of the reals, in fact R = C1 ∪ C2 ∪ C3, such that there are many forbidden
distances. More precisely, for each positive real x there is a positive integer n with x/n
being a forbidden distance.

Note that such a partition certainly cannot be into measurable pieces, since any
set S of positive measure has the property that all sufficiently small distances occur in
S. (This is trivial if S is an open set, and measurable sets may be closely approximated
by open sets. For the details of this well known fact, see almost any book on measure
theory, or alternatively see the proof of Theorem 3.3.)

In contrast to measurability questions, our partition property makes perfect sense
for the rationals instead of the reals, and indeed our first task will be to find such a
partition for the rationals.

If we write cn = 1/n, the above problem asks for a forbidden distance of the form
cnx, for each positive x. There is nothing special about this particular sequence. Indeed,
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the argument we give for cn = 1/n also works whenever cn tends to zero. In fact, the
result holds whenever {cn : n < ω} is any infinite set of rationals (although the proof
in the case that {cn : n < ω} is unbounded is different).

Although these questions are natural in their own right, our main motivation for
studying them comes from partition regularity, as we now describe. The reader who is
not interested in Ramsey Theory may skip the rest of the Introduction.

Let A be an m× n matrix with rational entries. We say that A is kernel partition
regular if for every finite coloring of the natural numbers there is a monochromatic vector
x ∈ Nn with Ax = 0. In other words, A is kernel partition regular if for every positive

integer k, and every function c : N → {1, 2, . . . , k}, there is a vector x =

 x1
...
xn

 ∈ Nn

with c(x1) = . . . = c(xn) such that Ax = 0. We may also speak of the ‘system of
equations Ax = 0’ being kernel partition regular.

Many of the classical results of Ramsey Theory may naturally be considered as
statements about kernel partition regularity. For example, Schur’s Theorem [18], that
in any finite coloring of the natural numbers we may solve x+ y = z in one color class,
is precisely the assertion that the 1× 3 matrix ( 1 1 −1 ) is kernel partition regular.

The m× n kernel partition regular matrices were characterized by Rado [16] – see
[9] or [3] for more information.

In the infinite case, things are far less well understood. If A is an infinite matrix,
with rational entries and only finitely many non-zero entries in each row, we say as
before that A is kernel partition regular if whenever N is finitely colored there is a
monochromatic vector x with Ax = 0. See [10] for a discussion of the small amount
that is known about infinite kernel partition regular matrices.

The above is just concerned with colorings of N, so it is natural to ask how the
notion of kernel partition regularity depends on the ‘ambient space’. We say that a finite
or infinite matrix A with rational entries is kernel partition regular over Z (respectively
Q, R) if whenever the set Z \ {0} (respectively Q \ {0}, R \ {0}) is finitely colored there
is a monochromatic vector x with Ax = 0. How do these notions differ from each other?

In the integers, nothing changes. Indeed, if a matrix is kernel partition regular
(over N) then it is certainly kernel partition regular over Z. Conversely, if a matrix has
a bad k-coloring over N then it has a bad 2k-coloring over Z: we just copy the coloring
from the positive to the negative integers, but using a new set of k colors.

But for the rationals, we do not know what happens. In the finite case, the notions
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are the same (and remain the same for the reals as well – this was proved by Rado [17]),
but for the infinite case the question is open. The question at the start of this paper,
in the rationals, is the result of perhaps the most obvious way to build a system that is
kernel partition regular over Q but not over N. The system of equations is:

x1 − y1 = t , x2 − y2 = t/2 , x3 − y3 = t/3, . . . .

This is clearly not kernel partition regular over N, as there is not even a solution to
these equations over N. One might hope that it has sufficient ‘freedom’ that it would
be kernel partition regular over Q. However, if we ignore the color of t then it will be
seen that we arrive precisely at the opening question of this paper: this is where the
problem comes from.

Turning to the reals, it is known that there is a system that is kernel partition
regular over R but not over N – this was proved in [10]. The system is given by:

x1 − x2 = y1 , x2 − x3 = y2 , x3 − x4 = y3, . . . .

However, we feel that the system mentioned in the previous paragraph is very natural,
and the question of whether or not it is kernel partition regular over R leads to the main
result of the paper. Thus, for Ramsey Theory, the main consequence of the result at
the start of this paper is that the system

x1 − y1 = t, x2 − y2 = t/2, x3 − y3 = t/3, . . .

is not kernel partition regular over Q or R.

The plan of the paper is as follows. Our main results about the existence of bad
colorings are proved in Section 2. Then, in Section 3, we turn our attention to colorings
that are measurable, or have the property of Baire. It turns out that our partition
regularity questions do have affirmative answers in these cases.

Let us say a brief word about the Continuum Hypothesis. As will be seen below,
our problem is very closely related to some countable partitions of R. Although we
are trying to find a finite partition of R, our problem certainly involves a countable
partition of the positive reals, since for each x we must specify an n for which x/n will
be a forbidden distance, and this corresponds to a countable partition: for each n we
take the set of those x for which x/n is a forbidden distance. If these sets have linear
dependence over Q, then there are substantial problems to overcome (as the reader who
examines the second half of Section 2 will realize). Now, it was proved by Erdős and
Kakutani [6] that the reals may be partitioned into countably many independent sets if
and only if the Continuum Hypothesis holds, so one might imagine that the Continuum
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Hypothesis is somehow needed. But this, curiously, is not correct: we wish to stress
that our proof does not assume the Continuum Hypothesis.

While on the subject of countable partitions, let us mention that our result does
not seem to have anything to do with results like the beautiful theorem of Kunen [13]
that (necessarily assuming the Continuum Hypothesis) there is a countable partition of
Rn with each distance occurring at most once within any one cell. (From this it is easy
to forbid any countable set of distances, such as the rational distances, within any cell
simply by assigning troublesome points to their own cells.) One could say that Kunen’s
result has a far larger space but far fewer forbidden distances.

We write ω = N ∪ {0} for the first infinite ordinal, R+ = {x ∈ R : x > 0}, and
Q+ = {x ∈ Q : x > 0}. Given a set X we write Pf (X) for the set of finite nonempty
subsets of X. Also T will denote the unit circle R/Z and π : R → T will denote the
canonical homomorphism.

2. Forbidding Distances in Q and R

We shall be concerned in this section with the following problem. Let {cn : n < ω}
be a set of positive rationals and let R \ {0} be finitely colored. Must there exist z
and sequences 〈xn〉n<ω and 〈yn〉n<ω such that {z} ∪ {xn : n < ω} ∪ {yn : n < ω} is
monochrome and for each n < ω, xn − yn = cnz? Equivalently, setting

A =


c0 1 −1 0 0 0 0 . . .
c1 0 0 1 −1 0 0 . . .
c2 0 0 0 0 1 −1 . . .
...

...
...

...
...

...
...

. . .

 ,

is A kernel partition regular over R \ {0}? Notice that if {cn : n ∈ ω} is finite, then A

is certainly kernel partition regular over N (for example, because its rows are the rows
of a finite matrix that has Rado’s columns property – see [16]).

We shall see in Theorem 2.9 that, with this trivial exception, the answer is “no”
even for three colors and even without the requirement that z be the same color as the
xn’s and yn’s.

Of course the corresponding assertion about colorings of Q \ {0} is an immediate
consequence of this result. However, we shall present the proof for Q separately because
it is significantly simpler, while containing some of the ideas we shall need later on. We
write C for the closure of a set C.

2.1 Lemma. Let 〈Fn〉n<ω be a sequence in Pf (Q\{0}), let {cn : n < ω} be an infinite
subset of Q+ and, for each n ∈ ω, let (αn, βn) be a non-empty open interval in [0, 1].
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Then there is a function γ : ω → ω such that for all n ∈ ω,

(†)
for all z0 ∈ F0, z1 ∈ F1, . . . , zn ∈ Fn and all a0, a1, . . . , an ∈ R,
(∃s ∈ R)(∀t ∈ {0, 1, . . . , n})

(
π(at + s · cγ(t) · zt) ∈ π[(αt, βt)]

)
.

Furthermore, if {cn : n < ω} is bounded, then (†) holds with s ∈ N while if {cn : n < ω}
is unbounded, then (†) holds with 0 < s < 1.

Proof. Case 1. {cn : n < ω} is bounded. We define the denominator d(q) of q ∈ Q to
be the smallest positive integer such that q · d(q) ∈ Z. We observe that

(∗) if a, α, β ∈ R with α < β, y ∈ Q \ {0}, and d(y) > 1
β−α , then there exists

s ∈ N such that π(a+ sy) ∈ π[(α, β)].

To see this, let y = k
b where k ∈ Z and b = d(y). Then 1

b < β − α so pick m ∈ N such
that π(a+ m

b ) ∈ π[(α, β)]. Since k and b are relatively prime we may pick s ∈ {1, 2, . . . ,
b} and t ∈ Z such that k ·s = m+b · t. (See [12, Theorem 57].) Then a+s ·y = a+ m

b + t
so π(a+ s · y) = π(a+ m

b ).

Let I be a bounded real interval such that cn ∈ I for every n ∈ ω. We observe
that, for any k ∈ N and any z ∈ Q \ {0}, {q ∈ I ∩Q : d(q · z) ≤ k} is finite. Thus we can
choose γ(0) ∈ ω such that d(cγ(0) · z) > 1

β0−α0
for every z ∈ F0. Then by (∗), for each

z ∈ F0 and each a0 ∈ R, there exists s ∈ N such that π(a0 + s · cγ(0) · z) ∈ π[(α0, β0)].

Now suppose that n ∈ ω and that we have defined γ(t) for t ∈ {0, 1, . . . , n} so
that our claim holds for n. We can choose u ∈ N so that u · cγ(t) · z ∈ Z for every
t ∈ {0, 1, . . . , n} and every z ∈ Ft. We can then choose γ(n + 1) ∈ ω so that d(u ·
cγ(n+1) · z) > 1

βn+1−αn+1
for every z ∈ Fn+1.

Let z0 ∈ F0, z1 ∈ F1, . . . , zn+1 ∈ Fn+1 and let a0, a1, . . . , an+1 ∈ R. By our
inductive assumption, pick r ∈ N so that, for every t ∈ {0, 1, . . . , n}, we have π(at + r ·
cγ(t) · zt) ∈ π[(αt, βt)]. We can then choose by (∗) (with a = an+1 + r · cγ(n+1) · zn+1

and y = u · cγ(n+1) · zn+1) some v ∈ N such that

π(an+1 + r · cγ(n+1) · zn+1 + v · u · cγ(n+1) · zn+1) ∈ π[(αn+1, βn+1)] .

If s = r+ v · u, we have π(at + s · cγ(t) · zt) ∈ π[(αm, βm)] for every t ∈ {0, 1, . . . , n+ 1}.
Case 2. {cn : n < ω} is unbounded. We first choose γ(0) so that |γ(0) · z| > 1 for

every z ∈ F0. Then (†) holds for n = 0 with s ∈ (0, 1), because, for every a ∈ R and
every z ∈ F0, the mapping s 7→ π(a+ s · cγ(0) · z) from (0, 1) to T is surjective.

We then assume that n ∈ ω and that γ(0), γ(1), . . . , γ(n) have been chosen so that
(†) holds for n with s ∈ (0, 1). For z0 ∈ F0, z1 ∈ F1, . . . , zn ∈ Fn let ~z = (z0, z1, . . . , zn)
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and define ψ~z : [0, 1]n+1 × (0, 1) → Tn+1 by
(
ψ~z (~b, s)

)
t

= π(bt + s · cγ(t) · zt) for
~b ∈ [0, 1]n+1, s ∈ (0, 1), and t ∈ {0, 1, . . . , n}. Then ψ~z is continuous. Further, given
~b ∈ [0, 1]n+1 we have by assumption some s ∈ (0, 1) such that ψ~z (~b, s) ∈

∏n
t=0 π[(αt, βt)].

So pick a neighborhood U~b,~z of ~b in [0, 1]n+1 and a non-empty open interval I~b,~z ⊆ (0, 1)
such that

(∀t ∈ {0, 1, . . . , n})
(
π(at + s · cγ(t) · zt) ∈ π[(αt, βt)]

)
whenever ~a = 〈a0, a1, · · · , an〉 ∈ U~b,~z and s ∈ I~b,~z.

For each ~z ∈
∏n

t=0 Ft, there is a finite subset H~z of [0, 1]n+1 such that [0, 1]n+1 ⊆⋃
~b∈H~z

U~b,~z. We choose γ(n+ 1) so that the interval cγ(n+1) · I~b,~z · v has length greater
than 1 whenever ~z ∈

∏n
t=0 Ft, ~b ∈ H~z, and v ∈ Fn+1.

Now let at ∈ [0, 1] and zt ∈ Ft for each t ∈ {0, 1, . . . , n+1}. Put ~a = 〈a0, a1, · · · , an〉
and ~z = 〈z0, z1, · · · , zn〉, and choose ~b ∈ H~z such that ~a ∈ U~b,~z. Since the mapping
s 7→ π(an+1 + s · cγ(n+1) · zn+1) maps I~b,~z onto T, there exists s ∈ I~b,~z such that
π(an+1 + s · cγ(n+1) · zn+1) ∈ π [(αn+1, βn+1)]. This shows that (†) holds for n+1. Thus
we can define γ inductively so that (†) holds for every n ∈ ω.

2.2 Lemma. Assume that {cn : n < ω} is an infinite subset of Q+. Then there is a
function δ : Q+ → ω such that for every F ∈ Pf (Q+) there is a function ϕ : Q →
{0, 1, 2} such that for all x, y ∈ Q and all z ∈ F , if ϕ(x) = ϕ(y), then x− y 6= cδ(z) · z.

Proof. Enumerate Q+ as 〈zn〉n<ω. For each n < ω, let Fn = {zn}, let αn = 1
3 , and let

βn = 2
3 . Pick γ : ω → ω as guaranteed by Lemma 2.1, and define δ(zn) = γ(n).

Now let F ∈ Pf (Q+) be given and choose n ∈ ω such that F ⊆ {z0, z1, . . . , zn}.
By Lemma 2.1, we may choose s ∈ R such that π(s · cδ(z) · z) ∈ π[( 1

3 ,
2
3 )] for z ∈ F .

Define ϕ : Q → {0, 1, 2} by ϕ(x) = i ∈ {0, 1, 2} if and only if π(s · x) ∈ π
[
[ i
3 ,

i+1
3 )

]
.

If ϕ(x) = ϕ(y), then π
(
s · (x− y)

)
/∈ π[( 1

3 ,
2
3 )]. Thus, if z ∈ F , x− y 6= cδ(z) · z.

Now a simple compactness proof establishes that the system of equations xn−yn =
cnz is not partition regular. In fact, for each z there is some n such that the distance cnz
does not occur in any of the colors. In the proof given here, since Pf (Q+) is countable,
we could use a sequence of functions rather than the more general net. However, we
will use the same argument for R, and don’t want to write it down twice.

2.3 Theorem. Assume that {cn : n < ω} is an infinite subset of Q+. Then there exists
ψ : Q → {0, 1, 2} such that for each z ∈ Q+ there exists n ∈ ω so that there do not exist
x, y ∈ Q with x− y = cnz and ψ(x) = ψ(y).
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Proof. Pick δ : Q+ → ω as guaranteed by Lemma 2.2 and for each F ∈ Pf (Q+) choose
a function ϕF : Q → {0, 1, 2} such that for all x, y ∈ Q and all z ∈ F , if ϕF (x) = ϕF (y),
then x− y 6= cδ(z) · z.

Now Pf (Q+) is directed by ⊆ so 〈ϕF 〉Pf (Q+) is a net in the compact product space
{0, 1, 2}Q. Pick a cluster point ψ of 〈ϕF 〉Pf (Q+). Let z ∈ Q+ and let n = δ(z). Suppose
that one has x, y ∈ Q with x − y = cnz and ψ(x) = ψ(y). Let U = {τ ∈ {0, 1, 2}Q :
τ(x) = ψ(x) and τ(y) = ψ(y)}. Then U is a neighborhood of ψ so pick F ∈ Pf (Q+)
such that z ∈ F and ϕF ∈ U . Then ϕF (x) = ϕF (y) and x−y = cδ(z) ·z, a contradiction.

We remark that the 3 colors used in the proof of Theorem 2.3 are minimal. That

is, if cn =
1
2n

or cn =
2n − 1

2n
, then whenever Q+ is 2-colored there exist z ∈ Q+ and

sequences 〈xn〉n<ω and 〈yn〉n<ω in Q+ such that {z} ∪ {xn : n < ω} ∪ {yn : n < ω}
is monochrome and xn − yn = cn · z for every n < ω. The proof of this assertion is a
tedious and not very enlightening case analysis, so we omit it.

Before we embark upon the proof of Theorem 2.9, we would like to digress to show
that the result does not remain true when we replace R by a rational vector space larger
than R. We urge the reader not to just skip this, however, as it helps to explain what
may otherwise seem like some very unmotivated constructions in the proof of Theorem
2.9. To be precise, several of the partitions into complete multipartite hypergraphs in
the proof of Theorem 2.9 can be viewed as rather natural, if one is striving to avoid the
kind of situation encountered in the proof of Theorem 2.4.

In the proof of Theorem 2.4 we shall use the result of Erdős that the partition
relation c+ → (ω1)2ω holds ([5] or see [7]). That is, if the two-element subsets [V ]2 of a
set V larger than R are colored with countably many colors, then there is an uncountable
set W ⊆ V such that all pairs from W are monochrome.

We see in the following result that if |V | > |R|, then not only cannot one get a
3-coloring as in Theorems 2.3 and 2.9, one cannot even get such an ω-coloring.

2.4 Theorem. Let V be a vector space over Q with |V | > |R|. Then for any ψ : V → ω,
there exists z ∈ V \{0} such that for every δ ∈ Q+ there exist x 6= y in V such that
x− y = z · δ and ψ(x) = ψ(y).

Proof. Let ψ : V → ω and suppose that for each z ∈ V \{0} there exists τ(z) ∈ Q+

such that for all x 6= y in V , if ψ(x) = ψ(y), then x− y 6= z · τ(z). Let γ be a function
from [V ]2 to Q+ such that for all x 6= y in V , γ({x, y}) ∈ {τ(x − y), τ(y − x)}. Then,
since c+ → (ω1)2ω , pick an uncountable set W ⊆ V and some δ ∈ Q+ such that for
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all x 6= y ∈ W , γ({x, y}) = δ. Since W is uncountable, pick x 6= y in W such that
ψ(x ·δ) = ψ(y ·δ). Assume without loss of generality that δ = τ(x−y) and let z = x−y.
Then x · δ − y · δ = z · δ = z · τ(z), a contradiction.

For the proof of Theorem 2.9 we need to fix a small amount of notation.

2.5 Definition. Fix a Hamel basis 〈eδ〉δ∈R for R over Q. For x, δ ∈ R, let r(x, δ) ∈ Q
be the eδ-coefficient in the expansion of x. (So x =

∑
δ∈R r(x, δ) · eδ.) For x ∈ R, let

supp(x) = {δ ∈ R : r(x, δ) 6= 0}.
For k ∈ N, let Ik = {~δ ∈ Rk : δ1 < δ2 < . . . < δk}. For k ∈ N and ~δ ∈ Ik, let

τ(~δ) =
(
a0, (a1, . . . , ak)

)
∈ ω × Zk, where a0 = min{t ∈ ω : b2tδ1c < b2tδ2c < . . . <

b2tδkc} and for i ∈ {1, 2, . . . , k}, ai = b2a0δic.
Let V = {(~z,~a) : (∃k ∈ N)(~z ∈ (Q\{0})k and ~a ∈ τ [Ik])}. Enumerate V as

〈 ~vn〉∞n=0 and for each n ∈ ω, let k(n) be the member of N such that ~vn = (~z,~a) with
~z ∈ (Q\{0})k(n) and ~a ∈ τ [Ik(n)].

For n ∈ ω, let ξn =
1

6 · (2k(n)− 1)
, let (~z,~a) = ~vn, let

Tn = {
∑k(n)

i=1 zi · eδi
: ~δ ∈ Ik(n) and ~a = τ(~δ)}

and let

Sn = {
∑k(n)

i=1 zi · eδi
: ~δ ∈ Ik(n) , ~a = τ(~δ), and

|{i ∈ {1, 2, . . . , k(n)} : ai 6= 2a0 · δi}| ≤ 1} .

Notice that for each x ∈ R\{0} there is a unique n ∈ ω such that x ∈ Tn. Observe
also that if k(n) = 1, then Tn = Sn. And observe that for x, y, δ ∈ R and α, β ∈ Q+

one has r(α · x+ β · y, δ) = α · r(x, δ) + β · r(y, δ).

2.6 Lemma. Let n ∈ ω and let x ∈ Tn. Then there exist u1, u2, . . . , uk(n), v ∈ Sn such
that x =

∑k(n)
i=1 ui − (k(n)− 1) · v.

Proof. Assume ~vn = (~z,~a) and pick ~δ ∈ Ik(n) such that x =
∑k(n)

i=1 zi · eδi
and

~a = τ(~δ). For each i ∈ {1, 2, . . . , k(n)} let bi =
ai

2a0
and let v =

∑k(n)
i=1 zi · ebi

. For each
i ∈ {1, 2, . . . , k(n)}, let ui = v − zi · ebi

+ zi · eδi
. Then one has immediately that x =∑k(n)

i=1 ui−(k(n)−1)·v. To see that {u1, u2, . . . , uk(n), v} ⊆ Sn we need to show that ~a =
τ(b1, b2, . . . , bk(n)) and for i ∈ {1, 2, . . . , k(n)}, ~a = τ(b1, b2, . . . , bi−1, δi, bi+1, . . . , bk(n)).
This in turn requires that a0 = min{t ∈ ω : b2tb1c < b2tb2c < . . . < b2tbk(n)c} and for
i ∈ {1, 2, . . . , k}, a0 = min{t ∈ ω : b2tb1c < b2tb2c < . . . b2tbi−1c < b2tδic < b2tbi+1c <
. . . < b2tbk(n)c}. If a0 = 0, this is immediate. Otherwise we know that some j has
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b2a0−1δjc = b2a0−1δj+1c and thus, if l = b2a0−1δjc, one has 2l = aj and 2l + 1 = aj+1

so that l = b2a0−1bjc = b2a0−1bj+1c.

2.7 Lemma. Assume that {cn : n < ω} is an infinite subset of Q+. Then there is a
function γ : ω → ω such that whenever H is a finite nonempty subset of

⋃∞
n=0 Sn and

D =
⋃

y∈H supp(y), there exist 〈sδ〉δ∈D in R such that for each y ∈ H, if y ∈ Sn, then
π
( ∑

δ∈D sδ · cγ(n) · r(y, δ)
)
∈ π[( 1

2 − ξn,
1
2 + ξn)].

Proof. For each n < ω, let Fn = {z1, z2, . . . , zk(n)}, where ~vn = (~z,~a). Choose
γ : ω → ω as guaranteed by Lemma 2.1, where for each n, αn = 1

2 −ξn and βn = 1
2 +ξn.

Let H be a finite nonempty subset of
⋃∞

n=0 Sn and let D =
⋃

y∈H supp(y). Order
D as δ1, δ2, . . . , δp so that if t ∈ ω, i, j ∈ {1, 2, . . . , p}, δi · 2t ∈ Z, and δj · 2t /∈ Z, then
i < j. (That is, integers first, then odd integers over 2, etc., finishing with non dyadic
reals.) We choose sδ1 , sδ2 , . . . , sδp

in order so that if n < ω, y ∈ H∩Sn, t ∈ {1, 2, . . . , p},
and supp(y) ⊆ {δ1, δ2, . . . , δt}, then π

( ∑t
j=1 sδj

· cγ(n) · r(y, δj)
)
∈ π[( 1

2 − ξn,
1
2 + ξn)].

For t ∈ {1, 2, . . . , p}, let Ht = {y ∈ H : max{i : δi ∈ supp(y)} = t}. We claim that
for each t ∈ {1, 2, . . . , p} and each n ∈ ω, |Ht ∩ Sn| ≤ 1. If t = 1 and ~vn = (~z,~a), then
Ht ∩ Sn ⊆ {z1 · eδ1}, so assume that t > 1. Let n ∈ ω and assume that y ∈ Ht ∩ Sn.
Let (~z,~a) = ~vn. Then we have some η1 < η2 < . . . < ηk(n) such that y =

∑k(n)
i=1 zi · eηi

,
~a = τ(~η), and |{i ∈ {1, 2, . . . , k(n)} : ai 6= 2a0 · ηi}| ≤ 1. Also, {η1, η2, . . . , ηk(n)} ⊆
{δ1, δ2, . . . , δt} and δt ∈ {η1, η2, . . . , ηk(n)}.

If for each i ∈ {1, 2, . . . , k(n)}, ai = 2a0 · ηi, then 2a0 · δt ∈ Z. If there is some
j ∈ {1, 2, . . . , k(n)} such that aj 6= 2a0 · ηj , then 2a0 · ηj /∈ Z while for i 6= j, 2a0 · ηi ∈ Z.
Because of the ordering attached to the δi’s, one must have that this ηj = δt. Thus we
have, letting bi =

ai

2a0
,

(1) if 2a0 · δt ∈ Z, then Ht ∩ Sn ⊆ {
∑k(n)

i=1 zi · ebi};
(2) if 2a0 · δt /∈ Z and b2a0 · δtc /∈ {a1, a2, . . . , ak(n)}, then Ht ∩ Sn = ∅; and

(3) if 2a0 ·δt /∈ Z and b2a0 ·δtc = aj , then Ht∩Sn ⊆ {
∑k(n)

i=1 zi ·ebi
−zj ·ebj

+zj ·eδt
}.

Therefore in any event |Ht ∩ Sn| ≤ 1 as claimed.

Let t ∈ {1, 2, . . . , p} and assume that sδi
has been chosen for each i ∈ {1, 2, . . . ,

t − 1}. Enumerate Ht as 〈yi〉li=1 where yi ∈ Sni
and n1 < n2 < . . . < nl. For

i ∈ {1, 2, . . . , l}, let ani
=

∑t−1
j=1 sδj

· cγ(ni) · r(yi, δj). (If t = 1, let an,i = 0.) Given
i ∈ {1, 2, . . . , l}, we have that r(yi, δt) ∈ Fni

. So by Lemma 2.1, pick sδt
such that

(∀i ∈ {1, 2, . . . , l})
(
π
(
ani

+ sδt
· cγ(ni) · r(yi, δt)

)
∈ π[( 1

2 − ξni

1
2 + ξni)]

)
.
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2.8 Lemma. Assume that {cn : n < ω} is an infinite subset of Q+. Then there is a
function µ : R+ → ω such that for every F ∈ Pf (R+) there is a function ϕ : R →
{0, 1, 2} such that for all x, y ∈ R and all z ∈ F , if ϕ(x) = ϕ(y), then x− y 6= cµ(z) · z.

Proof. Pick γ : ω → ω as guaranteed by Lemma 2.7. For each z ∈ R+ pick the n(z) ∈ ω
such that z ∈ Tn(z) and define µ(z) = γ

(
n(z)

)
.

Let F ∈ Pf (R+) be given. For each z ∈ F pick by Lemma 2.6 members u(z, 1),
u(z, 2), . . . , u

(
z, k

(
n(z)

))
and v(z) of Sn(z) such that

z =
∑k(n(z))

i=1 u(z, i)−
(
k
(
n(z)

)
− 1

)
· v(z) .

Let H =
⋃

z∈F

({
v(z)

}
∪

{
u(z, i) : i ∈ {1, 2, . . . , k(n(z))}

})
and let D =

⋃
y∈H supp(y).

Pick 〈sδ〉δ∈D as guaranteed by Lemma 2.7.

Define ϕ : R → {0, 1, 2} by ϕ(y) = i if and only if π
( ∑

δ∈D sδ ·r(y, δ)
)
∈ π

[
[ i
3 ,

i+1
3 )

]
.

Let x, y ∈ R, let z ∈ F , and assume that ϕ(x) = ϕ(y) = i. Find m, l ∈ Z such that
m+ i

3 ≤
∑

δ∈D sδ · r(x, δ) < m+ i+1
3 and l + i

3 ≤
∑

δ∈D sδ · r(y, δ) < l + i+1
3 . Then

(∗) m− l − 1
3 <

∑
δ∈D sδ · r(x− y, δ) < m− l + 1

3 .

Let n = n(z) and for each i ∈ {1, 2, . . . , k(n)} pick pi ∈ Z such that

pi + 1
2 − ξn <

∑
δ∈D sδ · cγ(n) · r(u(z, i), δ) < pi + 1

2 + ξn .

Pick q ∈ Z such that q + 1
2 − ξn <

∑
δ∈D sδ · cγ(n) · r(v(z), δ) < q + 1

2 + ξn. Now
cµ(z) · z = cγ(n) ·

( ∑k(n)
i=1 u(z, i) − (k(n) − 1) · v(z)

)
so for each δ ∈ D, r(cµ(z) · z, δ) =∑k(n)

i=1 cγ(n) · r(u(z, i), δ)− (k(n)− 1) · cγ(n) · r(v(z), δ). Thus∑k(n)
i=1 pi − (k(n)− 1) · q + 1

2 − ξn · (2k(n)− 1) <
∑

δ∈D sδ · r(cµ(z) · z, δ)

<
∑k(n)

i=1 pi − (k(n)− 1) · q + 1
2 + ξn · (2k(n)− 1) .

Thus, letting t =
∑k(n)

i=1 pi − (k(n)− 1) · q and noting that ξn · (2k(n)− 1) = 1
6 , we have

t+ 1
3 <

∑
δ∈D sδ · r(cµ(z) · z, δ) < t+ 2

3 .

Comparing these inequalities with those in (∗), we see that x− y 6= cµ(z) · z.

2.9 Theorem. Assume that {cn : n < ω} is an infinite subset of Q+. Then there exists
a function ϕ : R → {0, 1, 2} such that for all z ∈ R+ there exists n ∈ ω so that there do
not exist x, y ∈ R with x− y = cnz and ϕ(x) = ϕ(y).

Proof. The proof may be taken nearly verbatim from the proof of Theorem 2.3 using
Lemma 2.8 in place of Lemma 2.2.
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3. Measurable and Baire colorings

In our proof of Theorem 2.9 we used the Axiom of Choice when we chose a Hamel basis.
There is by now a long history of results in Ramsey Theory showing that, while a certain
system is not partition regular, if one requires that the colorings be sufficiently construc-
tive in some sense, the system becomes partition regular with respect to such colorings.
For example, it is easy to see that the extension of Ramsey’s Theorem which asks that
whenever [ω]ω is finitely colored, there must exist D ∈ [ω]ω with [D]ω monochrome is
not valid. However, Galvin and Prikry [8] showed that if each of the color classes is a
Borel set in [ω]ω (viewed as a subspace of the product space ω{0, 1}), there must exist
D ∈ [ω]ω with [D]ω monochrome. Extensions of this result were obtained by Ellentuck
[4], Carlson [2], and others.

Similarly the extension of the Finite Sums Theorem [11, Corollary 5.10] which asks
that whenever R+ is finitely colored, there must exist a sequence 〈xn〉n<ω in R+ with
AS(〈xn〉n<ω) = {

∑
n∈F xn : ∅ 6= F ⊆ ω} monochrome is false. But Prömel and Voigt

[15] showed that it holds if each of the color classes is a Baire set (meaning a member of
the σ-algebra generated by the open sets and the meager sets). And Plewik and Voigt
[14] showed that it holds if each of the color classes is Lebesgue measurable. These two
results were simplified and given a common proof in [1].

We shall show in Theorem 3.3 that if {cn : n < ω} is bounded, then the system of
equations xn− yn = cnz is partition regular with respect to measurable colorings of R+

and with respect to Baire colorings of R+.

We denote the outer Lebesgue measure of a set C ⊆ R by µ∗(C). If C is Lebesgue
measurable, we denote its Lebesgue measure by µ(C).

3.1 Definition. Let C ⊆ R+.

(a) d(C) = lim sup
h↓0

µ∗
(
C ∩ (0, h)

)
h

.

(b) C is Baire large if and only if for every ε > 0, C ∩ (0, ε) is not meager.

The following simple lemma is the basis for our unified treatment of measurable
colorings and Baire colorings.

3.2 Lemma. Let X be Q+ or R+, let C ⊆ X and assume that

(1) 0 ∈ C and

(2) There is some ε > 0 such that (0, ε) ∩X ⊆ C − C.

Then whenever {cn : n < ω} is a bounded subset of Q+ there exist z ∈ C and sequences
〈xn〉n<ω and 〈yn〉n<ω in C such that xn − yn = cnz for each n < ω.
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Proof. Pick ε as guaranteed by (2). Pick d ∈ N such that for all n < ω, cn < d. Pick
z ∈ C such that

z <
ε

d
. Then for all n < ω, cn · z ∈ C − C.

3.3 Theorem. Let {cn : n < ω} be a bounded subset of Q+, let r ∈ N, and let R+ =⋃
i<r Ci. If for each i ∈ {0, 1, . . . , r−1}, Ci is Lebesgue measurable, or for each i ∈ {0, 1,

. . . , r−1}, Ci is a Baire set, then there exist i ∈ {0, 1, . . . , r−1}, z ∈ Ci, and sequences
〈xn〉n<ω and 〈yn〉n<ω in Ci such that xn − yn = cnz for each n < ω.

Proof. If each Ci is Lebesgue measurable, then for some i, d(Ci) > 0. If each Ci is a
Baire set, then for some i, Ci is Baire large. So pick i ∈ {0, 1, . . . , r−1} such that either
Ci is measurable and d(Ci) > 0 or Ci is a Baire large Baire set. In either case one has
trivially that 0 ∈ Ci. We shall show that there exists ε > 0 such that (0, ε) ⊆ Ci − Ci,
so that Lemma 3.2 applies.

Assume first that Ci is measurable and d(Ci) > 0. In particular µ(Ci) = µ∗(Ci) =
α > 0. We may presume that Ci ⊆ (0, 1). Pick sequences 〈an〉n<ω and 〈bn〉n<ω

such that Ci ⊆
⋃

n<ω (an, bn), (an, bn) ∩ (am, bm) = ∅ when n 6= m, and µ(Ci) ≥
9
10 ·

∑
n<ω (bn − an). Pick n < ω such that µ

(
Ci ∩ (an, bn)

)
≥ 9

10 · (bn − an). Let
ε = 8

10 ·(bn−an). We claim that for all t ∈ (0, ε), Ci∩(Ci−t) 6= ∅ and thus (0, ε) ⊆ Ci−Ci.
So let t ∈ (0, ε) and suppose that Ci ∩ (Ci − t) = ∅. Then µ

(
Ci ∩ (an, bn − t)

)
=

µ
(
Ci ∩ (an, bn)

)
−µ

(
Ci ∩ (bn − t, b)

)
≥ 9

10 · (bn − an)− t and µ
(
(Ci − t)∩ (an, bn − t)

)
=

µ
(
(Ci − t) ∩ (an − t, bn − t)

)
− µ

(
(Ci − t) ∩ (an − t, an)

)
≥ 9

10 · (bn − an) − t. Thus
bn − t − an = µ

(
(an, bn − t)

)
≥ µ

((
Ci ∩ (an, bn − t)

)
∪

(
(Ci − t) ∩ (an, bn − t)

))
=

µ
(
Ci ∩ (an, bn − t)

)
+ µ

(
(Ci − t) ∩ (an, bn − t)

)
≥ 9

10 · (bn − an)− t+ 9
10 · (bn − an)− t,

so t ≥ 8
10 · (bn − an) = ε, a contradiction.

Now assume that Ci is a Baire large Baire set. Pick an open set U and a meager
set M such that Ci = U∆M . Since Ci ∩ (0, 1) is not meager, we conclude that U 6= ∅
and therefore there is an open interval (a, b) with (a, b) \M ⊆ Ci. Let ε = b − a. We
claim that for all t ∈ (0, ε), Ci ∩ (Ci − t) 6= ∅. Suppose instead that we have t ∈ (0, ε)
such that Ci ∩ (Ci − t) = ∅. We shall show that (a, b − t) ⊆ M ∪ (M − t), which is a
contradiction. So let x ∈ (a, b − t) and assume that x /∈ M . Then x ∈ (a, b) \M ⊆ Ci

so x /∈ Ci − t. Since x+ t ∈ (a, b) we must have that x+ t ∈M .

We shall see in Theorem 3.5 that Theorem 3.3 cannot be extended to apply to
every sequence 〈cn〉∞n=0 for which lim

n→∞
cn = ∞.

3.4 Lemma. Let s ∈ R and define ϕ : R → {0, 1, 2} by ϕ(x) = i if and only if
π(s · x) ∈ π

[
[ i
3 ,

i+1
3 )

]
If z ∈ R and 〈xn〉n<ω and 〈xn〉n<ω are sequences in R such that
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ϕ is constant on {z} ∪ {xn : n < ω} ∪ {yn : n < ω} and xn − yn = (n + 1) · z for each
n < ω, then s · z ∈ Z.

Proof. Pick i ∈ {0, 1, 2} such that ϕ(z) = ϕ(xn) = ϕ(yn) = i for each n. Then for each
n, π(s · xn) ∈ π

[
[ i
3 ,

i+1
3 )

]
and π(s · yn) ∈ π

[
[ i
3 ,

i+1
3 )

]
, so π

(
s · (xn − yn)

)
∈ π

[
(− 1

3 ,
1
3 )

]
and thus π(s · (n + 1) · z) ∈ π

[
(− 1

3 ,
1
3 )

]
. Since also π(s · z) ∈ π

[
[ i
3 ,

i+1
3 )

]
, we see that

i 6= 1.

Suppose now that i = 0. If π(s · z) = π(0) we are done, so assume that π(s · z) ∈
π
[
(0, 1

3 )
]
. Let m = bs · zc. Then m < s · z < m + 1

3 . Pick the least n ∈ N such that
(n+ 1) · (s · z−m) ≥ 1

3 . Then n · (s · z−m) < 1
3 . Thus (n+ 1) ·m+ 1

3 ≤ (n+ 1) · s · z <
(n+ 1) ·m+ 2

3 , contradicting the fact that π(s · (n+ 1) · z) ∈ π
[
(− 1

3 ,
1
3 )

]
.

Finally suppose that i = 2. Let m = bs · zc. Then m + 2
3 ≤ s · z < m + 1 so

0 < 1 +m− s · z ≤ 1
3 . Pick the least n ∈ N such that (n+ 1) · (1 +m− s · z) > 1

3 . Then
n · (1 +m− s · z) ≤ 1

3 so n+ (n+ 1) ·m+ 1
3 ≤ s · (n+ 1) · z < n+ (n+ 1) ·m+ 1

3 , again
contradicting the fact that π(s · (n+ 1) · z) ∈ π

[
(− 1

3 ,
1
3 )

]
.

We shall call a subset of R or Q strongly Borel if it is a member of the Boolean
algebra generated by the open sets.

3.5 Theorem. There is a function ψ : R+ → {0, 1, . . . , 8} such that

(1) for each i ∈ {0, 1, . . . , 8}, ψ−1[{i}] is strongly Borel.

(2) there do not exist z ∈ R+ and sequences 〈xn〉n<ω and 〈yn〉n<ω in R+ such that ψ
is constant on {z} ∪ {xn : n < ω} ∪ {yn : n < ω} and xn − yn = (n+ 1) · z for each
n < ω.

Proof. Let ψ(x) = 3i + j where i, j ∈ {0, 1, 2}, π(x) ∈ π
[
[ i
3 ,

i+1
3 )

]
, and π(

√
2 · x) ∈

π
[
[ j
3 ,

j+1
3 )

]
. Suppose we have z ∈ R+ and sequences 〈xn〉n<ω and 〈yn〉n<ω in R+ such

that ψ is constant on {z} ∪ {xn : n < ω} ∪ {yn : n < ω} and xn − yn = (n + 1) · z for
each n < ω. By Lemma 3.4 with s = 1 we have z ∈ Z. By Lemma 3.4 with s =

√
2 we

have
√

2 · z ∈ Z.

There is a result similar to Theorem 3.3 for Q+.

3.6 Theorem. Let {cn : n < ω} be a bounded subset of Q+, let r ∈ N, and let Q+ =⋃
i<r Ci. If for each i ∈ {0, 1, . . . , r− 1}, Ci is strongly Borel, then there exist i ∈ {0, 1,

. . . , r − 1}, z ∈ Ci and sequences 〈xn〉n<ω and 〈yn〉n<ω in Ci such that xn − yn = cnz

for each n < ω.
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Proof. Observe that any strongly Borel set is a finite union of sets of the form F ∩G
where F is open and G is closed. Thus we may presume that each Ci is of this form.

Further, it suffices to show that for some i,

(1) 0 ∈ Ci and

(2) the interior in Q+ of Ci is nonempty.

Indeed, if (a, b) ∩ Q+ ⊆ Ci and ε = b − a, then (0, ε) ∩ Q+ ⊆ Ci − Ci, so Lemma 3.2
applies.

For (1) and (2) it further suffices to show that 0 ∈ intQ+(Ci) for some i. Suppose
instead that 0 /∈ intQ+(Ci) for each i and pick t > 0 such that (0, t)∩ intQ+(Ci) = ∅ for
each i ∈ {0, 1, . . . , r − 1}.

Now Q+ ∩ (0, t) ⊆
⋃

i<r Ci so pick some i < r such that U = (0, t) ∩ intQ+Ci 6= ∅.
Pick a closed subset F of Q+ and an open subset G of Q+ such that Ci = F ∩G. Note
that U 6⊆ G \G. Let V = U \ (G \G). Then V is nonempty and open. Also

V ⊆ U ⊆ Ci ⊆ F ∩G =
(
F ∩ (G \G)

)
∪ (F ∩G) .

Since V ∩ (G \G) = ∅, V ⊆ F ∩G = Ci, a contradiction.

Theorem 3.5 shows that one cannot extend Theorem 3.6 to apply to all sequences
〈cn〉n<ω for which lim

n→∞
cn = ∞. We now see that it cannot be extended to any such

sequence.

3.7 Theorem. Let {cn : n < ω} ⊆ Q+ such that lim
n→∞

cn = ∞. Then there is a function

ϕ : Q+ → {0, 1, 2} such that

(1) for each i ∈ {0, 1, 2}, ϕ−1[{i}] is strongly Borel.

(2) there do not exist z ∈ Q+ and sequences 〈xn〉n<ω and 〈yn〉n<ω in Q+ such that ϕ
is constant on {xn : n < ω} ∪ {yn : n < ω} and xn − yn = cn · z for each n < ω.

Proof. Enumerate Q+ as 〈zn〉n<ω. For each n < ω, let Fn = {zn}, let αn = 4
9 , and let

βn = 5
9 . Choose γ as guaranteed by Lemma 2.1 and for each n < ω, choose sn ∈ (0, 1)

such that for all t ∈ {0, 1, . . . , n}, π(sn · cγ(t) · zt) ∈ π[( 4
9 ,

5
9 )]. Let s be any cluster point

of the sequence 〈sn〉n<ω in [0, 1]. Then for each t < ω, π(s · cγ(t) · zt) ∈ π[( 1
3 ,

2
3 )].

Define ϕ : Q+ → {0, 1, 2} by ϕ(x) = i if and only if π(s · x) ∈ π
[
[ i
3 ,

i+1
3 )

]
. Clearly

each ϕ−1[{i}] is strongly Borel. Suppose we have z ∈ Q+ and sequences 〈xn〉n<ω

and 〈yn〉n<ω in Q+ such that ϕ is constant on {xn : n < ω} ∪ {yn : n < ω} and
xn− yn = cn · z for each n < ω. Pick n < ω such that z = zn. Then ϕ(xδ(n)) = ϕ(yδ(n))
so π

(
s · (xδ(n) − yδ(n))

)
/∈ π[( 1

3 ,
2
3 )] and thus xδ(n) − yδ(n) 6= cδ(n) · z.
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