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Abstract. Recently, in conversation with Erdés, Hajnal asked whether or not for any
triangle-free graph G on the vertex set N, there always exists a sequence (x,,)2° ; so that
whenever F' and H are distinct finite nonempty subsets of N, {¥,cp xn, Xpeg ©,} is
not an edge of G (that is, F'S({x,)52 ;) is an independent set). We answer this question

n=1
in the negative. We also show that if one replaces the assumption that G is triangle-free
by the assertion that for some m, G' contains no complete bipartite graph K,, ,,, then
the conclusion does hold. If for some m > 3, G contains no K,,, we show there exists
a sequence (r,)%° ; so that whenever F' and H are disjoint finite nonempty subsets of
N, {¥,ecr Tn, Ynen Tn} is not an edge of G. Both of the affirmative results are in fact
valid for a graph G on an arbitrary cancellative semigroup (S, +).

1. Introduction.

We take N to be the positive integers and w = NU{0}. Given a set A, we denote by
P;(A) the set of finite nonempty subsets of A. Given a sequence (z,,)52; in N, we use
the notation FS((z,)22,) = {Zner zn : F € Pr(N)}. In 1972 the following theorem

was proved in [6] (or see [1] or [7] for simpler proofs).

1.1 Theorem. Letr € N and let N =J;_; A;. Then there existi € {1,2,...,7} and a
sequence ()50 1 such that FS((z,)5% ) C A;.

It was already known at the time [5] that Theorem 1.1 is equivalent to the su-
perficially weaker version which has r = 2. In 1995, Hajnal asked Erdos the following
question. (It appears as a remark following Problem 4.4 of [4], a paper written by Erdés,
Hajnal, and Pach.)

1.2 Question. Let G be a graph on the vertex set N which contains no triangles. Must

there exist a sequence (x,)>2 1 in N such that F'S({(x,)5% ) forms an independent set?
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Note that an affirmative answer to Question 1.2 would imply Theorem 1.1. To see
this, let N = A;UAs where we may presume that A;NAs = (). (We have already observed
that it suffices to establish Theorem 1.1 for the case r = 2.) Let G be the complete
bipartite graph on the sets A; and A,. That is, F(G) = {{:L’,y} cx € Ay and y € Ag}.
Then if (x,)52; has FS((x,)52 ) independent one must have FS((z,)5>,) C Ay or
FS((@a)32,) € As.

In fact, Theorem 1.1 follows from an affirmative answer to the weaker Question 1.3.

1.3 Question. Let G be a graph with vertices in N which contains no triangles. Must
there ezist a sequence ()22 1 in N such that {Xner Tn,Xnen Tn} ¢ E(G) whenever
F,H € P¢(N) with FNH =0?

To see that an affirmative answer to Question 1.3 implies Theorem 1.1, let the graph
G be defined exactly as above and let (x,,)72 ; be as guaranteed by an affirmative answer
to the question. Suppose one has F, H € P¢(N) with ¥,,cr z, € Ay and Xpcqg x, € As.
Pick k > max(F U H). Then either {¥,cr zp, 21} € E(G) or {X,ecy Tn,zr} € E(G).

On hearing Question 1.2, Erdés “retaliated” (his word) by asking the following

much weaker question.

1.4 Question. Let G be a triangle-free graph with vertices in N. Must there exist x # y
such that {x,y,x + y} is an independent set?

In [8], this question was answered in the affirmative in the following strong fashion.

Here K, is the complete graph on m vertices.

1.5 Theorem. Let G be a graph with vertexr set N and assume there is some m € N
such that G contains no K,,. Then for each { € N, there is a finite sequence ()% _,
such that FS({x,)%_,) is an independent set.

n=1

In [8] it was also shown that one cannot weaken the hypothesis of Theorem 1.5 to
the assertion that G contains no K, (where K, is the complete graph on countably
many vertices). For if F(G) = {{x,y} <y < 2.CL‘} then G contains no K, but given
any x < y in N, one has {y,z + y} € E(G).

In Section 2 of this paper we answer Question 1.2 in the negative by exhibiting a
triangle-free graph on N so that every FS({x,)52 ) induces at least one edge in the
graph.

In Section 3 we provide a strong affirmative answer to Question 1.3. That is, we

show that if G is a graph with vertices in N and there exists some m € N\{1,2} such
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that G contains no K,,, then there is a sequence (z,)52; in N such that whenever
F.H € P¢(N) and F'N H = (), one has that {3,ecr zn, Snen zn} ¢ E(G).

In fact we show that the answer to Question 1.3 remains affirmative when the
semigroup (N, +) is replaced by an arbitrary semigroup (S, +). We write the semigroup

S additively because the origin of the questions was in (N, +). However, we do not

assume that the operation is commutative, so when speaking of F.S((z,)% ;) we need
to specify the order of the sums, which we take to be written in increasing order of
indices. (Thus, for example, X;c(126) Tt = 21 + 22 + Z6.)

The answer we give to Question 1.3 is stronger in another direction as well. That

is, we show that the sequence (x, )22 ; with independent finite sums can be found inside
FS((yn)22,) for any given sequence (y,)52 ;, where the notion of “inside” is made

precise by the following definition.

1.6 Definition. Let (S, +) be a semigroup and let (y,)°%; and (z,)52; be sequences
in S. Then (z,)5%, is a sum subsystem of (y,)5%; if and only if there is a sequence
(Hp)22 in P¢(N) such that for each n € N,

max H, < min H,4+; and x,, = Yiem, Yt -

In Section 4 we obtain the conclusion of Question 1.2 under different (but neither
weaker nor stronger) hypotheses. Using K,, ,, to denote the complete balanced bipartite
graph on 2m vertices, we show that for every m € N, if G is a graph on the cancellative
semigroup S which contains no K, ,,, then there is a sequence (z,,)7%; in S such that
no pair of finite sums (disjoint or not) form an edge of G. This result has been obtained
independently in [8] for the case S = N. Again our result in fact shows that the sequence
()52, can be chosen to be a sum subsystem of any given sequence (y,,)52 ;.

The results of Sections 3 and 4 are true, but trivial, if S is finite, so we will assume
that (.S, +) is an infinite semigroup (and we emphasize again that we are not assuming
the operation is commutative). We will utilize in these sections the algebraic structure
of the semigroup (S, +), where + denotes the extension of the operation to 55 which
makes (35, +) a right topological semigroup with S contained in its topological center.
We now briefly describe the semigroup (4S,+). See [7] for a detailed construction of
(S and derivations of some of the basic algebraic facts.

We take the points of 85 to be the ultrafilters on S, the principal ultrafilters
being identified with the points of S. When we say that (4S5, +) is a right topological
semigroup we mean that for each p € 85 the function p, : S — (S, defined by

pp(q) = g+ p, is continuous. When we say that S is contained in the topological center
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of (6S5,4+), we mean that for each x € S, the function A\, : S — (S defined by
Az(q) = = + q is continuous.

The operation + on (35 is characterized as follows: Given A C S, A € p+ ¢ if and
onlyif{r € S:—x+A€q} €pwhere —x+A={yecS:z+yec A}. In particular,
p = p+p if and only if whenever A € p one has {x € S: —x+ A € p} € p. Observe also
that if p,q € 84S, A € p, and for each z € A, B(z) € g, then

{r+y:z€¢Aandye B(x)} ep+q.

Given AC S, A=clA={peBS:Acp}. Theset {A: AC S} is a basis for the
open sets (as well as a basis for the closed sets) of 3S.

A significant property of any compact Hausdorff right topological semigroup is that
it contains an idempotent [3, Corollary 2.10].

We shall use Lemma 1.8 frequently in Sections 3 and 4.
1.7 Definition. Let p+p=p € 55, and let B € p. Then B* = {x € B: —z+ B € p}.

1.8 Lemma. Letp+p=p¢€ (S and let B € p. Then B* € p. Furthermore, for every
r € B*, we have —x + B* € p.

Proof. It is immediate, as we noted above, that B* € p. We know that —x + B € p
and so (—z + B)* € p. We claim that (—x + B)* C —x + B*. So let y € (—z + B)*.
Then —y + (—x + B) € p. That is, —(z +y) + B € p. Since also x +y € B we have
x +y € B* as desired. U

It is the simple property established in Lemma 1.8 which makes idempotent ultrafil-
ters a useful tool in constructing infinite sets of the form F'S({x, )52 ;). In Sections 3 and
4 of the present paper, we shall frequently be using sums of the form xy +zs + ...+ x,,
where x1 has to be chosen in some assigned member of p and each z; has to be chosen
in a member of p which depends on 1, x9,...,2;_1. We shall use the fact that, in the
light of Lemma 1.8, a sum of this kind can be found in any given member of p. An
illustration follows in the proof of Theorem 1.10.

The method of proof in Sections 3 and 4 is to take an arbitrary idempotent p in

oo

(3S and an arbitrary member B of p and show that we can choose a sequence (z,,)5%

in B as required. This allows us to obtain the sequence as a sum subsystem of another
sequence because of the following old result of Fred Galvin’s. By F'S((y,)o2,,,) we mean
of course, {E,cp yn : F € Py(N) and min F' > m}.
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1.9 Theorem. Let (S,+) be a semigroup and let (y,)o2; be a sequence in S. There is
some p=p+p in BS such that for every m € N, FS({y,)2,.) € p.

Proof. See [7, Theorem 5.5]. O

Working as we do with an arbitrary idempotent p in 45 and an arbitrary element
B of p, our results become trivial if p € S. (For then {p} is an element of the principal
ultrafilter which we have identified with p, and the sequence (x,,)°° ; can be constantly
equal to p.) Accordingly, we are interested in knowing when we can guarantee that

p € BS\S. The following simple observation answers that question.

1.10 Theorem. Let (S,+) be a semigroup.

(a) Given any sequence (yp)oqy in S, if ooy FS(yn)o2,,) = 0, then there is
some p =p+p in SS\S such that for every m € N, FS((y,)22,,) € p.

(b) There is some idempotent p in BS\S if and only if there is a sequence (Y, )52 4

in S such that (,°_; FS((yn)S2,,) = 0.

Proof. (a) Choose p as guaranteed by Theorem 1.9. Since {F'S({yn)o2,,) :m € N} Cp
and ({FS{yn)S2,,) : m € N} = (), p is not principal.

(b) The sufficiency is an immediate consequence of part (a). For the necessity,
let p € BS\S such that p = p+ p. Let By = S and pick y; € (B1)* (which is just
S). Inductively, let n € N and assume that we have chosen (y;)}_; such that for each
nonempty F' C {1,2,...,n}, X¢cp yt € (Bminr)*. Let B,y1 = S\FS((y:)}_,) and note
that since p is nonprincipal, B,+1 € p. By Lemma 1.8 we have for each nonempty

FC{1,2,...,n}, =%icr Y+ + (Bminr)* € p. Choose

Yn+1 € (Bny1)™ N m{_zteF Yt + (Bminrg)* : 0 # F C{1,2,... ,n}} )

This completes the inductive construction of the sequence (y,,)22 ;.
Suppose that we have some a € () °_, FS({(yn)22,,). Pick F' € P(N) such that

n=m

a = Yier yr and let m = max F. Then a ¢ By,1 while FS((yn)52,,) € Bmt1, &

n=m

contradiction. O

We wish to thank the referee of this paper for a very thoughtful report. In partic-

ular, the referee significantly simplified our original proof of Theorem 2.2.
2. A triangle-free graph without independent finite sums.

The graph we produce is described in terms of increasing sets of integers.

5



2.1 Definition. (a) Given F, H € Pf(w), write F' < H if and only if max F' < min H.
Given z,y € N, write z << y if and only if x = X,,cp 2", y = X,cy 2", and F < H.
(b) Define p: N — w by p(z) = min F where x = Scp 28

2.2 Theorem. There is a graph G with vertex set N such that G contains no trian-
gle, but given any sequence (un)eo>, in N, there exist distinct F, H € P¢(N) such that
{EneF Un,EnGH Un} c E(G)

Proof. Choose any g : N — N such that for each k € N,
g(k+1) > g(k).

Define a graph G with vertex set N by

E@G) = {{mo+ma+...+2om, 21 +22+a3+...+ Tom}:
1 << Tog << ... << Tom andm:g(p(xl))} .

An alternative description of the edges of G is as follows. A pair {a,b}, where a < b
and the binary supports of @ and b are A and B respectively, is an edge of GG if and only
if the following four conditions are satisfied:

(1) AC B;
(2) B\A cuts A into exactly g(min B) pieces (i.e. maximal sets whose convex hull

contains no element of B);

(3) min B < min A; and
(4) max B = max A.

(As the referee pointed out, requirement (4) could be dropped without affecting
the proof.)

Let a sequence (u,, )22 ; be given. It is well known that one can choose an increasing
sequence (K, )52 in P;(N) such that for each n € N, Xyck, uy << Xick,,,, us- (To
see this, given K,,, pick £ € N such that 2¢ > Yiek, u;. Then choose a set K, with
K, < Kni1, |Kny1| = 2° and vy = ug(mod 2°) for each t,5 € K,41.)

Let m = g(min K), let

F=K,UK,;U...UKon ,

and let
H=K UKyUK3U...UKy,, .

Then, by the definition of G with x,, = ¥;ck, us, we have {X,cp Un, Znen un}t € E(G).
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Suppose now that we have a triangle {a,b,c} in G with a < b < ¢ and denote the
binary supports of a, b, and ¢ by A, B, and C respectively. Since {a, b} is an edge, B\ A
cuts A into g(min B) pieces. Since B\ A is a subset of C'\ A, it follows that C'\ A cuts A
into at least g(min B) pieces. Since {a,c} is an edge, C'\ A cuts A into exactly g(min C')
pieces, whence g(min C') > g(min B). On the other hand, min C' < min B (since {b, c}

is an edge); as ¢ is strictly increasing, we have g(min C') < g(min B), a contradiction. [

The graph in Theorem 2.2 consists of certain pairs of numbers, one of whose binary
support is contained in the binary support of the other, and the smallest element in the
union of the supports belongs only to one support. The following theorem shows that,

if the graph is changed only slightly, the conclusion changes dramatically.

2.3 Theorem. Choose any f : N — N\{1} Define a graph G with vertices contained
i N by
E(G) = {{[L‘l—|—$3+...+$2m_1,2171+$2+$3+...+1’2m}Z
T << Tg << ... << X9y, and m = f(acl)} .

Then G has triangles. In fact, given any sequence (wy)5%, in N, there is a triangle of
G all of whose vertices lie in F.S((wn)o% ).

n=1
Proof. As in the proof of Theorem 2.2 above, we may presume that w,, << wy,41 for
each n € N. Let m = f(w;) and for each i € {1,2,...,2m — 1}, let z; = y; = w;.
Let 21 = 1 + 22+ 23+ ... + Tapm—1 and let r = f(z1). For each i € {2,3,...,2r},
let z; = wamy, (or if one wants to be economical, let z; = wopmyi—2). Let xg, =

234+ 254+ ...+ 2o0—1, let Yo, = 20+ 23+ 24 + ... + 29, and let

a = T1+T3+...+Tan—1 = Yr+ys+...+Y2am-1,
b = z21+23+...4 290-1 = x1+r9+ax3+...4+T9, , and
c = z1tz+tzt...+t2zp = Yyr+y2+ys+...+yom .
Then {a,b,c} is a triangle in G. 0

3. When G Has No Ky,.

Throughout this section we will have a fixed infinite semigroup (.5, 4), a fixed graph
G on S and a fixed idempotent p € 3S. (Don’t confuse the fact that we have “fixed” p
with the old notion of a “fixed ultrafilter”. The results of this section are trivial if p is
principal.) Further, we fix a cardinal x such that the cofinality of x is greater than |S|.
Several of the notions that we introduce depend on both G and p, but the notation will
not reflect this dependence.

We mention one other notational peculiarity in this section. We shall frequently

use superscripts as indices and never to denote exponentiation.
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3.1 Definition. Let a € S.

(a) Ao(a) = {b € S:{a,b} ¢ E(G)}.

(b) For each ordinal ¢ < &,
Aji(a)={beS:{u1eS:{useS:b+uy € A(a+u)} €p} €p}.

(c) For each limit ordinal ¢ with 0 < ¢ < &,
Aa) =, <, Ay(a) .

(d) Aa) =N, Aula).
Recall that we are not assuming that the semigroup (S, +) is commutative, so, in

part (b) of the following definition, we need to specify the order in which a sum is taken.

3.2 Definition. (a) Let & denote the set of finite sequences of elements of S, including
the empty sequence. If ¢ = uqusy...u, € S, we put l(c) =n and o' = wjuy...up_1 if
n > 1, while ¢/ = () if n = 1. (Then I(0) is the length of ¢.)

(b)We use 0,44 to denote the sum (in increasing order of indices) of the odd terms of
o and 0,44,>1 to denote the sum of the odd terms with index greater than 1. Similarly,
we define o¢yep, to be the sum (in increasing order of indices) of the even terms of ¢ and

and Oeypen,>2 to denote the sum of the even terms with index greater than 2.

In the following definition we denote the values of the functions U and « at the
sequence o by U, and «, respectively. We also identify elements of S with the sequences
of length 1.

3.3 Definition. Let r € w. An A-system of level r is a triple (U, v, D) such that
1) DC G and ) € D.

(

(2) U:D — p.

(3) a: D — k.

(4) For every o € & and every u € S, we have ou € D if and only if 0 € D, o, > 0,

and u € U,.

—~
(S
~—

For every o € D\{0} we have a, = s if I(0) is even and «a, < ay if I(0) is odd.
(6) If o € D, l(0) is odd, and a, < r, then a, = a, + 1.
(7) ap > T.

An A-system of level 0 is also called simply an A-system.
Now k contains no infinite decreasing sequences. Thus, if (U, «, D) is an A-system

and if we choose u; € Uy, then uy € U,,,, then uz € U,,,, and so on, we shall eventually
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have a finite sequence o = ujus ... uss—1 (where s € N) for which a, = 0. Saying that
the system is of level » means that o assumes all the values r,» — 1,...,1,0 on final
segments of every sequence of this kind.

The reader might like to know that it is only level 1 systems which are needed in
the case in which G is triangle-free. Notice that an A-system of level r + 1 is also an

A-system of level r.

3.4 Definition. A terminated sequence of the A-system (U, «, D) is a member of & of

the form ou, where 0 € D, a, =0 and u € U,.

Notice that if 7 is a terminated sequence of the A-system (U, a, D), then 7 ¢ D.
Further, if o € D, and a, = 0, then [(0) is odd, so all terminated sequences are of even

length.

3.5 Lemma. Let a,b € S, let r € w and suppose that b ¢ A, 1(a). Then there is an
A-system (U, o, D) of level v such that {a+0o4d, b+ Oeven} € E(G) for every terminated

sequence o of the system.

Proof. We prove by induction on r the stronger conclusion that there is an A-system
(U,a, D) of level r such that c,, =1 for every u € Uy and {a + 0odd, b+ Oeven} € E(G)
for every terminated sequence o of the system.

If r = 0, the assumption that b ¢ A;(a) implies that

{ug € S:{ug € S:{a+u,b+u} € E(G)} ep}ep.
We define an A-system (U, o, D) with the required property as follows:
Up={u1 €S:{ugeS:{a+u,b+us} € E(G)} € p}

and for every uy € Uy, o, = 0, Uy, = {uz € S : {a+ u1,b+ uz} € E(G)}, and
D = {@} U Up.
We now make the inductive assumption that » > 0 and that the lemma holds for
r—1. Put
Up={u1 €S :{us € S:b4+uz ¢ A.(a+u1)} € p}

and, for each u; € Uy, put U,, = {us € S:b+uy ¢ A.(a+up)}. Since b ¢ A, 11(a),
we know that Uy € p.

By our inductive assumption, for every u; € Uy and every us € U,,, there is an
A-system (V2 guinz fruiz) of level r —1 for which ,/1%2 = r—1 for every v € V"2
and {a+u1+0o4d, b+ Uz +Tcven} € E(G) for every terminated sequence o of the system.
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Now, let
D = {@}UU@ U {U1UQO' TUp € U@ ,Ug € Uul; and o c Eu1u2} .

For every u; € Up and ug € U,, we put oy, = qy,u, = r and for every o € E“1"? we
put Uy u,e = V4"2 and ayyuy,e = Bot"2.

It is routine to check that the A-system (U, «, D) is as required. U
The next lemma provides the essential fact connecting A-systems and graphs.

3.6 Lemma. Letr € w and let a,b € S such that b € ((,_, Ai(a)) \ A(a). Then there
is an A-system of level v such that {a + 0444, b + Ocven} € E(G) for every terminated

sequence o of the system.

Proof. Let v = min{d < s : b ¢ As(a)}. We proceed by induction on . If v =r + 1,
its lowest possible value, the claim is true by Lemma 3.5.
Assume then that v > r + 1 and the statement is true at all smaller ordinals. Note

that ~ is neither 0 nor a limit ordinal, so v — 1 is an ordinal smaller than ~. Let
M={ueS:{useS:b+u ¢ A,_1(a+u)} €p}.
Then M € p. Further, for i € {0,1,...,r}, we have that b € A;;1(a) so if
M;={up € S:{us € S:b+us € Aj(a+uy)} € p},

then M, € p.
Let Uy = M N(\._y, M, and given uy € Uy, let

Uuy, = {ug € S:b+uz € (NiZg Ai(a+u1)) \ Ay1(a+ ) .

Then each U,, € p

By our inductive assumption, for every u; € Uy and every us € U,,, there is an
A-system (Vvivz guavz puav2) of level r such that {a+u; 4+ 0444, b+ Uz +0epen} € E(G)
for every terminated sequence o of the system.

Let

D = {Q)}UUQ) U{U1u20' : Ul S U(Z) , Ug € Uul, and o € Euluz} )

For any uy € Uy, us € U,,, and 0 € E“% let Uy uyo = V1% and, if o # 0, let

__ AQuiusg
auluga - 60' .
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It remains only to define a,, and oy, 4, for u; € Uy and ugy € U, . Since cf |S| < k&,

we can choose v € k satisfying

v > (3,;'"* whenever u; € Uy ,uz € Uy, and v € E;*"* .

For each u; € Uy and ug € U,,, let oy, = ay u, = V.

It is easy to see that the A-system (U, «, D) is as required. O

3.7 Lemma. Let (U, a, D) be an A-system of level 1 and let B € p. Suppose that jn € D

and n =0 or a, > 1. Then we can choose o, 7 € & satisfying the following conditions:
2 i ) ying g

(1) po is in D and put is a terminated sequence of the system;

(2) aue =0;
(3) Codds Todd and Teyen, are all in B. Furthermore, Oeyen, € B if (o) > 1.
We can also choose p € D such that l(p)€ 2N, o, = 1, and poga and peyen are in B.

Proof. We choose v; € U, N B* and observe that yv; € D.

We now make the inductive assumption that, for some ¢t € N, we have chosen v =
v10y . .. vy such that vt € D and V!, € B* and also v{,,,, € B* if [(v*) > 1. If ¢ is even,
we choose vy41 € Uyt N(=12,,+B*). If t is odd, we choose vty € Uyt N(—vE,,,, +B*)
if I(v") > 1 and viq1 € Uype N B* if [(v') = 1. If e = 0, we stop and put o = v* and
7 = vy, If e > 0, we repeat this process with v+1 = vyvs ... v441 in place of V'

We shall eventually construct sequences o, 7 satisfying the required conditions.

In the event that u = ), we observe that we then have I(¢) > 3 and we put p = o’.
O

It is possible to prove Lemma 3.9 below with an induction grounded at n = 2 which
includes the case n = 3. However, the proof of Lemma 3.9 is quite complicated. For
the sake of the reader who is only interested in the case in which G is triangle-free, we
present a separate proof of the n = 3 instance of Lemma 3.9. Lemma 3.9 is not needed

for the triangle-free case.

3.8 Lemma. Let B € p and for each i € {1,2,3}, let A* =(U*, o', D?) be an A-system
of level 1. Then there exist a',a?,a® € B and, for each i € {1,2,3}, there exists a
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terminated sequence o' of (U*, o', D) such that

1 1

= Oodd
2 _ 1
a - Ugven
= Oodd
3 _ 2
a - Ue'uen
= O

even:*

Proof. We apply Lemma 3.7 to A! with u = ), and choose 7! € D! satisfying the
following conditions:
I(r1) is even;
L =1
T}, € B DU2 and 7}

even

€ B*NU}.

1

We then put u? =7}, and w3 =72,

We can apply Lemma 3.7 to A? with p = u?. (Since u? € U(Z) and A? is of level 1,
2 ) We choose 72 € & satisfying the following conditions:
2 ¢ D?;
O‘ifﬂ =0;
T2en € UL N (—uf + B*) and 72, € B* F‘IU3

2 _ 2
We then put z = 77,,,, and u2 = T qd

We can now apply Lemma 3.7 to A® with p = uju3, since af’b > 1. We choose

73 € & satisfying the following conditions:
udu3T® is a terminated sequence sequence of A3;

gdd - Ul m (—U:f + B*) and TGUETL - US?TQ N <_U% + B*)

3
We put y = dd and z = T e, -
We now put o! = 7lzy, 0% = 43722z and 02 = udu373, and observe that these are
terminated sequences of A!, A? and A2 respectively.
We put a' = ol,,;,a®> = ol,., and a® = o2, and observe that these are all in B.
Furthermore,
1o 22 2.
Oodd = Todd T L =U1 + Teven = Obdds
1
Ocven = Teven ty= u’l + 7- odd — aodd’
02 = T2+ 2=u3+73,,, =03 O
even — 'odd - 2 even — “even:

3.9 Lemma. Let n € N satisfy n > 3 and let B € p. Suppose that, for every i,7 in
{1,2,...,n} with i < j, we have an A-system A" = (U™, a7 D) of level n — 2.

12



Then there are elements a',a?,...,a™ of B and for everyi j € {1,2,...,n} withi < j,

there is a terminated sequence o7 of A such that a' = o7, and o’ = Ue’,jen

Proof. We shall prove this by induction on n. We observe that the case in which n =3
is true by Lemma 3.8 . Thus we shall suppose that n > 3 and that our lemma has been
established for n — 1.

Now if (U, a, D) is any A-system of level n — 2, we can define a reduced .A-system
(V, 3, E) of level n — 3 in the following way: We put E = {(¢’) : 0 € D and l(o) > 1}.
So E C D and 7 € E implies that a, > 0. If r € E, weput V, =U, and 3, = a, — 1
if a; is in N and 8, = «a, otherwise. We observe that the terminated sequences of
our reduced system have the form (¢’)’, where o denotes a terminated sequence of the
original system.

We apply our inductive hypothesis to the reduced systems obtained from the
A-systems A"/, where i,7€{1,2,...,n — 1} and i < j. We deduce that there are
sequences 797 and elements b® of S, defined whenever i,5€{1,2,...,n — 1} and i < 7,
satisfying the following conditions:

(a) 4L e Di,j.

(b) o', =1
) l(T ’J) is even;

(d) bl—Tdd if 1 < j;
) bt =712t if j <i; and
)

even

b e B*N;— U§".

We show that we can choose for each i € {1,2,...,n — 1}, a terminated sequence
in of A" and x* € S such that for each i € {1,2,...,n —1}:
the first term of o»™ is b’

€ B;

i,mn

Ueven

Ueven

(1)

(2)

(3) zt = Ug;d >17

(4) a' € (0" + B) N}, U,

(5) ifi € {2,3,...,n—2}, thenm € (=bi+B) NN, U, N2, Ul and
(6)

Tiigd

n— n— n—2 j,n—1
x 1E(b 1+B)ﬂﬂ LU

xJ

Before showing that we can do this, let us verify that this is enough. Indeed, assume
we have chosen ¢®" and z° satisfying (1) through (6). For i,5€{1,2,...,n — 1} with
i < j,let 0¥ = 7higiyd and note that, since x* € Ullj and 2/ € UZ;]W, ohl is a

terminated sequence of A" .

13



For i € {1,2,...,n — 1}, let a* = b* + '. Since 2* € —b* + B, we have a' € B.
Let a” = ai;jgn If i € {1,2,...,n — 1}, we have by (2) that o} = a™ Also,
Opdd = V' + 0ggq 5 = ' + 2" =d'.
Finally, assume that i,j€{1,2,...,n — 1} and i < j. Then

,] 11 i 1
Oodd = odd+x =b'+z'=a

and
Now we proceed to the construction. For ¢ € {1,2,. — 1}, let u® = b'. We
will inductively construct u}, v* = uuj .. ual) 1> and 2t = Uz( ) let 04" = blubvizt =

ujuh ..y, andlet of = v, = opp, ) asrequired by (3). The process of guaranteeing
that (2) holds is where the complication lies. We diagram below the final assignments
for the case n = 5. Each of the boxes spans two lines, and the sum of the items inside
the box on each line is set equal to the item in the other line, proceeding down on the

left, and then up on the right.

u% + u}l +...+ u;(1)72 + “%(1)

u% + ui +...+ u§(2)_2 + u?(z)

ug + uf’l + ...+ u?(?))_z + ui’(?))

u% + uﬁ+...+uﬁ(4)_2 + u§(4)

We shall apply Lemma 3.7 several times. In order to do so, we observe that we
are dealing with A4-systems of level 2, since we are assuming that n > 3 and that our
systems have level n — 2. Now, if (U, «, D) is any A-system of level 2 and if we choose
u; € Up and up € Uy, and put g = ujug, then o, > 2. It follows that the sequence o
guaranteed by Lemma 3.7 has length at least 3.

Recall that we are given ui = b'. We choose any ui € B* N ﬂn ! (UJ’ ) .

We apply Lemma 3.7 to AY™ with g = blul, and choose a sequence v! € & such
that

pvt € Db, ol =0,
Oldd € Ulijj N (=b! + B*) for every j € {2,3,...,n — 1} and
€ —u} + ((UL™)* N B¥) for every j € {2,3,...,n —1}.

_ 1_ .1
We put 2! = l/odd, Y = Vgyen and u2 = u2 + yeven

even

14



We now suppose that m € {2,3,...,n— 1} and that, for each i € {1,2,...,m — 1},
we have defined u§ € Ug;n and ' € &. We put z* = ngd and y* = ' cyen and suppose
that each of the following conditions is satisfied for every i € {1,2,...,m — 1}:

1) blubvt € D™
) 0422";;,,1-'% 0;
) ' e U, forevery je {i+1,i+2,...,n—1};
) 2t € Uf,ka for every k € {1,2,...,i—1};
) b+ ' € B;
)
)
)

[\)

S Ot s W

If i > 1, then ub = ub ' 4+ 41,

ub +y' € B*N (Uj?n)* forevery je {i+1,i+2,...,n—1};

Y pyit2i4 oyt e (UbjuJ )N (= ]+1+B*) Whenever] <i€ed{l,2,...,m—1}.
We show how to continue the construction.

We put uf’ = uj~ ' 4+ y™ ! and observe that u}’ € (Uggn)* N B* for every j €
{m,m+1,...,n— 1}, by condition 7).

We now apply Lemma 3.7 with g = b™u3", to find a sequence v™ € & satisfying

w0~

each of the above eight conditions with ¢ replaced by m, where 2™ denotes v, and

y™ denotes v That there is a sequence v™ satisfying conditions 1), 2), 3), 4),

even’
5), 7) and 8) is guaranteed by Lemma 3.7 and the observation that each of the last
five of these conditions states that ™ or y" lies in a certain member of p. (If m=2,

then condition 8) says that y? € (Ul’zlyl)* N (—u3 + B*). If m > 2, condition 8)
2

bl
says that y™ € (U, ~ 1”571 1 ym_1) N (—uf" + B*) and that for each i € {1,2,...,m —2},
y" e (T Y Py )+ (U ) N (—uy 4 B))s also (Uﬁj’lzm—lymfl)*ﬂ

(—uf* + B*) € p by conditions 1), 6), and 7) while —(y'™ + y*™2 + ... +y™71) +
((U;IZ )N (—ust! 4+ B*)) € p by condition 8).) Condition 6) is true by the definition
of uy'.

Thus we can define v* € & inductively for every i € {1,2,...,n — 1} so that
properties 1)-8) are satisfied.

By property 8), we can choose 2"~ ! € U” satisfying

1 n—1,n-1
2
e —(ytl 4yt T2 4y + (UZZZ i N (—u 571+ B)) for every i €
(1,2,...,n—2}.
For each i € {1,2,...,n — 2}, we put 2° = y'tt + ™2 4 4yt 4271 €
UZ;Ziyi N ( - ul;rl + B). Clearly, vy + 2* = 2"~ 1 if 5 > 1.
We then put 0" = b'ubv'z® for each i € {1,2,...,n — 1}, and observe that this is

a terminated sequence of A" by condition 2).

15
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We have o))t = ub + Ve, + 2" =ub+y' +2' =ub+2""" =uy +y' T+ =

i—1,n ;¢
oloetif v > 1.

wn _ ~1n . o
Hence o3, = o.:, for every i € {1,2,...,n — 1}.

We also have o8 = ub+ 2"t € Bifi > 1.

even

Thus we have established our lemma. [l

We now embark on a sequence of lemmas establishing that certain sets must belong
to p if G has no K,,.

3.10 Lemma. Suppose that m € N and that G contains no K,,. Then, for everyr € w,
it is impossible to find elements at,a?,...,a™ of S such that a® ¢ A,(a’) wheneveri < j
in {1,2,...,m}.

Proof. We prove this by induction on r. The case r = 0 is immediate from the
assumption that G contains no K,,, and so we may suppose that » > 0 and that the
lemma holds for » — 1.

Assume that we do have elements a',a?, ..., a™ of S such that a* ¢ A,(a’) when-
ever i < jin {1,2,...,m}. Let

U:ﬂyi—llﬂgﬁ:i“{ueS:{veS:ai—irvgéAr_l(aj—i—u)}ep}.

Then U € p. Choose b™ € U. Inductively, let ¢ € {1,2,...,m — 1}, assume

bit1 pit2 .. b™ have been chosen, and choose

b eUNML{veS:a' +v¢ A _1(ad +17)} .
Then a' + b* ¢ A,_1(a’ + V) whenever ¢ < j in {1,2,...,m — 1}, contradicting our
induction hypothesis. U

3.11 Lemma. Let m € N and assume that G contains no K,,. Then, for every r € w,
{a€ S: A.(a) € p} €p.

Proof. Suppose instead that for some r € w we have B = {a € S : A,(a) ¢ p} € p.
Choose a™ € B and for i € {1,2,...,m — 1}, choose a* € B\U/_,;,, A-(a’). This

contradicts Lemma 3.10. O

3.12 Lemma. Let m € N and assume that G contains no K,,. Then there do not exist
elements a',a?,...,a™ of S, such that o/ € Ny’ Aq(a?) \ A(a’) whenever i < j in
{1,2,...,m}.
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Proof. Suppose, on the contrary, that we do have elements with this property. Then,
by Lemma 3.6, there is an A-system A"’ of level m — 2, defined whenever i < j in
{1,2,...,m}, such that {a’ + 0oqd, @’ + Oecven} € E(G) for every terminated sequence o
of AY. By Lemma 3.9 (or just Lemma 3.8, if m = 3), for every i < j in {1,2,...,m},
there is a terminated sequence 0%/ of A% and there are elements b',b2,...,b™ of S

such that b = ai’djd whenever i < j and b* = ol

2., Whenever 7 < i. We then have

{a' +b', a7 + 1V} € E(G) whenever i < j, contradicting our assumption that G contains
no K,,. O

3.13 Lemma. Let m € N and suppose that G contains no K,,. Then
{a€eS:Ala)eplep.

Proof. First observe that {a € S : ﬂ::f A, (a)\A(a) ¢ p} € p. (For suppose instead
that B={a € S: ﬂ:ﬂn:_(f A,(a)\A(a) € p} € p. Choose a' € B and for j € {2,3,...,m},
choose a/ € BNN/Z; N> Ar(a’)\A(a’). This contradicts Lemma 3.12.)

Also by Lemma 3.11, 7" ;*{a € S : A,(a) € p} € p. Since

{ae S NS Ala)\A(a) ¢ py NN {acS: A(a) €ep} C{acS: Ala) €p}

we are done. U
3.14 Definition. Let a € S and let r € w. We put B(a) = {b€ S:a € A(b)} and
B.(a)={be S:ac A.(b)}.
3.15 Lemma. Let m € N and assume that G contains no K,,. Then, for every r € w,
{a € S: B.(a) € p} € p. Furthermore, {a € S : B(a) € p} € p.

Proof. For the first assertion, suppose instead that we have some r € w such that
C ={aeS:B.(a) ¢ p} €p. Choosea' € C and for j € {2,3,...,m}, choose
al € C\ UZ;11 B,(a"). Then for i < j in {1,2,...,m} one has a’ ¢ A,(a’), contradicting
Lemma 3.10.

We claim also that {a € S : ﬂ;n:_f B,.(a)\B(a) ¢ p} € p. Suppose instead that
D={a€cs: ﬂT:_OQ B, (a)\B(a) € p} € p. Pick a™ € D and for i € {1,2,...,m — 1},
pick a' € DN ﬂ;n:iJrl ﬂ:lz_og B,(a?)\B(a’). Then for i < jin {1,2,...,m},
al € ﬂT:_OZ A, (a)\A(a'), contradicting Lemma 3.12.

Since

faeS: "2 Br@\Ba) ¢ p} N\ Ha € S: Bola) € p} C {ae S Bla) € p}
we are done. O

3.16 Lemma. Leta € S and letb € A(a). Then{u € S:b¢ Apg(a+u)\ Ala+u)} € p.
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Proof. Suppose, on the contrary, that U = {u € S:b e Apg(a+u)\ A(a+u)} € p. For
each u € U, let §, be the first ordinal for which b ¢ A5, (a + u). We observe that d,, is
neither 0 nor a limit ordinal. Let V(u) ={u': {v:b+v ¢ As,_1(a+u+u')} € p} and
note that V(u) € p.

Pick a limit ordinal A < k such that 6, < A for all u € U. Now b € Ax11(a) so if

W=A{w:{v:b+ve Ay(a+w)} €p},

then W ep=p+pso{u:—u+W € p} € p. Picku € U such that —u+ W € p
and pick v/ € V(u) N (—u+ W). Thenu+u € Wso{v:b+ve Ayx(a+u+u)}ep
and v € V(u)so{v:b+v ¢ As,—1(a+u+u)} € p. Since A > 4, — 1, this is a

contradiction. O
3.17 Lemma. Leta € S and let b € A(a). Then {u € S: —b+ A(a+u) € p} € p.

Proof. Suppose, on the contrary, that U = {u € S: —b+ A(a +u) ¢ p} € p. For each
ueUlet Viu)={veS:b+v¢& A(a+u)} and note that V(u) € p. Thus, for each
u € U and v € V(u), there exists an ordinal d,,, € x such that b+v ¢ As,  (a + u).
Let A < k be a limit ordinal satisfying A > 6, , whenever u € U and v € V(u). Then
b+v ¢ Ax(a + u) whenever u € U and v € V(u). This implies that b ¢ Axi1(a),
contradicting our assumption that b € A(a). O

3.18 Lemma. Suppose that m € N and that G contains no K,,. Then
{aeS:{beS:acAb)'}ep}lep.
Proof. Suppose on the contrary that {a € S:{be S:a ¢ A(b)*} € p} € p. Let
U={acS:{beS:a¢ A(b)*} ep}n{aeS: Ba) € p}.

By Lemma 3.15, U € p. Picka € U andlet V = {b € S :a ¢ A(b)*} and pick
be V*NB(a)*. Thenb € B(a) so a € A(b) so by Lemma 3.17 with a and b interchanged
we have W = {w € S: —a+A(b+w) € p} € p. Choose w € WN(—b+V)N(—b+B(a)).
Since b+ w € B(a), we have a € A(b+ w). Since w € W, we have —a + A(b+ w) € p.
Thus, a € A(b+ w)*, contradicting the fact that b+ w € V. O

We are finally in a position to prove the main theorem of this section.

3.19 Theorem. Let m € N and suppose that G contains no K,,. Let P € p. Then there
is a sequence (Tn)neq in S such that F.S({xy)s2 ) C p and whenever F, H € Py(N) with
FNH=0, one has {Xnecr Tn,Ynecy tn} ¢ E(G).
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Proof. By Lemmas 3.13 and 3.18, we may presume that
PC{aeS:A(a)eptn{acS:{beS:ac Ab)*} €p}.

Given a finite sequence (x;)}_; in S and a,b € S, we write a L b if and only if there
exist disjoint sets ' and H in P¢({1,2,...,n}) such that a = Xicp z; and b = Xicq 4.
(The notation depends on the choice of the sequence (x;)}"_;, but the particular sequence
that we have in mind will be clear from the context.)

Choose 1 € P*. Let n € N, and assume that we have chosen z1,x9,...,2, € S
such that
(a) FS({(z:)iy) € P* and
(b) whenever a,b € FS((z;)},) with a L b, one has a € A(b)*.

Let E = FS((z4)}—;)- By Lemma 1.8, we have P* € p and for each a € E,
—a + P* € p. Further, for each a € F, a € P so

A(a) ep,Ala)" €p, and {x €S:a€ A(x) } €p.

Also, given a,b € E with a L b, we have by assumption that a € A(b)* so by Lemma
1.8, —a+ A(b)* € p.

Now we claim that, given a,b € E with a L b, we have {x € S: b€ A(a+z)*} € p.
First, by Lemma 3.16, {x € S : b ¢ Ap(a + x)\A(a + x)} € p so either
{reS:b¢ Ag(a+z)} epor{reS:be Ala+x)} € p. But

{reS:b¢ Ay(a+x)} = {xe€S:{ba+zax}eEG)}
= {zeS:a+xz¢ Ay(b)}

Since a € A(b)* C Ap(b)* we have that —a+Ay(b) € p. Thus {z € S: b€ A(a+x)} € p.
Also b € A(a) so by Lemma 3.17, {x € S: —b+ A(a + x) € p} € p. Thus,
{reS:beAla+x)*} €p.

Now choose

Tnt1 € P NNpep((—a+P)n{zeS:ac Ax)} NAla)*)
N({(—a+Ab)*)N{ze S:beAla+2)*} :a,be E and a L b} .

Since Zy41 € P* N(,ep(—a+ P*), we have that F.S({z,)}5') C P*.

Let a,b € FS({x)") with a L b. If a,b € FS({x;)?_,), there is nothing to show
so assume without loss of generality that either a = x,41 or a = a/ + x,,41 for some
a' € E. Since a 1 b we have b € E. If a = ,,41 we have directly that z, 11 € A(b)* and
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be A(xpi1)*. If a=a’' + xp41, then directly b € A(a' + zp41) and x, 41 € —d’ + A(D)*
so that @’ + x,4+1 € A(D)*. O

As we promised earlier, we see that a sequence with independent finite sums can
be found “inside” any given sequence. For this corollary, we need to drop our standing
assumption about having fixed an idempotent p € 5S. (We choose an idempotent in
the proof.) Also, strictly speaking Corollary 3.20 is not a corollary to Theorem 3.19,

but is rather a corollary to its proof.

3.20 Corollary. Let m € N and suppose that G contains no K, and let (y,)o>, be
a sequence in S. There is a sum subsystem (z,)5% 1 of (yn)S>, such that whenever

F.H € P¢(N) with FNH =0, one has {Ener Tn, Znen Tn} ¢ E(G).

Proof. By Theorem 1.9, pick an idempotent p € (S such that for every n € N,
FS((yk)i,) € p-

We show how to modify the proof of Theorem 3.19. To start, let k(1) = 1 and
pick 1 € FS((y)52;) N P*. Pick Hy € Py(N) such that 1 = ¥eq, yr and let
k(2) = max Hy + 1. At stage n in the construction require that z, € F\S((y¢);2,,)) (in
addition to all of the other sets specified in that proof). Pick H, € P;(N) such that
Tn = Yten, ye and let k(n + 1) = max H,, + 1. O

4. When G contains no Km m.

We continue to assume in this section that we have an infinite (not necessarily
commutative) semigroup (S, +), that we have a fixed graph G with vertices in S, and
a fixed idempotent p € 3S\S. We add the assumption that S is cancellative. (We do
not know whether this assumption is needed for the main result, Theorem 4.14, but it

is required for our proof.)

4.1 Definition. For k,l € N, let K} ; denote the complete bipartite graph on sets of
size k and [. That is, the vertex set of Kj; can be partitioned into disjoint sets C' and
D, with |C| = k and |D| = [, so that the edge set of Ky is {{c,d} :c€ C,d € D}.

One or two of the lemmas in this section could be stated without proof, since they
follow from results in Section 3, since a graph which contains no K,, ,, also contains
no Ks,,. However, all the proofs in this section are relatively simple compared to some
of those in Section 3. We have therefore written Section 4 so that it can be read
independently of Section 3.

The following definition extends to S the notation used in Section 2 with the semi-

group (N, +) and the sequence (2¢71)%°. .
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4.2 Definition. Let (z,)52; be a sequence in S. Given a,b € FS((x,)0% ), we shall

n=1

write a << b if and only if there exist F, H € P;(N) with max F' < min H such that
a=) cp Tiand b=), . ;.

Whenever we use the following lemma, we will only need finitely many terms from

oo

the sequence (z,)% ,,

but it costs us nothing to prove the stronger form.

4.3 Lemma. Suppose that U € p and that, for every u € U, V(u) € p. Then there is a
one to one sequence (x,)°° 1 in S such that FS({x,)2,) C U and b € V(a) whenever
a,b € FS({(x,)2% ) and a << b.

n=1

Proof. We construct our sequence inductively, first choosing 21 to be any element of U*.
We then suppose that we have chosen z1,x2,...,x, in S satisfying F'S((z;) ) C U*
and b € V(a)* whenever a,b € FS((z;)"_ ;) and a << b.

Let E = FS({xz;)!,). For any a € E, V(a)* € p and —a + U* € p by Lemma 1.8.
Further, given a,b € E with a << b, we have b € V(a)* so —b+ V(a)* € p by Lemma
1.8. Thus we may choose

Tnt1 € (UN\{z1,22,...,22}) NNpep((—a+U*) NV (a)*)N
{-b+V(a)*:a,be E and a << b} .

Since 2,41 € U* N(,ep(—a+ U*), we have that FS((z;)! ') C U*.

Now, let a,b € FS((z;)"1}) with a << b. Pick F,H C {1,2,...,n + 1} such
that max F' < minH anda = >, p #;and b = ),y ;. If maxH < n + 1, then
b € V(a)* by the induction hypothesis. So assume n+1 € H. If H = {n + 1}, then
b= xp41 € V(a)* by the construction. Otherwise, b = b’ + z, 41 where i/ € E and
a << b sothat b € V(a)* because x,,11 € (—b' 4+ V(a)*). O

4.4 Definition. Let a € S. We define subsets of S as follows.
I(a) ={be S:{a,b} ¢ E(G)}.
Qa)={beS:{xeS:b+xecl(a)}cp}

R(a)={be S:{xeS:bel(a+z)} € p}
Ta)={beS:{xeS:b+xecl(a+x)}€p}.

Notice that Q(a) and R(a) can be written more simply as
Q(a)={be S:—-b+I(a) € p}
and, since b € I(a + z) if and only if a + = € I(b),
R(a)={be S:—a+I(b) €p}.
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They were written out in the longer fashion in Definition 4.4 to contrast with 7'(a)
which has no such short description.

If the semigroup S has an identity, we denote it by 0, in which case of course
SuU{0} =S. If not, SU{0} denotes S with a two sided identity adjoined.

4.5 Definition. Let a € SU{0}. We define subsets of S U {0} as follows.
W(a)={be SU{0}:{zxeS:{yeS:b+ax+yeclla+y)} <€p}eDp}
X(a)={beSU{0}:{zeS:{yeS:b+yeclla+x)}cp}ep}
Y(a)={beSu{0}:{zecS:{yeS:b+axeclla+z+y)}€p}cp}
Za)={beSu{0}:{zeS:{yecS:b+ax+yecllat+x)}ecp}ecp}

Again, each of X (a), Y (a), and Z(a) (but not W(a)) has a simpler representation:

X(a) = {beSU{0}:{xeS:-b+1(a+z)ecp}ep},
Y = {beSu{0}:{zxeS:—(a+x)+I(b+z)€p}ep}, and
Z(a) = {beSu{0}:{xeS:—(b+x)+1(a+x)E€p}ep}.

(In the case of Y (a) one needed to notice that b+ = € I(a + = + y) if and only if
at+rx+yel(b+x).)

4.6 Lemma. Suppose that m € N and that G contains no K, ,,. Then, for every
a€SU{0}, W(a)=X(a)=Y(a)=Z(a) = SU{0}.

Proof. (1) Suppose that b € (SU{0})\W (a). Let
U={zxeS:{yeS:b+x+y¢I(a+vy)}<p}

and forz € U,let V(z) ={y € S: b+x+y ¢ I(a+y)}. Choose by Lemma 4.3 a sequence
(xn)0% 4 in S such that F.S((z,)52 ;) C U and z € V(y) whenever y,z € FS({(z,)72 )
andy << z. Fori € {1,2,...,m},let ¢; = Efﬂ“mt and d; = Efgﬁ}rzmt Since S is right
cancellative we have that ¢; # ¢; and d; # d; whenever ¢ # j. Now, given,j € {1,2,...,
m}, we have X7 " a << dj so dj € V(ST ). That is, {b+ ¢i,a +d;} € E(G),
a contradiction. (Since S is left cancellative we have b+c¢; # b+c; and a+d; # a+d;
whenever i # j.)

(2) Suppose that b € (SU{0})\X(a). Let U ={zx € S: —b+I(a+=x) ¢ p}. Choose
distinet 1, @2, . .., Zmy in U and choose distinct y1, ya2, . . ., ym in S\ Ui, (—b+[(a+azi)).
Then for any 4,j € {1,2,...,m}, {b+y,,a+ z;} € E(G), a contradiction.

(3) Suppose that b € (SU{0})\Y(a). Let U ={zx € S: —(a+z)+ I(b+ ) ¢ p}
and for z € U, let V(z) = S\(—(a + z) + I(b+ z)). Choose by Lemma 4.3 a sequence
(n)o% 4 in S such that F.S((z,)52 ;) C U and z € V(y) whenever y,z € FS((z,)72 )
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and y << z. For i € {1,2,...,m}, let ¢; = Eii%xt and d; = Z?’Siﬂxt. Now, given

i,7 €41,2,...,m}, we have ¢; << Z?ng'lxt SO E?sz'lmt € V(¢;). That is, {b+¢;,a+

d;} € E(G), a contradiction. (As in the proof of (1), we see that these are all distinct.)
(4) Notice that for any a,b € SU {0}, b € Z(a) if and only if a € Y (b) so the fact

that Z(a) = S U{0} follows from part (3). 0

4.7 Lemma. Suppose that m € N and that G contains no Ky, . We then have:
(1) {a € S:I(a)€p}eEp;

(2) {a € S:Q(a) € p} € p;

(3) {a € S:R(a) €p}ep; and

(4) {a € S:T(a) € p} €p.

Proof. (1) Suppose not and let U = {a € S : I(a) ¢ p}. Pick distinct ay,aq,...,a, in
U and pick distinct by, ba, ..., by, in (/-1 (S\I(a;)). Then for each i,j € {1,2,...,m},
{a;,b;} € E(G), a contradiction.

(2) This follows from (1) and Lemma 1.8, since I(a)* C Q(a).

(3) Suppose not and let U = {a € S : R(a) ¢ p}. Choose distinct ay,as, ..., ay, in U
and choose distinct by, bo, ..., by in (-, (S\R(ai)). Then for each i,j € {1,2,...,m},
—a; + I(b;) ¢ p so pick z € S\U;Z, U/~ (—a; + I(bj)). Then for each i,j € {1,2,...,
m}, {a; +x,b;} € E(G), a contradiction.

(4) This is nearly identical to the proof of (3). One ends up with a1, a9, ..., amn,
bi,b2, ..., by, and x such that {a; + z,b; + 2} € E(G) whenever i,j € {1,2,...,m}.

4.8 Definition. For every a € S, C(a) = I(a) N Q(a) N R(a) N T(a).
4.9 Lemma. For every a,b€ S, a € C(b) if and only if b € C(a).
Proof. From the definitions we have that

aclb) & bel(a),
acTb) < beT(a), and
(a) .

a€ Qb)) < beR(a) O

4.10 Lemma. Suppose that m € N and that G contains no Ky, ,,. Then, for every
a€ S, Cla) =C(a)*.

Proof. Suppose that b € C'(a). We need to show that —b+ C(a) € p. Since b € Q(a),
we have directly that —b+ I(a) € p.
Now suppose that —b 4+ Q(a) ¢ p and let

U=5\(-b+Qa)) ={yeS:{zeS:b+y+ax¢I(a)}ep}.
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ForyeU,let V(y) ={zx € S:b+y+x ¢ I(a)}. Then, since p+ p = p, we have that
{y+x:ye€Uandz e V(y)} € p. Since b € Q(a), we have that {w € S: b+ w €

I(a)} € p. This is a contradiction since
{ly+z:yeUandzeV(y)n{fweS:b+wella)=0.

By Lemma 4.6 a € X(b) so {x € S: —a+ I(b+x) € p} € p. Since
{reS:—a+I(b+z)€p} C—b+ R(a), we have that —b + R(a) € p.

By Lemma 4.6 be W(a),so{z € S:{yeS:b+ax+yecl(at+y)} €p} € p. Since
{reS:{yeS:b+ax+yecl(at+y)} €p} C—b+T(a), we know that —b+T(a) € p.00

4.11 Lemma. Suppose that m € N and that G contains no Ky, ,,. Then, for every
a€ S and everybe Cla), {freS:b+xe€Cla+x)} €p.

Proof. Let b € C(a). Then {x € S:b+x € I(a+ )} € p because b € T'(a). Since,
by Lemma 4.6, b € Z(a), we have {vx € S : —(b+ z) + I(a + z) € p} € p. That is,
{reS:b+zeQla+2)} €p.

Also, by Lemma 4.6, b€ Y(a)so {r € S: {yeS:b+xe€lla+z+y)} €p}ep.
That is, {x € S:b+x € R(a+ z)} € p.

Thus it remains only to show that {zx € S:b+2z € T(a+x)} € p. Let A= {z €
S:b+xze€l(a+x)}. SincebeT(a), Acp,so{reS:—x+Acp}ecp And

{reS:—z+Acp}t = {zeS:{yeS:b+x+yecllat+x+y)}€p}
= {zeS:b+rxeT(atz)}. O

4.12 Lemma. Suppose that m € N and that G contains no K, p,. Then
{aeS:aeCa)}ep.

Proof. It is trivial that a € I(a) and a € T'(a) for every a € S. It is also trivial that
a € Q(a) if and only if a € R(a). By Lemma 4.6, 0 € Y(0) so

{aeS:{reS:aclla+z)}ep}tep.
That is, {a € S:a € R(a)} € p. O
4.13 Lemma. Suppose that m € N and that G contains no K, p,. Then
{aeS:{reS:zecCla+z)}eplep.

Proof. Firstly, by Lemma 4.6, 0 e W(0)so {ae€ S:{xr € S:a+zxz € I(x)} € p} €pso
{aeS:{reS:zella+2x)} €p}ep.

24



Secondly, by Lemma 4.6, for any a € S,0 € Z(a),so {zx € S: —x+1(a+x) € p} € p.
That is, {xr € S:z € Q(a+z)} € p.

Thirdly, given any a € S, 0€ Y(a)so{z € S:{ye S:zecl(a+z+y)} €p}Ep.
That is, {x € S:x € R(a+ z)} € p.

Finally, by Lemma 4.6, 0 € W(0)so {a € S:{we S:a+w € I(w)} € p} € p. We

claim that
{aeS:{weS:a+wellw)}eptC{acS:{xeS:xeT(a+2x)}€p}

so let a € S be given such that {w € S:a+w € I(w)} € p.
Let A={we S:wel(a+w)}. Then Acpso{zreS:—zx+Acp}ecp And

{reS:—zx+Aecp} = {zeS:{yeS:z+yeclla+z+y)}€p}
= {zeS:zeT(a+x)}. O

The following theorem is the main theorem of this section.

4.14 Theorem. Suppose that m € N and that G contains no K, »,. Then, given any
P € p, there exists an infinite sequence (x,)52 1 in S such that F'S({x,)72 1) € P and
{a,b} ¢ E(G) whenever a,b € FS({x,)52 ).

n=1

Proof. In the light of Lemmas 4.7, 4.12, and 4.13, we may suppose that
PC{aeS:Cla)eptn{faeS:aeC(a)}n{aeS:{reS:zeCla+x)}E€p}.

We choose (z,)7°; inductively. Let z; € P*. Let n € N and assume we have
chosen x1,xa, ..., x, with the property that F.S((z:)}_;) € P* and b € C(a) whenever
a,be FS((x¢)p—q)-

Let E = FS({(x¢)}—,). By Lemma 1.8 P* € p and for all a € P*, —a + P* € p.
Given a € P*, C(a) e pand {x € S: 2z € C(a+x)} € p. Given a,b € E, we have that
a € C(b) and b € C(a) and hence by Lemma 4.10 —a + C(b) € p and by Lemma 4.11
{reS:b+zeCat+2)} €p.

Choose
Tnt1 € P NNpep((ma+P)NCla)n{zeS:zeCla+x)})
NNacr Mier((a+CO) N{z €S :bt+zeCla+n)})

Then x,,1 € P* and for each a € F, a + x,11 € P* so FS((xtﬁill) C P*.
Now let a,b € FS({z:)71). Then without loss of generality (since a € C(b) if and
only if b € C(a) by Lemma 4.9) one of the following cases holds:
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1
2
3
4
5)
6) a € Eand b=V + x,11 for some b’ € E.

In case (1) b € C(a) by the induction hypothesis. In case (2), b € C(a) because
PC{rxeS:xz e Cx)}. Incase (3), b € C(a) because x,,41 € C(a’ + Tpy1).
In case (4), we have directly that b was chosen in C(a). In case (5) we use the fact
that z,11 € {x € S : 0 +2 € C(d + z)}. And in case (6) we use the fact that
Tpt1 € = 4+ C(a). O

a = b_ Tn41;
a=a + x,41 for some a’ € E and b = x,,41;
a€ EFand b=x,41;

a=a + x,.1 for some a’ € E and b =" + x,,1 for some b’ € F; or

(1)
(2)
(3)
(4)
()
(6)

As was the case with Corollary 3.20, the following result is not a corollary to
Theorem 4.14 but rather to its proof. Also as there we need to drop our standing

assumption that we have fixed an idempotent in 85, because one is chosen in the proof.

4.15 Corollary. Let m € N and suppose that G contains no K, m and let (y,)o>,

be a sequence in S. There is a sum subsystem (x,)°% 1 of (yn)ooy such that whenever

aab S FS(<$n>%O:1)7 {avb} ¢ E(G)

Proof. By Theorem 1.9, pick an idempotent p € (S such that for every n € N,
FS({yr)iZn) € p-

We show how to modify the proof of Theorem 4.14. To start, let k(1) = 1 and
pick 1 € FS((y:)i2;) N P*. Pick Hy € Py(N) such that 1 = ¥ien, y: and let
k(2) = max Hy + 1. At stage n in the construction require that ,, € FS((y¢);2(,,)) (in
addition to all of the other sets specified in that proof). Pick H, € P#(N) such that
Tn = Xtem, Yy and let k(n+ 1) = max H,, + 1. O
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