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Abstract. Recently, in conversation with Erdős, Hajnal asked whether or not for any
triangle-free graph G on the vertex set N, there always exists a sequence 〈xn〉∞n=1 so that
whenever F and H are distinct finite nonempty subsets of N, {Σn∈F xn, Σn∈H xn} is
not an edge of G (that is, FS(〈xn〉∞n=1) is an independent set). We answer this question
in the negative. We also show that if one replaces the assumption that G is triangle-free
by the assertion that for some m, G contains no complete bipartite graph Km,m, then
the conclusion does hold. If for some m ≥ 3, G contains no Km, we show there exists
a sequence 〈xn〉∞n=1 so that whenever F and H are disjoint finite nonempty subsets of
N, {Σn∈F xn, Σn∈H xn} is not an edge of G. Both of the affirmative results are in fact
valid for a graph G on an arbitrary cancellative semigroup (S, +).

1. Introduction.

We take N to be the positive integers and ω = N∪{0}. Given a set A, we denote by
Pf (A) the set of finite nonempty subsets of A. Given a sequence 〈xn〉∞n=1 in N, we use
the notation FS(〈xn〉∞n=1) = {Σn∈F xn : F ∈ Pf (N)}. In 1972 the following theorem
was proved in [6] (or see [1] or [7] for simpler proofs).

1.1 Theorem. Let r ∈ N and let N =
⋃r

i=1 Ai. Then there exist i ∈ {1, 2, . . . , r} and a
sequence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ⊆ Ai.

It was already known at the time [5] that Theorem 1.1 is equivalent to the su-
perficially weaker version which has r = 2. In 1995, Hajnal asked Erdős the following
question. (It appears as a remark following Problem 4.4 of [4], a paper written by Erdős,
Hajnal, and Pach.)

1.2 Question. Let G be a graph on the vertex set N which contains no triangles. Must
there exist a sequence 〈xn〉∞n=1 in N such that FS(〈xn〉∞n=1) forms an independent set?

1 This author acknowledges support received from the National Science Foundation
(USA) via grant DMS-9424421.
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Note that an affirmative answer to Question 1.2 would imply Theorem 1.1. To see
this, let N = A1∪A2 where we may presume that A1∩A2 = ∅. (We have already observed
that it suffices to establish Theorem 1.1 for the case r = 2.) Let G be the complete
bipartite graph on the sets A1 and A2. That is, E(G) =

{
{x, y} : x ∈ A1 and y ∈ A2

}
.

Then if 〈xn〉∞n=1 has FS(〈xn〉∞n=1) independent one must have FS(〈xn〉∞n=1) ⊆ A1 or
FS(〈xn〉∞n=1) ⊆ A2.

In fact, Theorem 1.1 follows from an affirmative answer to the weaker Question 1.3.

1.3 Question. Let G be a graph with vertices in N which contains no triangles. Must
there exist a sequence 〈xn〉∞n=1 in N such that {Σn∈F xn, Σn∈H xn} /∈ E(G) whenever
F,H ∈ Pf (N) with F ∩H = ∅?

To see that an affirmative answer to Question 1.3 implies Theorem 1.1, let the graph
G be defined exactly as above and let 〈xn〉∞n=1 be as guaranteed by an affirmative answer
to the question. Suppose one has F,H ∈ Pf (N) with Σn∈F xn ∈ A1 and Σn∈H xn ∈ A2.
Pick k > max(F ∪H). Then either {Σn∈F xn, xk} ∈ E(G) or {Σn∈H xn, xk} ∈ E(G).

On hearing Question 1.2, Erdős “retaliated” (his word) by asking the following
much weaker question.

1.4 Question. Let G be a triangle-free graph with vertices in N. Must there exist x 6= y

such that {x, y, x + y} is an independent set?

In [8], this question was answered in the affirmative in the following strong fashion.
Here Km is the complete graph on m vertices.

1.5 Theorem. Let G be a graph with vertex set N and assume there is some m ∈ N
such that G contains no Km. Then for each ` ∈ N, there is a finite sequence 〈xn〉`n=1

such that FS(〈xn〉`n=1) is an independent set.

In [8] it was also shown that one cannot weaken the hypothesis of Theorem 1.5 to
the assertion that G contains no Kω (where Kω is the complete graph on countably
many vertices). For if E(G) =

{
{x, y} : x < y < 2x

}
then G contains no Kω, but given

any x < y in N, one has {y, x + y} ∈ E(G).

In Section 2 of this paper we answer Question 1.2 in the negative by exhibiting a
triangle-free graph on N so that every FS(〈xn〉∞n=1) induces at least one edge in the
graph.

In Section 3 we provide a strong affirmative answer to Question 1.3. That is, we
show that if G is a graph with vertices in N and there exists some m ∈ N\{1, 2} such
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that G contains no Km, then there is a sequence 〈xn〉∞n=1 in N such that whenever
F,H ∈ Pf (N) and F ∩H = ∅, one has that {Σn∈F xn, Σn∈H xn} /∈ E(G).

In fact we show that the answer to Question 1.3 remains affirmative when the
semigroup (N, +) is replaced by an arbitrary semigroup (S, +). We write the semigroup
S additively because the origin of the questions was in (N, +). However, we do not
assume that the operation is commutative, so when speaking of FS(〈xn〉∞n=1) we need
to specify the order of the sums, which we take to be written in increasing order of
indices. (Thus, for example, Σt∈{1,2,6} xt = x1 + x2 + x6.)

The answer we give to Question 1.3 is stronger in another direction as well. That
is, we show that the sequence 〈xn〉∞n=1 with independent finite sums can be found inside
FS(〈yn〉∞n=1) for any given sequence 〈yn〉∞n=1, where the notion of “inside” is made
precise by the following definition.

1.6 Definition. Let (S, +) be a semigroup and let 〈yn〉∞n=1 and 〈xn〉∞n=1 be sequences
in S. Then 〈xn〉∞n=1 is a sum subsystem of 〈yn〉∞n=1 if and only if there is a sequence
〈Hn〉∞n=1 in Pf (N) such that for each n ∈ N,

max Hn < min Hn+1 and xn = Σt∈Hn
yt .

In Section 4 we obtain the conclusion of Question 1.2 under different (but neither
weaker nor stronger) hypotheses. Using Km,m to denote the complete balanced bipartite
graph on 2m vertices, we show that for every m ∈ N, if G is a graph on the cancellative
semigroup S which contains no Km,m, then there is a sequence 〈xn〉∞n=1 in S such that
no pair of finite sums (disjoint or not) form an edge of G. This result has been obtained
independently in [8] for the case S = N. Again our result in fact shows that the sequence
〈xn〉∞n=1 can be chosen to be a sum subsystem of any given sequence 〈yn〉∞n=1.

The results of Sections 3 and 4 are true, but trivial, if S is finite, so we will assume
that (S, +) is an infinite semigroup (and we emphasize again that we are not assuming
the operation is commutative). We will utilize in these sections the algebraic structure
of the semigroup (βS, +), where + denotes the extension of the operation to βS which
makes (βS, +) a right topological semigroup with S contained in its topological center.
We now briefly describe the semigroup (βS, +). See [7] for a detailed construction of
βS and derivations of some of the basic algebraic facts.

We take the points of βS to be the ultrafilters on S, the principal ultrafilters
being identified with the points of S. When we say that (βS, +) is a right topological
semigroup we mean that for each p ∈ βS the function ρp : βS −→ βS, defined by
ρp(q) = q + p, is continuous. When we say that S is contained in the topological center
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of (βS, +), we mean that for each x ∈ S, the function λx : βS −→ βS defined by
λx(q) = x + q is continuous.

The operation + on βS is characterized as follows: Given A ⊆ S, A ∈ p + q if and
only if {x ∈ S : −x + A ∈ q} ∈ p where −x + A = {y ∈ S : x + y ∈ A}. In particular,
p = p + p if and only if whenever A ∈ p one has {x ∈ S : −x + A ∈ p} ∈ p. Observe also
that if p, q ∈ βS, A ∈ p, and for each x ∈ A, B(x) ∈ q, then

{x + y : x ∈ A and y ∈ B(x)} ∈ p + q .

Given A ⊆ S, A = c`A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a basis for the
open sets (as well as a basis for the closed sets) of βS.

A significant property of any compact Hausdorff right topological semigroup is that
it contains an idempotent [3, Corollary 2.10].

We shall use Lemma 1.8 frequently in Sections 3 and 4.

1.7 Definition. Let p + p = p ∈ βS, and let B ∈ p. Then B∗ = {x ∈ B : −x + B ∈ p}.

1.8 Lemma. Let p + p = p ∈ βS and let B ∈ p. Then B∗ ∈ p. Furthermore, for every
x ∈ B∗, we have −x + B∗ ∈ p.

Proof. It is immediate, as we noted above, that B∗ ∈ p. We know that −x + B ∈ p

and so (−x + B)∗ ∈ p. We claim that (−x + B)∗ ⊆ −x + B∗. So let y ∈ (−x + B)∗.
Then −y + (−x + B) ∈ p. That is, −(x + y) + B ∈ p. Since also x + y ∈ B we have
x + y ∈ B∗ as desired.

It is the simple property established in Lemma 1.8 which makes idempotent ultrafil-
ters a useful tool in constructing infinite sets of the form FS(〈xn〉∞n=1). In Sections 3 and
4 of the present paper, we shall frequently be using sums of the form x1 + x2 + . . . + xn,
where x1 has to be chosen in some assigned member of p and each xi has to be chosen
in a member of p which depends on x1, x2, . . . , xi−1. We shall use the fact that, in the
light of Lemma 1.8, a sum of this kind can be found in any given member of p. An
illustration follows in the proof of Theorem 1.10.

The method of proof in Sections 3 and 4 is to take an arbitrary idempotent p in
βS and an arbitrary member B of p and show that we can choose a sequence 〈xn〉∞n=1

in B as required. This allows us to obtain the sequence as a sum subsystem of another
sequence because of the following old result of Fred Galvin’s. By FS(〈yn〉∞n=m) we mean
of course, {Σn∈F yn : F ∈ Pf (N) and min F ≥ m}.
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1.9 Theorem. Let (S, +) be a semigroup and let 〈yn〉∞n=1 be a sequence in S. There is
some p = p + p in βS such that for every m ∈ N, FS(〈yn〉∞n=m) ∈ p.

Proof. See [7, Theorem 5.5].

Working as we do with an arbitrary idempotent p in βS and an arbitrary element
B of p, our results become trivial if p ∈ S. (For then {p} is an element of the principal
ultrafilter which we have identified with p, and the sequence 〈xn〉∞n=1 can be constantly
equal to p.) Accordingly, we are interested in knowing when we can guarantee that
p ∈ βS\S. The following simple observation answers that question.

1.10 Theorem. Let (S, +) be a semigroup.
(a) Given any sequence 〈yn〉∞n=1 in S, if

⋂∞
m=1 FS(〈yn〉∞n=m) = ∅, then there is

some p = p + p in βS\S such that for every m ∈ N, FS(〈yn〉∞n=m) ∈ p.
(b) There is some idempotent p in βS\S if and only if there is a sequence 〈yn〉∞n=1

in S such that
⋂∞

m=1 FS(〈yn〉∞n=m) = ∅.

Proof. (a) Choose p as guaranteed by Theorem 1.9. Since {FS(〈yn〉∞n=m) : m ∈ N} ⊆ p

and
⋂
{FS(〈yn〉∞n=m) : m ∈ N} = ∅, p is not principal.

(b) The sufficiency is an immediate consequence of part (a). For the necessity,
let p ∈ βS\S such that p = p + p. Let B1 = S and pick y1 ∈ (B1)∗ (which is just
S). Inductively, let n ∈ N and assume that we have chosen 〈yt〉nt=1 such that for each
nonempty F ⊆ {1, 2, . . . , n}, Σt∈F yt ∈ (Bmin F )∗. Let Bn+1 = S\FS(〈yt〉nt=1) and note
that since p is nonprincipal, Bn+1 ∈ p. By Lemma 1.8 we have for each nonempty
F ⊆ {1, 2, . . . , n}, −Σt∈F yt + (Bmin F )∗ ∈ p. Choose

yn+1 ∈ (Bn+1)∗ ∩
⋂{

−Σt∈F yt + (Bmin F )∗ : ∅ 6= F ⊆ {1, 2, . . . , n}
}

.

This completes the inductive construction of the sequence 〈yn〉∞n=1.
Suppose that we have some a ∈

⋂∞
m=1 FS(〈yn〉∞n=m). Pick F ∈ Pf (N) such that

a = Σt∈F yt and let m = max F . Then a /∈ Bm+1 while FS(〈yn〉∞n=m) ⊆ Bm+1, a
contradiction.

We wish to thank the referee of this paper for a very thoughtful report. In partic-
ular, the referee significantly simplified our original proof of Theorem 2.2.

2. A triangle-free graph without independent finite sums.

The graph we produce is described in terms of increasing sets of integers.
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2.1 Definition. (a) Given F,H ∈ Pf (ω), write F < H if and only if max F < min H.
Given x, y ∈ N, write x << y if and only if x = Σn∈F 2n, y = Σn∈H 2n, and F < H.

(b) Define µ : N −→ ω by µ(x) = min F where x = Σt∈F 2t.

2.2 Theorem. There is a graph G with vertex set N such that G contains no trian-
gle, but given any sequence 〈un〉∞n=1 in N, there exist distinct F,H ∈ Pf (N) such that
{Σn∈F un, Σn∈H un} ∈ E(G).

Proof. Choose any g : N −→ N such that for each k ∈ N,

g(k + 1) > g(k).

Define a graph G with vertex set N by

E(G) =
{
{x2 + x4 + . . . + x2m, x1 + x2 + x3 + . . . + x2m} :

x1 << x2 << . . . << x2m and m = g
(
µ(x1)

)}
.

An alternative description of the edges of G is as follows. A pair {a, b}, where a < b

and the binary supports of a and b are A and B respectively, is an edge of G if and only
if the following four conditions are satisfied:
(1) A ⊆ B;
(2) B\A cuts A into exactly g(min B) pieces (i.e. maximal sets whose convex hull

contains no element of B);
(3) min B < min A; and
(4) max B = max A.

(As the referee pointed out, requirement (4) could be dropped without affecting
the proof.)

Let a sequence 〈un〉∞n=1 be given. It is well known that one can choose an increasing
sequence 〈Kn〉∞n=1 in Pf (N) such that for each n ∈ N, Σt∈Kn ut << Σt∈Kn+1 ut. (To
see this, given Kn, pick ` ∈ N such that 2` > Σt∈Kn ut. Then choose a set Kn+1 with
Kn < Kn+1, |Kn+1| = 2` and ut ≡ us(mod 2`) for each t, s ∈ Kn+1.)

Let m = g(min K1), let

F = K2 ∪K4 ∪ . . . ∪K2m ,

and let

H = K1 ∪K2 ∪K3 ∪ . . . ∪K2m .

Then, by the definition of G with xn = Σt∈Kn
ut, we have {Σn∈F un, Σn∈H un} ∈ E(G).
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Suppose now that we have a triangle {a, b, c} in G with a < b < c and denote the
binary supports of a, b, and c by A, B, and C respectively. Since {a, b} is an edge, B\A
cuts A into g(min B) pieces. Since B\A is a subset of C\A, it follows that C\A cuts A

into at least g(min B) pieces. Since {a, c} is an edge, C\A cuts A into exactly g(min C)
pieces, whence g(min C) ≥ g(min B). On the other hand, min C < min B (since {b, c}
is an edge); as g is strictly increasing, we have g(min C) < g(min B), a contradiction.

The graph in Theorem 2.2 consists of certain pairs of numbers, one of whose binary
support is contained in the binary support of the other, and the smallest element in the
union of the supports belongs only to one support. The following theorem shows that,
if the graph is changed only slightly, the conclusion changes dramatically.

2.3 Theorem. Choose any f : N −→ N\{1} Define a graph G with vertices contained
in N by

E(G) =
{
{x1 + x3 + . . . + x2m−1, x1 + x2 + x3 + . . . + x2m} :

x1 << x2 << . . . << x2m and m = f(x1)
}

.

Then G has triangles. In fact, given any sequence 〈wn〉∞n=1 in N, there is a triangle of
G all of whose vertices lie in FS(〈wn〉∞n=1).

Proof. As in the proof of Theorem 2.2 above, we may presume that wn << wn+1 for
each n ∈ N. Let m = f(w1) and for each i ∈ {1, 2, . . . , 2m − 1}, let xi = yi = wi.
Let z1 = x1 + x2 + x3 + . . . + x2m−1 and let r = f(z1). For each i ∈ {2, 3, . . . , 2r},
let zi = w2m+i (or if one wants to be economical, let zi = w2m+i−2). Let x2m =
z3 + z5 + . . . + z2r−1, let y2m = z2 + z3 + z4 + . . . + z2r, and let

a = x1 + x3 + . . . + x2m−1 = y1 + y3 + . . . + y2m−1 ,
b = z1 + z3 + . . . + z2r−1 = x1 + x2 + x3 + . . . + x2m , and
c = z1 + z2 + z3 + . . . + z2r = y1 + y2 + y3 + . . . + y2m .

Then {a, b, c} is a triangle in G.

3. When G Has No Km.

Throughout this section we will have a fixed infinite semigroup (S, +), a fixed graph
G on S and a fixed idempotent p ∈ βS. (Don’t confuse the fact that we have “fixed” p

with the old notion of a “fixed ultrafilter”. The results of this section are trivial if p is
principal.) Further, we fix a cardinal κ such that the cofinality of κ is greater than |S|.
Several of the notions that we introduce depend on both G and p, but the notation will
not reflect this dependence.

We mention one other notational peculiarity in this section. We shall frequently
use superscripts as indices and never to denote exponentiation.
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3.1 Definition. Let a ∈ S.
(a) A0(a) = {b ∈ S : {a, b} /∈ E(G)}.
(b) For each ordinal ι < κ,

Aι+1(a) = {b ∈ S : {u1 ∈ S : {u2 ∈ S : b + u2 ∈ Aι(a + u1)} ∈ p} ∈ p} .

(c) For each limit ordinal ι with 0 < ι < κ,

Aι(a) =
⋂

γ<ι Aγ(a) .

(d) A(a) =
⋂

ι<κ Aι(a).

Recall that we are not assuming that the semigroup (S, +) is commutative, so, in
part (b) of the following definition, we need to specify the order in which a sum is taken.

3.2 Definition. (a) Let S denote the set of finite sequences of elements of S, including
the empty sequence. If σ = u1u2 . . . un ∈ S, we put l(σ) = n and σ′ = u1u2 . . . un−1 if
n > 1, while σ′ = ∅ if n = 1. (Then l(σ) is the length of σ.)

(b)We use σodd to denote the sum (in increasing order of indices) of the odd terms of
σ and σodd,>1 to denote the sum of the odd terms with index greater than 1. Similarly,
we define σeven to be the sum (in increasing order of indices) of the even terms of σ and
and σeven,>2 to denote the sum of the even terms with index greater than 2.

In the following definition we denote the values of the functions U and α at the
sequence σ by Uσ and ασ respectively. We also identify elements of S with the sequences
of length 1.

3.3 Definition. Let r ∈ ω. An A-system of level r is a triple (U,α, D) such that
(1) D ⊆ S and ∅ ∈ D.
(2) U : D −→ p.
(3) α : D −→ κ.
(4) For every σ ∈ S and every u ∈ S, we have σu ∈ D if and only if σ ∈ D, ασ > 0,

and u ∈ Uσ.
(5) For every σ ∈ D\{∅} we have ασ = ασ′ if l(σ) is even and ασ < ασ′ if l(σ) is odd.
(6) If σ ∈ D, l(σ) is odd, and ασ < r, then ασ′ = ασ + 1.
(7) α∅ > r.

An A-system of level 0 is also called simply an A-system.
Now κ contains no infinite decreasing sequences. Thus, if (U,α, D) is an A-system

and if we choose u1 ∈ U∅, then u2 ∈ Uu1 , then u3 ∈ Uu1u2 and so on, we shall eventually
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have a finite sequence σ = u1u2 . . . u2s−1 (where s ∈ N) for which ασ = 0. Saying that
the system is of level r means that α assumes all the values r, r − 1, . . . , 1, 0 on final
segments of every sequence of this kind.

The reader might like to know that it is only level 1 systems which are needed in
the case in which G is triangle-free. Notice that an A-system of level r + 1 is also an
A-system of level r.

3.4 Definition. A terminated sequence of the A-system (U,α, D) is a member of S of
the form σu, where σ ∈ D, ασ = 0 and u ∈ Uσ.

Notice that if τ is a terminated sequence of the A-system (U,α, D), then τ /∈ D.
Further, if σ ∈ D, and ασ = 0, then l(σ) is odd, so all terminated sequences are of even
length.

3.5 Lemma. Let a, b ∈ S, let r ∈ ω and suppose that b /∈ Ar+1(a). Then there is an
A-system (U,α,D) of level r such that {a+σodd, b+σeven} ∈ E(G) for every terminated
sequence σ of the system.

Proof. We prove by induction on r the stronger conclusion that there is an A-system
(U,α,D) of level r such that αu = r for every u ∈ U∅ and {a + σodd, b + σeven} ∈ E(G)
for every terminated sequence σ of the system.

If r = 0, the assumption that b /∈ A1(a) implies that

{u1 ∈ S : {u2 ∈ S : {a + u1, b + u2} ∈ E(G)} ∈ p} ∈ p .

We define an A-system (U,α, D) with the required property as follows:

U∅ = {u1 ∈ S : {u2 ∈ S : {a + u1, b + u2} ∈ E(G)} ∈ p}

and for every u1 ∈ U∅, αu1 = 0, Uu1 = {u2 ∈ S : {a + u1, b + u2} ∈ E(G)}, and
D = {∅} ∪ U∅.

We now make the inductive assumption that r > 0 and that the lemma holds for
r − 1. Put

U∅ = {u1 ∈ S : {u2 ∈ S : b + u2 /∈ Ar(a + u1)} ∈ p}

and, for each u1 ∈ U∅, put Uu1 = {u2 ∈ S : b + u2 /∈ Ar(a + u1)}. Since b /∈ Ar+1(a),
we know that U∅ ∈ p.

By our inductive assumption, for every u1 ∈ U∅ and every u2 ∈ Uu1 , there is an
A-system (V u1u2 , βu1u2 , Eu1u2) of level r−1 for which βu1u2

v = r−1 for every v ∈ V u1u2
∅

and {a+u1+σodd, b+u2+σeven} ∈ E(G) for every terminated sequence σ of the system.
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Now, let

D = {∅} ∪ U∅ ∪ {u1u2σ : u1 ∈ U∅ , u2 ∈ Uu1 , and σ ∈ Eu1u2} .

For every u1 ∈ U∅ and u2 ∈ Uu1 we put αu1 = αu1u2 = r and for every σ ∈ Eu1u2 we
put Uu1u2σ = V u1u2

σ and αu1u2σ = βu1u2
σ .

It is routine to check that the A-system (U,α, D) is as required.

The next lemma provides the essential fact connecting A-systems and graphs.

3.6 Lemma. Let r ∈ ω and let a, b ∈ S such that b ∈
(⋂r

i=0 Ai(a)
)
\A(a). Then there

is an A-system of level r such that {a + σodd, b + σeven} ∈ E(G) for every terminated
sequence σ of the system.

Proof. Let γ = min{δ < κ : b /∈ Aδ(a)}. We proceed by induction on γ. If γ = r + 1,
its lowest possible value, the claim is true by Lemma 3.5.

Assume then that γ > r + 1 and the statement is true at all smaller ordinals. Note
that γ is neither 0 nor a limit ordinal, so γ − 1 is an ordinal smaller than γ. Let

M = {u1 ∈ S : {u2 ∈ S : b + u2 /∈ Aγ−1(a + u1)} ∈ p} .

Then M ∈ p. Further, for i ∈ {0, 1, . . . , r}, we have that b ∈ Ai+1(a) so if

Mi = {u1 ∈ S : {u2 ∈ S : b + u2 ∈ Ai(a + u1)} ∈ p} ,

then Mi ∈ p.
Let U∅ = M ∩

⋂r
i=0 Mi and given u1 ∈ U∅, let

Uu1 = {u2 ∈ S : b + u2 ∈
(⋂r

i=0 Ai(a + u1)
)
\Aγ−1(a + u1) .

Then each Uu1 ∈ p

By our inductive assumption, for every u1 ∈ U∅ and every u2 ∈ Uu1 , there is an
A-system (V u1u2 , βu1u2 , Eu1u2) of level r such that {a+u1+σodd, b+u2+σeven} ∈ E(G)
for every terminated sequence σ of the system.

Let

D = {∅} ∪ U∅ ∪ {u1u2σ : U1 ∈ U∅ , u2 ∈ Uu1 , and σ ∈ Eu1u2} .

For any u1 ∈ U∅, u2 ∈ Uu1 , and σ ∈ Eu1u2 , let Uu1u2σ = V u1u2
σ and, if σ 6= ∅, let

αu1u2σ = βu1u2
σ .

10



It remains only to define αu1 and αu1u2 for u1 ∈ U∅ and u2 ∈ Uu1 . Since cf |S| < κ,
we can choose ν ∈ κ satisfying

ν > βu1u2
v whenever u1 ∈ U∅ , u2 ∈ Uu1 and v ∈ Eu1u2

∅ .

For each u1 ∈ U∅ and u2 ∈ Uu1 , let αu1 = αu1u2 = ν.

It is easy to see that the A-system (U,α,D) is as required.

3.7 Lemma. Let (U,α, D) be an A-system of level 1 and let B ∈ p. Suppose that µ ∈ D

and µ = ∅ or αµ ≥ 1. Then we can choose σ, τ ∈ S satisfying the following conditions:

(1) µσ is in D and µτ is a terminated sequence of the system;

(2) αµσ = 0;

(3) σodd, τodd and τeven are all in B. Furthermore, σeven ∈ B if l(σ) > 1.
We can also choose ρ ∈ D such that l(ρ)∈ 2N, αρ = 1, and ρodd and ρeven are in B.

Proof. We choose v1 ∈ Uµ ∩B∗ and observe that µv1 ∈ D.

We now make the inductive assumption that, for some t ∈ N, we have chosen νt =
v1v2 . . . vt such that µνt ∈ D and νt

odd ∈ B∗ and also νt
even ∈ B∗ if l(νt) > 1. If t is even,

we choose vt+1 ∈ Uµνt ∩(−νt
odd +B∗). If t is odd, we choose vt+1 ∈ Uµνt ∩(−νt

even +B∗)
if l(νt) > 1 and vt+1 ∈ Uµνt ∩B∗ if l(νt) = 1. If αµνt = 0, we stop and put σ = νt and
τ = νtvt+1. If αµνt > 0, we repeat this process with νt+1 = v1v2 . . . vt+1 in place of νt.

We shall eventually construct sequences σ, τ satisfying the required conditions.

In the event that µ = ∅, we observe that we then have l(σ) ≥ 3 and we put ρ = σ′.

It is possible to prove Lemma 3.9 below with an induction grounded at n = 2 which
includes the case n = 3. However, the proof of Lemma 3.9 is quite complicated. For
the sake of the reader who is only interested in the case in which G is triangle-free, we
present a separate proof of the n = 3 instance of Lemma 3.9. Lemma 3.9 is not needed
for the triangle-free case.

3.8 Lemma. Let B ∈ p and for each i ∈ {1, 2, 3}, let Ai =(U i, αi, Di) be an A-system
of level 1. Then there exist a1, a2, a3 ∈ B and, for each i ∈ {1, 2, 3}, there exists a

11



terminated sequence σi of (U i, αi, Di) such that

a1 = σ1
odd

= σ2
odd

a2 = σ1
even

= σ3
odd

a3 = σ2
even

= σ3
even.

Proof. We apply Lemma 3.7 to A1 with µ = ∅, and choose τ1 ∈ D1 satisfying the
following conditions:

l(τ1) is even;

α1
τ1 = 1;

τ1
odd ∈ B∗ ∩ U2

∅ and τ1
even ∈ B∗ ∩ U3

∅ .

We then put u2
1 = τ1

odd and u3
1 = τ1

even.

We can apply Lemma 3.7 to A2 with µ = u2
1. (Since u2

1 ∈ U2
∅ and A2 is of level 1,

α2
µ ≥ 1.) We choose τ2 ∈ S satisfying the following conditions:

u2
1τ

2 ∈ D2;

α2
u2

1τ2 = 0;

τ2
even ∈ U1

τ1 ∩ (−u2
1 + B∗) and τ2

odd ∈ B∗ ∩ U3
u3

1
.

We then put x = τ2
even and u3

2 = τ2
odd.

We can now apply Lemma 3.7 to A3 with µ = u3
1u

3
2, since α3

µ ≥ 1. We choose
τ3 ∈ S satisfying the following conditions:

u3
1u

3
2τ

3 is a terminated sequence sequence of A3;

τ3
odd ∈ U1

τ1x ∩ (−u3
1 + B∗) and τ3

even ∈ U2
u2

1τ2 ∩ (−u3
2 + B∗).

We put y = τ3
odd and z = τ3

even.

We now put σ1 = τ1xy, σ2 = u2
1τ

2z and σ3 = u3
1u

3
2τ

3, and observe that these are
terminated sequences of A1,A2 and A3 respectively.

We put a1 = σ1
odd, a

2 = σ1
even and a3 = σ2

even and observe that these are all in B.
Furthermore,

σ1
odd = τ1

odd + x = u2
1 + τ2

even = σ2
odd;

σ1
even = τ1

even + y = u3
1 + τ3

odd = σ3
odd;

σ2
even = τ2

odd + z = u3
2 + τ3

even = σ3
even.

3.9 Lemma. Let n ∈ N satisfy n ≥ 3 and let B ∈ p. Suppose that, for every i, j in
{1, 2, . . . , n} with i < j, we have an A-system Ai,j = (U i,j , αi,j , Di,j) of level n − 2.
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Then there are elements a1, a2, . . . , an of B and for every i, j ∈ {1, 2, . . . , n} with i < j,
there is a terminated sequence σi,j of Ai,j such that ai = σi,j

odd and aj = σi,j
even.

Proof. We shall prove this by induction on n. We observe that the case in which n = 3
is true by Lemma 3.8 . Thus we shall suppose that n > 3 and that our lemma has been
established for n− 1.

Now if (U,α, D) is any A-system of level n− 2, we can define a reduced A-system
(V, β,E) of level n− 3 in the following way: We put E = {(σ′)′ : σ ∈ D and l(σ) > 1}.
So E ⊆ D and τ ∈ E implies that ατ > 0. If τ ∈ E, we put Vτ = Uτ and βτ = ατ − 1
if ατ is in N and βτ = ατ otherwise. We observe that the terminated sequences of
our reduced system have the form (σ′)′, where σ denotes a terminated sequence of the
original system.

We apply our inductive hypothesis to the reduced systems obtained from the
A-systems Ai,j , where i, j∈{1, 2, . . . , n − 1} and i < j. We deduce that there are
sequences τ i,j and elements bi of S, defined whenever i, j∈{1, 2, . . . , n − 1} and i < j,

satisfying the following conditions:

(a) τ i,j ∈ Di,j ;

(b) αi,j
τ i,j = 1;

(c) l(τ i,j) is even;

(d) bi = τ i,j
odd if i < j;

(e) bi = τ j,i
even if j < i; and

(f) bi ∈ B∗ ∩
⋂n−1

j=1 U j,n
∅ .

We show that we can choose for each i ∈ {1, 2, . . . , n − 1}, a terminated sequence
σi,n of Ai,n and xi ∈ S such that for each i ∈ {1, 2, . . . , n− 1}:
(1) the first term of σi,n is bi;

(2) σi,n
even = σ1,n

even ∈ B;

(3) xi = σi,n
odd,>1;

(4) x1 ∈ (−b1 + B) ∩
⋂n−1

j=2 U1,j
τ1,j ;

(5) if i ∈ {2, 3, . . . , n− 2}, then xi ∈ (−bi + B) ∩
⋂i−1

j=1 U j,i
τj,ixj ∩

⋂n−1
j=i+1 U i,j

τ i,j ; and

(6) xn−1 ∈ (−bn−1 + B) ∩
⋂n−2

j=1 U j,n−1
τj,n−1xj .

Before showing that we can do this, let us verify that this is enough. Indeed, assume
we have chosen σi,n and xi satisfying (1) through (6). For i, j∈{1, 2, . . . , n − 1} with
i < j, let σi,j = τ i,jxixj and note that, since xi ∈ U i,j

τ i,j and xj ∈ U i,j
τ i,jxi , σi,j is a

terminated sequence of Ai,j .
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For i ∈ {1, 2, . . . , n − 1}, let ai = bi + xi. Since xi ∈ −bi + B, we have ai ∈ B.
Let an = σ1,n

even. If i ∈ {1, 2, . . . , n − 1}, we have by (2) that σi,n
even = an. Also,

σi,n
odd = bi + σi,n

odd,>1 = bi + xi = ai.
Finally, assume that i, j∈{1, 2, . . . , n− 1} and i < j. Then

σi,j
odd = τ i,j

odd + xi = bi + xi = ai

and

σi,j
even = τ i,j

even + xj = bj + xj = aj .

Now we proceed to the construction. For i ∈ {1, 2, . . . , n − 1}, let ui
1 = bi. We

will inductively construct ui
2, νi = ui

3u
i
4 . . . ui

`(i)−1, and zi = ui
`(i), let σi,n = biui

2ν
izi =

ui
1u

i
2 . . . ui

`(i), and let xi = νi
odd = σi,n

odd,>1 as required by (3). The process of guaranteeing
that (2) holds is where the complication lies. We diagram below the final assignments
for the case n = 5. Each of the boxes spans two lines, and the sum of the items inside
the box on each line is set equal to the item in the other line, proceeding down on the
left, and then up on the right.

u1
2 + u1

4 + . . . + u1
`(1)−2 + u1

`(1)

u2
2 + u2

4 + . . . + u2
`(2)−2 + u2

`(2)

u3
2 + u3

4 + . . . + u3
`(3)−2 + u3

`(3)

u4
2 + u4

4 + . . . + u4
`(4)−2 + u4

`(4)

We shall apply Lemma 3.7 several times. In order to do so, we observe that we
are dealing with A-systems of level 2, since we are assuming that n > 3 and that our
systems have level n− 2. Now, if (U,α, D) is any A-system of level 2 and if we choose
u1 ∈ U∅ and u2 ∈ Uu1 and put µ = u1u2, then αµ ≥ 2. It follows that the sequence σ

guaranteed by Lemma 3.7 has length at least 3.
Recall that we are given u1

1 = b1. We choose any u1
2 ∈ B∗ ∩

⋂n−1
j=1

(
U j,n

bj

)∗.
We apply Lemma 3.7 to A1,n with µ = b1u1

2, and choose a sequence ν1 ∈ S such
that

µν1 ∈ D1,n, α1,n
µν1 = 0,

ν1
odd ∈ U1,j

τ1,j ∩ (−b1 + B∗) for every j ∈ {2, 3, . . . , n− 1} and
ν1

even ∈ −u1
2 +

(
(U j,n

bj )∗ ∩B∗) for every j ∈ {2, 3, . . . , n− 1}.
We put x1 = ν1

odd, y1 = ν1
even and u2

2 = u1
2 + ν1

even.
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We now suppose that m ∈ {2, 3, . . . , n− 1} and that, for each i ∈ {1, 2, . . . ,m− 1},
we have defined ui

2 ∈ U i,n
bi and νi ∈ S. We put xi = νi

odd and yi = νi
even and suppose

that each of the following conditions is satisfied for every i ∈ {1, 2, . . . ,m− 1}:
1) biui

2ν
i ∈ Di,n;

2) αi,n
biui

2νi = 0;

3) xi ∈ U i,j
τ i,j for every j ∈ {i + 1, i + 2, . . . , n− 1};

4) xi ∈ Uk,i
τk,ixk for every k ∈ {1, 2, . . . , i− 1};

5) bi + xi ∈ B;

6) If i > 1, then ui
2 = ui−1

2 + yi−1;

7) ui
2 + yi ∈ B∗ ∩

(
U j,n

bj

)∗ for every j ∈ {i + 1, i + 2, . . . , n− 1};
8) yj+1 +yj+2 + . . . yi ∈

(
U j,n

bjuj
2νj

)∗∩(
−uj+1

2 +B∗) whenever j < i ∈ {1, 2, . . . ,m−1}.
We show how to continue the construction.

We put um
2 = um−1

2 + ym−1 and observe that um
2 ∈ (U j,n

bj )∗ ∩ B∗ for every j ∈
{m,m + 1, . . . , n− 1}, by condition 7).

We now apply Lemma 3.7 with µ = bmum
2 , to find a sequence νm ∈ S satisfying

each of the above eight conditions with i replaced by m, where xm denotes νm
odd and

ym denotes νm
even. That there is a sequence νm satisfying conditions 1), 2), 3), 4),

5), 7) and 8) is guaranteed by Lemma 3.7 and the observation that each of the last
five of these conditions states that xm or ym lies in a certain member of p. (If m=2,
then condition 8) says that y2 ∈ (U1,n

b1u1
2ν1)∗ ∩ (−u2

2 + B∗). If m > 2, condition 8)

says that ym ∈ (Um−1,n

bm−1um−1
2 νm−1)∗ ∩ (−um

2 + B∗) and that for each i ∈ {1, 2, . . . ,m− 2},

ym ∈ −(yi+1 +yi+2 + . . .+ym−1)+
(
(U i,n

biui
2νi)∗∩(−ui+1

2 +B∗)
)
; also (Um−1,n

bm−1um−1
2 νm−1)∗∩

(−um
2 + B∗) ∈ p by conditions 1), 6), and 7) while −(yi+1 + yi+2 + . . . + ym−1) +(

(U i,n
biui

2νi)∗ ∩ (−ui+1
2 + B∗)

)
∈ p by condition 8).) Condition 6) is true by the definition

of um
2 .

Thus we can define νi ∈ S inductively for every i ∈ {1, 2, . . . , n − 1} so that
properties 1)-8) are satisfied.

By property 8), we can choose zn−1 ∈ Un−1,n

bn−1un−1
2 νn−1 satisfying

zn−1 ∈ −(yi+1 + yi+2 + . . . + yn−1) +
(
U i,n

biui
2νi ∩ (−ui+1

2 + B)
)

for every i ∈
{1, 2, . . . , n− 2}.

For each i ∈ {1, 2, . . . , n − 2}, we put zi = yi+1 + yi+2 + . . . + yn−1 + zn−1 ∈
U i,n

biuiνi ∩
(
− ui+1

2 + B
)
. Clearly, yi + zi = zi−1 if i > 1.

We then put σi,n = biui
2ν

izi for each i ∈ {1, 2, . . . , n− 1}, and observe that this is
a terminated sequence of Ai,n by condition 2).
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We have σi,n
even = ui

2 + νi
even + zi = ui

2 + yi + zi = ui
2 + zi−1 = ui−1

2 + yi−1 + zi−1 =
σi−1,n

even if i > 1.

Hence σi,n
even = σ1,n

even for every i ∈ {1, 2, . . . , n− 1}.
We also have σi,n

even = ui
2 + zi−1 ∈ B if i > 1.

Thus we have established our lemma.

We now embark on a sequence of lemmas establishing that certain sets must belong
to p if G has no Km.

3.10 Lemma. Suppose that m ∈ N and that G contains no Km. Then, for every r ∈ ω,
it is impossible to find elements a1, a2, . . . , am of S such that ai /∈ Ar(aj) whenever i < j

in {1, 2, . . . ,m}.

Proof. We prove this by induction on r. The case r = 0 is immediate from the
assumption that G contains no Km, and so we may suppose that r > 0 and that the
lemma holds for r − 1.

Assume that we do have elements a1, a2, . . . , am of S such that ai /∈ Ar(aj) when-
ever i < j in {1, 2, . . . ,m}. Let

U =
⋂m−1

i=1

⋂m
j=i+1{u ∈ S : {v ∈ S : ai + v /∈ Ar−1(aj + u)} ∈ p} .

Then U ∈ p. Choose bm ∈ U . Inductively, let i ∈ {1, 2, . . . ,m− 1}, assume
bi+1, bi+2, . . . , bm have been chosen, and choose

bi ∈ U ∩
⋂m

j=i+1{v ∈ S : ai + v /∈ Ar−1(aj + bj)} .

Then ai + bi /∈ Ar−1(aj + bj) whenever i < j in {1, 2, . . . ,m − 1}, contradicting our
induction hypothesis.

3.11 Lemma. Let m ∈ N and assume that G contains no Km. Then, for every r ∈ ω,
{a ∈ S : Ar(a) ∈ p} ∈ p.

Proof. Suppose instead that for some r ∈ ω we have B = {a ∈ S : Ar(a) /∈ p} ∈ p.
Choose am ∈ B and for i ∈ {1, 2, . . . ,m − 1}, choose ai ∈ B\

⋃m
j=i+1 Ar(aj). This

contradicts Lemma 3.10.

3.12 Lemma. Let m ∈ N and assume that G contains no Km. Then there do not exist
elements a1, a2, . . . , am of S, such that aj ∈

⋂m−2
r=0 Ar(ai) \ A(ai) whenever i < j in

{1, 2, . . . ,m}.
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Proof. Suppose, on the contrary, that we do have elements with this property. Then,
by Lemma 3.6, there is an A-system Ai,j of level m − 2, defined whenever i < j in
{1, 2, . . . ,m}, such that {ai + σodd, a

j + σeven} ∈ E(G) for every terminated sequence σ

of Aij . By Lemma 3.9 (or just Lemma 3.8, if m = 3), for every i < j in {1, 2, . . . ,m},
there is a terminated sequence σi,j of Aij and there are elements b1, b2, . . . , bm of S

such that bi = σi,j
odd whenever i < j and bi = σj,i

even whenever j < i. We then have
{ai + bi, aj + bj} ∈ E(G) whenever i < j, contradicting our assumption that G contains
no Km.

3.13 Lemma. Let m ∈ N and suppose that G contains no Km. Then

{a ∈ S : A(a) ∈ p} ∈ p .

Proof. First observe that {a ∈ S :
⋂m−2

r=0 Ar(a)\A(a) /∈ p} ∈ p. (For suppose instead
that B = {a ∈ S :

⋂m−2
r=0 Ar(a)\A(a) ∈ p} ∈ p. Choose a1 ∈ B and for j ∈ {2, 3, . . . ,m},

choose aj ∈ B ∩
⋂j−1

i=1

⋂m−2
r=0 Ar(ai)\A(ai). This contradicts Lemma 3.12.)

Also by Lemma 3.11,
⋂m−2

r=0 {a ∈ S : Ar(a) ∈ p} ∈ p. Since

{a ∈ S :
⋂m−2

r=0 Ar(a)\A(a) /∈ p} ∩
⋂m−2

r=0 {a ∈ S : Ar(a) ∈ p} ⊆ {a ∈ S : A(a) ∈ p}

we are done.

3.14 Definition. Let a ∈ S and let r ∈ ω. We put B(a) = {b ∈ S : a ∈ A(b)} and
Br(a) = {b ∈ S : a ∈ Ar(b)}.

3.15 Lemma. Let m ∈ N and assume that G contains no Km. Then, for every r ∈ ω,
{a ∈ S : Br(a) ∈ p} ∈ p. Furthermore, {a ∈ S : B(a) ∈ p} ∈ p.

Proof. For the first assertion, suppose instead that we have some r ∈ ω such that
C = {a ∈ S : Br(a) /∈ p} ∈ p. Choose a1 ∈ C and for j ∈ {2, 3, . . . ,m}, choose
aj ∈ C\

⋃j−1
i=1 Br(ai). Then for i < j in {1, 2, . . . ,m} one has ai /∈ Ar(aj), contradicting

Lemma 3.10.
We claim also that {a ∈ S :

⋂m−2
r=0 Br(a)\B(a) /∈ p} ∈ p. Suppose instead that

D = {a ∈ S :
⋂m−2

r=0 Br(a)\B(a) ∈ p} ∈ p. Pick am ∈ D and for i ∈ {1, 2, . . . ,m− 1},
pick ai ∈ D ∩

⋂m
j=i+1

⋂m−2
r=0 Br(aj)\B(aj). Then for i < j in {1, 2, . . . ,m},

aj ∈
⋂m−2

r=0 Ar(ai)\A(ai), contradicting Lemma 3.12.
Since

{a ∈ S :
⋂m−2

r=0 Br(a)\B(a) /∈ p} ∩
⋂m−2

r=0 {a ∈ S : Br(a) ∈ p} ⊆ {a ∈ S : B(a) ∈ p}

we are done.

3.16 Lemma. Let a ∈ S and let b ∈ A(a). Then {u ∈ S : b /∈ A0(a+u)\A(a+u)} ∈ p.
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Proof. Suppose, on the contrary, that U = {u ∈ S : b ∈ A0(a + u) \A(a + u)} ∈ p. For
each u ∈ U , let δu be the first ordinal for which b /∈ Aδu(a + u). We observe that δu is
neither 0 nor a limit ordinal. Let V (u) = {u′ : {v : b + v /∈ Aδu−1(a + u + u′)} ∈ p} and
note that V (u) ∈ p.

Pick a limit ordinal λ < κ such that δu < λ for all u ∈ U . Now b ∈ Aλ+1(a) so if

W = {w : {v : b + v ∈ Aλ(a + w)} ∈ p} ,

then W ∈ p = p + p so {u : −u + W ∈ p} ∈ p. Pick u ∈ U such that −u + W ∈ p

and pick u′ ∈ V (u) ∩ (−u + W ). Then u + u′ ∈ W so {v : b + v ∈ Aλ(a + u + u′)} ∈ p

and u′ ∈ V (u) so {v : b + v /∈ Aδu−1(a + u + u′)} ∈ p. Since λ > δu − 1, this is a
contradiction.

3.17 Lemma. Let a ∈ S and let b ∈ A(a). Then {u ∈ S : −b + A(a + u) ∈ p} ∈ p.

Proof. Suppose, on the contrary, that U = {u ∈ S : −b + A(a + u) /∈ p} ∈ p. For each
u ∈ U let V (u) = {v ∈ S : b + v /∈ A(a + u)} and note that V (u) ∈ p. Thus, for each
u ∈ U and v ∈ V (u), there exists an ordinal δu,v ∈ κ such that b + v /∈ Aδu,v

(a + u).
Let λ < κ be a limit ordinal satisfying λ > δu,v whenever u ∈ U and v ∈ V (u). Then
b + v /∈ Aλ(a + u) whenever u ∈ U and v ∈ V (u). This implies that b /∈ Aλ+1(a),
contradicting our assumption that b ∈ A(a).

3.18 Lemma. Suppose that m ∈ N and that G contains no Km. Then

{a ∈ S : {b ∈ S : a ∈ A(b)∗} ∈ p} ∈ p .

Proof. Suppose on the contrary that {a ∈ S : {b ∈ S : a /∈ A(b)∗} ∈ p} ∈ p. Let

U = {a ∈ S : {b ∈ S : a /∈ A(b)∗} ∈ p} ∩ {a ∈ S : B(a) ∈ p} .

By Lemma 3.15, U ∈ p. Pick a ∈ U and let V = {b ∈ S : a /∈ A(b)∗} and pick
b ∈ V ∗∩B(a)∗. Then b ∈ B(a) so a ∈ A(b) so by Lemma 3.17 with a and b interchanged
we have W = {w ∈ S : −a+A(b+w) ∈ p} ∈ p. Choose w ∈ W ∩(−b+V )∩

(
−b+B(a)

)
.

Since b + w ∈ B(a), we have a ∈ A(b + w). Since w ∈ W , we have −a + A(b + w) ∈ p.
Thus, a ∈ A(b + w)∗, contradicting the fact that b + w ∈ V .

We are finally in a position to prove the main theorem of this section.

3.19 Theorem. Let m ∈ N and suppose that G contains no Km. Let P ∈ p. Then there
is a sequence 〈xn〉∞n=1 in S such that FS(〈xn〉∞n=1) ⊆ p and whenever F,H ∈ Pf (N) with
F ∩H = ∅, one has {Σn∈F xn, Σn∈H xn} /∈ E(G).
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Proof. By Lemmas 3.13 and 3.18, we may presume that

P ⊆ {a ∈ S : A(a) ∈ p} ∩ {a ∈ S : {b ∈ S : a ∈ A(b)∗} ∈ p} .

Given a finite sequence 〈xt〉nt=1 in S and a, b ∈ S, we write a ⊥ b if and only if there
exist disjoint sets F and H in Pf ({1, 2, . . . , n}) such that a = Σt∈F xt and b = Σt∈H xt.
(The notation depends on the choice of the sequence 〈xt〉nt=1, but the particular sequence
that we have in mind will be clear from the context.)

Choose x1 ∈ P ∗. Let n ∈ N, and assume that we have chosen x1, x2, . . . , xn ∈ S

such that
(a) FS(〈xt〉nt=1) ⊆ P ∗ and
(b) whenever a, b ∈ FS(〈xt〉nt=1) with a ⊥ b, one has a ∈ A(b)∗.

Let E = FS(〈xt〉nt=1). By Lemma 1.8, we have P ∗ ∈ p and for each a ∈ E,
−a + P ∗ ∈ p. Further, for each a ∈ E, a ∈ P so

A(a) ∈ p , A(a)∗ ∈ p , and {x ∈ S : a ∈ A(x)∗} ∈ p .

Also, given a, b ∈ E with a ⊥ b, we have by assumption that a ∈ A(b)∗ so by Lemma
1.8, −a + A(b)∗ ∈ p.

Now we claim that, given a, b ∈ E with a ⊥ b, we have {x ∈ S : b ∈ A(a+x)∗} ∈ p.
First, by Lemma 3.16, {x ∈ S : b /∈ A0(a + x)\A(a + x)} ∈ p so either
{x ∈ S : b /∈ A0(a + x)} ∈ p or {x ∈ S : b ∈ A(a + x)} ∈ p. But

{x ∈ S : b /∈ A0(a + x)} = {x ∈ S : {b, a + x} ∈ E(G)}
= {x ∈ S : a + x /∈ A0(b)}
= S\

(
−a + A0(b)

)
.

Since a ∈ A(b)∗ ⊆ A0(b)∗ we have that −a+A0(b) ∈ p. Thus {x ∈ S : b ∈ A(a+x)} ∈ p.
Also b ∈ A(a) so by Lemma 3.17, {x ∈ S : −b + A(a + x) ∈ p} ∈ p. Thus,
{x ∈ S : b ∈ A(a + x)∗} ∈ p.

Now choose

xn+1 ∈ P ∗ ∩
⋂

a∈E

(
(−a + P ∗) ∩ {x ∈ S : a ∈ A(x)∗} ∩A(a)∗

)
∩

⋂
{(−a + A(b)∗) ∩ {x ∈ S : b ∈ A(a + x)∗} : a, b ∈ E and a ⊥ b} .

Since xn+1 ∈ P ∗ ∩
⋂

a∈E(−a + P ∗), we have that FS(〈xt〉n+1
t=1 ) ⊆ P ∗.

Let a, b ∈ FS(〈xt〉n+1
t=1 ) with a ⊥ b. If a, b ∈ FS(〈xt〉nt=1), there is nothing to show

so assume without loss of generality that either a = xn+1 or a = a′ + xn+1 for some
a′ ∈ E. Since a ⊥ b we have b ∈ E. If a = xn+1 we have directly that xn+1 ∈ A(b)∗ and
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b ∈ A(xn+1)∗. If a = a′ + xn+1, then directly b ∈ A(a′ + xn+1) and xn+1 ∈ −a′ + A(b)∗

so that a′ + xn+1 ∈ A(b)∗.

As we promised earlier, we see that a sequence with independent finite sums can
be found “inside” any given sequence. For this corollary, we need to drop our standing
assumption about having fixed an idempotent p ∈ βS. (We choose an idempotent in
the proof.) Also, strictly speaking Corollary 3.20 is not a corollary to Theorem 3.19,
but is rather a corollary to its proof.

3.20 Corollary. Let m ∈ N and suppose that G contains no Km and let 〈yn〉∞n=1 be
a sequence in S. There is a sum subsystem 〈xn〉∞n=1 of 〈yn〉∞n=1 such that whenever
F,H ∈ Pf (N) with F ∩H = ∅, one has {Σn∈F xn, Σn∈H xn} /∈ E(G).

Proof. By Theorem 1.9, pick an idempotent p ∈ βS such that for every n ∈ N,
FS(〈yk〉∞k=n) ∈ p.

We show how to modify the proof of Theorem 3.19. To start, let k(1) = 1 and
pick x1 ∈ FS(〈yt〉∞t=1) ∩ P ∗. Pick H1 ∈ Pf (N) such that x1 = Σt∈H1 yt and let
k(2) = max H1 + 1. At stage n in the construction require that xn ∈ FS(〈yt〉∞t=k(n)) (in
addition to all of the other sets specified in that proof). Pick Hn ∈ Pf (N) such that
xn = Σt∈Hn

yt and let k(n + 1) = max Hn + 1.

4. When G contains no Km,m.

We continue to assume in this section that we have an infinite (not necessarily
commutative) semigroup (S, +), that we have a fixed graph G with vertices in S, and
a fixed idempotent p ∈ βS\S. We add the assumption that S is cancellative. (We do
not know whether this assumption is needed for the main result, Theorem 4.14, but it
is required for our proof.)

4.1 Definition. For k, l ∈ N, let Kk,l denote the complete bipartite graph on sets of
size k and l. That is, the vertex set of Kk,l can be partitioned into disjoint sets C and
D, with |C| = k and |D| = l, so that the edge set of Kk,l is

{
{c, d} : c ∈ C, d ∈ D

}
.

One or two of the lemmas in this section could be stated without proof, since they
follow from results in Section 3, since a graph which contains no Km,m also contains
no K2m. However, all the proofs in this section are relatively simple compared to some
of those in Section 3. We have therefore written Section 4 so that it can be read
independently of Section 3.

The following definition extends to S the notation used in Section 2 with the semi-
group (N, +) and the sequence 〈2t−1〉∞t=1.
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4.2 Definition. Let 〈xn〉∞n=1 be a sequence in S. Given a, b ∈ FS(〈xn〉∞n=1), we shall
write a << b if and only if there exist F,H ∈ Pf (N) with max F < min H such that
a =

∑
i∈F xi and b =

∑
i∈H xi.

Whenever we use the following lemma, we will only need finitely many terms from
the sequence 〈xn〉∞n=1, but it costs us nothing to prove the stronger form.

4.3 Lemma. Suppose that U ∈ p and that, for every u ∈ U , V (u) ∈ p. Then there is a
one to one sequence 〈xn〉∞n=1 in S such that FS(〈xn〉∞n=1) ⊆ U and b ∈ V (a) whenever
a, b ∈ FS(〈xn〉∞n=1) and a << b.

Proof. We construct our sequence inductively, first choosing x1 to be any element of U∗.
We then suppose that we have chosen x1, x2, . . . , xn in S satisfying FS(〈xi〉ni=1) ⊆ U∗

and b ∈ V (a)∗ whenever a, b ∈ FS(〈xi〉ni=1) and a << b.
Let E = FS(〈xi〉ni=1). For any a ∈ E, V (a)∗ ∈ p and −a + U∗ ∈ p by Lemma 1.8.

Further, given a, b ∈ E with a << b, we have b ∈ V (a)∗ so −b + V (a)∗ ∈ p by Lemma
1.8. Thus we may choose

xn+1 ∈ (U∗\{x1, x2, . . . , xn}) ∩
⋂

a∈E

(
(−a + U∗) ∩ V (a)∗

)
∩⋂

{−b + V (a)∗ : a, b ∈ E and a << b} .

Since xn+1 ∈ U∗ ∩
⋂

a∈E(−a + U∗), we have that FS(〈xi〉n+1
i=1 ) ⊆ U∗.

Now, let a, b ∈ FS(〈xi〉n+1
i=1 ) with a << b. Pick F,H ⊆ {1, 2, . . . , n + 1} such

that max F < min H and a =
∑

i∈F xi and b =
∑

i∈H xi. If max H < n + 1, then
b ∈ V (a)∗ by the induction hypothesis. So assume n + 1 ∈ H. If H = {n + 1}, then
b = xn+1 ∈ V (a)∗ by the construction. Otherwise, b = b′ + xn+1 where b′ ∈ E and
a << b′ so that b ∈ V (a)∗ because xn+1 ∈ (−b′ + V (a)∗).

4.4 Definition. Let a ∈ S. We define subsets of S as follows.
I(a) = {b ∈ S : {a, b} /∈ E(G)}.
Q(a) = {b ∈ S : {x ∈ S : b + x ∈ I(a)} ∈ p}.
R(a) = {b ∈ S : {x ∈ S : b ∈ I(a + x)} ∈ p}.
T (a) = {b ∈ S : {x ∈ S : b + x ∈ I(a + x)} ∈ p}.

Notice that Q(a) and R(a) can be written more simply as

Q(a) = {b ∈ S : −b + I(a) ∈ p}

and, since b ∈ I(a + x) if and only if a + x ∈ I(b),

R(a) = {b ∈ S : −a + I(b) ∈ p} .
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They were written out in the longer fashion in Definition 4.4 to contrast with T (a)
which has no such short description.

If the semigroup S has an identity, we denote it by 0, in which case of course
S ∪ {0} = S. If not, S ∪ {0} denotes S with a two sided identity adjoined.

4.5 Definition. Let a ∈ S ∪ {0}. We define subsets of S ∪ {0} as follows.
W (a) = {b ∈ S ∪ {0} : {x ∈ S : {y ∈ S : b + x + y ∈ I(a + y)} ∈ p} ∈ p}.
X(a) = {b ∈ S ∪ {0} : {x ∈ S : {y ∈ S : b + y ∈ I(a + x)} ∈ p} ∈ p}.
Y (a) = {b ∈ S ∪ {0} : {x ∈ S : {y ∈ S : b + x ∈ I(a + x + y)} ∈ p} ∈ p}.
Z(a) = {b ∈ S ∪ {0} : {x ∈ S : {y ∈ S : b + x + y ∈ I(a + x)} ∈ p} ∈ p}.

Again, each of X(a), Y (a), and Z(a)
(
but not W (a)

)
has a simpler representation:

X(a) = {b ∈ S ∪ {0} : {x ∈ S : −b + I(a + x) ∈ p} ∈ p} ,
Y (a) = {b ∈ S ∪ {0} : {x ∈ S : −(a + x) + I(b + x) ∈ p} ∈ p} , and
Z(a) = {b ∈ S ∪ {0} : {x ∈ S : −(b + x) + I(a + x) ∈ p} ∈ p} .

(In the case of Y (a) one needed to notice that b + x ∈ I(a + x + y) if and only if
a + x + y ∈ I(b + x).)

4.6 Lemma. Suppose that m ∈ N and that G contains no Km,m. Then, for every
a ∈ S ∪ {0}, W (a) = X(a) = Y (a) = Z(a) = S ∪ {0}.

Proof. (1) Suppose that b ∈ (S ∪ {0})\W (a). Let

U = {x ∈ S : {y ∈ S : b + x + y /∈ I(a + y)} ∈ p}

and for x ∈ U , let V (x) = {y ∈ S : b+x+y /∈ I(a+y)}. Choose by Lemma 4.3 a sequence
〈xn〉∞n=1 in S such that FS(〈xn〉∞n=1) ⊆ U and z ∈ V (y) whenever y, z ∈ FS(〈xn〉∞n=1)
and y << z. For i ∈ {1, 2, . . . ,m}, let ci = Σ2m+1

t=i xt and di = Σ2m+1
t=m+ixt. Since S is right

cancellative we have that ci 6= cj and di 6= dj whenever i 6= j. Now, given i, j ∈ {1, 2, . . . ,

m}, we have Σm+j−1
t=i xt << dj so dj ∈ V (Σm+j−1

t=i xt). That is, {b + ci, a + dj} ∈ E(G),
a contradiction. (Since S is left cancellative we have b + ci 6= b + cj and a + di 6= a + dj

whenever i 6= j.)
(2) Suppose that b ∈ (S∪{0})\X(a). Let U = {x ∈ S : −b+I(a+x) /∈ p}. Choose

distinct x1, x2, . . . , xm in U and choose distinct y1, y2, . . . , ym in S\
⋃m

i=1

(
−b+I(a+xi)

)
.

Then for any i, j ∈ {1, 2, . . . ,m}, {b + yj , a + xi} ∈ E(G), a contradiction.
(3) Suppose that b ∈ (S ∪ {0})\Y (a). Let U = {x ∈ S : −(a + x) + I(b + x) /∈ p}

and for x ∈ U , let V (x) = S\
(
−(a + x) + I(b + x)

)
. Choose by Lemma 4.3 a sequence

〈xn〉∞n=1 in S such that FS(〈xn〉∞n=1) ⊆ U and z ∈ V (y) whenever y, z ∈ FS(〈xn〉∞n=1)
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and y << z. For i ∈ {1, 2, . . . ,m}, let ci = Σi+1
t=1xt and di = Σm+i+1

t=1 xt. Now, given
i, j ∈ {1, 2, . . . ,m}, we have ci << Σm+j+1

t=i+2 xt so Σm+j+1
t=i+2 xt ∈ V (ci). That is, {b+ci, a+

dj} ∈ E(G), a contradiction. (As in the proof of (1), we see that these are all distinct.)
(4) Notice that for any a, b ∈ S ∪ {0}, b ∈ Z(a) if and only if a ∈ Y (b) so the fact

that Z(a) = S ∪ {0} follows from part (3).

4.7 Lemma. Suppose that m ∈ N and that G contains no Km,m. We then have:
(1) {a ∈ S : I(a) ∈ p} ∈ p;
(2) {a ∈ S : Q(a) ∈ p} ∈ p;
(3) {a ∈ S : R(a) ∈ p} ∈ p; and
(4) {a ∈ S : T (a) ∈ p} ∈ p.

Proof. (1) Suppose not and let U = {a ∈ S : I(a) /∈ p}. Pick distinct a1, a2, . . . , am in
U and pick distinct b1, b2, . . . , bm in

⋂m
i=1

(
S\I(ai)

)
. Then for each i, j ∈ {1, 2, . . . ,m},

{ai, bj} ∈ E(G), a contradiction.
(2) This follows from (1) and Lemma 1.8, since I(a)∗ ⊆ Q(a).
(3) Suppose not and let U = {a ∈ S : R(a) /∈ p}. Choose distinct a1, a2, . . . , am in U

and choose distinct b1, b2, . . . , bm in
⋂m

i=1

(
S\R(ai)

)
. Then for each i, j ∈ {1, 2, . . . ,m},

−ai + I(bj) /∈ p so pick x ∈ S\
⋃m

i=1

⋃m
j=1

(
−ai + I(bj)

)
. Then for each i, j ∈ {1, 2, . . . ,

m}, {ai + x, bj} ∈ E(G), a contradiction.
(4) This is nearly identical to the proof of (3). One ends up with a1, a2, . . . , am,

b1, b2, . . . , bm, and x such that {ai + x, bj + x} ∈ E(G) whenever i, j ∈ {1, 2, . . . ,m}.

4.8 Definition. For every a ∈ S, C(a) = I(a) ∩Q(a) ∩R(a) ∩ T (a).

4.9 Lemma. For every a, b ∈ S, a ∈ C(b) if and only if b ∈ C(a).

Proof. From the definitions we have that

a ∈ I(b) ⇔ b ∈ I(a) ,
a ∈ T (b) ⇔ b ∈ T (a) , and
a ∈ Q(b) ⇔ b ∈ R(a) .

4.10 Lemma. Suppose that m ∈ N and that G contains no Km,m. Then, for every
a ∈ S, C(a) = C(a)∗.

Proof. Suppose that b ∈ C(a). We need to show that −b + C(a) ∈ p. Since b ∈ Q(a),
we have directly that −b + I(a) ∈ p.

Now suppose that −b + Q(a) /∈ p and let

U = S\
(
−b + Q(a)

)
= {y ∈ S : {x ∈ S : b + y + x /∈ I(a)} ∈ p} .
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For y ∈ U , let V (y) = {x ∈ S : b + y + x /∈ I(a)}. Then, since p + p = p, we have that
{y + x : y ∈ U and x ∈ V (y)} ∈ p. Since b ∈ Q(a), we have that {w ∈ S : b + w ∈
I(a)} ∈ p. This is a contradiction since

{y + x : y ∈ U and x ∈ V (y)} ∩ {w ∈ S : b + w ∈ I(a)} = ∅ .

By Lemma 4.6 a ∈ X(b) so {x ∈ S : −a + I(b + x) ∈ p} ∈ p. Since
{x ∈ S : −a + I(b + x) ∈ p} ⊆ −b + R(a), we have that −b + R(a) ∈ p.

By Lemma 4.6 b ∈ W (a), so {x ∈ S : {y ∈ S : b + x + y ∈ I(a + y)} ∈ p} ∈ p. Since
{x ∈ S : {y ∈ S : b+x+y ∈ I(a+y)} ∈ p} ⊆ −b+T (a), we know that −b+T (a) ∈ p.

4.11 Lemma. Suppose that m ∈ N and that G contains no Km,m. Then, for every
a ∈ S and every b ∈ C(a), {x ∈ S : b + x ∈ C(a + x)} ∈ p.

Proof. Let b ∈ C(a). Then {x ∈ S : b + x ∈ I(a + x)} ∈ p because b ∈ T (a). Since,
by Lemma 4.6, b ∈ Z(a), we have {x ∈ S : −(b + x) + I(a + x) ∈ p} ∈ p. That is,
{x ∈ S : b + x ∈ Q(a + x)} ∈ p.

Also, by Lemma 4.6, b ∈ Y (a) so {x ∈ S : {y ∈ S : b + x ∈ I(a + x + y)} ∈ p} ∈ p.
That is, {x ∈ S : b + x ∈ R(a + x)} ∈ p.

Thus it remains only to show that {x ∈ S : b + x ∈ T (a + x)} ∈ p. Let A = {x ∈
S : b + x ∈ I(a + x)}. Since b ∈ T (a), A ∈ p, so {x ∈ S : −x + A ∈ p} ∈ p. And

{x ∈ S : −x + A ∈ p} = {x ∈ S : {y ∈ S : b + x + y ∈ I(a + x + y)} ∈ p}
= {x ∈ S : b + x ∈ T (a + x)} .

4.12 Lemma. Suppose that m ∈ N and that G contains no Km,m. Then

{a ∈ S : a ∈ C(a)} ∈ p .

Proof. It is trivial that a ∈ I(a) and a ∈ T (a) for every a ∈ S. It is also trivial that
a ∈ Q(a) if and only if a ∈ R(a). By Lemma 4.6, 0 ∈ Y (0) so

{a ∈ S : {x ∈ S : a ∈ I(a + x)} ∈ p} ∈ p .

That is, {a ∈ S : a ∈ R(a)} ∈ p.

4.13 Lemma. Suppose that m ∈ N and that G contains no Km,m. Then

{a ∈ S : {x ∈ S : x ∈ C(a + x)} ∈ p} ∈ p .

Proof. Firstly, by Lemma 4.6, 0 ∈ W (0) so {a ∈ S : {x ∈ S : a + x ∈ I(x)} ∈ p} ∈ p so
{a ∈ S : {x ∈ S : x ∈ I(a + x)} ∈ p} ∈ p.
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Secondly, by Lemma 4.6, for any a ∈ S, 0 ∈ Z(a), so {x ∈ S : −x+I(a+x) ∈ p} ∈ p.
That is, {x ∈ S : x ∈ Q(a + x)} ∈ p.

Thirdly, given any a ∈ S, 0 ∈ Y (a) so {x ∈ S : {y ∈ S : x ∈ I(a + x + y)} ∈ p} ∈ p.
That is, {x ∈ S : x ∈ R(a + x)} ∈ p.

Finally, by Lemma 4.6, 0 ∈ W (0) so {a ∈ S : {w ∈ S : a + w ∈ I(w)} ∈ p} ∈ p. We
claim that

{a ∈ S : {w ∈ S : a + w ∈ I(w)} ∈ p} ⊆ {a ∈ S : {x ∈ S : x ∈ T (a + x)} ∈ p}

so let a ∈ S be given such that {w ∈ S : a + w ∈ I(w)} ∈ p.
Let A = {w ∈ S : w ∈ I(a + w)}. Then A ∈ p so {x ∈ S : −x + A ∈ p} ∈ p. And

{x ∈ S : −x + A ∈ p} = {x ∈ S : {y ∈ S : x + y ∈ I(a + x + y)} ∈ p}
= {x ∈ S : x ∈ T (a + x)} .

The following theorem is the main theorem of this section.

4.14 Theorem. Suppose that m ∈ N and that G contains no Km,m. Then, given any
P ∈ p, there exists an infinite sequence 〈xn〉∞n=1 in S such that FS(〈xn〉∞n=1) ⊆ P and
{a, b} /∈ E(G) whenever a, b ∈ FS(〈xn〉∞n=1).

Proof. In the light of Lemmas 4.7, 4.12, and 4.13, we may suppose that

P ⊆ {a ∈ S : C(a) ∈ p} ∩ {a ∈ S : a ∈ C(a)} ∩ {a ∈ S : {x ∈ S : x ∈ C(a + x)} ∈ p} .

We choose 〈xn〉∞n=1 inductively. Let x1 ∈ P ∗. Let n ∈ N and assume we have
chosen x1, x2, . . . , xn with the property that FS(〈xt〉nt=1) ⊆ P ∗ and b ∈ C(a) whenever
a, b ∈ FS(〈xt〉nt=1).

Let E = FS(〈xt〉nt=1). By Lemma 1.8 P ∗ ∈ p and for all a ∈ P ∗, −a + P ∗ ∈ p.
Given a ∈ P ∗, C(a) ∈ p and {x ∈ S : x ∈ C(a + x)} ∈ p. Given a, b ∈ E, we have that
a ∈ C(b) and b ∈ C(a) and hence by Lemma 4.10 −a + C(b) ∈ p and by Lemma 4.11
{x ∈ S : b + x ∈ C(a + x)} ∈ p.

Choose

xn+1 ∈ P ∗ ∩
⋂

a∈E

(
(−a + P ∗) ∩ C(a) ∩ {x ∈ S : x ∈ C(a + x)}

)
∩

⋂
a∈E

⋂
b∈E

((
−a + C(b)

)
∩ {x ∈ S : b + x ∈ C(a + x)}

)
.

Then xn+1 ∈ P ∗ and for each a ∈ E, a + xn+1 ∈ P ∗ so FS(〈xt〉n+1
t=1 ) ⊆ P ∗.

Now let a, b ∈ FS(〈xt〉n+1
t=1 ). Then without loss of generality (since a ∈ C(b) if and

only if b ∈ C(a) by Lemma 4.9) one of the following cases holds:
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(1) a, b ∈ E;

(2) a = b = xn+1;

(3) a = a′ + xn+1 for some a′ ∈ E and b = xn+1;

(4) a ∈ E and b = xn+1;

(5) a = a′ + xn+1 for some a′ ∈ E and b = b′ + xn+1 for some b′ ∈ E; or

(6) a ∈ E and b = b′ + xn+1 for some b′ ∈ E.

In case (1) b ∈ C(a) by the induction hypothesis. In case (2), b ∈ C(a) because
P ⊆ {x ∈ S : x ∈ C(x)}. In case (3), b ∈ C(a) because xn+1 ∈ C(a′ + xn+1).
In case (4), we have directly that b was chosen in C(a). In case (5) we use the fact
that xn+1 ∈ {x ∈ S : b′ + x ∈ C(a′ + x)}. And in case (6) we use the fact that
xn+1 ∈ −b′ + C(a).

As was the case with Corollary 3.20, the following result is not a corollary to
Theorem 4.14 but rather to its proof. Also as there we need to drop our standing
assumption that we have fixed an idempotent in βS, because one is chosen in the proof.

4.15 Corollary. Let m ∈ N and suppose that G contains no Km,m and let 〈yn〉∞n=1

be a sequence in S. There is a sum subsystem 〈xn〉∞n=1 of 〈yn〉∞n=1 such that whenever
a, b ∈ FS(〈xn〉∞n=1), {a, b} /∈ E(G).

Proof. By Theorem 1.9, pick an idempotent p ∈ βS such that for every n ∈ N,
FS(〈yk〉∞k=n) ∈ p.

We show how to modify the proof of Theorem 4.14. To start, let k(1) = 1 and
pick x1 ∈ FS(〈yt〉∞t=1) ∩ P ∗. Pick H1 ∈ Pf (N) such that x1 = Σt∈H1 yt and let
k(2) = max H1 + 1. At stage n in the construction require that xn ∈ FS(〈yt〉∞t=k(n)) (in
addition to all of the other sets specified in that proof). Pick Hn ∈ Pf (N) such that
xn = Σt∈Hn

yt and let k(n + 1) = max Hn + 1.
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