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AN INFINITARY EXTENSION OF THE
GRAHAM-ROTHSCHILD PARAMETER SETS THEOREM

TIMOTHY J. CARLSON, NEIL HINDMAN, AND DONA STRAUSS

ABSTRACT. The Graham-Rothschild Parameter Sets Theorem is one of the
most powerful results of Ramsey Theory. (The Hales-Jewett Theorem is its
most trivial instance.) Using the algebra of 85, the Stone-Cech compactifica-
tion of a discrete semigroup, we derive an infinitary extension of the Graham-
Rothschild Parameter Sets Theorem. Even the simplest finite instance of this
extension is a significant extension of the original. The original theorem says
that whenever k < m in N and the k-parameter words are colored with finitely
many colors, there exist a color and an m-parameter word w with the property
that whenever a k-parameter word of length m is substituted in w, the result
is in the specified color. The “simplest finite instance” referred to above is
that, given finite colorings of the k-parameter words for each k < m, there
is one m-parameter word which works for each k. Some additional Ramsey
Theoretic consequences are derived.

We also observe that, unlike any other Ramsey Theoretic result of which
we are aware, central sets are not necessarily good enough for even the k = 1
and m = 2 version of the Graham-Rothschild Parameter Sets Theorem.

1. INTRODUCTION

Throught this paper A will denote a nonempty set and D will denote a set with
a binary operation mapping (f,g) € D x D to fg € D. We assume that D has a
nonempty set E of right identities for this operation. We also assume that, for each
f € D, we have defined a mapping Ty : A — A. We shall call (4, D, E, (T)sep) a
parameter system.

We write w for the set {0,1,2,...} of finite ordinals and N = w \ {0}. We
choose a set V = {v, : n € w} such that AN (D x V) = () and define W to be
the semigroup of words over the alphabet AU (D x V'), with concatenation as the
semigroup operation. (Formally a word w is a function from an initial segment
{0,1,...,k — 1} of w to the alphabet and the length ¢(w) of w is k. We shall
occasionally need to resort to this formal meeting, so that if < € {0,1,...,¢(w)—1},
then w(i) denotes the (i + 1)5' letter of w.)

For each n € N, we define W,, to be the set of words over the alphabet AU (D x
{vo,v1,...,Vn—1}) and we define Wy to be the set of words over A. We note that
each W, is a subsemigroup of W.
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Definition 1.1. Let n € N and &k € w with £ < n. Then S(Z) is the set of all

words w € Wy, of length n such that

(1) for each ¢ € {0,1, ...,k — 1}, if any, some member of E x {v;} occurs in w;

(2) for each i € {0,1,...,k — 1}, if any, the first occurrence of a member (s,v;) of
D x {v;} has s € E;

(3) for each i € {0,1,...,k—2}, if any, the first occurrence of a member of D x {v;}
in w precedes the first occurrence of of a member of D x {v;41}

Definition 1.2. Let k € N. Then the set of k-parameter words is S, = ;. S(Z)

Of course, S(Z) and Sy depend on A, D and FE, as well as n and k. Since we

consider only one parameter system at a time throughout most of the paper, we
shall not normally indicate this dependence in the notation. In a context where

more than one parameter system is used, we shall use S (Z) (T") and Si(T) for the

sets defined above by the parameter system I'. If £k = 0, when we write Sx we mean
simply Wj.

For each i € w, we choose a member v; of Ex{v;}. If D ={e} and T, : A — A is
the identity, then the k-parameter words are known as the k-variable words, where
each v; is a “variable”.

Given w € S,, and v € W with £(u) = n, we define w(u) to be the word with
length ¢(w) such that for i € {0,1,...,6(w) — 1}

w(7) ifw(i)e A
wlu)(i) = Ts(u(j)) if w(i) = (s,v;) and u(j) € A
(st,vy) if w(i) = (s,v;) and u(j) = (t, ).

For example, suppose that A = {a,b,c} and D = {e, f,g} is a group, with e
ar—b

the identity and g = f2. Suppose also that Ty : b c , T, = T¢*, and T, is the
cra

identity. If w = voavy (f,v1)b(g,v0) = (e,v0)ale, v1)(f,v1)b(g, o), and u = (f,ve)a,

then w(u) = (ef,va)aTe(a)Tt(a)b(gf, v2) = (f,v2)aabb(e, vz).

If D = {e} and T, is the identity map, then w{u) is simply the result of replacing
each occurrence of v; in w by (7).

The following theorem is the Graham-Rothschild parameter sets theorem. We
use the standard “chromatic” terminology for Ramsey Theoretic results. When we
say that a set is finitely colored, we mean that there is a function from that set to
a finite set. A set is monochrome provided the given coloring function is constant
on it. If D is a group, then the statement that (Ts)rep is an action of D on A is
the assertion that Tt o Ty = T4 for all f,g € D and that T, is the identity map.

Theorem 1.3 (Graham-Rothschild). Assume that the alphabet A is finite, that D
is a finite group, and that (Ty) jep is an action of D on A. Let m,k € w withm > k

and let Sy be finitely colored. There exists w € Sy, such that {w{u) : u € S(ZL)}

is monochrome.

Proof. [6], or see [14] for a shorter proof. O
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The case m = 1, k = 0, and D = {e} of Theorem 1.3 is the Hales-Jewett
Theorem [8]. The version of Theorem 1.3 which has D = {e} is commonly cited in
the literature as the Graham-Rothschild Parameter Sets Theorem and most of the
standard consequences of the Graham-Rothschild Theorem are consequences of this
special case. We shall show in Theorem 5.1 that Theorem 1.3 is derivable from this
special case. This is true even if the assumptions of Theorem 1.3 are significantly
weakened.

The restriction on the order of first appearances of members of D x {v;} in the
definition of n-parameter word may seem unnatural. Note however, that without
that restriction, the m = 3, k = 2, and D = {e} case of Theorem 1.3 is false.
(Simply color the two variable words according to whether the first occurrence of
vo precedes or follows the first occurrence of v;.)

The Graham-Rothschild Parameter Sets Theorem has been recognized for its
power from the time of its appearance. Section 9 of [6] contains 13 corollaries.
Included among these are four results that were known at the time (namely the
Hales-Jewett Theorem, van der Waerden’s Theorem, Ramsey’s Theorem, and the
finite version of the Finite Sums Theorem). We believe that the other nine were
new at the time. (These include the finite version of the Finite Unions Theorem.
While the infinite version of the Finite Unions Theorem is obviously derivable from
the infinite version of the Finite Sums Theorem, the finite version of the Finite
Unions Theorem is not obviously derivable from the finite version of the Finite Sums
Theorem.) In introducing their article about the Graham-Rothschild Parameter
Sets Theorem, Promel and Voigt [14] wrote:

This is a complete analogue to Ramsey’s theorem carried over to
the structures of parameter sets and, as it turns out, Ramsey’s the-
orem itself is an immediate consequence of the Graham-Rothschild
theorem. But the concept of parameter sets does not only glue
arithmetic progressions and finite sets together. Also, it provides
a natural framework for seemingly different structures like Boolean
lattices, partition lattices, hypergraphs and Deuber’s (m, p, ¢)-sets,
just to mention a few. So, the Graham-Rothschild theorem can be
viewed as a starting point of Ramsey Theory.

Other strong consequences of infinitary results such as those established here are
analogues of the Paris-Harrington Theorem [13]: the statement

(%) For any positive integers ¢ and e there is a positive integer N such that
if [V]¢ is colored with ¢ colors there is a large homogeneous set of size at
least e + 1 (a set of integers is large if its cardinality is at least as large as
its least element).

is true and cannot be proved in the formal theory of Peano Arithmetic. The state-
ment (%) can be proved from the infinite version of Ramsey’s Theorem by the same
kind of compactness argument used to derive the finite version of Ramsey’s Theo-
rem. Perhaps the most important feature of the Paris-Harrington theorem is that it
was the first example of a striking combinatorial fact which cannot be proved in the
theory of formal Peano Arithmetic. Godel’s incompleteness theorem showed that
there are finitary truths not provable from Peano Arithmetic, but the examples
given before the Paris-Harrington Theorem were not very satisfying mathemati-
cally. By similar sorts of compactness arguments, principles similar to (x) can be
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derived from infinitary theorems on variable words. For example, Theorem 5.4
implies the following principle:

(%%) For any finite alphabet A and any positive integers ¢ and e there is a positive
integer N such that whenever the e-variable words of length N are colored
with ¢ colors there is an integer m > e + 1 and a large m-variable word
of length N all of whose e-variable reductions have the same color (an m-
variable word is large if k < m where the first occurence of a variable is in
position k).

While we don’t have tight bounds on what is required to prove (xx), it cannot be
proved in Peano Arithmetic since it easily implies (x). (Given a coloring of [N]¢,
color an e-variable word of length N according to the color of the set of those k
such that the first occurence of some variable occurs in position k.)

The following extension of the D = {e} version of Theorem 1.3 is not new, being
a direct consequence of [2, Theorem 10]. However, it is certainly not well known,
even among the experts, and we shall present its derivation in Section 5. Given a
set B, we write Py(B) for the set of finite nonempty subsets of B.

Theorem 1.4. Assume that A is finite, D = {e}, and, for each n € w, S, has
been finitely colored. Then, there exists a sequence (Wy)n<w with each w, € S,
such that for every m € w,

S O { e walun) : F € Pr(w) and for alln € P u, € Uy " s (")}

is monochrome. (That is, the color of [],cpwn(un) is determined solely by the
number of variables in [],, ¢ pwn(un).)

We shall derive in Section 3 the following extension of Theorems 1.3 and 1.4.
Corollary 1.5. Assume that, for eachn € w, S, has been finitely colored and that,
for each n € w and each i € {0,1,...,n}, Hy,,; is a finite subset of S(?) Then,
there exists a sequence (Wy)p<, with each w, € S, such that for every m € w,

S M {ITer wnlun) : F € Pp(w) and for alln € F, u, € J0" H, ;)

is monochrome. (That is, the color of [],cpwn(un) is determined solely by the
number of parameters in [],cpwn(un).)

The special case D = {e} of Corollary 1.5 can be derived from [2, Theorem 15]
by an argument similar to the one we shall use to establish Theorem 1.4.

Notice that if A and D are finite, one may take H, ; = S(?) in Corollary 1.5.
Perhaps somewhat easier to absorb is the following corollary to Corollary 1.5.
Corollary 1.6. Let m € N. Suppose that we have a finite coloring of |J;",S; and
a finite subset H; 0fS<7?) for each i € {0,1,...,m}. Then there exists a sequence

(wn)8 in Sy such that for everyl € {0,1,...,m},
St {1, cp wn(un) : F € Pp(w) and for alln € F, u, € J;~, H;}

is monochrome.
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In particular, one immediately has the following extension of Theorem 1.3. (We
shall describe in Section 3 how this extension can be derived from Theorem 1.3
without using the results of Section 2.)

Corollary 1.7. Assume that the alphabet A is finite, that D is a finite group,
and that (Tt)¢ep is an action of D on A. Let m,k € w with m > k and let
Sk and Sy, be finitely colored. There exists a sequence (W), in Sy, such that
{ILicp we : F € Pg(w)} is monochrome and {[],cp wilus) : F' € Pr(w) and for

eachn € F, u, € S(TIZ)} is monochrome.

We derive Corollary 1.5 as a straightforward consequence of the existence of a
particular chain of idempotents (p,, )52 ,, where each p,, € 3S,,. Section 2 is devoted
to the proof of the existence of this special chain of idempotents. (More precisely,
Corollary 1.5 is a special case of Theorem 3.2, the statement of which requires the
introduction of additional terminology.)

Let us briefly review some facts about the Stone-Cech compactification 3T of a
(discrete) semigroup (T, -). We take the points of ST to be the ultrafilters on T,
the principal ultrafilters being identified with the points of T. Given a set A C T,
A={pepT:Acp}. Theset {A: AC T} is a basis for the open sets (as well as
a basis for the closed sets) of 8T. If R C T we shall identify an ultrafilter p on R
with the ultrafilter {A C T : AN R € p} and thereby pretend that SR C 8T.

There is a natural extension of the operation - of T' to 51" making 87T a compact
right topological semigroup with 7' contained in its topological center. This says
that for each p € BT the function p, : f1° — BT is continuous and for each z € T,
the function A, : BT — BT is continuous, where p,(¢) = ¢-p and A\;(¢) = = - q.
Given BCTandz € T,let z7'B={y e T :z-y € B}. Then for any p,q € 3T
and any B C T, one has that B € p-q if and only if {x € T : 27'B € ¢} € p.
See [10] for an elementary introduction to the semigroup 47" and for any unfamiliar
algebraic facts encountered in this paper.

A subset V' of a semigroup T is called a left ideal if is nonempty and TV C V.
It is called a right ideal if it is nonempty and VI C V. It is called a two-sided
ideal, or simply an ideal, if it is both a left ideal and a right ideal. Any compact
Hausdorff right topological semigroup 7T has a smallest two sided ideal K (T") which
is the union of all of the minimal left ideals of 7" and is also the union of all of
the minimal right ideals of T. If € K(T), then 2T is the minimal right ideal
with = as a member and Tz is the minimal left ideal with = as a member. The
intersection of any minimal left ideal and any minimal right ideal is a group. In
particular there are idempotents in the smallest ideal. There is a partial ordering
of the idempotents of T" determined by p < g if and only if p=p-gq =¢q-p. An
idempotent p is minimal with respect to this order if and only if p € K(T) [10,
Theorem 1.59]. Such an idempotent is called simply “minimal”.

A subset B of a discrete semigroup T is central if and only if it is a member of
a minimal idempotent of ST. Central sets are known to have remarkably strong
combinatorial properties. For example [5, Theorem 8.22] any central subset of N
contains solutions to all partition regular systems of homogeneous linear equations.
See [10] and [9] for numerous other combinatorial conclusions about central sets.

Loosely speaking, Theorem 3.2 says that when one is constructing the sequence
(wn)2% in the statement of Corollary 1.5, one can take w,, to be any member of
some central subset of S,,.
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It was shown in the proof of [1, Theorem 4.1] that the k = 0, m = 1, and
D = {e} case of Corollary 1.7 (and in particular the Hales-Jewett Theorem) holds
where ¢ ~1[{i}] is any central subset of Wy. In fact all previous Ramsey Theoretic
results of which we are aware that could be stated in terms of a finite partition of
a semigroup had a conclusion valid for arbitrary central sets. We shall show at the
end of Section 3 that there is a central subset B of S; for which the conclusion of
Theorem 1.3 fails with m = 2 and D = {e}. (That is, there is no w € Sy such that

w(uy € B for every u € S(?))

In Section 4 we shall derive some Ramsey Theoretic consequences of the results
of Section 3. Additional consequences will appear in [3].

2. A CHAIN OF IDEMPOTENTS

Recall that we are assuming that we have a nonempty alphabet A, a set D with
a binary operation, a nonempty set E of right identities for D, and a mapping
Ty : A — A defined for every f € D. Recall also that we have chosen a member v;
of E x {v;} for each i € w.

Suppose that u € W has length n. We shall define a homomorphism h, : W —
W by first defining h,, on all elements of AU (D x V). Solet w e AU (D x V).
Then

w ifweA
B (w) = Ts(u(j)) ifw=(s,v;),j<n,andu(j) € A
v (st,vy) ifw=(s,v5),j<n,and u(j) = (¢, )
w if w=(s,v;) and j > n.

Since W is the free semigroup on AU(D x V), h, extends to a unique homomorphism
defined on W, which we also denote by h,,. Thus, if w € W and ¢(w) = k one has
that ¢(h,(w)) =k, and for i € {0,1,...,k — 1},

w(7) if w
Ty (u(j)) ifw
(st,v) ifw
w(7) if w

hu(w) (i) =

Observe that, if n € N, w € S,, u € W, and £(u) = n, then h,(w) = w(u).
Observe also that if u € 5}, )., then hy : Wy — Wi and hy 5 S, — Si.

We shall also use h,, to denote the continuous extension of h,, from GW to itself.
Lemma 2.1. Let w € W. Then hy is a homomorphism from W to SW.

Proof. This is [10, Corollary 4.22] due originally to P. Milnes in [12]. O

In the following definition, and throughout the rest of this paper, when we write
an expression such as v; - - - v, we assume that all intervening values of the subscript
occur in order.

Definition 2.2. Let n € N with n > 2.
(a) Fori € {0,1,...,n — 1}, wy; is the word obtained from vy - - - v,_1 by deleting
V;.
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(b) For i € {0,1,...,n— 1},
Upi={weW: Lw)=n,wi)cAU{(s,m):s€Dand0<1<i},
and for all j € {0,1,...,n — 1}, if 7 <4, then
w(j) € E x {v;} and if j > i, then w(j) € E x {v;_1}}.
Thus, if 0 < ¢ < n — 1, a member of U, ; is of the form wp - - - w;_1tw; - - - wy_2

where t € AU (D x {vp,v1,...,vi—1}) and each w; € E x {v;}.

") = U Un

Lemma 2.3. Let n € N. Then hy,...o,, , 15 the identity on W,,.

Notice that for any n € N with n > 2, S(n

Proof. Since hy, ..., _, is a homomorphism, it suffices to show that hyg....., , (z) =z
for any x € AU (D x {vg,v1,...,Vn—1}). If & € A, this is immediate. If x = (s,1;),
then hyg...p,, _, () = (se,v;) for some e € E and se = s because e is a right identity
for D. O

Lemma 2.4. Let n € N withn > 2.

(a) Ifi € {0,1,...,n =1}, and u € Uy, then hy o hy,, , is equal to the identity on
Whn-1.

(b) If i,k € {0,1,...,n — 1}, ¢ < k, and v € Uyy1,, then for all x € W,,
B (hwn+l,k(x)) = N, oy (hu(x))

Proof. (a) Since hy © hy, , is a homomorphism, it suffices to let z € AU (D x
{vo,v1,...,Vn_2}) and show that h, o0hy, () = 2. If 2 € A, this is immediate. So
assume that « = (s,v;) for some j € {0,1,...,n—2}. If j < 4, then w, ;(j) = v;
and u(j) € E x {vj} so hy o hy, (x) = z. If j > i, then wy,;(j) = vj41 and
u(j+1) € E x {v;} and s0 hy 0 hy,, ,(x) = .

(b) Since hy0hy,, ,, and h,, ,_, oh, are homomorphisms, it suffices to establish
the conclusion for z € AU (D x {vg,v1,...,Vn—1}). The case in which z € A is
trivial. So assume that « = (s,v;) for some j € {0,1,...,n —1}.

Case 1. j < i. Then wyy1%(j) = wnr—1(j) = v; and u(j) = (e,v;) for some
e € . Therefore, hy,,, (%) = hy(z) = hw, ,_,(z) = (se,v;) = x. Consequently
hu(hwn+1,k(x)) = hy(z ) =z and hy,, o 1(h (x )) = _1($) = Z.

Case 2. j = 4. Then wyy1,k(j) = vj 80 ha,, .,y ( 5,V5).

Case 2a. u(j) € A. Then hy(hw,,, ,(®) = Ts(u(j)). Also,
hu(z) = Ts(u(j)) € A and s0 hy, ,_, (hu(2)) = Ts (u(j)).

Case 2b. u(]) = (t,1) for some ¢t € D and some ! < i. Then
hu( wnir s ( ) (st,vy). Also, hy(x) = (st,v;) and wy k1 (1) = v;
$0 P, oy (hu(2)) = (st,17).

Case 3. ¢ < j < k. Then wyp411(j) = v;, u(j) = (e,v;—1) for some e € E, and
Wy k—1(j — 1) = vj_1. Therefore hy,,, , (@) = (s,v5) 50 hy(hu, .y . (@) = (5,0j-1).
Also, hy(z) = (s,vj-1) 80 hu, ,_, (hu(2)) = (5,1j-1).

Case 4. k < j. Then wyp+1(j) = vjy1, u(j) = (e,vj—1) and u(j + 1) = (f,v;)
for some e, f € E, and wyx—1(j — 1) = vj. Therefore hy, ., , () = ( Vit1)
$0 Py (hw,ir () = (s,v5). Also, hy(z) = (s,vj—1) and so0 hy, ,_, (hu(z)) =
(s,v;). O

) =
hwn
) =

A~

xT

It is standard to define partial orders of idempotents of a semigroup T by p <g ¢
if and only if p € ¢T and p <y, ¢ if and only if p € Tq. We observe that these are
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equivalent respectively to p = gp and p = pq. (If p = gz, then gp = qqz = qx = p.)
We extend these definitions to all of SW.

Definition 2.5. Let p,q € fW. Then p < ¢ if and only if p € fWq and p <g ¢
if and only if p € g6W.

We shall use the obvious fact that, for any homomorphism h : W — W,
p <p g implies that h(p) < h(q), and p <p ¢ implies that h(p) <gr h(q). We
observe that, if p and ¢ are idempotent, then p < ¢ if and only if p <g ¢ and
P=Lq

Notice that <; and <pg are transitive but are not, in general, reflexive on gW.

We now state several simple algebraic facts which will be needed in the proof of
Theorem 2.12.

Lemma 2.6. Letn € w.

(a) If p € BW,,, r € BW, and p <gr r, then p = ry for some y € fW,.
(b) If p e BW,,, r € BW, and p <y, r, then p = yr for some y € SW,,.
(c) If p,q € bWy, r € K(BWy), p<rr, and g <p 7, then p <p q.

(d) If p,q € BWn, v € K(BWy), p<p 1, and g <p 7, then p <p q.

Proof. We establish (a) and (c). For (a), we have that p = ry for some y € SW.
Since W\ W, is an ideal of W, BW \ W, is an ideal of SW by [10, Corollary 4.18]
and so y € fW,,.

(c) Since r € K(8W,,), pick a minimal right ideal R of fW,, such that r € R.
Then by (a) p € R and similarly ¢ € R. Thus p € R = ¢6W,, C ¢8W. O

Lemma 2.7. Let T be a compact right topological semigroup. If L is a left ideal
of T and R is a right ideal of T, then there is an idempotent p € RN L which is
minimal in T .

Proof. By [10, Corollary 2.6 and Theorem 2.7] we may pick a minimal left ideal
L' C L of T and a minimal right ideal ' € R of T and one has that L' N R’ is a
group. (Il

Definition 2.8. Let n € N. Then Q,, = {w € W, : some member of E x {v,_1}
occurs in w and occurs before any other member of D x {vy,—1}}.

Lemma 2.9. Let n € N, let p be an idempotent of 3S, and let g be a minimal
idempotent of W, 41 such that ¢ < p. If Q11 € q, then q is a minimal idempotent
of BSn+1-

Proof. Givenw € S, and v € Qpy1, wu € Sp+1 and thus S, 11 € pg = q. Therefore
q € 8Sp+1 and is thus minimal with respect to < in £S5, 41. [l

Lemma 2.10. Let n € N, let p € Wy, and let r € Wyy1. If Quni1 € 7 and
q € prWiya, then Qny1 € q.

Proof. We have that W,, € pand Q41 € 750 Wy, Q1 Wii1 € gand W,,Qp 1 Wit
C Qnt1- U

Lemma 2.11. Letn € N, let p € fW,,_1, let r € 5S,, and let ¢ € K(BW,,). If
pq <p T, then Q, € q.
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Proof. Let T = {w € W, : some member of F x {v,_1} occurs in w}. Then T
is an ideal of W,, so BT is an ideal of W, and therefore K(8W,) C T and
thus 7' € ¢. Suppose that T'\ @, € q. We have that p¢g = rz for some z €
BW. Also W,_1(T\ Q) € pq and S,W € rz. This is a contradiction because
W1 (T\ Qn) NS, W = 0. O

Theorem 10 of [2] and its consequence Theorem 5.4 follow from [2, Lemma 7.1]
which establishes, in the case D = {e} and T is the identity on A, the existence of
a sequence of idempotents p, in 4.5, for n € w such that for any n € w

o Pn+1 S Pn

e for any m < n and each u € S(ZL), hy(Pn) = Prm.
Our main algebraic result, Theorem 2.12 below, shows that there is such a sequence
for general D and, moreover, one may choose each of the idempotents p, to be
minimal in 3S,,.

Recall that Wy is the free semigroup (i.e., the set of words) on the alphabet A.
Recall also that we do not need to assume that either A or D is finite for this result.

Theorem 2.12. Let p be a minimal idempotent in BWy. There is a sequence
(pn)S2 such that

(1) po = p;
(2) for each n € N, p,, is a minimal idempotent of B.Sy,;
(8) for each n €N, pp, < pp_1;

(4) for each n € N and each u € S(nﬁ 1), ha(Pr) = Pn—1.
Further, p1 can be any minimal idempotent of 351 such that p1 < pg.

Proof. We first show how pg, p1 and ps can be defined. Let py = p and let p; be
any minimal idempotent of 357 such that p; < pg. Such exist because we may pick
by Lemma 2.7 an idempotent

p1 € (po-BS1) N (BS1-po)
which is minimal in 5S7. Then p; < pg. (We have p; = ppz for some z € 557 and

SO pop1 = Popox = pox = p1. Similarly, p1pp = p1.) Now S((l)) consists of all words

of length 1 from the alphabet A. Thus if u € S(é), then h,[S1] C Wy and h,, is

the identity on Wy. Therefore h,(p1) € Wy and, since h,, is a homomorphism,
hy(p1) < hy(po) = po. Since pg is minimal in Wy, hy(p1) = po. (The argument in
this paragraph is due to Andreas Blass, and first appeared in [1].)

Let o = hy, (p1). Then o € W5 so we may pick by Lemma 2.7 an idempotent

p2 € (prafWa) N (BWaap:)
which is minimal in SW5. Then as in the previous paragraph ps < p;. Since S; € p;
and h,, [S1] C Q2, Q2 € a. Thus, by Lemma 2.10 Q2 € py so by Lemma 2.9 ps is
minimal in Sy. Given any u € S(?), hy[S2] € S7 and so hy(p2) € 8S1. Tt thus

suffices to show that h,(p2) < p1. If u € Us 1, then h, is the identity on Si, so
hy(p2) < hy(p1) = p1. Now assume that u € Uy and pick t € A and e € F such
that v = t(e,vp). For w € Sy, hy(w) = he(w), and so hy(p1) = he(p1) = po. Also,
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u T Pn-—1 (51 52 63 N (Sn,Q 6n,1

Un,n—1 Pn—-1
un,n72 Pn—2 771
Un,n—3 Pn—2 |71 |12
Un,n—4 Pn—2 |71 | 72|73

Un,1 Pn—2 |71 |72 |73 || -2

Un,0 Pn—2 |71 | 72|73 | -] Tn=2 | NIn—1

TABLE 1

by Lemma 2.4(a) hyy, 0hy, is the identity on Wi. So Ay (at) = y(e,uy) (hoy (P1)) = p1.
Therefore hy(p1a) = pop1 = p1 and hy(ap1) = pipo = p1. Since p2 <g p1a,
hu(p2) <R hu(pic) = pi1. Since py <p api, hu(p2) < hu(api) = p1.

We now proceed to an inductive construction. Let n € N with n > 2.

We shall introduce elements, (such as n; or 7;) which depend on n as well as
on i. However, in an effort to reduce the number of subscripts used, we shall not
indicate the dependence on n in the notation.

We make the inductive assumption that we have chosen p; for i € {0,1,2,...n},
My Miy 07, and O} for i € {1,2,3,...,n — 1}, and 7; and +} for i € {2,3,...,n — 2},
if any, so that the following hypotheses are satisfied.

(a) For each i € {0,1,...,n}, p; is a minimal idempotent of 35;.
(b) For each i € {1,2,...,n}, p; < pi—1 and hy,(p;) = pi—1 for every u €

5(:50)

) Foreveryi € {1,2,...,n—1}, n; and n} are minimal idempotents in SW,,_;.
(d) For every i € {1,2,...,n— 1}, 1; <p pp—1 and 1} <g pp_1.
) For Z € {17 27 cet 7n - 1}7 67/ = hwn,'rzfifl(ni)’ 6’2 = hwn,'rzf'ifl(n’g)’

Pn <R pn—lél"'(sn—h and
Pn <L 0p 1 01Ppo1.

(f) For every i € {1,2,...,n — 2},

M <RV Yn—2n—1 and
M <L 1 Vn—2

(g) For every choice of u,,; € U, ; for i € {0,1,...,n—1}, the entry in the row
labeled by w and the column labeled by x in Tables 1 and 2 is h,(z).

We observe that these assumptions do hold if n = 2, with 7, = ] = p;. To
verify hypothesis (¢) we need to show that p; is minimal in SW;. Since S is a right
ideal of W7, we have that (.57 is a right ideal of W7 and so contains a minimal
right ideal of gW;. Therefore by [10, Theorem 1.65] K(6S1) = 851 N K(BW).
For hypothesis (e), note that §; = §] = . Hypothesis (f) is vacuous, and we have
already verified the table entries of hypothesis (g).

Notice that since Ay, ,_,_, [Wn-1] € W, one has that each ¢; € SW,. Also,

since hy[W,,] C W;,_1 for each u € S(n ﬁ ), we have that each ~; € fW,,_1.

1
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. / / / ! /

u T 01| 0h_o | .| 05|85 |01 | Pro1

Un,n—-1 Pn—-1
/

un,n72 771 Pn—2
/ /

Un,n—3 N2 | 71 | Pn—2
/ ! /

Un,n—4 M3 | Y2 | 71| Pn—2
! / ! /

Un,1 Mp—2 |~ | 73|72 |71 | Pn-2
/ / / ! /

Un,0 Mn—1| Tn—21]--- |73 ] 72|71 | Pn-2

TABLE 2

By assumption (e), p, <gr Prn—101-+-0n—1. So there is some x € SW,, such that
pnfl(sl e 6n711’ = Pn = PnPn € pnﬁW So

{x € bW, : pp_161 -+ On—12 <p pn}

is nonempty and is therefore a right ideal of SW,,. By Lemma 2.7, we can choose
a minimal idempotent p, of W, which is in this right ideal and in the left ideal
BWoypn of BW,.

Now let i € {2,3,...,n — 1}. Note that §; -+ - dp—1tn = 8 - Op—1finfin, SO

{z € BW,, : pr—10102 -+ 0i—12 <g pp and & <p 6; - - Op—1ftn}

is nonempty, because it contains &; - - - 6,1 ptp,. It is therefore a right ideal of GW,,,
and we can choose a minimal idempotent u; of SW,, which is in this right ideal and
is also in the left ideal SW,,p,, of SW,,.

Similarly, {x € BW,, : pp—12 <g pn and & <g 81 - 0p_1/tn} IS nonempty
because 67 - - - 0,,—1 4y, is @ member, and thus we may choose a minimal idempotent
w1 of W, which is in this right ideal of W, and also in the left ideal W, p,,.

Thus we have chosen minimal idempotents p1, g2, . . ., b, in W, which satisfy
the following conditions:

wi <ppnforallie{l,2....,n}
(%) Prn—101--0i—1i; <pppforallie{2,3,...,n}
Pn—1p1 <R Pn; and
i <R O; - Op_1uy forallie{1,2,3,...,n—1}.
By a left-right switch of these arguments, we can chose minimal idempotents
why gy ooy pl, in BW, which satisfy the following conditions:

i, <gppforalie{l,2,...,n};
() pidl_y - 0pn—1  <p pp forallie {2,3,...,n};
pipn—1 < pn; and
who <p ophol_q -8 foralli € {1,2,3,...,n—1}.

(While SW is right topological and not left topological, all of the algebraic facts
that we are using in this proof are valid from both sides.)

Forie {1,2,...,n}, let ¢ = ho, . (i), let € = hy,, ., ,_,(1;), and note that
€, €; € Wyt1. Then pper -+ €,6Wyy1 and fW,, 1€, - - - €] py, are respectively right
and left ideals of W, 1. Pick by Lemma 2.7 a minimal idempotent p,,41 of W, 1
such that

pn+1 S Pn€1 - 6n/BVVn—‘,—l N ﬂWn—l-le;z Tt 6Ilpn .
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u L. Pn | €1 | €2 | €3 | "+ | €n—1 | €p
Un+1,n Pn
Up+1,n—1 Pn—1 | M1
un+1,n72 Pn—1 61 H2
Unti,n—3 | DPn—1| 01 | 02 | i3

Un41,1 Pn—1 | 01 | 62 | 63 | -+ | n—1
Un+1,0 Pn—1| 01 | 62 | 03 | -+ | One1 | Hn
TABLE 3

u x: e | ey er | €5 | €| pn
Un+1,n DPn
!
Un4+1,n—1 M1 | Pn—1
/ !
Un+1,n—2 Ha 1| Pn—1
! ! !
Up+1,n—3 H3 2 1| Pn-1
i ! ! !
Un+1,1 Hp—1|--- | O3 2 1| Pn-1
! 4 ! ! !
Un+1,0 oy n—1 s 3 2 1| Pn—1
TABLE 4

We claim that p,41 is a minimal idempotent of 3S,+1. By (%), prn_1pt1 <R Pn
so by Lemma 2.11, Q, € p1. Since hy, ., ,,_,[@Qn] € Qni1, Qni1 € €1 and so,
by Lemma 2.10, Qn+1 € ppt1. Consequently, by Lemma 2.9 p,4; is minimal in

BSn+1.

We now claim that the induction hypotheses are satisfied for n + 1 with n;, 1],
iy 04, vi, and v} replaced by u;, p}, €, €5, 6;, and 0, respectively. That is, we claim

that

(a)
(b)

A~ A~
o0
NN AN

@

For each i € {0,1,...,n+ 1}, p; is a minimal idempotent of 3.5;.
For each i € {1,2,...,n + 1}, p; < p;—1 and hy(p;) = p;—1 for every

7
wes(;ly).
For every i € {1,2,...,n}, p; and g} are minimal idempotents in SW,,.
For every i € {1,2,...,n}, p; <p pn and p, <g pp.
For i € {1’ 2,... ’n}v € = hwn+1,n—i(ui)a 6; = hwn+1,n—i(/~bé)v
Pn+1 SR DPn€1 - €n, and
Pnt1 SL € €1Dn.
For every i € {1,2,...,n — 1},
i <pg ;- 0p_1pn and
i <o ROy 6
For every choice of upy1; € Upy1, for i € {0,1,...,n}, the entry in the
row labeled by u and the column labeled by 2 in Tables 3 and 4 is h, ().
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All of these conclusions can be easily verified except (g) and the assertion in
(b) that hy(pp+1) = hu(pyn) for all u € S(nr_l 1). We show first that this latter
assertion follows from statement (g).

For any i € {0,1,...,n}, hy,.,i(Pnt1) € BSn and p, is minimal in §S,, so
it suffices to show that hy, , ,(Pnt1) < pn. Since ppy1 < p, and h is the
identity on W,,, we have that Ay, , (Prny1) < huyyy, (Pn) = Dn-

Now let i € {0,1,...,n — 1} and let u = up41,;. We have ppy1 <g pper---€n_i
and s0 hy (Pnt1) <g hu(pner - - €n—i) and by (x) and Table 3, hy(ppe1 - €ni) <mr
Pn. Also ppy1 <p €, €1Dn 50 hy(Pny1) <r hu(€,_; - €1pn) and by (xx) and
Table 4, hy(el,_; - €\pn) <L Dn.

It thus suffices to verify the entries of Table 3 and Table 4. We shall write out the
verification for Table 3. The verification for Table 4 follows by a left-right switch
of the arguments. To this end, let a choice of up41,; € Upy1; for i € {0,1,...,n}
be given.

We have that h,,., , is the identity on S, so hy, ., . (Pn) = pn. For i € {0,1,
.(. .),n =1}, hupyy s = b, , o0 Sy, 80 by (Pn) = B, (Pn) = Pn—1 by hypothesis

b).

The diagonal entries are correct because €; = hy, ., ,_, (@) for i € {1,2,...,n}
and Ay, ,_; © Pw, ., _, is the identity on W,, by Lemma 2.4(a).

Let k € {1,2,...,n—1}, let ¢ € {0,1,...,n —k — 1}, and let u € Uy,41,. To
finish the proof we need to show that hy(ex) = 0r. Now € = hu, ., (1) so we
are showing that Ay (e, . (k) = 0k Since i < n — k, we have by Lemma
2.4(b) that hy(Ruw, s\ (k) = Rwn oy (Pu(pr)). So it suffices to show that
P ror (hu(pr)) = 6. Now huy, ., (ne) = 0r by hypothesis (e), so it suffices
to show that h,(ur) = nk. And since h,(pr) and 7y are idempotents in fW,,_1
and 7y is minimal in SW,,_; it suffices to show that h,(ur) < 7.

Now ur <p pn by () so hy(ur) <r hy(pn) = Pn—1, the equality holding by
hypothesis (b). Since nx <p pn—1 by hypothesis (d), we have by Lemma 2.6(d)
that hu(/l,k) SL Nk -

It remains to show that h, (ug) <gr nr. We have by (x) that pp <g g - dn_1pin.
If i = n—k —1, we have that h,(ur) <g h.(dk) = nr by hypothesis (g), so assume
that ¢ <n —k — 1. Then hu(uk) <R hu(ék) s hu(én—i—l) =Yk Vn—i—2Mn—i—1,
the equality holding by hypothesis (g). If i« = 0, we have directly that h,(ux) <gr
Vi Yn—2Mn—1. Otherwise n,—;—1 <R Yn—i—1°"*Yn—2Mn—1 by hypothesis (f) so
again hy () < Y& Yn-2Mn—1. Also np <r Yk -+ Yn—2Mn—1 by hypothesis (f).
Now 7,—1 € K(B8Wp—1) and vi, -+ Yn—2 € BWp_1 50 Vi - - Yn—20n—1 € K (BWn-1)
and thus by Lemma 2.6(c), hqy(ux) <g nk- O

Un+1,n

One might expect to be able to omit py and start in Theorem 2.12 with p; as
any minimal idempotent in 557. It is a consequence of Theorem 3.6 below that one
cannot.

The following lemmas will be useful in the next section.

Lemma 2.13. Let k,m € w with k < m and let u € S(Z}) There exist r €

m—1

S(mnz 1) and s € S( i ) such that for all w € Wy, hs(hr(w)) = hy(w).
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Proof. Either u(j) € A for some j € {0,1,...,m — 1} or else there exists t € {0, 1,

..,k —1} such that elements of D x {v;} occur more than once in u. In the second
case, let ¢ be the smallest index for which this happens. Then u(t) € E x {1} and
there exists j > ¢ such that u(j) € D x {v;}. In either case, we define r and s as
follows for i € {0,1,...,m—1} and [ € {0,1,...,m —2}:

v ifi<j . )
. N e u(l) ifl<y
r(i) =< wu(j) ifi=j ands()= { b
vy < u(l+1) ifj<I.

U
Lemma 2.14. Let n € N and let py € Wy and for each i € {1,2,...,n}, let
p; € BS;. Assume that for each i € {0,1,...,n — 1} and each u € S’(H;1>,
hy(pis1) = pi. Then for eachk < m in{0,1,...,n} and eachu € S(?j), hy(pm) =
Pk

Proof. We proceed by induction on n, the case n = 1 being trivial. So let n € N
and assume the lemma is true for n. Let pg, p1,...,pne1 be as in the statement of

the lemma, let k < m in {0,1,...,n+ 1}, and let u € S(Z?) Pick by Lemma 2.13

m m—1
r e S(m B 1) and s € S( i ) such that for all w € Sy, hy(hp(w)) = hy(w).
Since p € BSm, hu(pm) = hs (he(pm)). Then iy (prm) = pm-—1 and by the induction
hypothesis, hs(pm—1) = Dk- -

3. EXTENDING THE GRAHAM-ROTHSCHILD PARAMETER SETS THEOREM

Theorem 3.2 is the main Ramsey Theoretic result of this paper. In order to state
it precisely, we need to formalize the notion of “tree”. Recall that an ordinal is the
set of its predecessors, so that, if n € N, then n = {0,1,...,n — 1}.

Definition 3.1. Let X be a set.
(1) T is a tree in X if and only if

(a) T is a nonempty set of functions,

(b) for each f € T, dom(f) € w and ran(f) C X, and

(c) for each f €T, if dom(f) =n >0, then f,,_, € T.
(2) If T is a tree in X and n € w, then T, = {f € T : dom(f) = n}.
B)IfTisatreein X and f € T, then By ={z € X : fU{(n,z)} € T}.
(4) The sequence (wy,)2 is a path through T if and only if for each n € w, {(k, wy) :
ke{0,1,...,n}} €T.

The empty function is a “root” for the tree, and By is the set of successors to
the “node” f. Consider, for example, the following diagram of a tree 7.

P/
2 3 5
N%



EXTENSION OF THE GRAHAM-ROTHSCHILD PARAMETER SETS THEOREM 15

Then formally

T = {0,{(0,2)},{(0,3)},{(0,5)},{(0,2), (1,3)},{(0,5), (1,4)},{(0,5), (1,6)} } ,
BQ) = {2,3,5} and B{(075)} = {4,6}

Notice that if w € S, and u € S(z), then w(u) = w.

Condition (2) of the following theorem says that each path through 7T satisfies
the conclusion of Corollary 3.3 below and that the monochrome colors are invariant
from path to path.

Theorem 3.2. Assume that, for each n € w, S, has been finitely colored and that,
for each n € w and each i € {0,1,...,n}, Hy; is a finite subset of S(TZL) Then

there is a tree T in W such that
(1) for each n € w and each f € T,,, By is a monochrome central subset of S, and
(2) for any m € w, the intersection of Sy, with

{ILcr f(n)(un) : f €T, 0 #F Cdom(f), and for alln € F, u, € U |, )
is monochrome.

Proof. Pick a sequence of idempotents (p,,)22, as guaranteed by Theorem 2.12.
For n € w, choose a monochrome set C,, C S,, such that C,, € p,,.
Let Ty = {0} and let Vo = Cy. Inductively, let k& € w and assume that for
1 €{0,1,...,k} we have defined T} and for each f € T} and each i € {0,1,...,1}
we have defined Vy; such that
(1) Uf:oTl is a tree in W;
(2) ifl €{0,1,...,k—1} and f € T}, then By C C; and By € p;;
(3)if I € {0,1,...,k}, f € T;, and j € {0,1,...,1}, then V;; C C; and
Vi €pjs
(4) ifl € {0,1,...,k—1},i€{0,1,...,1}, f € T}, and v € H;,, then By C
huil[vfﬂ'];
(5) if 1l e {1,2,...,k}, m € {0,1,...,1 — 1}, j € {0,1,...,m}, g € T}, and
[= 9ym then Vg,j - Vf,j;
6) ifle{1,2,...,k},i€{0,1,...,1}, j €{0,1,...,i}, g € Ty, f = g;y—1, and
u € Hj_y;, then hy, (g(l — 1))VgJ C Vy,; and
(1) ifle{1,2,...,k},j€{0,1,...,1}, i €{0,1,...,5}, g €T}, f = gj—1, and
ue Hj_q;, then hu(g(l — 1))Vg7j C Vy;-
These hypotheses are valid for & = 0, all except (1) and (3) vacuously.
Now for f € T}, and i € {0,1,...,k}, let
Upi=ViiN ﬂle{w eW: w_lVf,j € pj} N ﬂ;zo{w eW: w_le € pj}.
(We include the j = 4 term in both intersections to avoid worrying about i = 0
or i =k.) Given j € {i,i+1,...,k} we have that p; = p;p; and Vy; € p; so
{weW :w Vs, €pj} €p;. Given j € {0,1,...,i}, we have that p; = p;p; and
Vii€piso{weW :w Vs, €p;} € p;. Consequently Us; € p;.

Given i € {0,1,...,k}, f € Tk, and u € S(lz), we have by Lemma 2.14 that
hy(pr) = p; and so hufl[Uf,i] € pi. For f € Ty, let

Dy =Cp,NN{hy U] :i €{0,1,...,k} and u € Hy;}
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and note that D; € py because Hy ; is finite. (In this and all similar expressions
we take C N (0 = C. Thus, if Uf:o Hy; =0, then Dy = C}.)

Now let Tyy1 = {fU{(k,z): f € T, and x € Ds}. For g € Tjq1, let f = g, let
‘/97k+1 = Ck+1, and fOI‘j S {O, 1, ey k}, let

Vos =Ves 0N (ha(®)) Vysei€ o+ 1. k) and e )
N { (hu(g(k)))_lvf,j ie{0,1,....5} and u € Hk} .

Then hypothesis (1) is satisfied directly and given f € T; we have that By = Dy
so hypothesis (2) holds.

To verify hypothesis (3), let g € Tp41 and let j € {0,1,...;k+1}. fj=k+1
we have that V, ; = C; € p; so assume that j < k and let f = g. Then f € T} and
V.5 € Vy; CCj and Vi ; € pj. Note that g(k) € Bf = Dy, so for i € {0,1,...,k}

1

and u € Hy i, hu(g(k)) € Ups. Thusif i < j, (hu(9(k)) Vi € py and if i > j,

-1
(hu(g(k))) Vf)i € pj, SO Vg,j € pj-

Hypothesis (4) follows directly from the definition of Dy for f € Tj. Hypothesis
(5) follows from the definition of V; ; for g € Ty 41 and j € {0,1,...,k} and the fact
that hypothesis (5) holds at earlier stages. Hypotheses (6) and (7) follow directly
from the definition of V, ; for g € Tj41 and j € {0,1,...,k}.

The induction being complete, we have from hypothesis (2) that the first con-
clusion of the theorem holds. To verify the second conclusion, we show that
[L.cr f(n)(un) € Cp, whenever f € T, 0 # F C dom(f), [Lcr f(n)(un) € S,
and for alln € F, u,, € U;n:igF H,, ;. To do this, let f € T. We show by induction
on |F| that if § # F C dom(f), k = minF, g = fj{0,1,...k—1}, for each n € F,
Up € Ui‘c:o Hiy i, and J], cp f(n){un) € Spm, then [], cp f(n){un) € Vym. (Since
Vg.m C Cy, by hypothesis (3), this will suffice.)

Assume first that F = {k}. Then hy, (f(k)) = f(k){ur) € Sm s0 ur, € Hpm.
And wy, € By C hy, [V by hypothesis (4), 50 A, (wi,) € V. as required.

So assume that |F| > 1. Let r = min(F \ {k}), let § = fif0.1,....r—1}, and let
9" = fi{o.1,....ky- Pick j such that HneF\{k} f(n)(u,) € Sj. Note that j <m <k <
r. Then by the induction hypothesis HnGF\{k} f(n)(u,) € V;,; and by hypothesis
(5), V35 € Vy= ;. Pick i € {0,1,...,k} such that u, € S(];) If 7 < 4, then
o, (f(k))Vge; € Vi by hypothesis (6) and so [[,cp f(n)(un) € Vyi = Vgm.
If j > i, then hy, (f(k))Vg=; C Vg,; by hypothesis (7) and so [, cp f(n)(u,) €
Vo.i = Vom: .

The fact that the set of successors to each node of the tree constructed in Theo-
rem 3.2 is central, means that that set of successors itself has very rich combinato-
rial structure as given by the Noncommutative Central Sets Theorem [10, Theorem
14.15]. Some of the more simply stated consequences of the centrality of By hold
because £ : S,, — N is a homomorphism and thus so is its continuous extension
¢ : S, — PN. Therefore, by [10, Exercise 1.7.3 and Lemma 3.30], if f € T, then
{[By] is central in N. Thus, for example, there will be members of By whose lengths
form arbitrarily long arithmetic progressions.
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Corollary 3.3. Assume that, for eachn € w, S, has been finitely colored and that,
for each n € w and each i € {0,1,...,n}, Hy, is a finite subset of S(?) Then,
there exists a sequence (Wp)n<, With each wy, € Sy, such that for every m € w,

S I Lper walun) : F € Pr(w) and for alln € F, u, € U " H, ;)

is monochrome. (That is, the color of [],cpwn(un) is determined solely by the
number of parameters in [],, . pwn(un).)

Proof. Let T be a tree as guaranteed by Theorem 3.2 and let (w,, )52, be any path
through T'. (Il

Note that in the statement of Corollary 3.3, the requirement w,, € UEEF H;,

cannot be replaced by the requirement that u,, € U?:o H; . To see this, for each
n € w, let r, = n+ 1 and define ¢,, : S;, — {1,2,...,7,} by ¥ (w) = ¢(w) mod n.
Then given w; and n greater than ¢(wq), one cannot have ¥, (wiwy,) = Ppn(wy).
(Recall that wy = wy{v1) and w, = wy{vy - vy,).)

If one is only interested in the following corollary, one may prove it in a fashion
similar to the proof of Theorem 3.2.

Corollary 3.4. Let m € N. Suppose that we have a finite coloring of U;’io S; and
a finite subset H of |J;~, S(T) Then there exists a sequence (Wy)o2q in Sy, such
that for everyl € {0,1,...,m},

St {I],er wnlun) : F € Pp(w) and for alln € F, u, € H}
is monochrome.

Proof. For each n € w, we define a finite coloring of .S,, by stating that it coincides
with the given coloring if n < m and that it is the constant coloring if n > m.

Choose any a € A and, for n € N, put a” :a~-~a65’(3) and let a® = (.

For each n € wand i € {0,1,...,m}, let Hypp; = {ua" 1 u € HOS(T)} For

all other values of r and 4, put H,; = 0. Pick a sequence (w},)22, as guaranteed by
Corollary 3.3. For n € w, let s, = vg---vp—1a™ and let w, = hy, (w;,,,). To see
that the sequence (w, )22 is as required, let I € {0,1,...,m}. We shall show that
St {ILher wnlun) : F € Py(w) and for all n € F', u,, € H}
is a subset of
Sy {I1iep wilur) : F' € Pp(w) and for all k € F', uy, € U?‘:iSF/ Hyi}.

Let F' € Py(w) and for each n € F, let u,, € H. Let F' =m+ F and for n € F,
let v’ = hy, (8,) = upa™. Then min FY > m. We claim that for each k € F”,

m—+n

uj, € U;n:igF/ Hy, ;. To see this, let k € F' and let n = k —m, so that uj, = hy,, (sn).
Pick ¢ € {0,1,...,m} such that u, € S(T) Then uj, = upa™ € Hy,;. To

complete the proof we show that for n € F, wy,,, (uy,,,) = wy(u,). Note that
hy, o hs, = hu;nJrn. Thus

Wy (Un) = hy, (Wn) = ha, (hsn (w;n-i-n)) = hy

m+n

(w;n+n) = w'/rn+n <u;n+n> .
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The following corollary is then immediate.

Corollary 3.5. Assume that the alphabet A is finite, that D is a finite group,
and that (Ty)ep is an action of D on A. Let m,k € w with m > k and let
Sk and Sy, be finitely colored. There exists a sequence (wy)i2, in Sy, such that
{ILicp we : F € Pg(w)} is monochrome and {]],cp wi(us) : F € Py(w) and for

eachn € F, u, € S(Zl)} s monochrome.

Corollary 3.5 can be derived from Theorem 1.3 without using the results of
Section 2 as follows. Let k, m € w with m > k. Using Theorem 1.3 show that there
exist idempotents p € 58Sk and ¢ € 55, such that h,(q) = p for every u € S(ZL)
Then derive the corollary in a fashion similar to the proof of Theorem 3.2.

Based on previous experience with many Ramsey Theoretic problems we would
expect that in the statement of Theorem 1.3 one could take any color class which
is central in Si. We see now that this is not the case.

Theorem 3.6. There is a central subset M of S1 such that there is no w € Sy with
the property that w(u) € M for every u € S(?)

Proof. Recall that we are assuming that A # 0, so pick a € A. For each k € N,
let Ly = {w € S : |{i: w(i) =vo}| > |[{i : w(i) = a}| + k} and let L = ("7~ L.
Trivially L # (. Given any w € S, if m = ¢(w), then for each z € L, , one
has wz € L. Consequently L is a left ideal of 3S;. By [10, Corollary 2.6] pick a
minimal idempotent p € L. Let M = L;. Then M € p so M is central.

Now let w € So and suppose that w(u) € M for every u € S(?) Let w1 = avg

and let us = vga. Let

= [{i s w(i) = a}],

= |{i: w(i) =vo}| , and

=H{i:w(@) =v1}.

Then d = [{i : w{ui)(i) = vo}| > |{i : w{u)(t) = a}|+1 =b+c+ 1 and
c={i:wlug)(i) =vo}| > |{i: wluz)(i) = a}|+1=b+d+1andsod>2b+d+2,
a contradiction. (]

QL o o

4. SOME RAMSEY THEORETIC CONSEQUENCES

We present in this section a new and simpler derivation of a known result and
a new extension of a recent result of Gunderson, Leader, Promel, and Roédl. Both
deal with the notion of a first entries matriz. Given a matrix which is denoted by
an upper case letter, we shall follow the custom of denoting the entries by the lower
case of the same letter.

Definition 4.1. Let a,b € N and let M be an a x b matrix with entries from Z.
Then M satisfies the first entries condition if and only if no row of M is 0 and there
exist c1,co,...,c € N such that, for any row ¢ of M, if the first nonzero entry of
row 4 occurs in column j, then m; ; = ¢;. Each ¢; is called a first entry of M. A
first entries matriz is a matrix with entries from Z which satisfies the first entries
condition.
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First entries matrices are based on Deuber’s (m,p, ¢)-sets which were used [4]
to prove Rado’s conjecture about sets containing solutions to all partition regular
systems of homogeneous linear equations. First entries matrices provide character-
izations of all image partition regular matrices. See [10, Chapter 15].

Definition 4.2. For cach j € N and each w € W, let a;j(w) be the number of
occurrences of v;_; in W.

The following lemma will be used in both of the featured results of this section.
In it, no special assumptions about the alphabet A are needed.

Lemma 4.3. Let a,b € N, let M be an a X b first entries matriz which has all first
entries equal, and let C' be a central subset of N. Assume that D = E = {e}. For
each i € {1,2,...,a}, define f; : W — Z by fi(w) = 23:1 m; joj(w). Then there
is a minimal idempotent s of Sy such that (\;_, fit[C] € s.

Proof. Pick a minimal idempotent ¢’ of AN such that C € ¢’. Pick ¢ € N such
that all first entries of M are equal to c. We claim that we may choose a minimal
idempotent g of BN such that cqg = ¢, where the product cq is computed in the
semigroup (ON,-). (When we refer to the semigroup SN without an operation
mentioned, we are speaking of (8N, +).) To see this, define v : SN — ¢0ON by
v(p) = ¢p. Then v is a surjective homomorphism from SN onto ¢ON so by [10,
Exercise 1.7.3], v[K(ON)] = K(cON). Further, by [10, Lemma 6.6], ¢ € ¢ON and
by [10, Theorem 1.65] K (¢8N) = ¢BNN K(ON) so ¢’ € K(cON). Pick r € K(ON)
such that y(r) = ¢’ and pick a minimal left ideal L of SN such that » € L. Then
LNn~y~1[{¢'}] is a compact right topological semigroup, so has an idempotent g.

Note that for each i € {1,2,...,a}, f; is a homomorphism so its continuous
extension, also denoted by f;, from SW to GZ is a homomorphism. Now «;[S1] = w
so a1 " 1[{q}] is a compact subsemigroup of 3S; and so we may pick an idempotent
r € 857 such that ay(r) = ¢q. Let py be any minimal idempotent of W, and pick
by Lemma 2.7 an idempotent p; € por(3.51 N BS1rpe which is minimal in 35. Since
p1 < po we may pick a sequence (p,,)°2, as guaranteed by Theorem 2.12.

Now p; = pora for some z € 851 and so ay(p1) = a1(po) + aa(r) + a1(x) =
0+ a1(r) + oq(z) and thus oy (p1) <gr ai1(r) = ¢. Similarly oy (p) <r ¢. Since ¢ is
minimal in SN, we have a1 (p) = ¢.

Next we observe that for any j € {1,2,...,b}, a;(p;) = g. To see this, pick

d € A and define u € S({) by agreeing that for ¢t € {0,1,...,j — 1},

[ d o ift£j-1
“(t)_{ vo ft=j—1.

Then a; = ajoh, on S; and hy(p;) = p1 by Lemma 2.14 so a;(p;) = a1 (hy(p;)) =
o1(p1) = q.

Now we claim that for each ¢ € {1,2,...,a}, fi(pp) = ¢’. This will complete
the proof because we may take s = p,. Let i € {1,2,...,a} and let j be the
column with the first nonzero entry of row ¢ of M. Then for w € W, f;(w) =
coj(w) + Zi’:jH m;ioq(w). For w € S5 and t > j, ay(w) = 0 and so on S,
fi(w) = coj(w) and consequently f;(p;) = ca;(p;) = c¢ = ¢'. Since py, < p; we
have that fi(ps) < fi(p;) = ¢’ and so, since ¢’ is minimal, f;(ps) = ¢'. O
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Definition 4.4. If M is an a x b matrix and & € Z°, then n(MZ) is the set of
entries of M.

The following result is not new. (See for example [10, Theorem 15.5]1.) The
proof here is shorter (given the earlier development).

Theorem 4.5. Let a,b € N and let M be an a X b first entries matriz. Let C be a
central subset of N. Then there exists & € N® such that n(Mz) C C.

Proof. Let c1,ca,...,cp be the first entries of M, let ¢ = HZ;=1

.., b), let dy = £ Define the a x b matrix N by n;; = d;m;; for i € {1,2,
Cj ’

¢;, and for j € {1, 2,

J
...;a} and j € {1,2,...,b}. Then N is a first entries matrix with all first entries
equal to c. Let D = E = {e}. For i € {1,2,...,a} define f;, : W — Z by
filw) = 22:1 n; jo(w). Pick by Lemma 4.3 a minimal idempotent s of 35S
such that O, f; '[C] € s. Pick w € Sy NN, fi '[C]. For j € {1,2,...,b}
let z; = dja;(w). Then each z; € N and for i € {1,2,...,a}, 22:1 mT; =

Z?’:l djmi,jaj(w) = Z?:l ’I’Li’jOéj(’LU) = fl(w) eC. O

Recently Gunderson, Leader, Promel, and Ro6dl proved the following theorem.
(By a Kj; we mean a complete graph on k vertices. A set is independent with
respect to a graph if there are no edges between members of the set.)

Theorem 4.6. Let a,b,k € N and let M be an a X b first entries matriz. Then
there exist c,d € N and a ¢ X d first entries matrix P such that all first entries of
P are equal and whenever ¥ € N% and G is a Ky-free graph on n(PX), there exists
7 € Nb such that n(M7) is an independent subset of n(PZ).

Proof. [7]. O
The following corollary is an immediate consequence of Theorem 4.6.

Corollary 4.7. Let a,b,k € N and let M be an a X b first entries matriz. Let G be
a Kj.-free graph on N. Then there exists f € N° such that n(M7) is independent.

We establish now the following simultaneous extension of Theorem 4.5 and Corol-
lary 4.7.

Theorem 4.8. Let a,b,k € N, let M be an a X b first entries matriz, and let G be
a Ky-free graph on N. There exists a sequence (2;,)5%, in Nb such that for every
F e Ps(N), n(M(X, cr @n)) is an independent subset of C.

Proof. Pick by Theorem 4.6 some ¢,d € N and a ¢ x d first entries matrix P with all
first entries equal such that for each 7 € N?, there exists ¢ € N® such that n(M%)
is an independent subset of n(PZ). Let D = E = {e}. For i € {1,2,...,c} define
fi: W —=Zby fi(w) = E;‘l:1 pi,ja;(w). Pick by Lemma 4.3 a minimal idempotent
s of BSy such that _, fi '[C] € s.
ay(w)
For each w € Sy, let 2z, = , pick 7, € N® such that n(Myy,) is an
aq(w)
independent subset of n(Pzy), and choose 7, : {1,2,...,a} — {1,2,...,¢} such
that for each i € {1,2,...,a}, 25‘:1 My jYw,j = Z?Zl Dy (i),5 0 (W)
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For each p : {1,2,...,a} — {1,2,...,c}, let H, = {w € Sg : v = p} and
pick 1 : {1,2,...,a} — {1,2,...,c} such that H, € s. Choose by [10, Theorem
5.8] a sequence (wn> ° 1 in Sy such that FP((w,)5% ) € H,NN;_, f; '[C], where
FP({wn)ply) = Il cp wn: F € Pr(N)} and HneF wy, is computed in increasing
order of indices.

For each n € N, let #;, = y,,,. To complete the proof let F € P¢(N) and let
u = [],cp wn. It suffices to show that M (3 . #,) = My,. To this end, let
i€{1,2,...,a}. The entry in row i of M(}_  p 27) is

b b
Zj:l Mi ;X ner Ywng) = Doner Zj:l M, Yw,,j
d
= ZnEF Z] 1 Py, 0 (W)
= Z] 1Pu(i J(ZneF aj(wn))
= Z —1 Putiy,goy (u)
= Z] 1M jYu,j -
]

We remark that Theorem 4.8 can be proved without using Theorem 2.12; using
instead methods such as those in the proof of [11, Theorem 3.16].

5. SOME DERIVATIONS FROM KNOWN RESULTS

In this section we show that the commonly quoted version of the Graham-
Rothschild Parameter Sets Theorem in which D = {e} implies the full version
as stated in Theorem 1.3 — in fact a strengthening of that full version, because in
Theorem 5.1 it is not required that D be a group, or even a semigroup. We also
present a derivation of Corollary 3.3 for the case in which A is finite and D = {e}
from [2, Theorem 10].

The following theorem may be known but is certainly not well known, even
though its proof is very simple. (Before obtaining the proof we inquired of several
experts whether such a derivation was possible, and none of them knew.)

Theorem 5.1. Assume the Graham Rothschild Theorem as stated in Theorem
1.3 for the case in which D = {e}. Let T = (A, D,{e}, (Ty)sep) be a parameter
system for which A and D are finite and T, is the identity. Let m,k € w with
k < m. Then, whenever Si(T") is finitely colored, there exists w € Sy, (T") such that

{w(uy : u e S(CZ) ()} is monochrome.

Proof. Let n = |D| and let D = {go,91,---,9n-1}, with go = e. We define 6 :
AU(D xV)—=AU(DxV)byb(a)=aifac Aand0((g:,v;)) = (€ njri). As
usual, let W denote the semigroup of words over AU (D x V). Then 6 extends to
a homomorphism from W to W, which we shall also denote by 8. We observe that
6 is a bijection from W onto W', the semigroup of words over AU ({e} x V). Let
I'" denote the parameter system (A, {e}, {e}, (Te)).

We define A : D — {0,1,...,n— 1} by A(g;) = i.

Since W C W, hy, : W — W is defined for every w € W'. Further, if w € W/,

then h,,[W'] C W’. We shall show that, for every u € S(m>(F), there exists

u GS( k)(F’) such that 6= o hy 00 = h,. To this end, letUES( )( ) be
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given and let ¢ € {0,1,...,m—1}. If u(t) € A, we let u'(nt+1i) = Ty, (u(t)) for each
i€{0,1,...,n—1}. If u(t) = (f,v;) € D x V, we put: u'(nt +1) = (€, Vnjtr(g. f))
for each 7 € {0,1,...,n —1}.

We claim that 6~ oh, 00 = h,. To this end, let # € AU(D x V). If x € A, then
6~ toh, 00(z) = x = hy(x), so assume that = (g;, v;) for some i € {0,1,...,n—1}
and some j € w. If j > m, then h,(z) = z and 0(z) = (e, Vpj4:) where nj+i > nm
so that #~1 (hu/(e, an+i)) =0"1(e, Unj+i) = . So assume that j < m and assume
first that u(j) € A. Then hy(z) = Ty, (u(j)). Also u'(nj + i) = Ty, (u(j)) so
har (0(z)) = Te<Tgi (u(j))) = T,,(u(j)) and thus 0= o hy o 0(z) = Ty, (u(j)).
Finally assume that j < m and u(j) = (f,1;) for some f € D and some t € w.
Then hu('r) = (glfa Vt)' Also 9(37) = (eal/nj-l‘i) and ul(nj + 7’) = (67Vnt+)\(gif)) S0
?u/ (H(a:))) = (& Untia(gif))- Also 0(gif,v1) = (€ Vntin(gsf)) 50 071 0 hy 0 0(x) =
gif7 V).

We must check that v’ € S (nm

nk
occurs in w if and only if j € {0,1,...,k —1} and since A(g;e) =1, (e, vpn;44) Occurs
in o if and only if j € {0,1,...,k—1} and i € {0,1,...,n — 1}. So (e,vs) occurs
in v if and only if s € {0,1,...,nk —1}.

Finally, let j € {0,1,...,k—1} and let i € {0,1,...,n—1}. If ¢ is the first index
for which (e, v;) occurs in w, then nt+7 is the first index for which (e, v,,4,) occurs

in «'. This establishes that v’ € S(T;ZZ) ().

Now it is easy to verify that 071[S,,(I")] C Sk(T) and 71[S,m ()] C S (T).
Let r € N and let ¢ : Si(I') — {1,2,...,r} be a finite coloring of Si(I'). Then
o071 is a finite coloring of S,(I") so pick by Theorem 1.3 w’ € S,,,,(I'") and

)(F’). Clearly, v’ has length nm. Since (e, v;)

i € {1,2,...,r} such that ¢ o 67! (h,(w')) = i for every s € S(Z?)(F’) Let
w =0~ (w'). Then w € S,,(T). To see that w is as required, let u € S(TIZ) Then

p(w(u)) = o(hy(w)) = (07 0 hy 0 0(w)) = w0 87 (hy (w')) =i

We now introduce some notation adapted from [2]. Let
S={(sn)pry: foralln € w, s, is an n-variable word over A}.

(This is what is denoted in [2] by ST(A4,€) where e(n) =n for all n € w.)
Given 5,t € S, § < t if and only if there exists an increasing sequence (H,, )%,
in Py(w) (meaning that max H,, < min H,,4; for each n) and for each n € w and

?) such that s, = [[,cp. tr{ur). (Since
Sn € Sy, one has that for some k € H,,, u; € S(i)) Note that < is transitive.

each k € H,, there exists u; € U, S(

(This is the relation that is denoted in [2] by <T.)
Give S the topology with basis {B(n,t) :n € w and £ € S}, where

B(n,t)={5c€S:5<tandforallic{0,1,...,n—1}, s; = t;}.
Notice that if § € B(n,t), then B(n,5) C B(n,t).
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Theorem 5.2. Let X be open in S, let § € S, and let n € w. Then there exists
t € B(n, &) such that either B(n,t) C X or B(n,t)N X = .

Proof. This is an immediate consequence of [2, Theorem 10] because open sets are
Baire. [l

Lemma 5.3. Letn€w, letk e N, let p: S, — {1,2,...,k}, and let §€ S. There
exists t € B(n, &) such that o is constant on {r, : ¥ € B(n,t)}.

Proof. We proceed by induction on k, the case k = 1 being trivial. Let k € N
and assume the lemma is true for k. Let ¢ : S, — {1,2,...,k + 1} and let
X={teS:pt,) =k+1}. Ift € X, then B(n+1,) C X so X is open. Let
§¢€ S and pick £ € B(n, §) such that either B(n,t) C X or B(n,t)NX = (.

If B(n,t) C X, then ¢ is constantly equal to k& + 1 on {r, : ¥ € B(n,t)}, so
assume that B(n,t)N X = §. Define 7: S, — {1,2,...,k} by

w) if p(w) <k
m(w) :{ w(l ) ifigwi =k+1.

Pick @ € B(n,t) such that 7 is constant on {r, : # € B(n,@)}. Then @ € B(n,5).
We claim that ¢ is constant on {r,, : ¥ € B(n,%)}. Indeed, given ¥ € B(n, ) one
has 7 € B(n,t) so ¢(rn) # k + 1 and thus p(r,) = 7(ry). O

Theorem 5.4. Assume that A is finite, D = {e}, and, for each n € w, S, has
been finitely colored. Then, there exists a sequence (Wy)n<w with each w, € S,
such that for every m € w,

Sm Q{H"GFw"<u”> : F € Pr(w) and for alln € F', uy, € U?ESFS(TZL)}

is monochrome. (That is, the color of [],cpwn(un) is determined solely by the
number of variables in [],, . pwn(un).)

Proof. We may assume that T, is the identity since the general case then follows

easily. To see this, notice that whenever w € S (:’i) and u € § (?), there is a

u e S(?) such that w(u) is the same as w(u'), where w(u') is computed after

reinterpreting T, to be the identity on A.

For each n € w, let ¥,, be a finite coloring of S,,. Choose by Lemma 5.3 sy € S
such that ¥q is constant on {rg : ¥ € B(0,50)}.

Let n € N and assume that we have chosen s,,”1. Choose s, € B(n,s,_1) such
that ¥,, is constant on {r, : ¥ € B(n, $p)}

For n € w, let w,, = sy, p, i.e. entry n of s;,. We claim that the sequence (w,)52
is as required. So let m € w, let F' € Py(w), for each n € F, let u, € U?:SF S(?),
and assume that [], o pwn(un) € Sp.

We shall show that ], .pwn(un) € {rm : 7 € B(m,sy)}. To this end, let
k = max F. Then for each n € F', w, = Sp.n = Spt1,n = ... = Sk,n. Notice that

. n .
m < min F' because [, . p wn(un) € Sy so for some n, u, € S(m)' For this n,

uneS(i) for some ¢ < min F' and so m = i.
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For n < m, let r, = wy, = spn. Let 7 = [],,cpwn(un). And for n > m,

. k+n—m R
let 7, = Sk ktn—m(zn) Where z, is any member of S( n > Then 7 €
B(m, i) C B(m, 7). O
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