
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000–000
S 0002-9947(XX)0000-0

This paper was published in Trans. Amer. Math. Soc. 358 (2006), 3239-3262.
To the best of my knowledge, this is the final version as it was submitted to the
publisher. –NH

AN INFINITARY EXTENSION OF THE
GRAHAM–ROTHSCHILD PARAMETER SETS THEOREM

TIMOTHY J. CARLSON, NEIL HINDMAN, AND DONA STRAUSS

Abstract. The Graham-Rothschild Parameter Sets Theorem is one of the

most powerful results of Ramsey Theory. (The Hales-Jewett Theorem is its

most trivial instance.) Using the algebra of βS, the Stone-Čech compactifica-
tion of a discrete semigroup, we derive an infinitary extension of the Graham-
Rothschild Parameter Sets Theorem. Even the simplest finite instance of this
extension is a significant extension of the original. The original theorem says

that whenever k < m in N and the k-parameter words are colored with finitely
many colors, there exist a color and an m-parameter word w with the property
that whenever a k-parameter word of length m is substituted in w, the result
is in the specified color. The “simplest finite instance” referred to above is
that, given finite colorings of the k-parameter words for each k < m, there

is one m-parameter word which works for each k. Some additional Ramsey
Theoretic consequences are derived.

We also observe that, unlike any other Ramsey Theoretic result of which

we are aware, central sets are not necessarily good enough for even the k = 1
and m = 2 version of the Graham-Rothschild Parameter Sets Theorem.

1. Introduction

Throught this paper A will denote a nonempty set and D will denote a set with
a binary operation mapping (f, g) ∈ D × D to fg ∈ D. We assume that D has a
nonempty set E of right identities for this operation. We also assume that, for each
f ∈ D, we have defined a mapping Tf : A → A. We shall call (A,D,E, 〈Tf 〉f∈D) a
parameter system.

We write ω for the set {0, 1, 2, . . .} of finite ordinals and N = ω \ {0}. We
choose a set V = {νn : n ∈ ω} such that A ∩ (D × V ) = ∅ and define W to be
the semigroup of words over the alphabet A ∪ (D × V ), with concatenation as the
semigroup operation. (Formally a word w is a function from an initial segment
{0, 1, . . . , k − 1} of ω to the alphabet and the length `(w) of w is k. We shall
occasionally need to resort to this formal meeting, so that if i ∈ {0, 1, . . . , `(w)−1},
then w(i) denotes the (i + 1)st letter of w.)

For each n ∈ N, we define Wn to be the set of words over the alphabet A∪ (D×
{ν0, ν1, . . . , νn−1}) and we define W0 to be the set of words over A. We note that
each Wn is a subsemigroup of W .
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Definition 1.1. Let n ∈ N and k ∈ ω with k ≤ n. Then S
(

n
k

)
is the set of all

words w ∈ Wk of length n such that
(1) for each i ∈ {0, 1, . . . , k − 1}, if any, some member of E × {νi} occurs in w;
(2) for each i ∈ {0, 1, . . . , k − 1}, if any, the first occurrence of a member (s, νi) of
D × {νi} has s ∈ E;
(3) for each i ∈ {0, 1, . . . , k−2}, if any, the first occurrence of a member of D×{νi}
in w precedes the first occurrence of of a member of D × {νi+1}

Definition 1.2. Let k ∈ N. Then the set of k-parameter words is Sk =
⋃∞

n=k S
(

n
k

)
.

Of course, S
(

n
k

)
and Sk depend on A, D and E, as well as n and k. Since we

consider only one parameter system at a time throughout most of the paper, we
shall not normally indicate this dependence in the notation. In a context where

more than one parameter system is used, we shall use S
(n

k

)
(Γ) and Sk(Γ) for the

sets defined above by the parameter system Γ. If k = 0, when we write Sk we mean
simply W0.

For each i ∈ ω, we choose a member vi of E×{νi}. If D = {e} and Te : A → A is
the identity, then the k-parameter words are known as the k-variable words, where
each vi is a “variable”.

Given w ∈ Sn and u ∈ W with `(u) = n, we define w〈u〉 to be the word with
length `(w) such that for i ∈ {0, 1, . . . , `(w)− 1}

w〈u〉(i) =

 w(i) if w(i) ∈ A
Ts

(
u(j)

)
if w(i) = (s, νj) and u(j) ∈ A

(st, νl) if w(i) = (s, νj) and u(j) = (t, νl) .

For example, suppose that A = {a, b, c} and D = {e, f, g} is a group, with e

the identity and g = f2. Suppose also that Tf :
a 7→ b
b 7→ c
c 7→ a

, Tg = Tf
2, and Te is the

identity. If w = v0av1(f, ν1)b(g, ν0) = (e, ν0)a(e, ν1)(f, ν1)b(g, ν0), and u = (f, ν2)a,
then w〈u〉 = (ef, ν2)aTe(a)Tf (a)b(gf, ν2) = (f, ν2)aabb(e, ν2).

If D = {e} and Te is the identity map, then w〈u〉 is simply the result of replacing
each occurrence of vi in w by u(i).

The following theorem is the Graham-Rothschild parameter sets theorem. We
use the standard “chromatic” terminology for Ramsey Theoretic results. When we
say that a set is finitely colored, we mean that there is a function from that set to
a finite set. A set is monochrome provided the given coloring function is constant
on it. If D is a group, then the statement that 〈Tf 〉f∈D is an action of D on A is
the assertion that Tf ◦ Tg = Tfg for all f, g ∈ D and that Te is the identity map.

Theorem 1.3 (Graham-Rothschild). Assume that the alphabet A is finite, that D
is a finite group, and that 〈Tf 〉f∈D is an action of D on A. Let m, k ∈ ω with m > k

and let Sk be finitely colored. There exists w ∈ Sm such that {w〈u〉 : u ∈ S
(m

k

)
}

is monochrome.

Proof. [6], or see [14] for a shorter proof. �



EXTENSION OF THE GRAHAM–ROTHSCHILD PARAMETER SETS THEOREM 3

The case m = 1, k = 0, and D = {e} of Theorem 1.3 is the Hales-Jewett
Theorem [8]. The version of Theorem 1.3 which has D = {e} is commonly cited in
the literature as the Graham-Rothschild Parameter Sets Theorem and most of the
standard consequences of the Graham-Rothschild Theorem are consequences of this
special case. We shall show in Theorem 5.1 that Theorem 1.3 is derivable from this
special case. This is true even if the assumptions of Theorem 1.3 are significantly
weakened.

The restriction on the order of first appearances of members of D × {νi} in the
definition of n-parameter word may seem unnatural. Note however, that without
that restriction, the m = 3, k = 2, and D = {e} case of Theorem 1.3 is false.
(Simply color the two variable words according to whether the first occurrence of
v0 precedes or follows the first occurrence of v1.)

The Graham-Rothschild Parameter Sets Theorem has been recognized for its
power from the time of its appearance. Section 9 of [6] contains 13 corollaries.
Included among these are four results that were known at the time (namely the
Hales-Jewett Theorem, van der Waerden’s Theorem, Ramsey’s Theorem, and the
finite version of the Finite Sums Theorem). We believe that the other nine were
new at the time. (These include the finite version of the Finite Unions Theorem.
While the infinite version of the Finite Unions Theorem is obviously derivable from
the infinite version of the Finite Sums Theorem, the finite version of the Finite
Unions Theorem is not obviously derivable from the finite version of the Finite Sums
Theorem.) In introducing their article about the Graham-Rothschild Parameter
Sets Theorem, Prömel and Voigt [14] wrote:

This is a complete analogue to Ramsey’s theorem carried over to
the structures of parameter sets and, as it turns out, Ramsey’s the-
orem itself is an immediate consequence of the Graham-Rothschild
theorem. But the concept of parameter sets does not only glue
arithmetic progressions and finite sets together. Also, it provides
a natural framework for seemingly different structures like Boolean
lattices, partition lattices, hypergraphs and Deuber’s (m, p, c)-sets,
just to mention a few. So, the Graham-Rothschild theorem can be
viewed as a starting point of Ramsey Theory .

Other strong consequences of infinitary results such as those established here are
analogues of the Paris-Harrington Theorem [13]: the statement

(?) For any positive integers c and e there is a positive integer N such that
if [N ]e is colored with c colors there is a large homogeneous set of size at
least e + 1 (a set of integers is large if its cardinality is at least as large as
its least element).

is true and cannot be proved in the formal theory of Peano Arithmetic. The state-
ment (?) can be proved from the infinite version of Ramsey’s Theorem by the same
kind of compactness argument used to derive the finite version of Ramsey’s Theo-
rem. Perhaps the most important feature of the Paris-Harrington theorem is that it
was the first example of a striking combinatorial fact which cannot be proved in the
theory of formal Peano Arithmetic. Gödel’s incompleteness theorem showed that
there are finitary truths not provable from Peano Arithmetic, but the examples
given before the Paris-Harrington Theorem were not very satisfying mathemati-
cally. By similar sorts of compactness arguments, principles similar to (?) can be
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derived from infinitary theorems on variable words. For example, Theorem 5.4
implies the following principle:

(??) For any finite alphabet A and any positive integers c and e there is a positive
integer N such that whenever the e-variable words of length N are colored
with c colors there is an integer m ≥ e + 1 and a large m-variable word
of length N all of whose e-variable reductions have the same color (an m-
variable word is large if k ≤ m where the first occurence of a variable is in
position k).

While we don’t have tight bounds on what is required to prove (??), it cannot be
proved in Peano Arithmetic since it easily implies (?). (Given a coloring of [N ]e,
color an e-variable word of length N according to the color of the set of those k
such that the first occurence of some variable occurs in position k.)

The following extension of the D = {e} version of Theorem 1.3 is not new, being
a direct consequence of [2, Theorem 10]. However, it is certainly not well known,
even among the experts, and we shall present its derivation in Section 5. Given a
set B, we write Pf (B) for the set of finite nonempty subsets of B.

Theorem 1.4. Assume that A is finite, D = {e}, and, for each n ∈ ω, Sn has
been finitely colored. Then, there exists a sequence 〈wn〉n<ω with each wn ∈ Sn

such that for every m ∈ ω,

Sm ∩
{∏

n∈F wn〈un〉 : F ∈ Pf (ω) and for all n ∈ F , un ∈
⋃min F

i=0 S
(n

i

)}
is monochrome. (That is, the color of

∏
n∈F wn〈un〉 is determined solely by the

number of variables in
∏

n∈F wn〈un〉.)

We shall derive in Section 3 the following extension of Theorems 1.3 and 1.4.

Corollary 1.5. Assume that, for each n ∈ ω, Sn has been finitely colored and that,

for each n ∈ ω and each i ∈ {0, 1, . . . , n}, Hn,i is a finite subset of S
(n

i

)
. Then,

there exists a sequence 〈wn〉n<ω with each wn ∈ Sn such that for every m ∈ ω,

Sm ∩ {
∏

n∈F wn〈un〉 : F ∈ Pf (ω) and for all n ∈ F , un ∈
⋃min F

i=0 Hn,i}

is monochrome. (That is, the color of
∏

n∈F wn〈un〉 is determined solely by the
number of parameters in

∏
n∈F wn〈un〉.)

The special case D = {e} of Corollary 1.5 can be derived from [2, Theorem 15]
by an argument similar to the one we shall use to establish Theorem 1.4.

Notice that if A and D are finite, one may take Hn,i = S
(

n
i

)
in Corollary 1.5.

Perhaps somewhat easier to absorb is the following corollary to Corollary 1.5.

Corollary 1.6. Let m ∈ N. Suppose that we have a finite coloring of
⋃m

i=0 Si and

a finite subset Hi of S
(

m
i

)
for each i ∈ {0, 1, . . . ,m}. Then there exists a sequence

〈wn〉∞n=0 in Sm such that for every l ∈ {0, 1, . . . ,m},

Sl ∩ {
∏

n∈F wn〈un〉 : F ∈ Pf (ω) and for all n ∈ F , un ∈
⋃m

i=0 Hi}

is monochrome.
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In particular, one immediately has the following extension of Theorem 1.3. (We
shall describe in Section 3 how this extension can be derived from Theorem 1.3
without using the results of Section 2.)

Corollary 1.7. Assume that the alphabet A is finite, that D is a finite group,
and that 〈Tf 〉f∈D is an action of D on A. Let m, k ∈ ω with m > k and let
Sk and Sm be finitely colored. There exists a sequence 〈wt〉∞t=0 in Sm such that
{
∏

t∈F wt : F ∈ Pf (ω)} is monochrome and {
∏

t∈F wt〈ut〉 : F ∈ Pf (ω) and for

each n ∈ F , un ∈ S
(m

k

)
} is monochrome.

We derive Corollary 1.5 as a straightforward consequence of the existence of a
particular chain of idempotents 〈pn〉∞n=0, where each pn ∈ βSn. Section 2 is devoted
to the proof of the existence of this special chain of idempotents. (More precisely,
Corollary 1.5 is a special case of Theorem 3.2, the statement of which requires the
introduction of additional terminology.)

Let us briefly review some facts about the Stone-Čech compactification βT of a
(discrete) semigroup (T, ·). We take the points of βT to be the ultrafilters on T ,
the principal ultrafilters being identified with the points of T . Given a set A ⊆ T ,
A = {p ∈ βT : A ∈ p}. The set {A : A ⊆ T} is a basis for the open sets (as well as
a basis for the closed sets) of βT . If R ⊆ T we shall identify an ultrafilter p on R
with the ultrafilter {A ⊆ T : A ∩R ∈ p} and thereby pretend that βR ⊆ βT .

There is a natural extension of the operation · of T to βT making βT a compact
right topological semigroup with T contained in its topological center. This says
that for each p ∈ βT the function ρp : βT → βT is continuous and for each x ∈ T ,
the function λx : βT → βT is continuous, where ρp(q) = q · p and λx(q) = x · q.
Given B ⊆ T and x ∈ T , let x−1B = {y ∈ T : x · y ∈ B}. Then for any p, q ∈ βT
and any B ⊆ T , one has that B ∈ p · q if and only if {x ∈ T : x−1B ∈ q} ∈ p.
See [10] for an elementary introduction to the semigroup βT and for any unfamiliar
algebraic facts encountered in this paper.

A subset V of a semigroup T is called a left ideal if is nonempty and TV ⊆ V .
It is called a right ideal if it is nonempty and V T ⊆ V . It is called a two-sided
ideal, or simply an ideal, if it is both a left ideal and a right ideal. Any compact
Hausdorff right topological semigroup T has a smallest two sided ideal K(T ) which
is the union of all of the minimal left ideals of T and is also the union of all of
the minimal right ideals of T . If x ∈ K(T ), then xT is the minimal right ideal
with x as a member and Tx is the minimal left ideal with x as a member. The
intersection of any minimal left ideal and any minimal right ideal is a group. In
particular there are idempotents in the smallest ideal. There is a partial ordering
of the idempotents of T determined by p ≤ q if and only if p = p · q = q · p. An
idempotent p is minimal with respect to this order if and only if p ∈ K(T ) [10,
Theorem 1.59]. Such an idempotent is called simply “minimal”.

A subset B of a discrete semigroup T is central if and only if it is a member of
a minimal idempotent of βT . Central sets are known to have remarkably strong
combinatorial properties. For example [5, Theorem 8.22] any central subset of N
contains solutions to all partition regular systems of homogeneous linear equations.
See [10] and [9] for numerous other combinatorial conclusions about central sets.

Loosely speaking, Theorem 3.2 says that when one is constructing the sequence
〈wn〉∞n=0 in the statement of Corollary 1.5, one can take wn to be any member of
some central subset of Sn.
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It was shown in the proof of [1, Theorem 4.1] that the k = 0, m = 1, and
D = {e} case of Corollary 1.7 (and in particular the Hales-Jewett Theorem) holds
where ϕ−1[{i}] is any central subset of W0. In fact all previous Ramsey Theoretic
results of which we are aware that could be stated in terms of a finite partition of
a semigroup had a conclusion valid for arbitrary central sets. We shall show at the
end of Section 3 that there is a central subset B of S1 for which the conclusion of
Theorem 1.3 fails with m = 2 and D = {e}. (That is, there is no w ∈ S2 such that

w〈u〉 ∈ B for every u ∈ S
(2

1

)
.)

In Section 4 we shall derive some Ramsey Theoretic consequences of the results
of Section 3. Additional consequences will appear in [3].

2. A Chain of Idempotents

Recall that we are assuming that we have a nonempty alphabet A, a set D with
a binary operation, a nonempty set E of right identities for D, and a mapping
Tf : A → A defined for every f ∈ D. Recall also that we have chosen a member vi

of E × {νi} for each i ∈ ω.
Suppose that u ∈ W has length n. We shall define a homomorphism hu : W →

W by first defining hu on all elements of A ∪ (D × V ). So let w ∈ A ∪ (D × V ).
Then

hu(w) =


w if w ∈ A

Ts

(
u(j)

)
if w = (s, νj) , j < n, and u(j) ∈ A

(st, νl) if w = (s, νj) , j < n, and u(j) = (t, νl)
w if w = (s, νj) and j ≥ n .

Since W is the free semigroup on A∪(D×V ), hu extends to a unique homomorphism
defined on W , which we also denote by hu. Thus, if w ∈ W and `(w) = k one has
that `

(
hu(w)

)
= k, and for i ∈ {0, 1, . . . , k − 1},

hu(w)(i) =


w(i) if w(i) ∈ A

Ts

(
u(j)

)
if w(i) = (s, νj) , j < n, and u(j) ∈ A

(st, νl) if w(i) = (s, νj) , j < n, and u(j) = (t, νl)
w(i) if w(i) = (s, νj) and j ≥ n .

Observe that, if n ∈ N, w ∈ Sn, u ∈ W , and `(u) = n, then hu(w) = w〈u〉.

Observe also that if u ∈ S
(n

k

)
, then hu : Wn → Wk and hu : Sn → Sk.

We shall also use hu to denote the continuous extension of hu from βW to itself.

Lemma 2.1. Let u ∈ W . Then hu is a homomorphism from βW to βW .

Proof. This is [10, Corollary 4.22] due originally to P. Milnes in [12]. �

In the following definition, and throughout the rest of this paper, when we write
an expression such as vi · · · vj , we assume that all intervening values of the subscript
occur in order.

Definition 2.2. Let n ∈ N with n ≥ 2.
(a) For i ∈ {0, 1, . . . , n− 1}, wn,i is the word obtained from v0 · · · vn−1 by deleting
vi.
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(b) For i ∈ {0, 1, . . . , n− 1},
Un,i =

{
w ∈ W : `(w) = n , w(i) ∈ A ∪ {(s, νl) : s ∈ D and 0 ≤ l < i} ,

and for all j ∈ {0, 1, . . . , n− 1}, if j < i, then
w(j) ∈ E × {νj} and if j > i, then w(j) ∈ E × {νj−1}

}
.

Thus, if 0 < i < n − 1, a member of Un,i is of the form w0 · · ·wi−1twi · · ·wn−2

where t ∈ A ∪ (D × {ν0, ν1, . . . , νi−1}) and each wi ∈ E × {νi}.

Notice that for any n ∈ N with n ≥ 2, S
( n

n− 1

)
=

⋃n−1
i=0 Un,i.

Lemma 2.3. Let n ∈ N. Then hv0···vn−1 is the identity on Wn.

Proof. Since hv0···vn−1 is a homomorphism, it suffices to show that hv0···vn−1(x) = x
for any x ∈ A∪ (D×{ν0, ν1, . . . , νn−1}). If x ∈ A, this is immediate. If x = (s, νi),
then hv0···vn−1(x) = (se, νi) for some e ∈ E and se = s because e is a right identity
for D. �

Lemma 2.4. Let n ∈ N with n ≥ 2.
(a) If i ∈ {0, 1, . . . , n− 1}, and u ∈ Un,i, then hu ◦ hwn,i

is equal to the identity on
Wn−1.
(b) If i, k ∈ {0, 1, . . . , n − 1}, i < k, and u ∈ Un+1,i, then for all x ∈ Wn,
hu

(
hwn+1,k

(x)
)

= hwn,k−1

(
hu(x)

)
.

Proof. (a) Since hu ◦ hwn,i
is a homomorphism, it suffices to let x ∈ A ∪ (D ×

{ν0, ν1, . . . , νn−2}) and show that hu ◦hwn,i
(x) = x. If x ∈ A, this is immediate. So

assume that x = (s, νj) for some j ∈ {0, 1, . . . , n − 2}. If j < i, then wn,i(j) = vj

and u(j) ∈ E × {νj} so hu ◦ hwn,i(x) = x. If j ≥ i, then wn,i(j) = vj+1 and
u(j + 1) ∈ E × {νj} and so hu ◦ hwn,i

(x) = x.
(b) Since hu◦hwn+1,k

and hwn,k−1 ◦hu are homomorphisms, it suffices to establish
the conclusion for x ∈ A ∪ (D × {ν0, ν1, . . . , νn−1}). The case in which x ∈ A is
trivial. So assume that x = (s, νj) for some j ∈ {0, 1, . . . , n− 1}.

Case 1. j < i. Then wn+1,k(j) = wn,k−1(j) = vj and u(j) = (e, νj) for some
e ∈ E. Therefore, hwn+1,k

(x) = hu(x) = hwn,k−1(x) = (se, νj) = x. Consequently
hu

(
hwn+1,k

(x)
)

= hu(x) = x and hwn,k−1

(
hu(x)

)
= hwn,k−1(x) = x.

Case 2. j = i. Then wn+1,k(j) = vj so hwn+1,k
(x) = (s, νj).

Case 2a. u(j) ∈ A. Then hu

(
hwn+1,k

(x)
)

= Ts

(
u(j)

)
. Also,

hu(x) = Ts

(
u(j)

)
∈ A and so hwn,k−1

(
hu(x)

)
= Ts

(
u(j)

)
.

Case 2b. u(j) = (t, νl) for some t ∈ D and some l < i. Then
hu

(
hwn+1,k

(x)
)

= (st, νl). Also, hu(x) = (st, νl) and wn,k−1(l) = vl

so hwn,k−1

(
hu(x)

)
= (st, νl).

Case 3. i < j < k. Then wn+1,k(j) = vj , u(j) = (e, νj−1) for some e ∈ E, and
wn,k−1(j− 1) = vj−1. Therefore hwn+1,k

(x) = (s, νj) so hu

(
hwn+1,k

(x)
)

= (s, νj−1).
Also, hu(x) = (s, νj−1) so hwn,k−1

(
hu(x)

)
= (s, νj−1).

Case 4. k ≤ j. Then wn+1,k(j) = vj+1, u(j) = (e, νj−1) and u(j + 1) = (f, νj)
for some e, f ∈ E, and wn,k−1(j − 1) = vj . Therefore hwn+1,k

(x) = (s, νj+1)
so hu

(
hwn+1,k

(x)
)

= (s, νj). Also, hu(x) = (s, νj−1) and so hwn,k−1

(
hu(x)

)
=

(s, νj). �

It is standard to define partial orders of idempotents of a semigroup T by p ≤R q
if and only if p ∈ qT and p ≤L q if and only if p ∈ Tq. We observe that these are
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equivalent respectively to p = qp and p = pq. (If p = qx, then qp = qqx = qx = p.)
We extend these definitions to all of βW .

Definition 2.5. Let p, q ∈ βW . Then p ≤L q if and only if p ∈ βWq and p ≤R q
if and only if p ∈ qβW .

We shall use the obvious fact that, for any homomorphism h : βW → βW ,
p ≤L q implies that h(p) ≤L h(q), and p ≤R q implies that h(p) ≤R h(q). We
observe that, if p and q are idempotent, then p ≤ q if and only if p ≤R q and
p ≤L q.

Notice that ≤L and ≤R are transitive but are not, in general, reflexive on βW .
We now state several simple algebraic facts which will be needed in the proof of

Theorem 2.12.

Lemma 2.6. Let n ∈ ω.
(a) If p ∈ βWn, r ∈ βW , and p ≤R r, then p = ry for some y ∈ βWn.
(b) If p ∈ βWn, r ∈ βW , and p ≤L r, then p = yr for some y ∈ βWn.
(c) If p, q ∈ βWn, r ∈ K(βWn), p ≤R r, and q ≤R r, then p ≤R q.
(d) If p, q ∈ βWn, r ∈ K(βWn), p ≤L r, and q ≤L r, then p ≤L q.

Proof. We establish (a) and (c). For (a), we have that p = ry for some y ∈ βW .
Since W \Wn is an ideal of W , βW \βWn is an ideal of βW by [10, Corollary 4.18]
and so y ∈ βWn.

(c) Since r ∈ K(βWn), pick a minimal right ideal R of βWn such that r ∈ R.
Then by (a) p ∈ R and similarly q ∈ R. Thus p ∈ R = qβWn ⊆ qβW . �

Lemma 2.7. Let T be a compact right topological semigroup. If L is a left ideal
of T and R is a right ideal of T , then there is an idempotent p ∈ R ∩ L which is
minimal in T .

Proof. By [10, Corollary 2.6 and Theorem 2.7] we may pick a minimal left ideal
L′ ⊆ L of T and a minimal right ideal R′ ⊆ R of T and one has that L′ ∩ R′ is a
group. �

Definition 2.8. Let n ∈ N. Then Qn =
{
w ∈ Wn : some member of E × {νn−1}

occurs in w and occurs before any other member of D × {νn−1}
}
.

Lemma 2.9. Let n ∈ N, let p be an idempotent of βSn and let q be a minimal
idempotent of βWn+1 such that q ≤ p. If Qn+1 ∈ q, then q is a minimal idempotent
of βSn+1.

Proof. Given w ∈ Sn and u ∈ Qn+1, wu ∈ Sn+1 and thus Sn+1 ∈ pq = q. Therefore
q ∈ βSn+1 and is thus minimal with respect to ≤ in βSn+1. �

Lemma 2.10. Let n ∈ N, let p ∈ βWn, and let r ∈ βWn+1. If Qn+1 ∈ r and
q ∈ prβWn+1, then Qn+1 ∈ q.

Proof. We have that Wn ∈ p and Qn+1 ∈ r so WnQn+1Wn+1 ∈ q and WnQn+1Wn+1

⊆ Qn+1. �

Lemma 2.11. Let n ∈ N, let p ∈ βWn−1, let r ∈ βSn, and let q ∈ K(βWn). If
pq ≤R r, then Qn ∈ q.
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Proof. Let T = {w ∈ Wn : some member of E × {νn−1} occurs in w}. Then T
is an ideal of Wn so βT is an ideal of βWn and therefore K(βWn) ⊆ βT and
thus T ∈ q. Suppose that T \ Qn ∈ q. We have that pq = rx for some x ∈
βW . Also Wn−1(T \ Qn) ∈ pq and SnW ∈ rx. This is a contradiction because
Wn−1(T \Qn) ∩ SnW = ∅. �

Theorem 10 of [2] and its consequence Theorem 5.4 follow from [2, Lemma 7.1]
which establishes, in the case D = {e} and Te is the identity on A, the existence of
a sequence of idempotents pn in βSn for n ∈ ω such that for any n ∈ ω

• pn+1 ≤ pn

• for any m < n and each u ∈ S
(m

n

)
, hu(pn) = pm.

Our main algebraic result, Theorem 2.12 below, shows that there is such a sequence
for general D and, moreover, one may choose each of the idempotents pn to be
minimal in βSn.

Recall that W0 is the free semigroup (i.e., the set of words) on the alphabet A.
Recall also that we do not need to assume that either A or D is finite for this result.

Theorem 2.12. Let p be a minimal idempotent in βW0. There is a sequence
〈pn〉∞n=0 such that
(1) p0 = p;
(2) for each n ∈ N, pn is a minimal idempotent of βSn;
(3) for each n ∈ N, pn ≤ pn−1;

(4) for each n ∈ N and each u ∈ S
( n

n− 1

)
, hu(pn) = pn−1.

Further, p1 can be any minimal idempotent of βS1 such that p1 ≤ p0.

Proof. We first show how p0, p1 and p2 can be defined. Let p0 = p and let p1 be
any minimal idempotent of βS1 such that p1 ≤ p0. Such exist because we may pick
by Lemma 2.7 an idempotent

p1 ∈
(
p0 · βS1

)
∩

(
βS1 · p0

)
which is minimal in βS1. Then p1 ≤ p0. (We have p1 = p0x for some x ∈ βS1 and

so p0p1 = p0p0x = p0x = p1. Similarly, p1p0 = p1.) Now S
(1

0

)
consists of all words

of length 1 from the alphabet A. Thus if u ∈ S
(1

0

)
, then hu[S1] ⊆ W0 and hu is

the identity on W0. Therefore hu(p1) ∈ βW0 and, since hu is a homomorphism,
hu(p1) ≤ hu(p0) = p0. Since p0 is minimal in βW0, hu(p1) = p0. (The argument in
this paragraph is due to Andreas Blass, and first appeared in [1].)

Let α = hv1(p1). Then α ∈ βW2 so we may pick by Lemma 2.7 an idempotent

p2 ∈ (p1αβW2) ∩ (βW2αp1)

which is minimal in βW2. Then as in the previous paragraph p2 ≤ p1. Since S1 ∈ p1

and hv1 [S1] ⊆ Q2, Q2 ∈ α. Thus, by Lemma 2.10 Q2 ∈ p2 so by Lemma 2.9 p2 is

minimal in S2. Given any u ∈ S
(2

1

)
, hu[S2] ⊆ S1 and so hu(p2) ∈ βS1. It thus

suffices to show that hu(p2) ≤ p1. If u ∈ U2,1, then hu is the identity on S1, so
hu(p2) ≤ hu(p1) = p1. Now assume that u ∈ U2,0 and pick t ∈ A and e ∈ E such
that u = t(e, ν0). For w ∈ S1, hu(w) = ht(w), and so hu(p1) = ht(p1) = p0. Also,
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u x : pn−1 δ1 δ2 δ3 . . . δn−2 δn−1

un,n−1 pn−1

un,n−2 pn−2 η1

un,n−3 pn−2 γ1 η2

un,n−4 pn−2 γ1 γ2 η3

...
...

...
...

...
. . .

un,1 pn−2 γ1 γ2 γ3 . . . ηn−2

un,0 pn−2 γ1 γ2 γ3 . . . γn−2 ηn−1

Table 1

by Lemma 2.4(a) htv0 ◦hv1 is the identity on W1. So hu(α) = ht(e,ν0)

(
hv1(p1)

)
= p1.

Therefore hu(p1α) = p0p1 = p1 and hu(αp1) = p1p0 = p1. Since p2 ≤R p1α,
hu(p2) ≤R hu(p1α) = p1. Since p2 ≤L αp1, hu(p2) ≤L hu(αp1) = p1.

We now proceed to an inductive construction. Let n ∈ N with n ≥ 2.
We shall introduce elements, (such as ηi or γi) which depend on n as well as

on i. However, in an effort to reduce the number of subscripts used, we shall not
indicate the dependence on n in the notation.

We make the inductive assumption that we have chosen pi for i ∈ {0, 1, 2, . . . n},
ηi, η′i, δi, and δ′i for i ∈ {1, 2, 3, . . . , n − 1}, and γi and γ′i for i ∈ {2, 3, . . . , n − 2},
if any, so that the following hypotheses are satisfied.

(a) For each i ∈ {0, 1, . . . , n}, pi is a minimal idempotent of βSi.
(b) For each i ∈ {1, 2, . . . , n}, pi ≤ pi−1 and hu(pi) = pi−1 for every u ∈

S
( i

i− 1

)
.

(c) For every i ∈ {1, 2, . . . , n−1}, ηi and η′i are minimal idempotents in βWn−1.
(d) For every i ∈ {1, 2, . . . , n− 1}, ηi ≤L pn−1 and η′i ≤R pn−1.
(e) For i ∈ {1, 2, . . . , n− 1}, δi = hwn,n−i−1(ηi), δ′i = hwn,n−i−1(η

′
i),

pn ≤R pn−1δ1 · · · δn−1, and
pn ≤L δ′n−1 · · · δ′1pn−1 .

(f) For every i ∈ {1, 2, . . . , n− 2},

ηi ≤R γi · · · γn−2ηn−1 and
η′i ≤L η′n−1γ

′
n−2 · · · γ′i .

(g) For every choice of un,i ∈ Un,i for i ∈ {0, 1, . . . , n− 1}, the entry in the row
labeled by u and the column labeled by x in Tables 1 and 2 is hu(x).

We observe that these assumptions do hold if n = 2, with η1 = η′1 = p1. To
verify hypothesis (c) we need to show that p1 is minimal in βW1. Since S1 is a right
ideal of W1, we have that βS1 is a right ideal of βW1 and so contains a minimal
right ideal of βW1. Therefore by [10, Theorem 1.65] K(βS1) = βS1 ∩ K(βW1).
For hypothesis (e), note that δ1 = δ′1 = α. Hypothesis (f) is vacuous, and we have
already verified the table entries of hypothesis (g).

Notice that since hwn,n−i−1 [Wn−1] ⊆ Wn one has that each δi ∈ βWn. Also,

since hu[Wn] ⊆ Wn−1 for each u ∈ S
(

n
n− 1

)
, we have that each γi ∈ βWn−1.
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u x : δ′n−1 δ′n−2 . . . δ′3 δ′2 δ′1 pn−1

un,n−1 pn−1

un,n−2 η′1 pn−2

un,n−3 η′2 γ′1 pn−2

un,n−4 η′3 γ′2 γ′1 pn−2

... . . .
...

...
...

...
un,1 η′n−2 . . . γ′3 γ′2 γ′1 pn−2

un,0 η′n−1 γ′n−2 . . . γ′3 γ′2 γ′1 pn−2

Table 2

By assumption (e), pn ≤R pn−1δ1 · · · δn−1. So there is some x ∈ βWn such that
pn−1δ1 · · · δn−1x = pn = pnpn ∈ pnβW . So

{x ∈ βWn : pn−1δ1 · · · δn−1x ≤R pn}

is nonempty and is therefore a right ideal of βWn. By Lemma 2.7, we can choose
a minimal idempotent µn of βWn which is in this right ideal and in the left ideal
βWnpn of βWn.

Now let i ∈ {2, 3, . . . , n− 1}. Note that δi · · · δn−1µn = δi · · · δn−1µnµn, so

{x ∈ βWn : pn−1δ1δ2 · · · δi−1x ≤R pn and x ≤R δi · · · δn−1µn}

is nonempty, because it contains δi · · · δn−1µn. It is therefore a right ideal of βWn,
and we can choose a minimal idempotent µi of βWn which is in this right ideal and
is also in the left ideal βWnpn of βWn.

Similarly, {x ∈ βWn : pn−1x ≤R pn and x ≤R δ1 · · · δn−1µn} is nonempty
because δ1 · · · δn−1µn is a member, and thus we may choose a minimal idempotent
µ1 of βWn which is in this right ideal of βWn and also in the left ideal βWnpn.

Thus we have chosen minimal idempotents µ1, µ2, . . . , µn in βWn which satisfy
the following conditions:

(∗)

µi ≤L pn for all i ∈ {1, 2, . . . , n};
pn−1δ1 · · · δi−1µi ≤R pn for all i ∈ {2, 3, . . . , n};

pn−1µ1 ≤R pn; and
µi ≤R δi · · · δn−1µn for all i ∈ {1, 2, 3, . . . , n− 1} .

By a left-right switch of these arguments, we can chose minimal idempotents
µ′1, µ

′
2, . . . , µ

′
n in βWn which satisfy the following conditions:

(∗∗)

µ′i ≤R pn for all i ∈ {1, 2, . . . , n};
µ′iδ

′
i−1 · · · δ′1pn−1 ≤L pn for all i ∈ {2, 3, . . . , n};

µ′1pn−1 ≤L pn; and
µ′i ≤L µ′nδ′n−1 · · · δ′i for all i ∈ {1, 2, 3, . . . , n− 1} .

(While βW is right topological and not left topological, all of the algebraic facts
that we are using in this proof are valid from both sides.)

For i ∈ {1, 2, . . . , n}, let εi = hwn+1,n−i
(µi), let ε′i = hwn+1,n−i

(µ′i), and note that
εi, ε

′
i ∈ Wn+1. Then pnε1 · · · εnβWn+1 and βWn+1ε

′
n · · · ε′1pn are respectively right

and left ideals of βWn+1. Pick by Lemma 2.7 a minimal idempotent pn+1 of βWn+1

such that
pn+1 ∈ pnε1 · · · εnβWn+1 ∩ βWn+1ε

′
n · · · ε′1pn .
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u x : pn ε1 ε2 ε3 · · · εn−1 εn

un+1,n pn

un+1,n−1 pn−1 µ1

un+1,n−2 pn−1 δ1 µ2

un+1,n−3 pn−1 δ1 δ2 µ3

...
...

...
...

...
. . .

un+1,1 pn−1 δ1 δ2 δ3 · · · µn−1

un+1,0 pn−1 δ1 δ2 δ3 · · · δn−1 µn

Table 3

u x : ε′n ε′n−1 . . . ε′3 ε′2 ε′1 pn

un+1,n pn

un+1,n−1 µ′1 pn−1

un+1,n−2 µ′2 δ′1 pn−1

un+1,n−3 µ′3 δ′2 δ′1 pn−1

... . . .
...

...
...

...
un+1,1 µ′n−1 . . . δ′3 δ′2 δ′1 pn−1

un+1,0 µ′n δ′n−1 . . . δ′3 δ′2 δ′1 pn−1

Table 4

We claim that pn+1 is a minimal idempotent of βSn+1. By (∗), pn−1µ1 ≤R pn

so by Lemma 2.11, Qn ∈ µ1. Since hwn+1,n−1 [Qn] ⊆ Qn+1, Qn+1 ∈ ε1 and so,
by Lemma 2.10, Qn+1 ∈ pn+1. Consequently, by Lemma 2.9 pn+1 is minimal in
βSn+1.

We now claim that the induction hypotheses are satisfied for n + 1 with ηi, η′i,
δi, δ′i, γi, and γ′i replaced by µi, µ′i, εi, ε′i, δi, and δ′i respectively. That is, we claim
that

(a) For each i ∈ {0, 1, . . . , n + 1}, pi is a minimal idempotent of βSi.
(b) For each i ∈ {1, 2, . . . , n + 1}, pi ≤ pi−1 and hu(pi) = pi−1 for every

u ∈ S
(

i
i− 1

)
.

(c) For every i ∈ {1, 2, . . . , n}, µi and µ′i are minimal idempotents in βWn.
(d) For every i ∈ {1, 2, . . . , n}, µi ≤L pn and µ′i ≤R pn.
(e) For i ∈ {1, 2, . . . , n}, εi = hwn+1,n−i(µi), ε′i = hwn+1,n−i(µ

′
i),

pn+1 ≤R pnε1 · · · εn, and
pn+1 ≤L ε′n · · · ε′1pn .

(f) For every i ∈ {1, 2, . . . , n− 1},

µi ≤R δi · · · δn−1µn and
µ′i ≤L µ′nδ′n−1 · · · δ′i .

(g) For every choice of un+1,i ∈ Un+1,i for i ∈ {0, 1, . . . , n}, the entry in the
row labeled by u and the column labeled by x in Tables 3 and 4 is hu(x).
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All of these conclusions can be easily verified except (g) and the assertion in

(b) that hu(pn+1) = hu(pn) for all u ∈ S
( n

n− 1

)
. We show first that this latter

assertion follows from statement (g).
For any i ∈ {0, 1, . . . , n}, hun+1,i(pn+1) ∈ βSn and pn is minimal in βSn, so

it suffices to show that hun+1,i
(pn+1) ≤ pn. Since pn+1 ≤ pn and hun+1,n

is the
identity on Wn, we have that hun+1,n(pn+1) ≤ hun+1,n(pn) = pn.

Now let i ∈ {0, 1, . . . , n− 1} and let u = un+1,i. We have pn+1 ≤R pnε1 · · · εn−i

and so hu(pn+1) ≤R hu(pnε1 · · · εn−i) and by (∗) and Table 3, hu(pnε1 · · · εn−i) ≤R

pn. Also pn+1 ≤L ε′n−i · · · ε′1pn so hu(pn+1) ≤L hu(ε′n−i · · · ε′1pn) and by (∗∗) and
Table 4, hu(ε′n−i · · · ε′1pn) ≤L pn.

It thus suffices to verify the entries of Table 3 and Table 4. We shall write out the
verification for Table 3. The verification for Table 4 follows by a left-right switch
of the arguments. To this end, let a choice of un+1,i ∈ Un+1,i for i ∈ {0, 1, . . . , n}
be given.

We have that hun+1,n
is the identity on Sn so hun+1,n

(pn) = pn. For i ∈ {0, 1,
. . . , n− 1}, hun+1,i

= hun,i
on Sn so hun+1,i

(pn) = hun,i
(pn) = pn−1 by hypothesis

(b).
The diagonal entries are correct because εi = hwn+1,n−i(µi) for i ∈ {1, 2, . . . , n}

and hun+1,n−i
◦ hwn+1,n−i

is the identity on Wn by Lemma 2.4(a).
Let k ∈ {1, 2, . . . , n − 1}, let i ∈ {0, 1, . . . , n − k − 1}, and let u ∈ Un+1,i. To

finish the proof we need to show that hu(εk) = δk. Now εk = hwn+1,n−k
(µk) so we

are showing that hu

(
hwn+1,n−k

(µk)
)

= δk. Since i < n − k, we have by Lemma
2.4(b) that hu

(
hwn+1,n−k

(µk)
)

= hwn,n−k−1

(
hu(µk)

)
. So it suffices to show that

hwn,n−k−1

(
hu(µk)

)
= δk. Now hwn,n−k−1(ηk) = δk by hypothesis (e), so it suffices

to show that hu(µk) = ηk. And since hu(µk) and ηk are idempotents in βWn−1

and ηk is minimal in βWn−1 it suffices to show that hu(µk) ≤ ηk.
Now µk ≤L pn by (∗) so hu(µk) ≤L hu(pn) = pn−1, the equality holding by

hypothesis (b). Since ηk ≤L pn−1 by hypothesis (d), we have by Lemma 2.6(d)
that hu(µk) ≤L ηk.

It remains to show that hu(µk) ≤R ηk. We have by (∗) that µk ≤R δk · · · δn−1µn.
If i = n− k− 1, we have that hu(µk) ≤R hu(δk) = ηk by hypothesis (g), so assume
that i < n − k − 1. Then hu(µk) ≤R hu(δk) · · ·hu(δn−i−1) = γk · · · γn−i−2ηn−i−1,
the equality holding by hypothesis (g). If i = 0, we have directly that hu(µk) ≤R

γk · · · γn−2ηn−1. Otherwise ηn−i−1 ≤R γn−i−1 · · · γn−2ηn−1 by hypothesis (f) so
again hu(µk) ≤R γk · · · γn−2ηn−1. Also ηk ≤R γk · · · γn−2ηn−1 by hypothesis (f).
Now ηn−1 ∈ K

(
βWn−1

)
and γk · · · γn−2 ∈ βWn−1 so γk · · · γn−2ηn−1 ∈ K

(
βWn−1

)
and thus by Lemma 2.6(c), hu(µk) ≤R ηk. �

One might expect to be able to omit p0 and start in Theorem 2.12 with p1 as
any minimal idempotent in βS1. It is a consequence of Theorem 3.6 below that one
cannot.

The following lemmas will be useful in the next section.

Lemma 2.13. Let k,m ∈ ω with k < m and let u ∈ S
(m

k

)
. There exist r ∈

S
(

m
m− 1

)
and s ∈ S

(
m− 1

k

)
such that for all w ∈ Wm, hs

(
hr(w)

)
= hu(w).
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Proof. Either u(j) ∈ A for some j ∈ {0, 1, . . . ,m− 1} or else there exists t ∈ {0, 1,
. . . , k−1} such that elements of D×{νt} occur more than once in u. In the second
case, let t be the smallest index for which this happens. Then u(t) ∈ E × {νt} and
there exists j > t such that u(j) ∈ D × {νt}. In either case, we define r and s as
follows for i ∈ {0, 1, . . . ,m− 1} and l ∈ {0, 1, . . . ,m− 2}:

r(i) =

 vi if i < j
u(j) if i = j
vi−1 if j < i

and s(l) =
{

u(l) if l < j
u(l + 1) if j ≤ l .

�

Lemma 2.14. Let n ∈ N and let p0 ∈ βW0 and for each i ∈ {1, 2, . . . , n}, let

pi ∈ βSi. Assume that for each i ∈ {0, 1, . . . , n − 1} and each u ∈ S
(

i + 1
i

)
,

hu(pi+1) = pi. Then for each k < m in {0, 1, . . . , n} and each u ∈ S
(m

k

)
, hu(pm) =

pk.

Proof. We proceed by induction on n, the case n = 1 being trivial. So let n ∈ N
and assume the lemma is true for n. Let p0, p1, . . . , pn+1 be as in the statement of

the lemma, let k < m in {0, 1, . . . , n + 1}, and let u ∈ S
(

m
k

)
. Pick by Lemma 2.13

r ∈ S
( m

m− 1

)
and s ∈ S

(m− 1
k

)
such that for all w ∈ Sm, hs

(
hr(w)

)
= hu(w).

Since pm ∈ βSm, hu(pm) = hs

(
hr(pm)

)
. Then hr(pm) = pm−1 and by the induction

hypothesis, hs(pm−1) = pk. �

3. Extending the Graham-Rothschild Parameter Sets Theorem

Theorem 3.2 is the main Ramsey Theoretic result of this paper. In order to state
it precisely, we need to formalize the notion of “tree”. Recall that an ordinal is the
set of its predecessors, so that, if n ∈ N, then n = {0, 1, . . . , n− 1}.

Definition 3.1. Let X be a set.
(1) T is a tree in X if and only if

(a) T is a nonempty set of functions,
(b) for each f ∈ T , dom(f) ∈ ω and ran(f) ⊆ X, and
(c) for each f ∈ T , if dom(f) = n > 0, then f|n−1 ∈ T .

(2) If T is a tree in X and n ∈ ω, then Tn = {f ∈ T : dom(f) = n}.
(3) If T is a tree in X and f ∈ T , then Bf = {x ∈ X : f ∪ {(n, x)} ∈ T}.
(4) The sequence 〈wn〉∞n=0 is a path through T if and only if for each n ∈ ω,

{
(k, wk) :

k ∈ {0, 1, . . . , n}
}
∈ T .

The empty function is a “root” for the tree, and Bf is the set of successors to
the “node” f . Consider, for example, the following diagram of a tree T .

2

3

•

3 5

4 6

@
@ ��

AA ��
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Then formally

T =
{
∅, {(0, 2)}, {(0, 3)}, {(0, 5)}, {(0, 2), (1, 3)}, {(0, 5), (1, 4)}, {(0, 5), (1, 6)}

}
,

B∅ = {2, 3, 5} and B{(0,5)} = {4, 6}.

Notice that if w ∈ Sm and u ∈ S
(m

m

)
, then w〈u〉 = w.

Condition (2) of the following theorem says that each path through T satisfies
the conclusion of Corollary 3.3 below and that the monochrome colors are invariant
from path to path.

Theorem 3.2. Assume that, for each n ∈ ω, Sn has been finitely colored and that,

for each n ∈ ω and each i ∈ {0, 1, . . . , n}, Hn,i is a finite subset of S
(

n
i

)
. Then

there is a tree T in W such that
(1) for each n ∈ ω and each f ∈ Tn, Bf is a monochrome central subset of Sn and
(2) for any m ∈ ω, the intersection of Sm with

{
∏

n∈F f(n)〈un〉 : f ∈ T , ∅ 6= F ⊆ dom(f), and for all n ∈ F , un ∈
⋃min F

i=0 Hn,i}
is monochrome.

Proof. Pick a sequence of idempotents 〈pn〉∞n=0 as guaranteed by Theorem 2.12.
For n ∈ ω, choose a monochrome set Cn ⊆ Sn such that Cn ∈ pn.

Let T0 = {∅} and let V∅,0 = C0. Inductively, let k ∈ ω and assume that for
l ∈ {0, 1, . . . , k} we have defined Tl and for each f ∈ Tl and each i ∈ {0, 1, . . . , l}
we have defined Vf,i such that

(1)
⋃k

l=0 Tl is a tree in W ;
(2) if l ∈ {0, 1, . . . , k − 1} and f ∈ Tl, then Bf ⊆ Cl and Bf ∈ pl;
(3) if l ∈ {0, 1, . . . , k}, f ∈ Tl, and j ∈ {0, 1, . . . , l}, then Vf,j ⊆ Cj and

Vf,j ∈ pj ;
(4) if l ∈ {0, 1, . . . , k − 1}, i ∈ {0, 1, . . . , l}, f ∈ Tl, and u ∈ Hl,i, then Bf ⊆

hu
−1[Vf,i];

(5) if l ∈ {1, 2, . . . , k}, m ∈ {0, 1, . . . , l − 1}, j ∈ {0, 1, . . . ,m}, g ∈ Tl, and
f = g|m, then Vg,j ⊆ Vf,j ;

(6) if l ∈ {1, 2, . . . , k}, i ∈ {0, 1, . . . , l}, j ∈ {0, 1, . . . , i}, g ∈ Tl, f = g|l−1, and
u ∈ Hl−1,i, then hu

(
g(l − 1)

)
Vg,j ⊆ Vf,i; and

(7) if l ∈ {1, 2, . . . , k}, j ∈ {0, 1, . . . , l}, i ∈ {0, 1, . . . , j}, g ∈ Tl, f = g|l−1, and
u ∈ Hl−1,i, then hu

(
g(l − 1)

)
Vg,j ⊆ Vf,j .

These hypotheses are valid for k = 0, all except (1) and (3) vacuously.
Now for f ∈ Tk and i ∈ {0, 1, . . . , k}, let

Uf,i = Vf,i ∩
⋂k

j=i{w ∈ W : w−1Vf,j ∈ pj} ∩
⋂i

j=0{w ∈ W : w−1Vf,i ∈ pj} .

(We include the j = i term in both intersections to avoid worrying about i = 0
or i = k.) Given j ∈ {i, i + 1, . . . , k} we have that pj = pipj and Vf,j ∈ pj so
{w ∈ W : w−1Vf,j ∈ pj} ∈ pi. Given j ∈ {0, 1, . . . , i}, we have that pi = pipj and
Vf,i ∈ pi so {w ∈ W : w−1Vf,i ∈ pj} ∈ pi. Consequently Uf,i ∈ pi.

Given i ∈ {0, 1, . . . , k}, f ∈ Tk, and u ∈ S
(

k
i

)
, we have by Lemma 2.14 that

hu(pk) = pi and so hu
−1[Uf,i] ∈ pk. For f ∈ Tk, let

Df = Ck ∩
⋂
{hu

−1[Uf,i] : i ∈ {0, 1, . . . , k} and u ∈ Hk,i}



16 TIMOTHY J. CARLSON, NEIL HINDMAN, AND DONA STRAUSS

and note that Df ∈ pk because Hk,i is finite. (In this and all similar expressions
we take C ∩

⋂
∅ = C. Thus, if

⋃k
i=0 Hk,i = ∅, then Df = Ck.)

Now let Tk+1 = {f ∪{(k, x) : f ∈ Tk and x ∈ Df}. For g ∈ Tk+1, let f = g|k, let
Vg,k+1 = Ck+1, and for j ∈ {0, 1, . . . , k}, let

Vg,j = Vf,j ∩
⋂ {(

hu

(
g(k)

))−1

Vf,i : i ∈ {j, j + 1, . . . , k} and u ∈ Hk,i

}
∩

⋂ {(
hu

(
g(k)

))−1

Vf,j : i ∈ {0, 1, . . . , j} and u ∈ Hk,i

}
.

Then hypothesis (1) is satisfied directly and given f ∈ Tl we have that Bf = Df

so hypothesis (2) holds.
To verify hypothesis (3), let g ∈ Tk+1 and let j ∈ {0, 1, . . . , k + 1}. If j = k + 1

we have that Vg,j = Cj ∈ pj so assume that j ≤ k and let f = g|k. Then f ∈ Tk and
Vg,j ⊆ Vf,j ⊆ Cj and Vf,j ∈ pj . Note that g(k) ∈ Bf = Df , so for i ∈ {0, 1, . . . , k}

and u ∈ Hk,i, hu

(
g(k)

)
∈ Uf,i. Thus if i ≤ j,

(
hu

(
g(k)

))−1

Vf,j ∈ pj and if i ≥ j,(
hu

(
g(k)

))−1

Vf,i ∈ pj , so Vg,j ∈ pj .
Hypothesis (4) follows directly from the definition of Df for f ∈ Tk. Hypothesis

(5) follows from the definition of Vg,j for g ∈ Tk+1 and j ∈ {0, 1, . . . , k} and the fact
that hypothesis (5) holds at earlier stages. Hypotheses (6) and (7) follow directly
from the definition of Vg,j for g ∈ Tk+1 and j ∈ {0, 1, . . . , k}.

The induction being complete, we have from hypothesis (2) that the first con-
clusion of the theorem holds. To verify the second conclusion, we show that∏

n∈F f(n)〈un〉 ∈ Cm whenever f ∈ T , ∅ 6= F ⊆ dom(f),
∏

n∈F f(n)〈un〉 ∈ Sm,
and for all n ∈ F , un ∈

⋃min F
i=0 Hn,i. To do this, let f ∈ T . We show by induction

on |F | that if ∅ 6= F ⊆ dom(f), k = min F , g = f|{0,1,...,k−1}, for each n ∈ F ,
un ∈

⋃k
i=0 Hn,i, and

∏
n∈F f(n)〈un〉 ∈ Sm, then

∏
n∈F f(n)〈un〉 ∈ Vg,m. (Since

Vg,m ⊆ Cm by hypothesis (3), this will suffice.)
Assume first that F = {k}. Then huk

(
f(k)

)
= f(k)〈uk〉 ∈ Sm so uk ∈ Hk,m.

And wk ∈ Bg ⊆ huk

−1[Vg,m] by hypothesis (4), so huk
(wk) ∈ Vg,m as required.

So assume that |F | > 1. Let r = min(F \ {k}), let ĝ = f|{0,1,...,r−1}, and let
g∗ = f|{0,1,...,k}. Pick j such that

∏
n∈F\{k} f(n)〈un〉 ∈ Sj . Note that j ≤ m ≤ k <

r. Then by the induction hypothesis
∏

n∈F\{k} f(n)〈un〉 ∈ Vĝ,j and by hypothesis

(5), Vĝ,j ⊆ Vg∗,j . Pick i ∈ {0, 1, . . . , k} such that uk ∈ S
(k

i

)
. If j ≤ i, then

huk

(
f(k)

)
Vg∗,j ⊆ Vg,i by hypothesis (6) and so

∏
n∈F f(n)〈un〉 ∈ Vg,i = Vg,m.

If j ≥ i, then huk

(
f(k)

)
Vg∗,j ⊆ Vg,j by hypothesis (7) and so

∏
n∈F f(n)〈un〉 ∈

Vg,j = Vg,m. �

The fact that the set of successors to each node of the tree constructed in Theo-
rem 3.2 is central, means that that set of successors itself has very rich combinato-
rial structure as given by the Noncommutative Central Sets Theorem [10, Theorem
14.15]. Some of the more simply stated consequences of the centrality of Bf hold
because ` : Sm → N is a homomorphism and thus so is its continuous extension
` : βSm → βN. Therefore, by [10, Exercise 1.7.3 and Lemma 3.30], if f ∈ T , then
`[Bf ] is central in N. Thus, for example, there will be members of Bf whose lengths
form arbitrarily long arithmetic progressions.
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Corollary 3.3. Assume that, for each n ∈ ω, Sn has been finitely colored and that,

for each n ∈ ω and each i ∈ {0, 1, . . . , n}, Hn,i is a finite subset of S
(

n
i

)
. Then,

there exists a sequence 〈wn〉n<ω with each wn ∈ Sn such that for every m ∈ ω,

Sm ∩ {
∏

n∈F wn〈un〉 : F ∈ Pf (ω) and for all n ∈ F , un ∈
⋃min F

i=0 Hn,i}
is monochrome. (That is, the color of

∏
n∈F wn〈un〉 is determined solely by the

number of parameters in
∏

n∈F wn〈un〉.)
Proof. Let T be a tree as guaranteed by Theorem 3.2 and let 〈wn〉∞n=0 be any path
through T . �

Note that in the statement of Corollary 3.3, the requirement un ∈
⋃min F

i=0 Hi,n

cannot be replaced by the requirement that un ∈
⋃n

i=0 Hi,n. To see this, for each
n ∈ ω, let rn = n + 1 and define ϕn : Sn → {1, 2, . . . , rn} by ϕn(w) ≡ `(w) mod n.
Then given w1 and n greater than `(w1), one cannot have ϕn(w1wn) = ϕn(wn).
(Recall that w1 = w1〈v1〉 and wn = wn〈v1 · · · vn〉.)

If one is only interested in the following corollary, one may prove it in a fashion
similar to the proof of Theorem 3.2.

Corollary 3.4. Let m ∈ N. Suppose that we have a finite coloring of
⋃m

i=0 Si and

a finite subset H of
⋃m

i=0 S
(m

i

)
. Then there exists a sequence 〈wn〉∞n=0 in Sm such

that for every l ∈ {0, 1, . . . ,m},
Sl ∩ {

∏
n∈F wn〈un〉 : F ∈ Pf (ω) and for all n ∈ F , un ∈ H}

is monochrome.

Proof. For each n ∈ ω, we define a finite coloring of Sn by stating that it coincides
with the given coloring if n ≤ m and that it is the constant coloring if n > m.

Choose any a ∈ A and, for n ∈ N, put an = a · · · a ∈ S
(n

0

)
and let a0 = ∅.

For each n ∈ ω and i ∈ {0, 1, . . . ,m}, let Hm+n,i = {uan : u ∈ H ∩ S
(

m
i

)
}. For

all other values of r and i, put Hr,i = ∅. Pick a sequence 〈w′
n〉∞n=0 as guaranteed by

Corollary 3.3. For n ∈ ω, let sn = v0 · · · vm−1a
n and let wn = hsn(w′

m+n). To see
that the sequence 〈wn〉∞n=0 is as required, let l ∈ {0, 1, . . . ,m}. We shall show that

Sl ∩ {
∏

n∈F wn〈un〉 : F ∈ Pf (ω) and for all n ∈ F , un ∈ H}
is a subset of

Sl ∩ {
∏

k∈F ′ w′
k〈uk〉 : F ′ ∈ Pf (ω) and for all k ∈ F ′ , uk ∈

⋃min F ′

i=0 Hk,i} .

Let F ∈ Pf (ω) and for each n ∈ F , let un ∈ H. Let F ′ = m + F and for n ∈ F ,
let u′m+n = hun

(sn) = unan. Then min F ′ ≥ m. We claim that for each k ∈ F ′,
u′k ∈

⋃min F ′

i=0 Hk,i. To see this, let k ∈ F ′ and let n = k−m, so that u′k = hun(sn).

Pick i ∈ {0, 1, . . . ,m} such that un ∈ S
(m

i

)
. Then u′k = unan ∈ Hk,i. To

complete the proof we show that for n ∈ F , w′
m+n〈u′m+n〉 = wn〈un〉. Note that

hun
◦ hsn

= hu′m+n
. Thus

wn〈un〉 = hun
(wn) = hun

(
hsn

(w′
m+n)

)
= hu′m+n

(w′
m+n) = w′

m+n〈u′m+n〉 .
�
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The following corollary is then immediate.

Corollary 3.5. Assume that the alphabet A is finite, that D is a finite group,
and that 〈Tf 〉f∈D is an action of D on A. Let m, k ∈ ω with m > k and let
Sk and Sm be finitely colored. There exists a sequence 〈wt〉∞t=0 in Sm such that
{
∏

t∈F wt : F ∈ Pf (ω)} is monochrome and {
∏

t∈F wt〈ut〉 : F ∈ Pf (ω) and for

each n ∈ F , un ∈ S
(m

k

)
} is monochrome.

Corollary 3.5 can be derived from Theorem 1.3 without using the results of
Section 2 as follows. Let k, m ∈ ω with m > k. Using Theorem 1.3 show that there

exist idempotents p ∈ βSk and q ∈ βSm such that hu(q) = p for every u ∈ S
(m

k

)
.

Then derive the corollary in a fashion similar to the proof of Theorem 3.2.
Based on previous experience with many Ramsey Theoretic problems we would

expect that in the statement of Theorem 1.3 one could take any color class which
is central in Sk. We see now that this is not the case.

Theorem 3.6. There is a central subset M of S1 such that there is no w ∈ S2 with

the property that w〈u〉 ∈ M for every u ∈ S
(2

1

)
.

Proof. Recall that we are assuming that A 6= ∅, so pick a ∈ A. For each k ∈ N,
let Lk = {w ∈ S1 : |{i : w(i) = v0}| ≥ |{i : w(i) = a}| + k} and let L =

⋂∞
k=1 Lk.

Trivially L 6= ∅. Given any w ∈ S1, if m = `(w), then for each z ∈ Lm+k, one
has wz ∈ Lk. Consequently L is a left ideal of βS1. By [10, Corollary 2.6] pick a
minimal idempotent p ∈ L. Let M = L1. Then M ∈ p so M is central.

Now let w ∈ S2 and suppose that w〈u〉 ∈ M for every u ∈ S
(2

1

)
. Let u1 = av0

and let u2 = v0a. Let
b = |{i : w(i) = a}| ,
c = |{i : w(i) = v0}| , and
d = |{i : w(i) = v1}| .

Then d = |{i : w〈u1〉(i) = v0}| ≥ |{i : w〈u1〉(i) = a}| + 1 = b + c + 1 and
c = |{i : w〈u2〉(i) = v0}| ≥ |{i : w〈u2〉(i) = a}|+1 = b+d+1 and so d ≥ 2b+d+2,
a contradiction. �

4. Some Ramsey Theoretic Consequences

We present in this section a new and simpler derivation of a known result and
a new extension of a recent result of Gunderson, Leader, Prömel, and Rödl. Both
deal with the notion of a first entries matrix . Given a matrix which is denoted by
an upper case letter, we shall follow the custom of denoting the entries by the lower
case of the same letter.

Definition 4.1. Let a, b ∈ N and let M be an a × b matrix with entries from Z.
Then M satisfies the first entries condition if and only if no row of M is ~0 and there
exist c1, c2, . . . , cb ∈ N such that, for any row i of M , if the first nonzero entry of
row i occurs in column j, then mi,j = cj . Each cj is called a first entry of M . A
first entries matrix is a matrix with entries from Z which satisfies the first entries
condition.
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First entries matrices are based on Deuber’s (m, p, c)-sets which were used [4]
to prove Rado’s conjecture about sets containing solutions to all partition regular
systems of homogeneous linear equations. First entries matrices provide character-
izations of all image partition regular matrices. See [10, Chapter 15].

Definition 4.2. For each j ∈ N and each w ∈ W , let αj(w) be the number of
occurrences of vj−1 in W .

The following lemma will be used in both of the featured results of this section.
In it, no special assumptions about the alphabet A are needed.

Lemma 4.3. Let a, b ∈ N, let M be an a× b first entries matrix which has all first
entries equal, and let C be a central subset of N. Assume that D = E = {e}. For
each i ∈ {1, 2, . . . , a}, define fi : W → Z by fi(w) =

∑b
j=1 mi,jαj(w). Then there

is a minimal idempotent s of Sb such that
⋂a

i=1 fi
−1[C] ∈ s.

Proof. Pick a minimal idempotent q′ of βN such that C ∈ q′. Pick c ∈ N such
that all first entries of M are equal to c. We claim that we may choose a minimal
idempotent q of βN such that cq = q′, where the product cq is computed in the
semigroup (βN, ·). (When we refer to the semigroup βN without an operation
mentioned, we are speaking of (βN,+).) To see this, define γ : βN → cβN by
γ(p) = cp. Then γ is a surjective homomorphism from βN onto cβN so by [10,
Exercise 1.7.3], γ[K(βN)] = K(cβN). Further, by [10, Lemma 6.6], q′ ∈ cβN and
by [10, Theorem 1.65] K(cβN) = cβN ∩ K(βN) so q′ ∈ K(cβN). Pick r ∈ K(βN)
such that γ(r) = q′ and pick a minimal left ideal L of βN such that r ∈ L. Then
L ∩ γ−1[{q′}] is a compact right topological semigroup, so has an idempotent q.

Note that for each i ∈ {1, 2, . . . , a}, fi is a homomorphism so its continuous
extension, also denoted by fi, from βW to βZ is a homomorphism. Now α1[S1] = ω
so α1

−1[{q}] is a compact subsemigroup of βS1 and so we may pick an idempotent
r ∈ βS1 such that α1(r) = q. Let p0 be any minimal idempotent of βW0 and pick
by Lemma 2.7 an idempotent p1 ∈ p0rβS1∩βS1rp0 which is minimal in βS1. Since
p1 ≤ p0 we may pick a sequence 〈pn〉∞n=0 as guaranteed by Theorem 2.12.

Now p1 = p0rx for some x ∈ βS1 and so α1(p1) = α1(p0) + α1(r) + α1(x) =
0 + α1(r) + α1(x) and thus α1(p1) ≤R α1(r) = q. Similarly α1(p) ≤L q. Since q is
minimal in βN, we have α1(p) = q.

Next we observe that for any j ∈ {1, 2, . . . , b}, αj(pj) = q. To see this, pick

d ∈ A and define u ∈ S
(

j
1

)
by agreeing that for t ∈ {0, 1, . . . , j − 1},

u(t) =
{

d if t 6= j − 1
v0 if t = j − 1 .

Then αj = α1 ◦hu on Sj and hu(pj) = p1 by Lemma 2.14 so αj(pj) = α1

(
hu(pj)

)
=

α1(p1) = q.
Now we claim that for each i ∈ {1, 2, . . . , a}, fi(pb) = q′. This will complete

the proof because we may take s = pb. Let i ∈ {1, 2, . . . , a} and let j be the
column with the first nonzero entry of row i of M . Then for w ∈ W , fi(w) =
cαj(w) +

∑b
t=j+1 mi,tαt(w). For w ∈ Sj and t > j, αt(w) = 0 and so on Sj ,

fi(w) = cαj(w) and consequently fi(pj) = cαj(pj) = cq = q′. Since pb ≤ pj we
have that fi(pb) ≤ fi(pj) = q′ and so, since q′ is minimal, fi(pb) = q′. �
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Definition 4.4. If M is an a × b matrix and ~x ∈ Zb, then η(M~x) is the set of
entries of M~x.

The following result is not new. (See for example [10, Theorem 15.5]1.) The
proof here is shorter (given the earlier development).

Theorem 4.5. Let a, b ∈ N and let M be an a× b first entries matrix. Let C be a
central subset of N. Then there exists ~x ∈ Nb such that η(M~x) ⊆ C.

Proof. Let c1, c2, . . . , cb be the first entries of M , let c =
∏b

j=1 cj , and for j ∈ {1, 2,

. . . , b}, let dj =
c

cj
. Define the a × b matrix N by ni,j = djmi,j for i ∈ {1, 2,

. . . , a} and j ∈ {1, 2, . . . , b}. Then N is a first entries matrix with all first entries
equal to c. Let D = E = {e}. For i ∈ {1, 2, . . . , a} define fi : W → Z by
fi(w) =

∑b
j=1 ni,jαj(w). Pick by Lemma 4.3 a minimal idempotent s of βSb

such that
⋂a

i=1 fi
−1[C] ∈ s. Pick w ∈ Sb ∩

⋂a
i=1 fi

−1[C]. For j ∈ {1, 2, . . . , b}
let xj = djαj(w). Then each xj ∈ N and for i ∈ {1, 2, . . . , a},

∑b
j=1 mi,jxj =∑b

j=1 djmi,jαj(w) =
∑b

j=1 ni,jαj(w) = fi(w) ∈ C. �

Recently Gunderson, Leader, Prömel, and Rödl proved the following theorem.
(By a Kk we mean a complete graph on k vertices. A set is independent with
respect to a graph if there are no edges between members of the set.)

Theorem 4.6. Let a, b, k ∈ N and let M be an a × b first entries matrix. Then
there exist c, d ∈ N and a c × d first entries matrix P such that all first entries of
P are equal and whenever ~x ∈ Nd and G is a Kk-free graph on η(P~x), there exists
~y ∈ Nb such that η(M~y) is an independent subset of η(P~x).

Proof. [7]. �

The following corollary is an immediate consequence of Theorem 4.6.

Corollary 4.7. Let a, b, k ∈ N and let M be an a× b first entries matrix. Let G be
a Kk-free graph on N. Then there exists ~y ∈ Nb such that η(M~y) is independent.

We establish now the following simultaneous extension of Theorem 4.5 and Corol-
lary 4.7.

Theorem 4.8. Let a, b, k ∈ N, let M be an a× b first entries matrix, and let G be
a Kk-free graph on N. There exists a sequence 〈 ~xn〉∞n=1 in Nb such that for every
F ∈ Pf (N), η

(
M(

∑
n∈F ~xn)

)
is an independent subset of C.

Proof. Pick by Theorem 4.6 some c, d ∈ N and a c×d first entries matrix P with all
first entries equal such that for each ~z ∈ Nd, there exists ~y ∈ Nb such that η(M~y)
is an independent subset of η(P~z). Let D = E = {e}. For i ∈ {1, 2, . . . , c} define
fi : W → Z by fi(w) =

∑d
j=1 pi,jαj(w). Pick by Lemma 4.3 a minimal idempotent

s of βSd such that
⋂c

i=1 fi
−1[C] ∈ s.

For each w ∈ Sd, let ~zw =

 α1(w)
...

αd(w)

, pick ~yw ∈ Nb such that η(M ~yw) is an

independent subset of η(P ~zw), and choose γw : {1, 2, . . . , a} → {1, 2, . . . , c} such
that for each i ∈ {1, 2, . . . , a},

∑b
j=1 mi,jyw,j =

∑d
j=1 pγw(i),jαj(w).
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For each µ : {1, 2, . . . , a} → {1, 2, . . . , c}, let Hµ = {w ∈ Sd : γw = µ} and
pick µ : {1, 2, . . . , a} → {1, 2, . . . , c} such that Hµ ∈ s. Choose by [10, Theorem
5.8] a sequence 〈wn〉∞n=1 in Sd such that FP (〈wn〉∞n=1) ⊆ Hµ ∩

⋂c
i=1 fi

−1[C], where
FP (〈wn〉∞n=1) = {

∏
n∈F wn : F ∈ Pf (N)} and

∏
n∈F wn is computed in increasing

order of indices.
For each n ∈ N, let ~xn = ~ywn . To complete the proof, let F ∈ Pf (N) and let

u =
∏

n∈F wn. It suffices to show that M(
∑

n∈F ~xn) = M ~yu. To this end, let
i ∈ {1, 2, . . . , a}. The entry in row i of M(

∑
n∈F ~xn) is∑b

j=1 mi,j(
∑

n∈F ywn,j) =
∑

n∈F

∑b
j=1 mi,jywn,j

=
∑

n∈F

∑d
j=1 pµ(i),jαj(wn)

=
∑d

j=1 pµ(i),j

( ∑
n∈F αj(wn)

)
=

∑d
j=1 pµ(i),jαj(u)

=
∑b

j=1 mi,jyu,j .

�

We remark that Theorem 4.8 can be proved without using Theorem 2.12, using
instead methods such as those in the proof of [11, Theorem 3.16].

5. Some Derivations from Known Results

In this section we show that the commonly quoted version of the Graham-
Rothschild Parameter Sets Theorem in which D = {e} implies the full version
as stated in Theorem 1.3 – in fact a strengthening of that full version, because in
Theorem 5.1 it is not required that D be a group, or even a semigroup. We also
present a derivation of Corollary 3.3 for the case in which A is finite and D = {e}
from [2, Theorem 10].

The following theorem may be known but is certainly not well known, even
though its proof is very simple. (Before obtaining the proof we inquired of several
experts whether such a derivation was possible, and none of them knew.)

Theorem 5.1. Assume the Graham Rothschild Theorem as stated in Theorem
1.3 for the case in which D = {e}. Let Γ = (A,D, {e}, 〈Tf 〉f∈D) be a parameter
system for which A and D are finite and Te is the identity. Let m, k ∈ ω with
k < m. Then, whenever Sk(Γ) is finitely colored, there exists w ∈ Sm(Γ) such that

{w〈u〉 : u ∈ S
(m

k

)
(Γ)} is monochrome.

Proof. Let n = |D| and let D = {g0, g1, . . . , gn−1}, with g0 = e. We define θ :
A ∪ (D × V ) → A ∪ (D × V ) by θ(a) = a if a ∈ A and θ

(
(gi, νj)

)
= (e, νnj+i). As

usual, let W denote the semigroup of words over A ∪ (D × V ). Then θ extends to
a homomorphism from W to W , which we shall also denote by θ. We observe that
θ is a bijection from W onto W ′, the semigroup of words over A ∪ ({e} × V ). Let
Γ′ denote the parameter system (A, {e}, {e}, 〈Te〉).

We define λ : D → {0, 1, . . . , n− 1} by λ(gi) = i.
Since W ′ ⊆ W , hw : W → W is defined for every w ∈ W ′. Further, if w ∈ W ′,

then hw[W ′] ⊆ W ′. We shall show that, for every u ∈ S
(m

k

)
(Γ), there exists

u′ ∈ S
(nm

nk

)
(Γ′) such that θ−1 ◦ hu′ ◦ θ = hu. To this end, let u ∈ S

(m
k

)
(Γ) be
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given and let t ∈ {0, 1, . . . ,m−1}. If u(t) ∈ A, we let u′(nt+i) = Tgi

(
u(t)

)
for each

i ∈ {0, 1, . . . , n− 1}. If u(t) = (f, νj) ∈ D × V , we put: u′(nt + i) = (e, νnj+λ(gif))
for each i ∈ {0, 1, . . . , n− 1}.

We claim that θ−1 ◦hu′ ◦θ = hu. To this end, let x ∈ A∪(D×V ). If x ∈ A, then
θ−1◦hu′ ◦θ(x) = x = hu(x), so assume that x = (gi, νj) for some i ∈ {0, 1, . . . , n−1}
and some j ∈ ω. If j ≥ m, then hu(x) = x and θ(x) = (e, νnj+i) where nj + i ≥ nm
so that θ−1

(
hu′(e, νnj+i)

)
= θ−1(e, νnj+i) = x. So assume that j < m and assume

first that u(j) ∈ A. Then hu(x) = Tgi

(
u(j)

)
. Also u′(nj + i) = Tgi

(
u(j)

)
so

hu′
(
θ(x)

)
= Te

(
Tgi

(
u(j)

))
= Tgi

(
u(j)

)
and thus θ−1 ◦ hu′ ◦ θ(x) = Tgi

(
u(j)

)
.

Finally assume that j < m and u(j) = (f, νt) for some f ∈ D and some t ∈ ω.
Then hu(x) = (gif, νt). Also θ(x) = (e, νnj+i) and u′(nj + i) = (e, νnt+λ(gif)) so
hu′

(
θ(x)

)
= (e, νnt+λ(gif)). Also θ(gif, νt) = (e, νnt+λ(gif)) so θ−1 ◦ hu′ ◦ θ(x) =

(gif, νt).

We must check that u′ ∈ S
(nm

nk

)
(Γ′). Clearly, u′ has length nm. Since (e, νj)

occurs in u if and only if j ∈ {0, 1, . . . , k− 1} and since λ(gie) = i, (e, νnj+i) occurs
in u′ if and only if j ∈ {0, 1, . . . , k − 1} and i ∈ {0, 1, . . . , n − 1}. So (e, νs) occurs
in u′ if and only if s ∈ {0, 1, . . . , nk − 1}.

Finally, let j ∈ {0, 1, . . . , k−1} and let i ∈ {0, 1, . . . , n−1}. If t is the first index
for which (e, νj) occurs in u, then nt+ i is the first index for which (e, νnj+i) occurs

in u′. This establishes that u′ ∈ S
(nm

nk

)
(Γ′).

Now it is easy to verify that θ−1[Snk(Γ′)] ⊆ Sk(Γ) and θ−1[Snm(Γ′)] ⊆ Sm(Γ).
Let r ∈ N and let ϕ : Sk(Γ) → {1, 2, . . . , r} be a finite coloring of Sk(Γ). Then
ϕ ◦ θ−1 is a finite coloring of Snk(Γ′) so pick by Theorem 1.3 w′ ∈ Snm(Γ′) and

i ∈ {1, 2, . . . , r} such that ϕ ◦ θ−1
(
hs(w′)

)
= i for every s ∈ S

(
nm
nk

)
(Γ′). Let

w = θ−1(w′). Then w ∈ Sm(Γ). To see that w is as required, let u ∈ S
(m

k

)
. Then

ϕ(w〈u〉) = ϕ
(
hu(w)

)
= ϕ

(
θ−1 ◦ hu′ ◦ θ(w)

)
= ϕ ◦ θ−1

(
hu′(w′)

)
= i .

�

We now introduce some notation adapted from [2]. Let

S = {〈sn〉∞n=0 : for all n ∈ ω , sn is an n-variable word over A} .

(This is what is denoted in [2] by S+(A,~e ) where e(n) = n for all n ∈ ω.)
Given ~s,~t ∈ S, ~s ≤ ~t if and only if there exists an increasing sequence 〈Hn〉∞n=0

in Pf (ω) (meaning that max Hn < minHn+1 for each n) and for each n ∈ ω and

each k ∈ Hn there exists uk ∈
⋃n

l=0 S
(k

l

)
such that sn =

∏
k∈Hn

tk〈uk〉. (Since

sn ∈ Sn, one has that for some k ∈ Hn, uk ∈ S
(

k
n

)
.) Note that ≤ is transitive.

(This is the relation that is denoted in [2] by ≤+.)
Give S the topology with basis {B(n,~t ) : n ∈ ω and ~t ∈ S}, where

B(n,~t ) = {~s ∈ S : ~s ≤ ~t and for all i ∈ {0, 1, . . . , n− 1} , si = ti} .

Notice that if ~s ∈ B(n,~t ), then B(n,~s ) ⊆ B(n,~t ).
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Theorem 5.2. Let X be open in S, let ~s ∈ S, and let n ∈ ω. Then there exists
~t ∈ B(n,~s ) such that either B(n,~t ) ⊆ X or B(n,~t ) ∩X = ∅.

Proof. This is an immediate consequence of [2, Theorem 10] because open sets are
Baire. �

Lemma 5.3. Let n ∈ ω, let k ∈ N, let ϕ : Sn → {1, 2, . . . , k}, and let ~s ∈ S. There
exists ~t ∈ B(n,~s ) such that ϕ is constant on {rn : ~r ∈ B(n,~t )}.

Proof. We proceed by induction on k, the case k = 1 being trivial. Let k ∈ N
and assume the lemma is true for k. Let ϕ : Sn → {1, 2, . . . , k + 1} and let
X = {~t ∈ S : ϕ(tn) = k + 1}. If ~t ∈ X, then B(n + 1,~t ) ⊆ X so X is open. Let
~s ∈ S and pick ~t ∈ B(n,~s ) such that either B(n,~t ) ⊆ X or B(n,~t ) ∩X = ∅.

If B(n,~t ) ⊆ X, then ϕ is constantly equal to k + 1 on {rn : ~r ∈ B(n,~t )}, so
assume that B(n,~t ) ∩X = ∅. Define τ : Sn → {1, 2, . . . , k} by

τ(w) =
{

ϕ(w) if ϕ(w) ≤ k
1 if ϕ(w) = k + 1 .

Pick ~u ∈ B(n,~t ) such that τ is constant on {rn : ~r ∈ B(n, ~u )}. Then ~u ∈ B(n,~s ).
We claim that ϕ is constant on {rn : ~r ∈ B(n, ~u )}. Indeed, given ~r ∈ B(n, ~u ) one
has ~r ∈ B(n,~t ) so ϕ(rn) 6= k + 1 and thus ϕ(rn) = τ(rn). �

Theorem 5.4. Assume that A is finite, D = {e}, and, for each n ∈ ω, Sn has
been finitely colored. Then, there exists a sequence 〈wn〉n<ω with each wn ∈ Sn

such that for every m ∈ ω,

Sm ∩
{∏

n∈F wn〈un〉 : F ∈ Pf (ω) and for all n ∈ F , un ∈
⋃min F

i=0 S
(

n
i

)}
is monochrome. (That is, the color of

∏
n∈F wn〈un〉 is determined solely by the

number of variables in
∏

n∈F wn〈un〉.)

Proof. We may assume that Te is the identity since the general case then follows

easily. To see this, notice that whenever w ∈ S
( n

m

)
and u ∈ S

(m
k

)
, there is a

u′ ∈ S
(m

k

)
such that w〈u〉 is the same as w〈u′〉, where w〈u′〉 is computed after

reinterpreting Te to be the identity on A.
For each n ∈ ω, let ϕ

n be a finite coloring of Sn. Choose by Lemma 5.3 ~s0 ∈ S
such that ϕ0 is constant on {r0 : ~r ∈ B(0, ~s0)}.

Let n ∈ N and assume that we have chosen ~sn−1. Choose ~sn ∈ B(n, ~sn−1) such
that ϕ

n is constant on {rn : ~r ∈ B(n, ~sn)}.
For n ∈ ω, let wn = sn,n, i.e. entry n of ~sn. We claim that the sequence 〈wn〉∞n=0

is as required. So let m ∈ ω, let F ∈ Pf (ω), for each n ∈ F , let un ∈
⋃min F

i=0 S
(

n
i

)
,

and assume that
∏

n∈F wn〈un〉 ∈ Sm.
We shall show that

∏
n∈F wn〈un〉 ∈ {rm : ~r ∈ B(m, ~sm)}. To this end, let

k = maxF . Then for each n ∈ F , wn = sn,n = sn+1,n = . . . = sk,n. Notice that

m ≤ minF because
∏

n∈F wn〈un〉 ∈ Sm so for some n, un ∈ S
( n

m

)
. For this n,

un ∈ S
(

n
i

)
for some i ≤ minF and so m = i.
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For n < m, let rn = wn = sk,n. Let rm =
∏

n∈F wn〈un〉. And for n > m,

let rn = sk,k+n−m〈zn〉 where zn is any member of S
(k + n−m

n

)
. Then ~r ∈

B(m, ~sk) ⊆ B(m, ~sm). �
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