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The First Nontrivial Hales-Jewett Number is Four

Neil Hindman ∗ Eric Tressler †

Abstract

We show that whenever the length four words over a three letter alphabet
are two-colored, there must exist a monochromatic combinatorial line. We also
provide some computer generated lower bounds for some other Hales-Jewett
numbers.

1 Introduction

Several of the classic results in Ramsey Theory assert, given a certain size k
and number of colors r, the existence of a positive integer n such that whenever
an appropriate object of size n is r-colored, there must exist a monochromatic
object of size k. (By an r-coloring of a set X we mean, of course, a function
taking X to some r-element set. To say that Y ⊆ X is monochromatic is to
say that the given function is constant on Y .)

Consider the following examples, given here in historical order. Schur’s
Theorem [6] says that for any r there is some n such that whenever the set
[n] := {1, ..., n} is r-colored, there must exist some x, y such that {x, y, x + y}
is monochromatic.

Also, van der Waerden’s Theorem [8] says that if k and r are positive inte-
gers, there is some n such that whenever the [n] is r-colored, there must exist
a monochromatic length k arithmetic progression.

The finite version of Ramsey’s Theorem [5] says that given positive integers
k, m, and r, there is some n such that whenever the k-element subsets of an
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n-element set X are r-colored, there must be an m-element subset Y of X, all
of whose k-element subsets are the same color.

And the Hales-Jewett Theorem [2] says that for any positive integers k and
r there exists n = HJ(k, r) such that whenever the set of length n words over
a k-letter alphabet are r-colored, there must exist a monochromatic line. Here
perhaps a bit of explanation is in order. A word over an alphabet (= set) A
is a finite sequence in A, and the length of the word is the number of terms
in the sequence. For our purposes, the informal view of a sequence as terms
listed in order will do, so that, for example, 1323 is a length 4 word over the
alphabet {1, 2, 3} (and also over the alphabet {1, 2, 3, 4, 5} for that matter). A
variable word over A is a word over A ∪ {v} in which v occurs, where v is a
“variable” which is not in A. If w = w(v) is a variable word over A and a ∈ A,
then w(a) is the word in which all occurrences of v are replaced by a. Thus, for
example, if w(v) = 1v3v, then w(1) = 1131 and w(2) = 1232. A combinatorial
line over A is {w(a) : a ∈ A} where w(v) is a variable word over A. Again, if
A = {1, 2, 3}, then {1131, 1232, 1333} is the combinatorial line determined by
w(v) = 1v3v.

A substantial amount of effort has been invested in finding the value of
the smallest n which “works” for particular instances of Schur’s Theorem, van
der Waerden’s Theorem, and Ramsey’s Theorem. For example, the smallest
n guaranteeing a monochromatic length k arithmetic progression when [n] is
2-colored are respectively 9, 35, and 178 for k = 3, k = 4, and k = 5. See [1,
Chapter 4] and [4] for substantial information about known specific values of
van der Waerden numbers, Schur numbers, and Ramsey numbers.

The original proofs of these theorems produced exceedingly large upper
bounds for n (except for Schur’s Theorem, where the original proof shows that
n = br!ec will do). The easiest way to prove Ramsey’s Theorem and the Hales-
Jewett theorem is to prove the infinite versions. One then deduces the finite
versions, but this method yields no upper bounds at all. Twenty years ago there
was a great deal of excitement when Shelah showed [7] that there are upper
bounds for the van der Waerden and Hales-Jewett numbers that are primitive
recursive. See [1] for a detailed discussion of the Hales-Jewett theorem and also
of the proof by Shelah.

Uniquely among the classical theorems mentioned above, no nontrivial val-
ues of HJ(k, r) had been known. It’s clear that HJ(k, 1) = 1 for any k, and
that HJ(2, r) = r is not hard to prove. (If w is a word of length l over the
alphabet {1, 2} and ϕ(w) is the number of 1’s occurring in w, then there is no
monochromatic combinatorial line and so HJ(2, r) ≥ r. If wi = ai,1ai,2 · · · ai,l

where ai,t = 2 if t < i and ai,t = 1 if t ≥ i, then whenever i 6= j, {wi, wj} is
a combinatorial line, and so HJ(2, r) ≤ r.) The first nontrivial value of HJ ,
then, is HJ(3, 2), which we show here, in Section 2, to be 4. In Section 3 we
present an algorithm which we used to determine that HJ(3,2)=4 before the
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detailed proof of Section 2 was found and present some lower bounds for other
Hales-Jewett numbers obtained using that algorithm.

2 HJ(3,2)=4

This section is devoted entirely to a proof of the following theorem.

Theorem 1. Let the length four words on the alphabet {1, 2, 3} be two colored.
Then there exists a monochromatic combinatorial line.

Proof. Suppose instead that we have a 2-coloring of the 4-letter words over
{1, 2, 3} with respect to which there is no monochromatic combinatorial line.
Let A be the set of words with the first color and let B be the set of words
with the second color. Now {1111, 2222, 3333} is a combinatorial line, so we
may assume without loss of generality that 1111 ∈ A, 2222 ∈ A, and 3333 ∈ B.

The proof now proceeds through four lemmas. In the proofs of these lemmas,
we shall follow the customary abuse of notation wherein we substitute “P ⇒ Q”
for the instance of modus ponens which should say “(P ⇒ Q) and P , therefore
Q”.

Lemma 2. If {2111, 1211} ⊆ A, then 2211 ∈ B.

Proof. Suppose instead that {2111, 1211, 2211} ⊆ A.

1111 ∈ A and 2211 ∈ A ⇒ 3311 ∈ B.
1211 ∈ A and 2211 ∈ A ⇒ 3211 ∈ B.
1111 ∈ A and 2111 ∈ A ⇒ 3111 ∈ B.

But {3311, 3211, 3111} is a combinatorial line.

Lemma 3. It is not the case that {1112, 1121, 1211, 2111} ⊆ A.

Proof. Suppose that {1112, 1121, 1211, 2111} ⊆ A.

1112 ∈ A and 2222 ∈ A ⇒ 3332 ∈ B.
3332 ∈ B and 3333 ∈ B ⇒ 3331 ∈ A.
3331 ∈ A and 1111 ∈ A ⇒ 2221 ∈ B.
1111 ∈ A and 1121 ∈ A ⇒ 1131 ∈ B.
1131 ∈ B and 3333 ∈ B ⇒ 2232 ∈ A.

Lemma 2 ⇒ 2211 ∈ B.
2221 ∈ B and 2211 ∈ B ⇒ 2231 ∈ A.
2111 ∈ A and 2222 ∈ A ⇒ 2333 ∈ B.
2232 ∈ A and 2231 ∈ A ⇒ 2233 ∈ B.
1211 ∈ A and 2222 ∈ A ⇒ 3233 ∈ B.
3233 ∈ B and 3333 ∈ B ⇒ 3133 ∈ A.
2333 ∈ B and 2233 ∈ B ⇒ 2133 ∈ A.
2233 ∈ B and 3333 ∈ B ⇒ 1133 ∈ A.
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But {1133, 2133, 3133} is a combinatorial line.

Lemma 4. It is not the case that some two of 1112, 1121, 1211, and 2111 are
in A.

Proof. Suppose instead without loss of generality that {1211, 2111} ⊆ A. By
Lemma 3 we can assume without loss of generality that 1112 ∈ B.

2222 ∈ A and 1211 ∈ A ⇒ 3233 ∈ B.
3333 ∈ B and 3233 ∈ B ⇒ 3133 ∈ A.
1111 ∈ A and 3133 ∈ A ⇒ 2122 ∈ B.
2122 ∈ B and 1112 ∈ B ⇒ 3132 ∈ A.
3132 ∈ A and 3133 ∈ A ⇒ 3131 ∈ B.
3131 ∈ B and 3333 ∈ B ⇒ 3232 ∈ A.
1111 ∈ A and 2111 ∈ A ⇒ 3111 ∈ B.
3232 ∈ A and 2222 ∈ A ⇒ 1212 ∈ B.
3111 ∈ B and 3333 ∈ B ⇒ 3222 ∈ A.
3232 ∈ A and 3222 ∈ A ⇒ 3212 ∈ B.
3111 ∈ B and 3212 ∈ B ⇒ 3313 ∈ A.
1212 ∈ B and 3212 ∈ B ⇒ 2212 ∈ A.

But {1111, 2212, 3313} is a combinatorial line.

Lemma 5. {1112, 1121, 1211, 2111, 2221, 2212, 2122, 1222} ⊆ B.

Proof. Suppose not. We have not distinguished between 2 and 1 so we may as-
sume without loss of generality that 2111 ∈ A. We have that {1211, 1121, 1112} ⊆
B by Lemma 4.
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1111 ∈ A and 2111 ∈ A ⇒ 3111 ∈ B.
3111 ∈ B and 3333 ∈ B ⇒ 3222 ∈ A.
2111 ∈ A and 2222 ∈ A ⇒ 2333 ∈ B.
3222 ∈ A and 2222 ∈ A ⇒ 1222 ∈ B.
2333 ∈ B and 3333 ∈ B ⇒ 1333 ∈ A.
1222 ∈ B and 1211 ∈ B ⇒ 1233 ∈ A.
1233 ∈ A and 1333 ∈ A ⇒ 1133 ∈ B.
1133 ∈ B and 3333 ∈ B ⇒ 2233 ∈ A.
1222 ∈ B and 1112 ∈ B ⇒ 1332 ∈ A.
1332 ∈ A and 1333 ∈ A ⇒ 1331 ∈ B.
1331 ∈ B and 3333 ∈ B ⇒ 2332 ∈ A.
2332 ∈ A and 1332 ∈ A ⇒ 3332 ∈ B.
2233 ∈ A and 1233 ∈ A ⇒ 3233 ∈ B.
2332 ∈ A and 2222 ∈ A ⇒ 2112 ∈ B.
3233 ∈ B and 3333 ∈ B ⇒ 3133 ∈ A.
3133 ∈ A and 1111 ∈ A ⇒ 2122 ∈ B.
2233 ∈ A and 2222 ∈ A ⇒ 2211 ∈ B.
3332 ∈ B and 3333 ∈ B ⇒ 3331 ∈ A.
3331 ∈ A and 1111 ∈ A ⇒ 2221 ∈ B.
2122 ∈ B and 2112 ∈ B ⇒ 2132 ∈ A.
2221 ∈ B and 2211 ∈ B ⇒ 2231 ∈ A.
2221 ∈ B and 1211 ∈ B ⇒ 3231 ∈ A.
2132 ∈ A and 3133 ∈ A ⇒ 1131 ∈ B.
3231 ∈ A and 2231 ∈ A ⇒ 1231 ∈ B.

But {1131, 1231, 1331} is a combinatorial line.

We are now ready to conclude the proof of Theorem 1.
We have by Lemma 5 that {1112, 1121, 1211, 2111, 2221, 2212, 2122, 1222} ⊆

B and we have not distinguished between 1 and 2. (We distinguished between
1 and 2 in the proof of Lemma 5, but that distinction has disappeared.) Since
{3331, 3332, 3333} is a combinatorial line, we may assume without loss of gen-
erality that 3331 ∈ A.

We have that all words with three 1’s and one 2 are in B and all words
with three 2’s and one 1 are in B, so all words with two 3’s, one 1, and one 2
are in A. (To see for example that 3132 ∈ A, use the fact that 2122 ∈ B and
1112 ∈ B.)
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3331 ∈ A and 3321 ∈ A ⇒ 3311 ∈ B.
3331 ∈ A and 2331 ∈ A ⇒ 1331 ∈ B.
1331 ∈ B and 3333 ∈ B ⇒ 2332 ∈ A.
3311 ∈ B and 3333 ∈ B ⇒ 3322 ∈ A.
2332 ∈ A and 2222 ∈ A ⇒ 2112 ∈ B.
3322 ∈ A and 2222 ∈ A ⇒ 1122 ∈ B.
2112 ∈ B and 2122 ∈ B ⇒ 2132 ∈ A.
1112 ∈ B and 1122 ∈ B ⇒ 1132 ∈ A.

But {1132, 2132, 3132} is a combinatorial line.

3 An Algorithm

Another method of proving that HJ(3, 2) = 4 requires a computer (or some
months of free time), but is very elementary, and gives a reasonable idea for
obtaining constructive lower bounds on other Hales-Jewett numbers. Owing to
the extremely large upper bound, of course, it is possible that any constructive
lower bound is still well short of the mark.

The algorithm is quite simple (and can easily be generalized, but we will
use k = 3 and r = 2 here for clarity). First, one enumerates and stores the 2-
colorings of the length 1 words (here and below, over the alphabet {1, 2, 3}) that
avoid a monochromatic line (the “good” colorings); these are the 6 nonconstant
colorings.

Now we make the simple observation that in any good 2-coloring of the
length-2 words, each set of the form {1x, 2x, 3x} with x ∈ [3] must correspond
to one of the 6 good colorings of [3]1, or else that set comprises a monochromatic
line. Using this fact, we can examine all of the possibly good colorings of the
length 2 words by considering 63 possibilities instead of all 29 = 83 colorings.
The good colorings are stored – it turns out that there are 66 of them.

In any possible good 2-coloring of the words of length 3, each set of the
form {11x, 12x, 13x, 21x, 22x, 23x, 31x, 32x, 33x} with x ∈ [3] must have one
of the 66 colorings mentioned above. In searching the colorings of the length 3
words, this lets us examine just 663 possibilities instead of 227 = 5123. Of the
663 we examine, we find 1644 good colorings, which are stored as before.

Repeating this process, in the 16443 possible good colorings of the length 4
words, we find in each case a monochromatic line. Thus, HJ(3, 2) = 4. Note
that in this last step, we have a search space of 16443 ≈ 232 instead of one with
size 281.

Using this algorithm together with a simple simulated annealing algorithm
(see [3] for a description of simulated annealing) we have easily obtained the
bounds HJ(4, 2) > 5, HJ(5, 2) > 6, and HJ(3, 3) > 6. Note that even if, for
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instance, HJ(3, 3) = 7, the search space in this case has order 337
, too large

for the methods of this section to approach.
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