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Abstract

Let SandT be infinite discrete semigroups, letA ⊆ P (S), and assume thatA has
the finite intersection property. Letf : S→ T and let f̃ : βS→ βT be its continuous
extension. We obtain necessary and sufficient conditions for the restriction off̃ to⋂

A∈A c`βS(A) to be a homomorphism and to be injective. We also investigate certain
simpler conditions that are known to be sufficient for this restriction to be a homomor-
phism.
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1 Introduction

We are concerned in this paper with the Stone-Čech compactificationβSof a discrete semi-
group S and the extension of the operation onS to βS. So we shall begin with a brief
introduction to this structure. For a more complete introduction see the book [3].

Given a discrete semigroup(S, ·), we take the points of the Stone-Čech compactification
βSof S to be the ultrafilters onS, identifying the principal ultrafilters with the points ofS
and thereby pretending thatS⊆ βS. A basis for the open sets ofβS(as well as for the closed
sets) is{A : A⊆ S} whereA = {p∈ βS: A∈ p}. ThenA = c`βS(A). The operation extends
to βS making (βS, ·) into a compact right topological semigroup (meaning that for each
p∈ βS, the functionρp : βS→ βSdefined byρp(q) = q· p is continuous) withScontained
in its topological center (meaning that for eachx∈ S, the functionλx : βS→ βSdefined by
λx(q) = x ·q is continuous). Givenp,q∈ βSandA⊆ S, one has thatA∈ p·q if and only if
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{x∈ S : x−1A∈ q} ∈ p, wherex−1A = {y∈ S : x · y∈ A}. (If (S, ·) is a group, this agrees
with the customary definitionx−1A = {x−1 ·z : z∈ A}.) We shall use the fact thatp·q has a
basis of sets of the form

⋃
a∈AaBa, whereA∈ p and, for eacha∈ A, Ba ∈ q.

We shall useS∗ to denote the remainder spaceβS\Sand, for a subsetA of S, we shall
useA∗ to denoteclβS(A)∩S∗.

The algebraic structure ofβS can be very rich, and has had significant combinatorial
applications. It is a simple fact that a nonempty subsetX of βS is closed if and only if there
is a familyA ⊆ P (S) such thatA has the finite intersection property andX =

⋂
A∈A A. It is

an old result of Paul Milnes [4] that ifS is a discrete semigroup,T is a compact Hausdorff
right topological semigroup,f is a homomorphism fromS to T such that for eachx ∈ S,
λ f (x) is continuous, then the continuous extensionf̃ : βS→ T is a homomorphism. As a
consequence, ifSandT are discrete semigroups andf : S→ T is a homomorphism, then
the continuous extensioñf : βS→ βT is also a homomorphism.

For some of the combinatorial applications, as well as for a significant amount of the
knowledge of the algebraic structure ofβT, it has been important that for̃f to be a homo-
morphism on certain compact subsemigroups ofβS, f need not be a homomorphism on all
of S.

Theorem 1.1. Let (S, ·) be a semigroup, letA ⊆ P (S) have the finite intersection property,
and let H=

⋂
A∈A A. Let(T, ·) be a compact right topological semigroup and let f: S−→ T

have the property that for all x∈ S,λ f (x) is continuous. Assume that there is some A∈ A
such that for each x∈ A, there exists B∈ A for which f(x ·y) = f (x) · f (y) for every y∈ B.
Then for all p,q∈ H, f̃ (p·q) = f̃ (p) · f̃ (q).

Proof. [3, Theorem 4.21].

One is primarily interested in
⋂

A∈A A when it is a subsemigroup, though that assump-
tion is not used in Theorem 1.1. In [3] we provided a simple sufficient condition for this to
hold.

Theorem 1.2. Let (S, ·) be a semigroup, letA ⊆ P (S) have the finite intersection property,
and let H=

⋂
A∈A A. If for each A∈A and each x∈A, there exists B∈A such that x·B⊆A,

then H is a subsemigroup ofβS.

Proof. [3, Theorem 4.20].

In fact, when [3] was written, a necessary and sufficient condition for the conclusion of
Theorem 1.2 was known. (Why we didn’t at least mention it is known only to God, and She
is not telling. We did mention that Theorem 1.2 was a special case of a result from [1].) For
a setX, we writeP f (X) for the set of finite nonempty subsets ofX.

Theorem 1.3. Let (S, ·) be a semigroup, letA ⊆ P (S) have the finite intersection property,
let H =

⋂
A∈A A, and letR = {B⊆ S: (∀A∈A)(B∩A 6= /0)}. Then H is a subsemigroup of

βS if and only if(∀A∈ A)(∀B∈ R )
(
∃F ∈ P f (B)

)
(∃C∈ A)(C⊆

⋃
x∈F x−1A).

Proof. [1, Theorem 2.6].
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It is essentially trivial that the condition of Theorem 1.1 is not necessary, as we shall
see in Theorem 1.4. In that theorem we assume thatS∗ = βS\S is a subsemigroup of
βS. A necessary and sufficient condition thatS∗ be a subsemigroup ofβS, which is an
immediate consequence of Theorem 1.3 withA as the set of all cofinite subsets ofS, is
given in [3, Theorem 4.28]. In particular, ifS is either right or left cancellative, thenS∗ is a
subsemigroup ofβS.

Theorem 1.4. Let T = N∪{∞} where topologically T is the one point compactification of
N and algebraically the operation on T is ordinary addition onN with ∞+x = x+∞ = ∞
for all x ∈ T. Let S be any infinite discrete semigroup and let f: S→ T. If f−1[{a}] is finite
for all a ∈ N, and f̃ : βS→ T is the continuous extension of f , then the restriction off̃ to
S∗ is a homomorphism.

Proof. It suffices to show that for allp∈S∗, f̃ (p) = ∞. Suppose instead that we havep∈S∗

such that̃f (p) = a∈N. Then f−1[{a}] is in p, and is therefore infinite, a contradiction.

Thus, it is possible for the restriction of̃f to S∗ to be a homomorphism while for allx
andy in S, f (x ·y) 6= f (x) · f (y). For example, letS= (N,+) and f (x) = x+1.

The situation is not nearly so simple if we considerf : S→ T whereSandT are both
discrete semigroups. In this case, one letsA be a collection of subsets ofSwith the finite
intersection property, letsH =

⋂
A∈A A, and asks whether the restriction off̃ to H is a

homomorphism, wherẽf : βS→ βT is the continuous extension off . (When we say the
restriction is a homomorphism we are not demanding thatH be a subsemigroup ofβS,
though it will be in the more interesting situations. We only ask that wheneverp,q ∈ H
one hasf̃ (p ·q) = f̃ (p) · f̃ (q).) We shall obtain necessary and sufficient conditions for the
restriction of f̃ to H to be a homomorphism in Section 2. We shall show, in contrast with
Theorem 1.4, that if̃f (p ·q) = f̃ (p) · f̃ (q) for all p andq in a nonempty open subset ofS∗,
then one must have manya andb in S for which f (a·b) = f (a) · f (b).

In Section 3 we restrict ourselves to the situation whereH = S∗, that is whereA = {F ⊆
S: S\F is finite}. In Section 4 we go to the other extreme and only consider whetherf̃ (p)
is an idempotent whenp is an idempotent. On the one hand, this arises whenA = p. On
the other hand, ifH is a subsemigroup ofβS, it will contain an idempotent – usually many,
and if the restriction of̃f to H is a homomorphism, then the image of an idempotent will
be an idempotent.

2 Restrictions toH

In this section we derive some necessary and sufficient conditions for the restriction off̃
to H to be injective and for it to be a homomorphism, whereS andT are infinite discrete
semigroups,f : S→ T, A is a set of subsets ofSwith the finite intersection property, and
H =

⋂
A∈A A.

We begin with the following characterization of when the restriction off̃ to H is injec-
tive. This simple fact seems not to have been noted before.

Theorem 2.1. Let S and T be infinite discrete semigroups, letA be a set of subsets of S
with the finite intersection property, let H=

⋂
A∈A A, let f : S→ T, and let f̃ : βS→ βT be
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the continuous extension of f . The restriction off̃ to H is injective if and only if for every
A⊆ S, there exists B∈ A such that f[A∩B]∩ f [B\A] = /0.

Proof. Sufficiency. Letp,q∈H and assume thatp 6= q. PickA∈ p\q. PickB∈A such that
f [A∩B]∩ f [B\A] = /0. ThenA∩B∈ p andB\A∈ q so f [A∩B]∈ f̃ (p) and f [B\A]∈ f̃ (q).

Necessity. Assume that the restriction off̃ to H is injective and suppose that we have
A⊆Ssuch that for allB∈A , f [A∩B]∩ f [B\A] 6= /0. LetR = { f [A∩B]∩ f [B\A] : B∈A}.
ThenR has the finite intersection property so pickr ∈ βT such thatR ⊆ r.

Let B = {A∩ B∩ f−1[C] : B ∈ A andC ∈ R} and let C = {(B\ A) ∩ f−1[C] : B ∈
A andC ∈ R}. ThenB andC have the finite intersection property, so pickp,q∈ βSsuch
thatB ⊆ p andC ⊆ q. Thenp,q∈ H and f̃ (p) = f̃ (q) = r.

Given a setA of subsets ofSand a cardinalκ ≤ |S|, we say thatA has theκ-uniform
finite intersection propertyif and only if wheneverF ∈ P f (A), one has|

⋂
F | ≥ κ. And

we letUκ(S) = {p∈ βS: (∀A∈ p)(|A| ≥ κ)}.
In our characterizations of when the restriction off̃ to H is a homomorphism, it is

more convenient to take a negative point of view. That is, whe characterize when it isnot a
homomorphism.

Theorem 2.2. Let S and T be infinite discrete semigroups, letA be a set of subsets of S
with the finite intersection property, let H=

⋂
A∈A A, let f : S→ T, and let f̃ : βS→ βT

be the continuous extension of f . Statements (a), (b), and (c) are equivalent. If in addition
ω ≤ κ ≤ |S|, H ⊆Uκ(S), and|A |= κ, then all five statements are equivalent.

(a) There exist p,q∈ H such thatf̃ (p·q) 6= f̃ (p) · f̃ (q).

(b) There exist B⊆ S and D: S→ P (S) such thatA ∪{B} andA ∪{D(x) : x∈ S} have
the finite intersection property and

(⋃
x∈B f

[
x ·D(x)

])
∩

(⋃
x∈B f (x) · f

[
D(x)

])
= /0.

(c) There exist indexed families〈xF 〉F ∈P f (A) and〈yF 〉F ∈P f (A) such that

(i) for all F ∈ P f (A), xF ∈
⋂

F and yF ∈
⋂

F ; and

(ii) { f (xF ·yG ) : F ,G ∈ P f (A) andF ⊆ G}∩
{ f (xF ) · f (yG ) : F ,G ∈ P f (A) andF ⊆ G}= /0.

(d) There exist B⊆ S and D: S→ P (S) such thatA ∪{B} andA ∪{D(x) : x∈ S} have
theκ-uniform finite intersection property and(⋃

x∈B f
[
x ·D(x)

])
∩

(⋃
x∈B f (x) · f

[
D(x)

])
= /0.

(e) There exist indexed families〈xF 〉F ∈P f (A) and〈yF 〉F ∈P f (A) such that

(i) for all F ,G ∈ P f (A), if F 6= G , then xF 6= xG and yF 6= yG ;

(ii) for all F ∈ P f (A), xF ∈
⋂

F and yF ∈
⋂

F ; and

(iii) { f (xF ·yG ) : F ,G ∈ P f (A) andF ⊆ G}∩
{ f (xF ) · f (yG ) : F ,G ∈ P f (A) andF ⊆ G}= /0.
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Proof. (a)⇒ (b). Pickp andq in H such thatf̃ (p·q) 6= f̃ (p) · f̃ (q) and pick

A∈ f̃ (p·q)\ f̃ (p) · f̃ (q) .

Since f̃ ◦ ρq and ρ f̃ (q) ◦ f̃ are continuous, pickB ∈ p such that f̃ ◦ ρq[B] ⊆ A and

ρ f̃ (q) ◦ f̃ [B]⊆ T \A.

For eachx ∈ B, since f̃ ◦ λx and λ f (x) ◦ f̃ are continuous, pickD(x) ∈ q such that

f̃ ◦λx[D(x) ]⊆ A andλ f (x) ◦ f̃ [D(x) ]⊆ T \A. Forx∈ S\B, let D(x) = S.
SinceA ∪{B} ⊆ p andA ∪{D(x) : x ∈ S} ⊆ q, they each have the finite intersection

property. And
(⋃

x∈B f
[
x ·D(x)

])
⊆ A and

(⋃
x∈B f (x) · f

[
D(x)

])
⊆ T \A.

(b)⇒ (c). PickB andD as guaranteed by statement (b). ForF ∈ P f (A), pick xF ∈
B∩

⋂
F . ForG ∈ P f (A), pick yG ∈

⋂
G ∩

⋂
{D(xF ) : /0 6= F ⊆ G}.

Then{ f (xF ·yG ) : F ,G ∈ P f (A) andF ⊆ G} ⊆
⋃

x∈B f [x·D(x)] and{ f (xF ) · f (yG ) :
F ,G ∈ P f (A) andF ⊆ G} ⊆

⋃
x∈B f (x) · f [D(x)].

(c)⇒ (a). Pick〈xF 〉F ∈P f (A) and〈yF 〉F ∈P f (A) as guaranteed by statement (c). ForF ∈
P f (A), letBF = {xG : G ∈P f (A) andF ⊆G} and letCF = {yG : G ∈P f (A) andF ⊆G}.
Then{BF : F ∈P f (A)} and{CF : F ∈P f (A)} have the finite intersection property so pick
p andq in βSsuch that{BF : F ∈ P f (A)} ⊆ p and{CF : F ∈ P f (A)} ⊆ q. GivenA∈ A ,
B{A} ⊆ A andC{A} ⊆ A soA∈ p andA∈ q. Thusp∈ H andq∈ H.

Let A = { f (xF ·yG ) : F ,G ∈ P f (A) andF ⊆ G} and letE = { f (xF ) · f (yG ) : F ,G ∈
P f (A) andF ⊆ G}. Then A∩E = /0 so it suffices to show thatA ∈ f̃ (p · q) and E ∈
f̃ (p) · f̃ (q).

Pick anyD ∈ A . ThenB{D} ∈ p. We claim thatB{D} ⊆ {z∈ S: z−1 f−1[A] ∈ q} so that

f−1[A] ∈ p·q and consequentlyA∈ f̃ (p·q). So letF ∈ P f (A) with D ∈ F . We claim that
CF ⊆ x−1

F f−1[A] and thusx−1
F f−1[A]∈ q. Let G ∈ P f (A) with F ⊆G . Then f (xF ·yG )∈A

soyG ∈ x−1
F f−1[A].

Now we claim thatf [B{D}]⊆ {z∈ T : z−1E ∈ f̃ (q)} so thatE ∈ f̃ (p) · f̃ (q) as required.
So letF ∈ P f (A) with D ∈ F . GivenG ∈ P f (A) with F ⊆ G , one hasf (xF ) · f (yG ) ∈ E
so f [CF ]⊆ f (xF )−1E.

We have shown that statements (a), (b), and (c) are equivalent. Now assume thatω ≤
κ ≤ |S|, H ⊆ Uκ(S), and|A | = κ. Trivially statement (e) implies statement (c). Further,
the proof that statement (a) implies statement (d) may be taken verbatim from the proof
that statement (a) implies statement (b) except that where, in that proof, we noted that since
“A ∪{B} ⊆ p andA ∪{D(x) : x∈ S} ⊆ q, they each have the finite intersection property”
we now note that sincep,q∈ H ⊆Uκ(S), it follows thatA ∪{B} andA ∪{D(x) : x∈ S}
each have theκ-uniform finite intersection property.

(d)⇒ (e). PickB andD as guaranteed by statement (d). Since|A | = κ, we also have
that |P f (A)| = κ. EnumerateP f (A) as 〈Fα〉α<κ. Inductively choose forα < κ, xFα ∈
(B∩

⋂
Fα)\{xFδ : δ < α}. When that induction is complete so thatxF has been chosen for

eachF ∈ P f (A), inductively choose forα < κ,

yFα ∈
⋂

Fα)∩
⋂
{D(xF ) : /0 6= F ⊆ Fα}\{yFδ : δ < α} .

Then{ f (xF ·yG ) : F ,G ∈ P f (A) andF ⊆ G} ⊆
⋃

x∈B f [x·D(x)] and{ f (xF ) · f (yG ) :
F ,G ∈ P f (A) andF ⊆ G} ⊆

⋃
x∈B f (x) · f [D(x)].
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We next obtain another necessary and sufficient condition which is valid for semigroups
satisfying a weak cancellation assumption and functions for which the preimages of points
are not too large.

Definition 2.3. Let (S, ·) be an infinite semigroup with|S| ≥ κ. A subsetA of S is a left
solution set of Sif and only if there existw,z∈ S such thatA = {x ∈ S : w = zx}. The
semigroupS is weakly left cancellativeif and only if every left solution set ofS is finite.
The semigroupS is κ-weakly left cancellativeif and only if the union of fewer thanκ left
solution sets ofSmust have cardinality less thanκ.

Notice that ifκ is regular,A is κ-weakly left cancellative if and only if each left solution
set has cardinality less thanκ. In particular,S is weakly left cancecellative if and only if
S is ω-weakly left cancellative. Ifκ is singular, thenA is κ-weakly left cancellative if and
only if there is a cardinalγ < κ such that each left solution set has cardinality less than or
equal toγ.

Theorem 2.4. Let S and T be infinite discrete semigroups, letA be a set of subsets of S
with the finite intersection property, let H=

⋂
A∈A A, let f : S→ T, and let f̃ : βS→ βT

be the continuous extension of f . Assume that|S| ≥ κ ≥ ω, H ⊆Uκ(S), and |A | = κ. For
x,z∈ S, let E(x,z) = {y∈ S : f (x · y) 6= f (z) · f (y)}. Then statement (a) implies statement
(b). If in addition S isκ-weakly left cancellative and eitherκ is regular and for each z∈ T,
| f−1[{z}]| < κ, or there exists a cardinalδ < κ such that for each z∈ T, | f−1[{z}]| ≤ δ,
then both statements are equivalent.

(a) There exist p,q∈ H such thatf̃ (p·q) 6= f̃ (p) · f̃ (q).

(b) There exists B⊆ S such thatA ∪{B} andA ∪{E(x,z) : x,z∈ B} have theκ-uniform
finite intersection property.

Proof. (a)⇒ (b). Pick indexed families〈xF 〉F ∈P f (A) and 〈yF 〉F ∈P f (A) as guaranteed by
Theorem 2.2(e). LetB = {xF : F ∈ P f (A)}. GivenF ∈ P f (A),

{xG : G ∈ P f (A) andF ⊆ G} ⊆ B∩
⋂

F ,

soA ∪{B} has theκ-uniform finite intersection property.
To see thatA∪{E(x,z) : x,z∈B} has theκ-uniform finite intersection property, letF ∈

P f (A), let l ,m∈N, and letH1,H2, . . . ,Hl andJ1,J2, . . . ,Jm be members ofP f (A). LetK =
F ∪

⋃l
i=1 Hi ∪

⋃m
j=1 J j . Then{xG : G ∈ P f (A) andK ⊆G} ⊆

⋂
F ∩

⋂l
i=1

⋂m
j=1E(xHi

,xJ j ).
Now assume thatS is κ-weakly left cancellative and eitherκ is regular and for each

z∈T, | f−1[{z}]|< κ, or there exists a cardinalδ < κ such that for eachz∈T, | f−1[{z}]| ≤ δ.
(b)⇒ (a). PickB as guaranteed by statement (b). We shall show that statement (c)

of Theorem 2.2 holds. ForF ∈ P f (A), choosexF ∈ B∩
⋂

F . Now well orderP f (A) as
〈Gα〉α<κ, choosingG0 = {A} for someA∈ A . PickyG0 ∈ A∩E(xG0,xG0).

Let 0< α < κ and assume we have chosenyGσ ∈
⋂

Gσ for eachσ < α such that

{ f (xF ·yGσ) : σ < α and /0 6= F ⊆ Gσ}∩{ f (xF ) · f (yGσ) : σ < α and /0 6= F ⊆ Gσ}= /0 .

Observe that the hypothesis holds forα = 1.
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Let
H = {z∈ T : (∃σ < α)(∃τ ≤ α)(∃F )(∃H )( /0 6= F ⊆ Gσ ,

/0 6= H ⊆ Gτ, and f (xH ) ·z= f (xF ·yGσ)}
and let

L = {y∈ S: (∃σ < α)(∃τ ≤ α)(∃F )(∃H )( /0 6= F ⊆ Gσ ,
/0 6= H ⊆ Gτ, and f (xH ·y) = f (xF ) · f (yGσ)} .

Now H is the union of fewer thanκ left solution sets so|H|< κ and thus| f−1[H]|< κ.
Let A= { f (xF ) · f (yGσ) : σ < α and /0 6= F ⊆Gσ}. Then|A|< κ so| f−1[A]|< κ. Now

L = {y∈ S: (∃τ ≤ α)(∃H )( /0 6= H ⊆ Gτ, andxH ·y∈ f−1[A])} soL is the union of fewer
thanκ left solution sets and so|L|< κ.

PickyGα ∈ (
⋂

Gα∩
⋂
{E(xF ,xH ) : /0 6= F ⊆ Gα and /0 6= H ⊆ Gα})\ ( f−1[H]∪L).

Now suppose that we haveσ ≤ α, δ ≤ α, /0 6= F ⊆ Gσ, and /0 6= H ⊆ Gδ such that
f (xH · yGδ) = f (xF ) · f (yGσ). If σ < α andδ < α we contradict the induction hypothesis.
If σ = δ = α, thenyGα /∈ E(xH ,xF ). If δ < α = σ, thenyGα ∈ f−1[H]. If σ < α = δ, then
yGα ∈ L. In any event we get a contradiction.

In the event that the familyA is countably infinite, we may presume thatA = {An :
n∈ N} and for eachn, An+1 ⊆ An. In this case the condition of Theorem 2.2(e) becomes
simpler.

Theorem 2.5. Let S and T be infinite semigroups and letA = {An : n ∈ N} be a set of
subsets of S such that for each n∈ N, An is infinite and An+1 ⊆ An and

⋂∞
n=1An = /0. Let

f : S→ T, let f̃ : βS→ βT be the continuous extension of f , and let H=
⋂∞

n=1An. There
exist p and q in H such that̃f (p·q) 6= f̃ (p) · f̃ (q) if and only if there exist injective sequences
〈xn〉∞

n=1 and〈yn〉∞
n=1 in S such that

{ f (xn ·ym) : n,m∈ N and n≤m}∩{ f (xn) · f (ym) : n,m∈ N and n≤m}= /0 .

Proof. Necessity. Pick〈xF 〉F ∈P f (A) and 〈yF 〉F ∈P f (A) as guaranteed by Theorem 2.2(e).
For n∈ N let xn = x{An} andyn = x{An}.

Sufficiency. Pick〈xn〉∞
n=1 and〈yn〉∞

n=1 as guaranteed. ForF ∈ P f (A) let n = max{t :
At ∈ F } and letxF = xn andyF = yn. Then〈xF 〉F ∈P f (A) and〈yF 〉F ∈P f (A) satisfy Theorem
2.2(c).

We shall show in Theorem 2.8 that an injective mapf : S→ T between left cancellative
semigroups can only have the property thatf̃ is a homomorphism on a compactGδ subset
H of βS if, for every p,q∈ H, {s∈ S: {t ∈ S: f (st) = f (s) f (t)} ∈ q} ∈ p.

We have need of two preliminary lemmas.

Lemma 2.6. Let S and T be infinite semigroups, letA = {An : n∈ N} be a set of subsets
of S such that for each n∈ N, An is infinite and An+1 ⊆ An, let H =

⋂∞
n=1An, let f : S→

T, let f̃ : βS→ βT be the continuous extension of f , and assume that for all p,q ∈ H,
f̃ (p · q) = f̃ (p) · f̃ (q). For each q∈ H there exists B⊆ S such that H⊆ B and for each
a∈ B, f̃ (a·q) = f (a) · f̃ (q).

Proof. Let q ∈ H. The continuous functions̃f ◦ ρq and ρ f̃ (q) ◦ f̃ agree onH so by [5,

Corollary 2.3(i)] we can chooseB⊆ S such thatH ⊆ B and f̃ ◦ρq andρ f̃ (q) ◦ f̃ agree on
B.
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We need to extend the theorem that, for any setS, any f : S→ S and anyp ∈ βS,
f̃ (p) = p if and only if{s∈S: f (s) = s} ∈ p ([3, Theorem 3.35]). The extension is certainly
well known. We give the simple proof, however, because we do not have a reference.

Lemma 2.7. Let S and T be any nonempty discrete spaces and let f and g be mappings from
S to T . Letf̃ andg̃ be their continuous extensions fromβS toβT. Suppose that̃f (p) = g̃(p)
for some p∈ βS. If f is injective on a member of p, then{s∈ S: f (s) = g(s)} ∈ p.

Proof. Suppose thatf is injective onB∈ p. Picka∈ Sand defineh : T → Sby, for t ∈ T,

h(t) =
{

s if t = f (s) for somes∈ B
a if t /∈ f [B]

Then h̃◦g(p) = h̃
(
g̃(p)

)
= h̃

(
f̃ (p)

)
= h̃◦ f (p) = p, the latter equality holding because

h◦ f is the identity onB. Thus by [3, Theorem 3.35] we have that{s∈S: h
(
g(s)

)
= s} ∈ p.

Also, g−1
[

f [B]
]
∈ p so{s∈ S: h

(
g(s)

)
= s}∩g−1

[
f [B]

]
∈ p and fors in this intersection,

g(s) = f (s).

Theorem 2.8. Let S and T be infinite semigroups, letA = {An : n∈ N} be a set of subsets
of S such that for each n∈ N, An is infinite and An+1 ⊆ An, let H =

⋂∞
n=1An, let f : S1-1−→T,

and let f̃ : βS→ βT be the continuous extension of f . Assume that either S or T is left
cancellative. The following statements are equivalent.

(a) For all p,q∈ H, f̃ (p·q) = f̃ (p) · f̃ (q).

(b) For each q∈H, there exists B⊆S such that H⊆B and for all a∈B,{b∈S: f (a·b) =
f (a) · f (b)} ∈ q.

Proof. (a)⇒ (b). PickB as guaranteed by Lemma 2.6 and leta∈ B. Then eitherf ◦λa or
λ f (a) ◦ f is injective (depending on whetherS or T is left cancellative) so by Lemma 2.7,
{b∈ S: f (a·b) = f (a) · f (b)} ∈ q.

(b)⇒ (a). Letq∈H and pickB as guaranteed. For anya∈B, f̃ ◦λa andλ f (a) ◦ f̃ agree

on a member ofq, so agree atq. Thereforef̃ ◦ρq andρq ◦ f̃ agree onB and therefore on
H.

We shall show now that if̃f (p·q) = f̃ (p) · f̃ (q) for all p,q∈A∗ = A\A for some infinite
subset ofS(in particular if f̃ is a homomorphism on a compactGδ subset ofS∗), then there
must be an infinite number ofa∈Sfor which there are an infinite number ofb∈Ssatisfying
f (a·b) = f (a) · f (b).

Theorem 2.9. Let S and T be infinite semigroups, let A be an infinite subset of S, let f:
S→ T, and let f̃ be the continuous extension of f . Iff̃ (p·q) = f̃ (p) · f̃ (q) for all p,q∈ A∗,
then for infinitely many a∈ A, {b∈ A : f (a·b) = f (a) · f (b)} is infinite.

Proof. By passing to a subset, we may assume thatA is countably infinite. For eacha∈ A,
letCa = {q∈ A∗ : f̃ (a·q) = f (a) · f̃ (q)}. Let D = {a∈ A : Ca has nonempty interior inS∗}.
We shall show thatD is infinite and for alla∈D, {b∈ A : f (a·b) = f (a) · f (b)} is infinite.
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Suppose first thatD is finite. We claim thatA∗ =
⋃

a∈A\D Ca. So letq∈ A∗. Then the

functions f̃ ◦ρq andρ f̃ (q) ◦ f̃ agree onA∗ so by [5, Corollary 2.3(ii)] they agree for all but
finitely many members ofA and therefore agree at somea∈ A\D.

Note that eachCa is closed. For eacha∈ A\D, S∗ \Ca is an open dense subset ofS∗

so by the Baire Category Theorem,S∗ \
⋃

a∈A\D Ca = S∗ \A∗ is dense inS∗, a contradiction.
ThusD is infinite as claimed.

Let a ∈ D and pick an infinite subsetE of A such thatE∗ ⊆ Ca. We shall show that
{b ∈ E : f (a · b) = f (a) · f (b)} is infinite. Consider the continuous functions̃f ◦ λa and
λ f (a)◦ f̃ . Assume first that there is an infinite subsetK of E on which both of these functions

are constant, and pickq∈ K∗. Let c andd be the constant values of̃f ◦λa andλ f (a) ◦ f̃ on

K respectively. Thenc = f̃ (a·q) = f (a) · f̃ (q) = d soK ⊆ {b∈ E : f (a·b) = f (a) · f (b)}.
Now assume that there is no infinite subset ofE on which f̃ ◦λa andλ f (a) ◦ f̃ are both

constant. We may thus choose a sequence〈xn〉∞
n=1 in E on which one of these functions is

injective. Pickq ∈ E∗ such that{xn : n ∈ N} ∈ q. By Lemma 2.7, we have that{b ∈ S :
f (a·b) = f (a) · f (b)} ∈ q.

3 Restrictions toS∗

If S is an infinite semigroup andA = {S\F : F is a finite subset ofS}, thenS∗ =
⋂

A∈A A so
the results of Section 2 apply toS∗. In this section we give some characterizations of when
the restriction of̃f to S∗ is injective or a homomorphism which do not seem to follow from
the results of Section 2.

Theorem 3.1. Let S and T be infinite semigroups, let f: S→ T, and letf̃ : βS→ βT be the
continuous extension of f .

(1) The restriction of̃f to S∗ is injective if and only if there is a finite subset F of S such
that the restriction of̃f to S\F is injective.

(2) If the restriction off̃ to S∗ is not injective, then∣∣{p∈ S∗ : (∃q∈ S∗ \{p})
(

f̃ (q) = f̃ (p)
)}∣∣≥ 2c,

wherec is the cardinality of the continuum.

Proof. (1). Sufficiency. LetA = {S\F : F is a finite subset ofS} and pick a finite subset
F of Ssuch that the restriction off to S\F is injective. LetB = S\F . Then for anyA⊆ S,
f [A∩B]∩ f [B\A] = /0, so Theorem 2.1 applies.

(1). Necessity. Suppose the conclusion fails. Pickx1 6= y1 in S such that f (x1) =
f (y1). Inductively, letn∈N and assume we have chosenx1,x2, . . . ,xn andy1,y2, . . . ,yn. Let
F = {x1,x2, . . . ,xn}∪{y1,y2, . . . ,yn} and choosexn+1 6= yn+1 in S\F such thatf (xn+1) =
f (yn+1). Pick anyp∈ S∗ such that{xn : n∈N} ∈ p. Defineg : {xn : n∈N}→ {yn : n∈N}
by g(xn) = yn. Let B = {g[A∩{xn : n ∈ N}] : A ∈ p}. ThenB has theω-uniform finite
intersection property, so pickq∈ S∗ such thatB ⊆ q. (In fact, there is a unique choice for
q.) Then f̃ (p) = f̃ (q).

(2). In the proof of the necessity of statement (1),p could be any member ofS∗ such
that{xn : n∈N} ∈ p. There are 2c such choices. (See, for example, [3, Theorem 3.62].)
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In the event thatS is countable (in which case{S\ F : F is a finite subset ofS} is
countable), the following theorem follows from Theorem 2.5.

Theorem 3.2. Let S and T be infinite semigroups, let f: S→ T, and let f̃ : βS→ βT be
the continuous extension of f . There exist p,q∈ S∗ such thatf̃ (p ·q) 6= f̃ (p) · f̃ (q) if and
only if there exist injective sequences〈xn〉∞

n=1 and〈yn〉∞
n=1 in S such that{ f (xn ·ym) : n,m∈

N and n≤m}∩{ f (xn) · f (ym) : n,m∈ N and n≤m}= /0.

Proof. Necessity. LetA = {S\F : F is a finite subset ofS}. Pick by Theorem 2.2(b),B⊆S
andD : S→ P (S) such thatA ∪{B} andA ∪{D(x) : x ∈ S} have the finite intersection
property and

(⋃
x∈B f

[
x·D(x)

])
∩

(⋃
x∈B f (x) · f

[
D(x)

])
= /0. ThenB is infinite so pick an

injective sequence〈xn〉∞
n=1 in B. Picky1 ∈D(x1). Form∈N,

⋂m+1
n=1 D(xn) is infinite so pick

ym+1 ∈
⋂m+1

n=1 D(xn)\{y1,y2, . . . ,ym}.
Sufficiency. Pickp andq in S∗ such that{xn : n∈ N} ∈ p and{yn : n∈ N} ∈ q. Given

n∈ N, {ym : m≥ n} ∈ q so{xn ·ym : n,m∈ N andn≤m} ∈ p·q and thus

{ f (xn ·ym) : n,m∈ N andn≤m} ∈ f̃ (p·q) .

Also, givenn∈ N, { f (ym) : m≥ n} ∈ f̃ (q) so

{ f (xn) · f (ym) : n,m∈ N andn≤m} ∈ f̃ (p) · f̃ (q) .

4 Image of Idempotents

We are interested in the question of whetherf̃ (p) is an idempotent, given thatp is an
idempotent, for two reasons. On the one hand, we could have thatA = p, in which case this
is exactly the question of whether the restriction off̃ to H =

⋂
A∈A A is an isomorphism.

On the other hand, ifH is a subsemigroup, it is guaranteed to have an idempotent by [2,
Corollary 2.10].

For the first result of this section, we do not presume thatp is an idempotent.

Theorem 4.1. Let S and T be infinite semigroups, let f: S→ T, let f̃ : βS→ βT be the
continuous extension of f , and let p∈ βS. Thenf̃ (p) is an idempotent if and only if
(∀A∈ p)(∃B∈ p)(∀x∈ B)(∃C∈ p)( f (x) · f [C]⊆ f [A]).

Proof. Necessity. LetA∈ p. Then f [A] ∈ f̃ (p) soE = {z∈ T : z−1 f [A] ∈ f̃ (p)} ∈ f̃ (p).
Let B = f−1[E] and letx∈ B. Then f (x)−1 f [A] ∈ f̃ (p) Let C = f−1

[
f (x)−1 f [A]

]
.

Sufficiency. We show that̃f (p) ⊆ f̃ (p) · f̃ (p), so letD ∈ f̃ (p) and letA = f−1[D].
Pick B∈ p as guaranteed forA. We claim thatf [B]⊆ {z∈ T : z−1D ∈ f̃ (p)}. Let z∈ f [B]
and pickx ∈ B such thatz= f (x). PickC ∈ p such thatf (x) · f [C] ⊆ f [A]. Then f [C] ⊆
z−1D.

Theorem 4.2. Let S and T be semigroups, let f: S→ T, let f̃ : βS→ βT be the continuous
extension of f , and let p,q∈ βS. Thenf̃ (p·q) = f̃ (p) · f̃ (q) if and only if

(∀B∈ p)(∀D : S→ q)(∃u,v∈ B)
(
∃x∈ D(u)

)(
∃y∈ D(v)

)(
f (u·x) = f (v) · f (y)

)
.
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Proof. We observe that{
⋃

u∈B f [uD(u)] : B ∈ p andD : S→ q} is a basis for the ultra-
filter f̃ (p · q) and{

⋃
u∈B f (u) f [D(u)] : B ∈ p andD : S→ q} is a basis for the ultrafilter

f̃ (p) · f̃ (q). If f̃ (p ·q) = f̃ (p) · f̃ (q), B∈ p, andD : S→ q, then
⋃

u∈B f [uD(u)] ∈ f̃ (p ·q)
and

⋃
u∈B f (u) f [D(u)] ∈ f̃ (p) · f̃ (q) and so

⋃
u∈B f [uD(u)]∩

⋃
u∈B f (u) f [D(u)] 6= /0.

Conversely, assume that̃f (p ·q) 6= f̃ (p) · f̃ (q) and pickA∈ f̃ (p ·q)\ f̃ (p) · f̃ (q). Pick
B1 ∈ p andD1 : S→ q such that

⋃
u∈B1

f [uD1(u)] ⊆ A and pickB2 ∈ p andD2 : S→ q
such that

⋃
u∈B2

f (u) f [D2(u)]∩A = /0. Let B = B1∩B2 and defineB : S→ q by, for u∈ S,
D(u) = D1(u)∩D2(u). Then for allu,v ∈ B, all x ∈ D(u), and ally ∈ D(v), f (u · x) 6=
f (v) · f (y).

Corollary 4.3. Let S and T be infinite semigroups, let f: S→ T, let f̃ : βS→ βT be the
continuous extension of f , and let p be an idempotent inβS. Thenf̃ (p) is an idempotent if
and only if(∀B∈ p)(∀D : S→ p)(∃u,v∈B)

(
∃x∈D(u)

)(
∃y∈D(v)

)(
f (u·x) = f (v) · f (y)

)
.

The following theorem gives an attractive sufficient condition.

Theorem 4.4. Let S and T be infinite semigroups, let f: S→ T, let f̃ : βS→ βT be the
continuous extension of f , and let p be an idempotent inβS. If

{x∈ S: {y∈ S: f (x ·y) = f (x) · f (y)} ∈ p} ∈ p,

then f̃ (p) is an idempotent.

Proof. We verify the condition of Theorem 4.1. LetA∈ p and let

B = {x∈ S: x−1A∈ p}∩{x∈ S: {y∈ S: f (x ·y) = f (x) · f (y)} ∈ p} .

Sincep is an idempotent,B∈ p. Letx∈B and letC = x−1A∩{y∈S: f (x·y) = f (x) · f (y)}.
ThenC∈ p. If y∈C, then f (x) · f (y) = f (x ·y) ∈ f [A].

We see that the condition of Theorem 4.4 far from being necessary. Note that, in the
following example, f is a bijection,S is cancellative andT is left cancellative. So this
example should be contrasted with Theorem 2.8 above.

Example 4.5. Let S= (N,+) andT denoteN with the right zero semigroup operation; i.e.
x · y = y for everyx,y ∈ N . ThenβT is also a right zero semigroup. Letf : S→ T be
the identity map. Theñf maps every idempotent ofβN to an idempotent, because every
element ofβT is idempotent. However, the equationf (x+y) = f (y) does not hold for any
x,y∈ S.

In the following example,SandT are both cancellative.

Example 4.6. Let Sdenote the subsemigroup{n∈N : n≥ 4} of (N,+). We give an exam-
ple of a functionf : S→ N with the property that̃f (p) is idempotent for some idempotent
p∈ βS, but such that there are no elementss, t ∈ S for which f (s+ t) = f (s)+ f (t).

For s∈ N, supp(s) will denote the binary support ofs, defined to be the set inP f (ω)
for which s= ∑i∈supp(s) 2i . We definef : S→ N by f (s) = max

(
supp(s)

)
. Since f maps

{2n+1 : n∈N} ontoN\{1}, f̃ mapsclβS({2n+1 : n∈N})∼ β({2n+1 : n∈N}) ontoβN\{1}
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by [3, Exercise 3.3.3] and [3, Exercise 3.4.1]. So we can choosex∈ clβS({2n+1 : n∈ N})
for which f̃ (x) is an idempotentq.

Now if s, t ∈ S satisfy f (s) < min(supp(t)), f (s+ t) = f (t). Hence, for anyy ∈ βS,
f̃ (y+ x) = f̃ (x) = q, as can be seen by allowingt to tend tox and then allowings to tend
to y in the equationf (s+ t) = f (t). So f̃ −1[{q}] contains the left idealβS+ x of βS and
therefore contains an idempotentp (see [3, Corollary 2.6]).

Let s, t ∈ S. Then f (s+ t) ∈ { f (s), f (t), f (s)+1, f (t)+1}. Since f (s), f (t)≥ 2, f (s+
t) 6= f (s)+ f (t).

In the above example,f is badly not injective.

Question 4.7.Let S and T be cancellative semigroups, let f: S1-1−→T, and let f̃ : βS→ βT
be its continuous extension. If̃f takes some idempotent ofβS to an idempotent ofβT, does
it follow that there exist x,y∈ S such that f(x ·y) = f (x) · f (y)?
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