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Abstract

Let SandT be infinite discrete semigroups, latC ?(S), and assume thad has
the finite intersection property. Ldt: S— T and letf : 3S— [T be its continuous
extension. We obtain necessary and sufficient conditions for the restrictibricof
Naca Clps(A) to be a homomorphism and to be injective. We also investigate certain
simpler conditions that are known to be sufficient for this restriction to be a homomor-
phism.
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1 Introduction

We are concerned in this paper with the St@eeh compactificatiogSof a discrete semi-
group S and the extension of the operation 8o 5S. So we shall begin with a brief
introduction to this structure. For a more complete introduction see the book [3].
Given a discrete semigroyfs, -), we take the points of the Stor@@ech compactification
6S of Sto be the ultrafilters o1%, identifying the principal ultrafilters with the points &
and thereby pretending th&tC 5S. A basis for the open sets 66 (as well as for the closed
sets) is{ A: AC S} whereA= {p € 3S: A€ p}. ThenA = c/z5(A). The operation extends
to S making (S, ) into a compact right topological semigroup (meaning that for each
p € 3S, the functionpp, : 5S— S defined bypp(q) = g- p is continuous) witls contained
in its topological center (meaning that for each S, the function\, : 3S— Sdefined by
Ax(Q) = x-qis continuous). Givemp,q € fSandA C S one has that € p-qif and only if
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{xeS:xAcq} cp wherex!A={yecS:x-yec Al. (If (S-) is a group, this agrees
with the customary definitior 1A= {x~1.z:zc A}.) We shall use the fact that g has a
basis of sets of the forty,.,aBa, whereA € p and, for eactac A, By € .

We shall uses* to denote the remainder spa@8\ Sand, for a subsei of S, we shall
useA* to denoteclgs(A) NS,

The algebraic structure @S can be very rich, and has had significant combinatorial
applications. It is a simple fact that a nonempty subsef 5Sis closed if and only if there
is a family 2 C 2(S) such thatZ has the finite intersection property akd= Nac 4 A. Itis
an old result of Paul Milnes [4] that Bis a discrete semigroup, is a compact Hausdorff
right topological semigroupf is a homomorphism fron$to T such that for eaclk € S
At (x) Is continuous, then the continuous extensfondS— T is a homomorphism. As a
consequence, BandT are discrete semigroups afid S— T is a homomorphism, then
the continuous extensioh: B6S— [T is also a homomorphism.

For some of the combinatorial applications, as well as for a significant amount of the
knowledge of the algebraic structure/8F, it has been important that fdrto be a homo-
morphism on certain compact subsemigroup89ff need not be a homomorphism on all
of S

Theorem 1.1. Let (S -) be a semigroup, lefl C P(S) have the finite intersection property,
and let H= N4 A. Let(T,-) be a compact right topological semigroup and letS— T
have the property that for all & S,A¢ () is continuous. Assume that there is some A
such that for each x A, there exists B 4 for which f(x-y) = f(x) - f(y) for every ye B.

Then forall pge H, f(p-q) = f(p)- f(q).

Proof. [3, Theorem 4.21]. O

One is primarily interested ifijac 4 A when it is a subsemigroup, though that assump-
tion is not used in Theorem 1.1. In [3] we provided a simple sufficient condition for this to
hold.

Theorem 1.2. Let(S,-) be a semigroup, lefl C P(S) have the finite intersection property,
andletH= ﬂAeﬂﬂ. If for each Ac 4 and each x A, there exists B 4 such that xB C A,
then H is a subsemigroup 6.

Proof. [3, Theorem 4.20]. O

In fact, when [3] was written, a necessary and sufficient condition for the conclusion of
Theorem 1.2 was known. (Why we didn’t at least mention it is known only to God, and She
is not telling. We did mention that Theorem 1.2 was a special case of a result from [1].) For
a setX, we write Ps (X) for the set of finite nonempty subsetsXf

Theorem 1.3. Let (S -) be a semigroup, lel C P(S) have the finite intersection property,
letH =Nac4 A and let® = {BC S: (VA€ 4)(BNA=#0)}. Then H is a subsemigroup of
S if and only if(VA € 4)(VB € R ) (3F € P;(B))(3C € A)(C C Uyer X *A).

Proof. [1, Theorem 2.6]. O



Homomorphisms on Compact Subsetgi8f 3

It is essentially trivial that the condition of Theorem 1.1 is not necessary, as we shall
see in Theorem 1.4. In that theorem we assume $hat S\ Sis a subsemigroup of
06S. A necessary and sufficient condition ti&gitbe a subsemigroup @fS, which is an
immediate consequence of Theorem 1.3 withas the set of all cofinite subsets &fis
given in [3, Theorem 4.28]. In particular, &is either right or left cancellative, thesf is a
subsemigroup ofS.

Theorem 1.4.Let T=NU {o} where topologically T is the one point compactification of
N and algebraically the operation on T is ordinary addition Brwith co +X = X4 00 = o0
forallx € T. Let S be any infinite discrete semigroup and leSf- T. If f~1[{a}] is finite
foralla e N, and f : 3S— T is the continuous extension of f, then the restrictior tf

S is a homomorphism.

Proof. It suffices to show that for app € S, F( p) = . Suppose instead that we hgve S*
such thatf (p) = a€ N. Thenf~1[{a}]isin p, and is therefore infinite, a contradiction]

Thus, it is possible for the restriction ¢fto S to be a homomorphism while for atl
andyin S f(x-y) # f(x)- f(y). For example, le6= (N,+) and f (x) = x+ 1.

The situation is not nearly so simple if we considerS— T whereSandT are both
discrete semigroups. In this case, one [gtbe a collection of subsets &with the finite
intersection property, letsl = Nac4 A, and asks whether the restriction bfto H is a
homomorphism, wheré : 6S— T is the continuous extension &f (When we say the
restriction is a homomorphism we are not demanding bhdie a subsemigroup ¢fS,
though it will be in the more interesting situations. We only ask that whengwge H
one hasf (p- qQ) = f(p)- f(qg).) We shall obtain necessary and sufficient conditions for the
restriction off to H to be a homomorphism in Section 2. We shall show, in contrast with
Theorem 1.4, that |f(p q) = f(p) f(q) for all pandqin a nonempty open subset §f,
then one must have maayandb in Sfor which f(a-b) = f(a)- f(b).

In Section 3 we restrict ourselves to the situation whtre S*, that is whereZ = {F C
S: S\ F is finite}. In Section 4 we go to the other extreme and only consider whéttpr
is an idempotent whep is an idempotent. On the one hand, this arises wiieap. On
the other hand, iH is a subsemigroup giS, it will contain an idempotent — usually many,
and if the restriction off to H is a homomorphism, then the image of an idempotent will
be an idempotent.

2 Restrictions toH

In this section we derive some necessary and sufficient conditions for the restriction of
to H to be injective and for it to be a homomorphism, wh8rand T are infinite discrete
semigroupsf : S— T, 4 is a set of subsets @with the finite intersection property, and
H=Naca A N

We begin with the following characterization of when the restrictiori & H is injec-
tive. This simple fact seems not to have been noted before.

Theorem 2.1. Let S and T be infinite discrete semigroups,ebe a set of subsets of S
with the finite intersection property, let H Nac 7 A, let f: S— T, and letf : 3S— ST be
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the continuous extension of f. The restrictionfdb H is injective if and only if for every
A C S, there exists B 4 such that fANB]N f[B\ Al =

Proof. Sufficiency. Letp,q< H and assume thgt# g. PickA € p\ g. PickB € 4 such that
f[ANB]Nf[B\ Al =0. ThenANB e pandB\Ac qsof[ANB] e f(p) andf[B\ A] € f(q).
Necessity. Assume that the restrictionfofo H is injective and suppose that we have
AC SsuchthatforalBe 4, f[ANB]Nf[B\A] #0. Let® = {f[ANB|Nf[B\A]:Be 4}.
ThenZ_has the finite intersection property so pick 5T such that® Cr.
Let B={ANBNfC]:Be Z2andC € R} and let¢ = {(B\A) N f1C]: B¢
4 andC € R}. ThenB and C have the finite intersection property, so piglq € 5S such
thatB C pandC C g. Thenp, quandf(p) f(q) O

Given a setq of subsets oSand a cardinak < |§, we say that4 has thex-uniform
finite intersection propertjf and only if wheneverf € ?;(4), one hag(\ ¥ | > k. And
we letUy (S) = {pe 8S: (YA€ p)(JA > K)}.

In our characterizations of when the restrictionfofo H is a homomorphism, it is
more convenient to take a negative point of view. That is, whe characterize whewitas
homomorphism.

Theorem 2.2. Let S and T be infinite discrete semigroups,4ebe a set of subsets of S
with the finite intersection property, let B Nacq A, let f: S— T, and letf : BS— AT

be the continuous extension of f. Statements (a), (b), and (c) are equivalent. If in addition
w<kK<|9,HCU(S), and|4| =K, then all five statements are equivalent.

(a) There exist @ € H such thatf(p-q) # f(p) - f(q).

(b) There exist BZ S and D: S— P(S) such thataU {B} and2U {D(X) : x € S} have
the finite intersection property andUyeg f [x-D(X)]) N (Uxes f(X)- f[D(X)]) = 0.

(c) There exist indexed famili€gs ) <, (1) and (Y#) rea, () SUCh that

(i) forall ¥ € 71(4),xg eNF andyr €N F; and
(i) {f(xs-yg): 7.6 € 7(A) andF < G}n
[f(xs)-T(yg): F,G € Pr(A) and ¥ C G} = 0.

(d) There exist BC S and D: S— P(S) such that2U {B} and 42U {D(x) : x € S} have
thek-uniform finite intersection property and

(UxeB f [X' D(X)]) N (UxeB f(X) - f [D(X)]) =0.

(e) There exist indexed famili€ss ) <, (1) and (Y#) rea, () SUch that

(i) forall 7,G € P:(A),if F # G, then % # Xg and yr # yg,;
(i) forall F € 74(4), xg eNF and yr € F; and

(i) {f(xsr-yg):F,GeP(A)andF C G}N
{f(xg)-flyg): F,G e Pr(A) andF C G} =0.
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Proof. (a)= (b). Pickp andqin H such thatf (p-q) # f(p)- f(g) and pick

Ac f(p-a)\f(p) - f(a).

Since f o pq and Pl © f are continuous, pick8 € p such thatf o pg[B] C A and
Prgo fFIBICTVA
For eachx € B, since f o A, and Af(x)© f are continuous, piclo(x) € q such that

foA[D(x)] € AandA o f[D(x)] C T\A. Forxe S\B, letD(x) = S

Since4U{B} C pandA4U{D(x) : x € S} C q, they each have the finite intersection
property. And(Uyeg f[x-D(X)]) CAand (U f(X)- f[D(X)]) S T\A

(b) = (c). PickB andD as guaranteed by statement (b). Bore P;(4), pick X €
BNN¥. ForG € P:(A), pickyg e NGNN{D(X¢) : 0 # F C G}.

Then{f(xs -yg): 7,G € ?1() andF C G} C Uyeg Fix-D(X)] and{f(xs)- f(yg):
F.G € Pi(A) andF C G} € Uyes F(x)- fD(X)].

(€) = (@). Pick(Xs) rep () @and(y#) ree, (2) @s guaranteed by statement (c). Foe
Pi(A),letBy ={xg5:GcP(A)andF C G} andletCy ={y;: G € P:(A) and¥F C G}.
Then{Bs : F € Ps(A4)} and{C# : F € P:(A)} have the finite intersection property so pick
pandqin fSsuch thaf{Bs : F € P;(A4)} C pand{Cs: F € P:(4)} C q. GivenA € 4,
Biay CAandCia CAsoAc pandAeq. Thuspe H andge H.

LetA={f(Xy-y5): F,G € P:(A)andF C G} and letE = {f(xs) - f(yg) : F,G €

Pi(A4)andF C G}. ThenANE = 0 so it suffices to show thah € f(p-q) andE €
f(p)- f(a).

Pick anyD € 4. ThenByp, € p. We claim thaBp, C {z€ S: z *f~1[A] € g} so that
f-1[A] € p-qand consequentl € f(p-q). So letF e P;(4) with D € . We claim that
Cr Cxz YAl and thusc, ' f LA € . Let G € P () with F C G. Thenf(xy -yg) € A
soyg € X, f 1A

Now we claim thatf [Byp,] C {z€ T :z 1E € f(q)} so thatE € f(p)- f(q) as required.
Solet¥ € P:(A) withD € F. Giveng € P+(A) with ¥ C G, one hasf (x¢) - f(yg) €E
sof[Cs] C f(xg) LE.

We have shown that statements (a), (b), and (c) are equivalent. Now assurmethat
K <19, H CUk(S), and|A4| = k. Trivially statement (e) implies statement (c). Further,
the proof that statement (a) implies statement (d) may be taken verbatim from the proof
that statement (a) implies statement (b) except that where, in that proof, we noted that since
“4U{B} C pandAU{D(x) : x € S} C q, they each have the finite intersection property”
we now note that sincg,q € H C U (S), it follows that42U {B} and AU {D(x) : x € S}
each have the-uniform finite intersection property.

(d) = (e). PickB andD as guaranteed by statement (d). Sip@é= Kk, we also have
that |P¢(A4)| = K. Enumerate?s(A4) as (Fq)a<k. Inductively choose fon < K, Xy, €
(BNN %a) \ {X# : 6 < a}. When that induction is complete so that has been chosen for
each¥ € P:(A4), inductively choose foa < K,

Y5, €[ Fa) N[ HD(xg) :0# F C Fa}\ {y5:8<a}.

Then{f(xs-ys): F,G € Pr(A) andF C G} C Uyes fIx-D(X)] and{f(xs)- f(yg):
F.GeP(A)andF C G} C Uses (%) - fD(X)]. -
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We next obtain another necessary and sufficient condition which is valid for semigroups
satisfying a weak cancellation assumption and functions for which the preimages of points
are not too large.

Definition 2.3. Let (S,-) be an infinite semigroup witl§| > K. A subsetA of Sis aleft
solution set of Sf and only if there exisw,z € Ssuch thatA = {x € S: w=zx}. The
semigroupS is weakly left cancellativef and only if every left solution set 0§ is finite.
The semigroufsis k-weakly left cancellativef and only if the union of fewer thar left
solution sets oE must have cardinality less than

Notice that ifk is regular A is k-weakly left cancellative if and only if each left solution
set has cardinality less than In particular,Sis weakly left cancecellative if and only if
Sis w-weakly left cancellative. Ik is singular, therA is k-weakly left cancellative if and
only if there is a cardina} < k such that each left solution set has cardinality less than or
equal toy.

Theorem 2.4.Let S and T be infinite discrete semigroups,4ebe a set of subsets of S
with the finite intersection property, let B Nac4 A, let f: S— T, and letf : BS— AT

be the continuous extension of f. Assume [8at K > w, H C Uk (S), and|A4| = K. For
x,ze S, letEx,z) ={ye€ S: f(x-y) # f(2)- f(y)}. Then statement (a) implies statement
(b). If in addition S ixx-weakly left cancellative and eitheris regular and for each z T,
|f~1[{z}]| < k, or there exists a cardina < k such that for each z T, |f~1[{z}]| < 5,
then both statements are equivalent.

(@) There exist gy € H such thatf(p-q) # f(p)- f(q).

(b) There exists B S such thata U {B} and AU {E(x,2) : X,z € B} have the-uniform
finite intersection property.

Proof. (@)= (b). Pick indexed familie§xy) rcp,(2) and (ys)zcp,(2) @S guaranteed by
Theorem 2.2(e). LeB = {xs : F € P:(A4)}. Given¥ € P:(4),

{xg:GeP(A)andT C G} CBN[\7F,

s04U{B} has thex-uniform finite intersection property.

To see thafn U {E(x, 2) : X,z € B} has thek-uniform finite intersection property, l&f €
P:(A),letl, me N, and letHy, 75, ..., H and i, b, ..., Jnbe members aP; (4). Let X =
FUUiLL HUUTLL 5. Then{xg : G € P1(4) and K C G} N F NNt Ny E(Xeg, Xs,)-

Now assume tha$ is k-weakly left cancellative and either is regular and for each
zeT,|f~Y[{z}]| <k, orthere exists a cardindk k such that for eache T, | f~1[{z}]| <.

(b) = (a). PickB as guaranteed by statement (b). We shall show that statement (c)
of Theorem 2.2 holds. Fof € P:(A4), choosexy € BN F. Now well order®;(A4) as
(Ga)a<k, ChoosingGo = {A} for someA € 4. Pickyg, € ANE(Xgy, Xgo)-

Let 0< a < k and assume we have chosgp € () G for eacho < a such that

{f(Xg -yg,) :o<aandd# F C Go}N{f(xg) f(yg,):0<aandd# F C Go} =0.

Observe that the hypothesis holds for= 1.
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Let
H={zeT: (Jo<a)(Ft<a)3F)3H)(0+# F C Go,
0F# H C Gr, andf(xy) - 2= f (X5 -yg,)}
and let
L={yeS: (Ho<a)(Tt<a)3F)IH)(0+ F C Gs,
0F# H C Gr, andf Xy -y) = F(x5) - fyg,)}-
Now H is the union of fewer thar left solution sets s¢H| < k and thug f ~1[H]| < k.
LetA={f(xg)- f(yg,) :0<aandd# F C Gs}. Then|A| <k so|f 1[A]| < k. Now
L={yeS:(Tt<a)3H)(0+#H C G, andx, -y € f1[A])} soL is the union of fewer
thank left solution sets and s | < k.
Pickyg, € (N Ga NN{E(Xs,Xsp) : 0% F C G and0# 9 C G })\ (FLH]UL).
Now suppose that we hae< a, d<a, 0 # F C Gs, and0 # H C G such that
f(Xg-Ygs) = F(Xg) - f(yg,). If 0 <aandd < a we contradict the induction hypothesis.
If 0 =38=aq, thenyg, ¢ E(Xyr,Xs). If < a =0, thenyg, € f~I[H]. If 0 <a =3, then
Yg. € L. In any event we get a contradiction. O

In the event that the family is countably infinite, we may presume that= {A, :
n € N} and for each, An;1 C A,. In this case the condition of Theorem 2.2(e) becomes
simpler.

Theorem 2.5. Let S and T be infinite semigroups and et= {A, : n € N} be a set of
subsets of S such that for eackemN, A, is infinite and A1 C A, and (1 Ay = 0. Let
f:S—T,let f 6S— BT be the continuous extension of f, and Iet:lﬂ‘;,"zlﬁ. There
exist pand gin H such thaﬁ(p~ q) # i‘v( p)- f~(q) if and only if there exist injective sequences
(Xn)m_1 and (Yn)m_4 in S such that

{f(Xn-ym) :n,me Nand n<m}N{f(X,) - f(ym) :nme Nand n<m} =0.

Proof. Necessity. PickXg)gcp,(2) and (Y) rep,(2) @S guaranteed by Theorem 2.2(e).
Forn e Nletx, = X(a,) andyn = X¢a, ;-

Sufficiency. Pick(X,)y_, and(yn)_, as guaranteed. FoF € P(A4) let n = max{t :
A € F} and letxs = X andys = yn. Then(Xg) g cp,(2) aNd(Ys) ¢ o, (1) Satisfy Theorem
2.2(c). O

We shall show in Theorem 2.8 that an injective nfags— T between left cancellative
semigroups can only have the property thas a homomorphism on a compdgj subset
H of gSif, foreveryp,ge H, {s€ S: {t € S: f(st) = f(s)f(t)} € q} € p.

We have need of two preliminary lemmas.

Lemma 2.6. Let S and T be infinite semigroups, t= {A, : n € N} be a set of subsets
of S sgvch that for each @ N, A, is infinite and A1 C A,, let H=r_, A, let f: S—
T, letf:3S— ST be the continuous extension of f, and assume that for,ajlepH,

f(p-a) = f(p)- f(q). For each gec H there exists B- S such that HC B and for each
acB, f(a-q) = f(a)-f(q).
Proof. Let g € H. The continuous function$ o pq and Pi(g) © f agree onH so by [5,

Corollary 2.3(i)] we can choosB C Ssuch thatH C B and f o pq and Pi(g © f agree on
B. ]
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_ We need to extend the theorem that, for any Seany f : S— Sand anyp € S
f(p)=pifandonlyif{se S: f(s) =s} € p([3, Theorem 3.35]). The extension is certainly
well known. We give the simple proof, however, because we do not have a reference.

Lemma2.7.LetSand T be any nonempty discrete spaces and let f and g be mappings from
StoT. Letf andg be their continuous extensions fr@i8 to3T. Suppose that(p) a(p)
for some pe S. If f is injective on a member of p, thése S: f(s) =g(s)} € p.

Proof. Suppose that is injective onB € p. Picka € Sand defineh: T — Shy, fort € T,

[ s ift=f(s)forsomesc B
h(t)_{ a ifte f[B]

Thenhog(p) = h(@(p)) = h(f(p)) = ho f(p) = p, the latter equality holding because
ho f is the identity orB. Thus by [3, Theorem 3.35] we have tHate S: h(g(s)) =s} € p.
Also,g 1 [f[B]] € pso{se S:h(g(s)) =s}ng*[f[B]] € pand forsin this intersection,

g(s) = f(s). O

Theorem 2.8.Let S and T be infinite semigroups, let= {A, : n € N} be a set of subsets

of S such that for each@ N, A, is infinite and A1 C An, letH=5_; Ay, let f: S=5T,

and letf : 6S — GBT be the continuous extension of f. Assume that either S or T is left
cancellative. The following statements are equivalent.

(a) Forall p,geH, f(p-q) = f(p)- f(q).

(b) Foreach g= H, there exists B- S such that H- B and forallac B, {be S: f(a-b) =
f(a)-f(b)} €q.

Proof. (a) = (b). Pick B as guaranteed by Lemma 2.6 anddet B. Then eitherf oA, or
Af(a o f is injective (depending on wheth&or T is left cancellative) so by Lemma 2.7,
{beS: f(a-b)="f(a)-f(b)} €q.

(b) = (a). Letq e H and pickB as guaranteed. For any B, fola andA¢ (g o f agree
on a member 0§, so agree af. Thereforef o pg andpqo Fagree orB and therefore on
H. O

We shall show now that if (p-g) = f(p) - f(q) for all p,q € A* = A\ Afor some infinite
subset ofS(in particular if fisa homomorphism on a compdgs subset ofS*), then there
must be an infinite number afe Sfor which there are an infinite numberloE Ssatisfying
f(a-b) = f(a)- f(b).

Theorem 2.9.Let S and T be infinite semigroups, let A be an infinite subset of S, let f
S— T, and letf be the continuous extension of f fifp-q) = f(p)- f(q) for all p,q € A*,
then for infinitely many & A, {be A: f(a-b) = f(a)- f(b)} is infinite.

Proof. By passing to a subset, we may assume Ahiatcountably infinite. For eache A,
letCy={qe A*: f(a-q) = f(a)- f(q)}. LetD = {ac A: C4 has nonempty interior i6*}.
We shall show thaD is infinite and for allac D, {bc A: f(a-b) = f(a)- f(b)} is infinite.
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Suppose first thed is finite. We claim thalA* = [Jacap Ca. So letq € A*. Then the
functionsf o Pq andpf~(q) o ?agree omM* so by [5, Corollary 2.3(ii)] they agree for all but
finitely many members o and therefore agree at some A\ D.

Note that eaclt, is closed. For each € A\ D, S\ C, is an open dense subset$if
so by the Baire Category Theore8i,\ U,ca\p Ca= S\ A" is dense ir§", a contradiction.
ThusD is infinite as claimed.

Let a € D and pick an infinite subsdE of A such thatt* C C;. We shall show that
{beE: f(a-b) = f(a)- f(b)} is infinite. Consider the continuous functiofi® A, and
Af(a)© f. Assume first that there is an infinite subketf E on which both of these functions
are constant, and piadke K*. Let c andd be the constant values ob A\a andAg g o f on

K respectively. Thee= f(a-q) = f(a)- f(q) =dsoK C{becE: f(a-b)=f(a) - f(b)}.
Now assume that there is no infinite subseEain which f oA, andAg ) o f are both

constant. We may thus choose a sequémrgg’_, in E on which one of these functions is

injective. Pickg € E* such that{x, : n € N} € q. By Lemma 2.7, we have thdb € S:

f(a-b)=f(a)-f(b)} €q O

3 RestrictionstoS*

If Sis an infinite semigroup and = {S\F : F is a finite subset a8}, thenS* = N7 A SO

the results of Section 2 apply . In this section we give some characterizations of when
the restriction off to S is injective or a homomorphism which do not seem to follow from
the results of Section 2.

Theorem 3.1.Let S and T be infinite semigroups, let$— T, and letf : 3S— BT be the
continuous extension of f.

(1) The restriction ofﬁo§‘ is injective if and only if there is a finite subset F of S such
that the restriction off to S\ F is injective.

(2) If the restriction off to S is not injective, then

{pes:(@Eaes\{p})(f(a)=f(p)} >2,
wherec is the cardinality of the continuum.

Proof. (1). Sufficiency. Leta = {S\ F : F is a finite subset 08} and pick a finite subset
F of Ssuch that the restriction df to S\ F is injective. LetB = S\ F. Then foranyAC S
fI[ANB]N f[B\ Al =0, so Theorem 2.1 applies.

(1). Necessity. Suppose the conclusion fails. Bigk# y; in S such thatf (x;) =
f(y1). Inductively, letn € N and assume we have choserxy, ..., x, andys, Yz, ..., Yn. Let
F={X,%,.... %} U{Y1,¥2,...,¥n} @and choose&n 1 # Yn+1 in S\ F such thatf (x,+1) =
f(Ynt1). Pick anyp € S* such thaf{x, : n € N} € p. Defineg: {x,:ne N} — {yn:ne N}
by 9(Xn) = ¥n. Let B ={g[AN{X,:n€ N}|: A€ p}. ThenB has thew-uniform finite
intersection property, so pigke S* such thatB C g. (In fact, there is a unique choice for
d.) Thenf(p) = f(q).

(2). In the proof of the necessity of statement ({i);ould be any member &' such
that{x,: n€ N} € p. There are 2such choices. (See, for example, [3, Theorem 3.621))
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In the event thaS is countable (in which cas€S\ F : F is a finite subset o8} is
countable), the following theorem follows from Theorem 2.5.

Theorem 3.2. Let S and T be infinite semigroups, let$— T, and letf : pS— BT be
the continuous extension of f. There exig g S* such thatf(p q) # f(p) f(q) if and
only if there exist |nject|ve sequenades),_; and(Yn)p_; in S such tha{ f (X, ym) :n,me
Nand n<m}N{f(x,) - f(ym) :nme Nand n<m} = 0.

Proof. Necessity. Letd = {S\ F : F is a finite subset o8}. Pick by Theorem 2.2(bBC S
andD : S— P(S) such thataU {B} and AU {D(x) : x € S} have the finite intersection
property and Uyeg f[X-D(X)]) N (Uxes f(X)- f[D(X)]) = 0. ThenB s infinite so pick an
injective sequencéx,)®_, in B. Picky; € D(x1). Forme N, \™ D(x,) is infinite so pick
Ymi1 € NIED ) \ {Y1, Y2, -, Y}

Sufficiency. Pickp andq in S* such thaf{x, : n€ N} € pand{y,: ne€ N} € g. Given
NeN, {ym:m>n} €qso{X,-ym:n,me Nandn<m} € p-qand thus

{f(Xn-ym):n,me Nandn<m} ¢ f(p-q).

Also, givenn € N, {f(ym) : m>n} € f(q) so

{f(X2)- f(ym) :nmeNandn<m} e f(p)- f(q).

4 Image of Idempotents

We are interested in the question of Whetﬁép) is an idempotent, given thai is an
idempotent, for two reasons. On the one hand, we could havelthap, in which case this
is exactly the question of whether the restrictionfaio H = Naca A is an isomorphism.
On the other hand, i is a subsemigroup, it is guaranteed to have an idempotent by [2,
Corollary 2.10].

For the first result of this section, we do not presume fhiatan idempotent.

Theorem 4.1. Let S and T be infinite semigroups, let $— T, let f:3S— BT be the
continuous extension of f, and letgpsS. Thenf(p) is an idempotent if and only if
(VA€ p)(3B € p)(¥xe B)(IC € p)(f(x)- f[C] C f[A]).

Proof. Necessity. LefA € p. Thenf[A] € f(p) sOE = {ze T:z 1f[A] € f(p)} € f(p).
LetB = f~1[E] and letx € B. Thenf(x)"1f[A] € f(p) LetC = f*l[f( )L [A]].
Sufficiency. We show thaf (p) C f(p) - f(p), so letD e f(p) and letA = f~1[D].
Pick B € p as guaranteed fox. We claim thatf[B] C {ze T:z !D € f(p)}. Letze f[B]
and pickx € B such thatz = f(x). PickC € p such thatf (x) - f[C] C f[A]. Thenf[C] C
z'D. O

Theorem 4.2.LetSand T be semigroups, let$— T, letf : 5S— AT be the continuous
extension of f, and let,p € 4S. Thenf(p-q) = f(p)- f(q) if and only if

(VB p)(VD:S—q)(3u,ve B)(Ixe D(u)) (3y € D(v)) (f(u-x) = f(v)- f(y)).
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Proof. We observe thaflJ,.g fluD(u)] : B € pandD : S— q} is a basis for the ultra-

filter f(p-q) and{Uyeg f(u)f[D(u)] : B € pandD : S— q} is a basis for the ultrafilter

f(p)-f(a). If f(p-a)=f(p)-f(q),Be p,andD: S— g, thenJyep fluD(u)] € f(p-q)

andUyeg f(U) f[D(u)] € f(p) - f(a) and sdJyep FUD(U)] NUyeg f(U) F[D(U)] # .
Conversely, assume thétp-q) # f(p) - f(q) and pickAe f(p-q)\ f(p)- f(q). Pick
B1 € pandD; : S— q such thatJ,cg, f[uDi(u)] € A and pickB; € pandD;:S—q
such thatJ,cg, f(u)f[D2(u)]NA=0. LetB=B1NB; and defineB: S— qby, foruec S,
D(u) = D1(u) N D2(u). Then for allu,v € B, all x € D(u), and ally € D(v), f(u-x) #

f(v)- £(y). O

Corollary 4.3. Let S and T be infinite semigroups, let$— T, let f: 35— BT be the
continuous extension of f, and let p be an idempotepSnThenf (p) is an idempotent if
and only if(VB € p)(VD: S— p)(3u,ve B) (3xe D(u)) (Fy e D(V)) (f(u-x) = f(v)- f(y)).

The following theorem gives an attractive sufficient condition.

Theorem 4.4. Let S and T be infinite semigroups, let $— T, let f:3S— BT be the
continuous extension of f, and let p be an idempotepSnlf

{xesS:{yes: f(x-y)=f(x)-f(y)} € p} € p,

thenf(p) is an idempotent.

Proof. We verify the condition of Theorem 4.1. LAte p and let
B={xeS:xAcpin{xeS:{yeS: f(x-y)=f(x)-f(y)} € p}.

Sincepis an idempotenB € p. Letx € Band letC = xtAn{ye S: f(x-y) = f(x)- f(y)}.
ThenC € p. If ye C, thenf(x) - f(y) = f(x-y) € f[A]. O

We see that the condition of Theorem 4.4 far from being necessary. Note that, in the
following example,f is a bijection,S is cancellative and is left cancellative. So this
example should be contrasted with Theorem 2.8 above.

Example 4.5. Let S= (N, +) andT denoteN with the right zero semigroup operation; i.e.
x-y =y for everyx,y € N. ThengT is also a right zero semigroup. Lét:S— T be
the identity map. Therf maps every idempotent giN to an idempotent, because every
element of5T is idempotent. However, the equatiéx+y) = f(y) does not hold for any
X,y €S

In the following exampleSandT are both cancellative.

Example 4.6. Let Sdenote the subsemigroyp € N : n > 4} of (N, +). We give an exam-
ple of a functionf : S— N with the property thaf (p) is idempotent for some idempotent
p € S, but such that there are no elemesitse Sfor which f(s+t) = f(s) + f(t).

Forse N, sups) will denote the binary support & defined to be the set iffs (w)
for which s = ¥icsupys) 2. We definef : S— N by f(s) = max(supgs)). Sincef maps
{2"1:ne N} ontoN\ {1}, f mapsclss({2™1:ne N}) ~ 5({2"1:ne N}) ontogN\ {1}
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by [3, Exercise 3.3.3] and [3, Exercise 3.4.1]. So we can chaaselss({2"1: n e N})
for which f(x) is an idempotenq.

Now if st € Ssatisfy f(s) < min(supft)), f(s+t) = f(t). Hence, for any € S,
f~(y+ X) = f(x) = g, as can be seen by allowindo tend tox and then allowings to tend
toy in the equationf (s+t) = f(t). So f ~1[{g}] contains the left ideabS+ x of 5S and
therefore contains an idempotgn{see [3, Corollary 2.6]).

Letst € S Thenf(s+t) € {f(s), f(t), f(s)+1, f(t)+1}. Sincef(s), f(t) > 2, f(s+

t) £ f(s)+ f(1).
In the above exampld, is badly not injective.

Question 4.7.Let S and T be cancellative semigroups, letSE-LT, and letf 6S— GT
be its continuous extension. fitakes some idempotent @ to an idempotent ¢fT, does
it follow that there exist y € S such that x-y) = f(x) - f(y)?
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