This paper was published in Topology Proceedings 35 (2010),
233-246. To the best of my knowledge, this is the final version as
it was submitted to the publisher.

SUBSEMIGROUPS OF gS
CONTAINING THE IDEMPOTENTS

NEIL HINDMAN AND DONA STRAUSS

ABSTRACT. Let S be a discrete semigroup and let P(S) be
the set of points p in the Stone-Cech compactification, 35S,
of S with the property that every neighborhood of p contains
arbitrarily large finite sum sets or finite product sets, (de-
pending on whether the operation in S is denoted by + or -).
Then P(S) contains all of the idempotents of 35, where the
operation on 3S extends that on S making 8S into a right
topological semigroup with S contained in its topological cen-
ter. If S is commutative, then P(S) is a compact subsemi-
group of 3S. Responding to a question of Vitaly Bergelson,
we show that if S is any semigroup which can be embedded
in a compact topological group, then P(S) is not the smallest
closed semigroup containing the idempotents of 55 and the
closure of the semigroup generated by the idempotents of 55
is not a semigroup.

1. INTRODUCTION

In 1933 Richard Rado published [8] his remarkable theorem char-
acterizing those finite matrices with rational coefficients which are
kernel partition regular over the set N of positive integers. (A
u X v matrix A is kernel partition regular over N if and only if
whenever N is partitioned into finitely many classes, there will ex-
ist Z € NY with all of its entries in one class such that AZ = 0.)
As an easy consequence, one sees that the matrix ( 1 1 -1 ) is
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kernel partition regular over N. That is, whenever N is partitioned
into finitely many cells, there will be in one cell some z, y, and z
with  +y = z. This result is Schur’s Theorem [10]. More gener-
ally, it is an easy consequence of Rado’s Theorem that whenever
r € N and N is divided into finitely many cells, there will exist a
finite sequence (z:);_; in N such that F'S((x¢);_;) is contained in
one cell, where F'S((z)j_1) = { > jep ze : 0 # F C{1,2,...,7}}.
(See [4, Corollary 2.4] for the details of how this follows easily from
Rado’s Theorem.) Much later Jon Sanders [9] and Jon Folkman
(unpublished) independently derived this same result.

In [3] an infinite version of this result was obtained. That is,
whenever N is divided into finitely many cells, there will exist a
sequence (x4);2; in N such that FS((x¢)72,) is contained in one
cell, where FS((x4)2,) = {> 1cp 2t : F' € Pr(N)}. (Here Pr(X)
is the set of finite nonempty subsets of X.) The proof given in [3]
was excruciatingly complicated. There is a much simpler proof due
to Fred Galvin and Steven Glazer, not published by either of them.
See the Notes to [6, Chapter 5] for the history of the discovery of
this proof.

Theorem 1.1. Let A C N. There exists a sequence (x¢)72, in N
with FS((z)72,) C A if and only if there exists an idempotent p in
(BN, +) such that A € p.

Proof. [6, Theorem 5.12]. O

In fact Theorem 1.1 holds more generally. Given any semigroup
(S,-), not necessarily commutative, and given a sequence ()72,
in S, one defines FP({z¢)2)) = {[l;cp 2t : F € Py(N)}, where
the product [[,.» ¢ is taken in increasing order of indices. One
then has that for any A C S there exists a sequence (z;)72; in S
with FP((x¢)52,) € A if and only if there exists an idempotent p
in (8S,-) such that A € p.

Given a discrete space X, we are taking the points of X to be
the ultrafilters on X, identifying the principal ultrafilters with the
points of X and thereby pretending that X C X. We let X* =
BX\X. Given ACX, A=clgxA={pepBS:Aep} If (S, )is
a discrete semigroup, the operation extends to 5S making (35S, -)
a right topological semigroup (meaning that for each p € S, the
function p,, : 8S — (S defined by p,(¢q) = ¢ - p is continuous) with
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S contained in its topological center (meaning that for each = € S,
the function A\, : 3S — (S defined by A\,(q) = = - ¢ is continuous).
Given p,q € S and A C S, one has that A € p- ¢ if and only if
{reS:27'Acq} €p, wherex ' A={yc S:z-yc A}. If the
operation in S is denoted by +, we have that A € p+ ¢ if and only
if{reS:—z+Acq}ep, where -2+ A={yeS:z+ye A}
It is a fundamental fact, due originally to R. Ellis [1], that any
compact Hausdorff right topological semigroup has an idempotent.
See [6] for an elementary introduction to the structure of 5S.

Recently Vitaly Bergelson asked whether there is some nice al-
gebraic description of the set of ultrafilters on N every member of
which contains arbitrarily large finite sums sets. This would be
the set P(N) defined below. (We state the definition multiplica-
tively because we will be dealing with these sets in a quite general
context.)

Definition 1.2. Let (.5,) be a semigroup.

(a) For each r € N,
Br(S) = {p € 5% : (VA € p)(Fae)i—) (FP({x1)i=y) € A}
(b) P(S) =2y Br(S)-

If S is commutative, it is easy to see that P,(S) is a compact
subsemigroup of 3S. (Given r € N, p,q € P,(S), and A € p-q,
one has that B = {x € S : 27'4 € ¢} € p so pick (z;)}_; with
FP((z)7_;) € B. Then C = (\{z7'A: 2z € FP({z;)/_;)} € q s0
pick (yi)j—; with FP((y)}—;) € C. Then FP({x-y:);—,) C A.) By
[5, Theorem 3.9] (using a result of Nesetfil and Rodl [7]), for each
r > 1, P.11(N,+) is a proper subset of P.(N,+). Further, it is an
immediate consequence of Theorem 1.1 that all idempotents of SN
are in P(N,+). Thus, a tempting answer to Bergelson’s question
would be that P(N,+) is the smallest compact subsemigroup of
(BN, +) containing the idempotents.

However, it was shown in [5] that the closure of the semigroup
generated by the idempotents of (SN, +) is not a semigroup and
that there is a compact subsemigroup of (8N, +) (denoted there by
M) which lies strictly between the smallest subsemigroup of (6N, +)
containing the idempotents and P(N, +). In Section 2 of this paper
we extend these results to semigroups which can be algebraically
embedded in compact topological groups.
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In Section 3 we restrict our attention to P(N,+), noting that as
a consequence of the following result, P(N, +) is an ideal of (AN, -).

Theorem 1.3. Let r € N. Then P.(N,+) is an ideal of (ON,-).

Proof. Letp € P.(N,+) and let ¢ € SN. To see that p-q € P.(N, +),
let A € p-q. Pick (z4)7_, such that FS((x:)}_;) C{y e N:y 1A €
q. Then B={y tA:y € FS({z:)7_,)} € q so pick a € B. Then
FS((we-a)j_,) C A.

To see that ¢ -p € P.(N,+), let A € ¢q-p. Pick a € N such that
a™1A € p and pick (z;)7_; such that FS((z:)7_;) € a~'A. Then
FS({a-x¢)j_;) C A. O

Another tempting answer to Bergelson’s question then becomes
that P(N,+) is the smallest compact subset of SN which is both
a subsemigroup of (8N, +) and an ideal of (GN,:). We show in
Section 3 that this is not the case.

All hypothesized topological spaces are Hausdorff.

2. SEMIGROUPS EMBEDDABLE IN COMPACT TOPOLOGICAL
GROUPS

We show in this section that if S is any semigroup which can be
embedded in a compact topological group, then the closure of the
semigroup generated by the idempotents of S* is not a semigroup.
(As is well known, such semigroups include all free semigroups and
all commutative cancellative semigroups.) We also show, under the
same assumption on S, that there is an element of P(.S) which is not
a member of the smallest compact subsemigroup of 3S containing
the idempotents of S*. (This result is less interesting in the case
that S is not commutative, since then it is unlikely that P(S) will
be a semigroup.)

The following lemma is, as we are fond of saying, well known by
those who know it well.

Lemma 2.1. Let (S,-) be a countably infinite semigroup. If S can
be algebraically embedded in a compact topological group, then S
can be algebraically embedded in a compact metrizable topological

group.
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Proof. Let G be a compact topological group with identity 1 and
let ¢ : S — G be an injective homomorphism. Let

H={p(s)p(t)' :5,t €S ands#t}.

For a € H pick by [2, Theorem 22.14] a compact metrizable topo-
logical group C, and a continuous homomorphism h, : G — Cj
such that hg(a) # he(1). Let C = X4epy C, and define ¢ : S — C
by 1(s)(a) = hq(p(s)) for each a € H. Given s # t in S, if
a = p(s)p(t)~L, then ¥(s)(a) # ¥(t)(a) so 1 is injective. O

The Lemma, 2.3 will be used in the proofs of both of the theorems
of this section. If n € N, supp(n) is the subset of w determined by
n=73 icsupp(n) 2!, where w = N U {0}.

Definition 2.2. (a) H =2, clpn(N2™).

(b) Let X be a subset of a semigroup. A function ¢ : w — X
will be called an H-map if it is bijective and if ¢)(m + n) =
¥(m)y(n) whenever m,n € N satisfy maxsupp(m) + 1 <
min supp(n).

Note that by [6, Lemma 6.6], H contains all of the idempotents
of (BN, +).

Lemma 2.3. Let S be a countable semigroup which can be embed-
ded in a compact topological group. Then there exist a countable
group G containg S, an H-map ¥ : w — G, and a subsemigroup
V' of G* which contains all of the idempotents of G* such that
Ym 1s an isomorphism from H onto V. Further, there is a se-
quence (s,)°; in S such that for each n, maxsupp ¥~ 1(s,)+1 <
minsupp ¢~ (sp11)-
Proof. By Lemma 2.1 there exist a compact metrizable topological
group C with identity 1 and an injective homomorphism ¢ : S — C.
Let G be the subgroup of C' generated by ¢[S] and let 5G4 be the
Stone-Cech compactification of G with the discrete topology. We
may assume in fact that S C G. Let ¢ : G — C be the inclusion
map and let 7 : BG4y — C be its continuous extension. Let V =
G* N7 '[{1}]. By [6, Theorem 7.28] V is a subsemigroup of G*
which contains all of the idempotents of G* and there is an H-map
¥ 1 w — G such that ¢ is an isomorphism from H onto V.

Now pick an idempotent ¢ € S*. (By [6, Theorem 4.36] S*
is a subsemigroup of 3S so has an idempotent.) We choose the
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sequence (Sp)°2 inductively, letting s; be any element of S. Let
n € N and assume that si,s9,...,s, have been chosen. Let k =
max supp ¥~ 1(s,) +2. Now ¢ € V so i_l(q) is an idempotent in
H and thus N2* ¢ Q,Z_l(q). By [6, Lemma 3.30] ¥[N2¥] € ¢ so pick
Snt1 € W[N2K). O

Note that the idempotents p,, hypothesized in the next lemma
exist by [6, Lemma 5.11].

Lemma 2.4. Let (x4){2, be a sequence in N such that for all t,
max supp(x;) < minsupp(xy1). Let {E, : n € N} be a partition of
N into infinite sets and for each n let p, be an idempotent in SN
such that for each m € N,

{Dierp e : F € Pp(Ey,) and min F > m} € p,.

Let p be a cluster point in SN of the sequence (pn)oe, and let
A={Ycp o+ >eqat: F € PpEr) and (In)(max F < n <
min G and G € P§(Ey))}. Then A € p1 + p and there do not ewist
r € H and an idempotent q such that A € r + q.

Proof. To see that A € p; + p we show that
FS((@t)iep,) C{a € N: —a+ A€ p}.
Solet F' € Pp(Er), let a =), x¢, and let
B={>cqxt:(Fn)(max F <n <minG and G € Py(E,)}.

Then B C —a + A so it suffices to show that B € p. Suppose
instead B ¢ p and pick n > max F' such that p, € N\ B. Then
D ieq 7t : G € Py(£y,) and min G > n} is an element of p, which
is contained in B, a contradiction.

Now suppose that we have r € H and an idempotent ¢ such that
Aer+gq Let X = FS((z);2;). We claim first that X € ¢, so
suppose instead that X ¢ ¢. Pick a € N such that —a + A € ¢
and pick k& € N such that maxsupp(a) < minsupp(zy) and let
m = maxsupp(zg)+1. Pickb € (—a+A)NN2"\ X. Then a+b =
Y oter Tt + Y e T, where F € Py(Ey) and there is some n with
max F' <n <minG and G € Py(E,). Let H={t € FUG :t < k}
and let K = {t € FUG : t > k}. Then since supp(xy)Nsupp(a+b) =
0, we have HUK = FUG. Also, maxsupp(a) < minsupp(d_,cx Zt)
and maxsupp(d_,cp 2¢) < minsupp(b) so a = >,y 24 and b =
> ek *t, 50 b € X, a contradiction.
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Define g : X — N by g(3_,cp 2¢) = n if and only if max F' € E,,.
We next claim that there is some n € N such that

{ye X :g9(y) <n}eq.

So suppose instead that for alln € N, {y € X : g(y) > n} € ¢q. Pick
a € N such that —a + A € ¢q. Let | = maxsupp(a). Now

{be(—a+A):—b+(—a+A) eq}eq,

so pick b € (—a + A) N X N N2+ such that —b + (—a + A) € q.
Pick F' € Ps(F;) and n € N such that maxF < n < minG,
GePy(Ey),anda+b=>3,cp ¥+ Y ;e 2¢- Then g(b) = n. Let
k = maxsupp(b) and pick

v e (—b+(—a+A))ﬂXﬂNQk“ﬂ{yeX:g(y)>n}.

Thena+b+V € Asoa+b+V =3 ,cp 1+ Y 1cc 2t for some
F' € P¢(E1) and some G’ € Pf(E,,) where max F’ < m < minG".
then m = g(b') so m > n. But then a +b+V = >, x; where
HNE #0, HNE, # 0, and HN E,, # 0, a contradiction. Thus
we do have some n € N such that {y € X : g(y) <n} € q.

Now let k = maxsupp(z,) and pick a € N2¥*! such that —a +
A € q (using the fact here that » € H). Let | = maxsupp(a) and
pick b € (—a+ A) N N2+t N {y € X : g(y) < n}. Pick F € Ps(E1)
and m and G such that G € P¢(E,,) and max F' < m < minG.
Then g(b) = m so m < n. But minsupp(a + b) > k so max F' >
min F' > n so m > n, a contradiction. ]

Recall that a semigroup (S, -) is weakly cancellative provided that
forall z,y € S, {s€S:z-s=yors-x =y} is finite.

Lemma 2.5. Let (S,-) be an infinite weakly cancellative semigroup.
Then there is a countable subsemigroup T of S such that if q,r €
BS,q=q-q, andr-q€T, thenr €T and q € T. Furthermore,
if A is the subsemigroup of T generated by the idempotents of T*
and B is the subsemigroup of BS generated by the idempotents of
S*, then /A =T NclB.

Proof. Let C1 be an arbitrary countable subsemigroup of S. Given
n € N and C,,, let

D,=C,U{seS:(FzeC)(x-seC,ors-zeCy)}
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and let Cy,41 be the semigroup generated by D,,. Let T' = |77 | Ch,.
Trivially T is a countable subsemigroup of S. Notice also that if
r€T,se S, and either zs € T or sx € T, then s € T'.

Now assume that ¢, € 3S, ¢ = q-¢q, and r- ¢ € T. Then
Ter-gq=r-q-gqso{xeS:27'T €q} €r-q Pick z € T such
that 27T € q. Then 27 'T C T so T € q.

Now {s € S : s7'T € ¢} € r. We claim that

{seS:s'TeqgtCT

so that T € r. Let s € S such that s™'7 € q. Pick x € s 1T NT.
Then szt € T'soseT.
One easily shows by induction on k that if K € Nand ry,79,...,7%
are idempotents in 35 and ry-rg - -7 € T then {ry,r9,..., 7} CT.
Trivially ¢/A C TNeclB. For the reverse inclusion, let p € TNclB
and let C € p. Now CNT € pso CNTNB # () so pick k € N
and idempotents rq,79,...,7, in S* such that r{-ro---rp, € CNT.

Then {ri,r9,...,7,} CT sory-ra---1, € CNA. O

We are now ready to fulfill the first of our objectives of this
section.

Theorem 2.6. Let S be a semigroup which is embeddable in a com-
pact topological group and let B be the subsemigroup of B.S generated
by the idempotents of S*. Then clB is not a semigroup. In fact,
there exist an idempotent q1 of S* and a point q in the closure of
the set of idempotents of S* such that q1 - q ¢ c/B.

Proof. By Lemma 2.5 we may assume that S is countable. Pick by
Lemma 2.3 a countable group G containg S, an H-map ¢ : w — G,
and a subsemigroup V' of G* which contains all of the idempotents
of G* such that ¢ is an isomorphism from H onto V. Also pick a
sequence (s,)°% ; in S such that for each n, maxsupp ¢~ 1(s,)+1 <
minsupp ¥~ (s,41). For each n, let z,, = ¥~ 1(s,).

Let {E, : n € N} be a partition of N into infinite sets and for
each n let p, be an idempotent in BN such that for each m € N,

{Dicr 2t F € Pp(Ey) and min F' > m} € py,.

Let p be a cluster point in SN of the sequence (p,,)2° ; and pick by
Lemma 2.4 some A € p; + p such that there do not exist r € H and
an idempotent g € N* such that A € r 4 q.
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Let g1 = i(pl) and let ¢ = 1(p). Then ¢ is an idempotent of
G* and since p; € cl{z, : n € N}, 1 € cl{s, : n € N} so ¢ is
an idempotent of S*. Similarly, each ibv(pn) € 5" soq e S* and
q € cl{(py) : n € N} N L

Now A € py +p so ¢[A] € ¥(p1+p) = 1 -q. Suppose Y[A]NB #
() and pick k € N and idempotents r1,7r2,...,7; in S* such that
Y[A] € r1-19 -+ - rp. (We may presume that k > 2, since 1y = r1-77.)
Then {pvfl(rl 19+ -1K—1) € H and 1;*1(7%) is an idempotent of N*
and A € 1;_1(7"1 Ty TR—1) + 1’/;_1(7%), a contradiction. O

We now turn our attention to showing that under the same hy-
potheses P(S) is not the smallest compact subsemigroup of 35
containing the idempotents of S*.

Lemma 2.7. Let S and T be discrete semigroups, let h: S — T
be a homomorphism and let h : 8BS — BT denote the continuous
extension of h. Then h[P(S)] C P(T).

Proof. Let € P(S), let B € h(z) and let n € N with n >
3. Pick C' € z such that h[C] C B and pick (ag)i—q such that
FP({a;)7—1) € C. We shall construct inductively (b¢)}; such that
FP((b)j~y) € B. _

Given z € FP((h(at))}—s), we have h(a1)z € B so pick D, €

h(a1) such that D,z C B. Also B € h(a1) so pick
by € BON({D,:z¢€ FP({(h(a))i5)}-

Now let m € {1,2,...,n—2} and assume we have chosen (b;)}",
such that for each ¢ € FP((by)i~;) and z € FP({h(as))i,11),
cz € B. Given ¢ € FP({b;)i*,) and z € FP({(h(at))}-,, ) one has
h(amyi1)z € B, ch(ams+1) € B, and ch(a;,i1)z € B. Since A\, and
p- are continuous, we may pick D,, E., and Fi, in h(ap41) such
that D,z C B, cE. C B, and cF. .z C B. Pick

b1 € BNO(WD::z€ FP({h(at))i—pm1)}
NHE:: ce FP((b)i%)}
NN Fez : ¢ € FP((b)i2,) and z € FP((h(at))i—p11)}

Having chosen (b;)7—!, pick for each ¢ € FP((b;)!—}'), E. € h(ay)
such that cE, C B and pick b, € B(\{E.:c€ FP({b,)?=")}. O
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Recall that if ¢ € BN, (x,)02 is a sequence in a Hausdorff
topological space X, and y € X, then y = q—linrl\lI Ty, if and only
ne

if whenever U is a neighborhood of y in X, {n e N:z, € U} €¢.

Lemma 2.8. Let (S, ) be a semigroup, let p € 35, let ¢ € P(N,+),
and let r = q—lin&p". Then r € P(S).
ne

Proof. This follows immediately from Lemma 2.7 and the observa-
tion that the map n — p™ is a homomorphism from (N, +) into

BS. O

Given v € N* and n € N, we write n * v for the sum of v with
itself n times. (The notation n - v represents the operation in the
semigroup (ON, ), and n * v need not equal n - v. For example, if v
is an idempotent, then 2% v =v and 2 - v # v.)

Lemma 2.9. Let (x,)22, be a sequence in N such that for each
n € N, maxsupp(zy) < minsupp(zn+1), let ¢ € P(N), let

v € {x,:n e N},

and let p = q-limn xv. Then
neN

peHNPN)\cl|U{fN+e:e e N* ande+e=¢e}.

Proof. By Lemma 2.8 p € P(N). One shows easily by induction on
n that for n,k € N, {3 ,cp 24 : |F| =nand min F > k} € nxv. In
particular, each n* v € H and so p € H. Let

A={>1cr z: Fe€Ps(N)and min F' > |F|}.

Then given any n € N, {> ,cp ¢ : |[F| =nand minF' > n} C A
so A € p.

We claim that ANU{AN+¢e:e € N*ande +e = e} = 0.
Suppose instead we have some e = e+ e such that AN (BN +e) # ()
and pick y € N such that —y + A € e. Pick [ € N such that
minsupp(z;) > maxsupp(y). We claim that for each m > [, if
k = max supp(xy,), then y € FS((x,)™, and (—y + A) N N2F+1 C
FS((2)§C,,41)- Solet z € (—y+ A)NN2*1. Then y+ 2z € A so
pick ' € Pr(N) such that y + 2 = Y, .p 2. Let H = {t € I :
t <m} and let K = {t € F: t > m}. Now supp(y) Usupp(z) =

supp(y + 2) = User supp(et) = Usenr supp(ze) U Use e supp ().
Also max |J,c fy supp(2¢) < maxsupp(zy,) = k < minsupp(z) and
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max supp(y) < minsupp(z;) < min|J,c, supp(z;) so supp(y) =
User supp(2¢) and supp(z) = Use i supp(z¢) and so y = >, 24
and z = >, ;. Taking | = m, we have y € FS((z)}_;). Also
we have that for all m > 1, FS({r¢)2,,,,) € e.

Given any B € ¢, we let B* ={z € B: —z+ B € e}. Then by
[6, Lemma 4.14], whenever z € B*, —z + B* € e. Now we choose
inductively (F;)._, with min F} > [ and for each i € {1,2,...,1—1},
max F; < min Fjq, with 23:1 >ter, Tt € (—y + A)*. Since
(—y + A)* € e, pick [} with min F; > [ such that ) ,cp ¢ €
(—y + A)*. Having chosen <Fj>§-:1, let m = maxF; and pick

2 € ~(Cjoi Yier, @) + (—y + A)* 0 FS(2)2,,1,) and pick
F;y1 with min F;;q1 > m + 1 such that z = ZteFHl z¢. Now
y—l—Zézl ZteFj vy € Aandy = ),y x4 for some H with max H <
[ so min(HUUé.:1 F;) <l while |HUU§-:1 F;| > 141, a contradic-
tion. O

Theorem 2.10. Let S be a semigroup which can be embedded in a
compact topological group. Let

L=ct|J{BS -e:ecS* ande=c¢-e}.

Then L is a left ideal of 3S and there exists r € P(S)\ L. (So
if S is commutative, L N P(S) is a compact subsemigroup of 3S
containing the idempotents of S* and properly contained in P(S).)

Proof. By [6, Theorem 2.17], L is a left ideal of 3S. We first show
that it suffices to assume that S is countable. To see this, pick by
Lemma 2.5 a countable subsemigroup 7" of S such that if ¢, r € 85,
g=q-q,andr-q € T, thenr € T and ¢ € T. Assume that we have
somer € P(T)\cl|J{T-e:e€T* and e = e-e}. Then r € P(S).
If A€ rsuchthat ANJ{T -e:e€T*ande =e-e} =0, then
ANU{BS-e:e€ S*and e =e-e} = (). So we shall assume that
S is countable.

Pick by Lemma 2.3 a countable group G containg S, an H-map
¢ w — G, and a subsemigroup V of G* which contains all of
the idempotents of G* such that g is an isomorphism from H
onto V. Also pick a sequence (s,)>°, in S such that for each
n, maxsupp ¥~ (s,) + 1 < minsupp ¥~ !(s,41). For each n, let
rp = V¥ (s,). Let ¢ € P(N), let v € {x, : n € N}*, and let
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p = ¢-limn xv. Then by Lemma 2.9
neN

peHNPN)\cl|U{AN+e:ee N ande+e=c¢}.

Let » = ¢(p) and let w = ¥ (v). Then it is routine to establish that

r= q—lir%w” and so, by Lemma 2.8 r € P(S).
ne
Now we claim that r ¢ L. To see this, pick A € p such that

ANU{BN+e:e € N* and e+e = e} = ). Then 1[A4] € r. We claim
that ¥[A]N|J{BS-e:e € S*and e = e-e} = (). Suppose instead
that we have some e = e-e € S* and y € S such that ¥[A] € y - e.
Now ¢~ !(e) is an idempotent in N*, so it suffices to show that
A e (y) + ¢ (e). Let u =1 1(y) and let k = maxsupp(u).
Since y~'[A] € e and consequently [y 1y[A]] € ¥ (e), it
suffices to show that N25¥2 =1y~ 19[A4]] € -y~ (y) + A. So
let 2 € N28F2 0oy~ [y~ 1y[A]]. Then yy(z) € ¥[A] so ¥(u+ z) =
Y(u)(z) = yip(z) € Y[A] so u+ z € A and thus z € =~ (y) +
A. O

3. BN

Recall that we have seen that P(N,+), in addition to being a
compact subsemigroup of (OGN, +) containing the idempotents, is
also a two sided ideal of (ON,:). We see now that it is not the
smallest such.

Theorem 3.1. There is a compact subsemigroup of (6N, +) which
contains the idempotents of (BN, +), is a two sided ideal of (BN, -),
and is properly contained in P(N,+).

Proof. Choose v € {22" : n € N}* and ¢ € P(N). Let p =
q—linﬁln « v. Then by Lemma 2.8, p € P(N). Let
ne

L=cl|J{fN+e:ecN*and e+e=e}.

Then by Lemma 2.9, p ¢ L.

Define f : N — R by putting f(n) = logs(n), and let f: ON —
uR denote the continuous extension of f, where uR denotes the
uniform compactification of R. We observe that R can be regarded
as a subspace of uR, because R can be embedded in uR by a topo-
logical isomorphism. Then by [11, Lemma 2.1 |, f has the following
properties:
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(i) f(z-y) = f(z)+ f(y) for every z,y € SN and
(ii) f(z+y) = f(y) for every x € QN and every y € N*.

For a subset S of R, p(S) will denote cl,r(S) \ R. Let X =
p({2" : n € N}). We claim that X C int,g)(p(R) \ (p(R) + p(R)).
To see this, put E = {2" : n € N} and put F =R\ ((-=1,1) + E).
Using the uniform structure on R defined by the usual metric, it
follows from [6, Exercise 21.5.3] that there is a uniformly continuous
function ¢ : R — [0, 1] such that ¢[E] = {0} and ¢[F] = {1}. Let
¢ : uR — [0,1] denote the continuous extension of ¢. If W =
<;5_1[[0, %)], then W is an open neighbourhood of X in uwR and
W C clyr((—1,1)+ E). We shall show that W N (p(R)+p(R)) = 0.
To see this, assume that £, € p(R) and that £ + n € W. We can
choose s,t € R with |s —t| > 2 such that s+ and ¢+ 7 are both in
W, because {¢ € uR : (+n € W} is a neighbourhood of ¢ in uR, and
so its intersection with R is unbounded. (If B C R is bounded, then
clyr(B) CR.) Then —s+ W and —t+ W are both neighbourhoods
of n. However, we claim that (—s+ W) N (—t+W)NR is bounded.
To see this, note that for any x € (—s+W)N (=t +W)NR we
may pick n,m € N such that |s+ 2 — 2" <1 and [t +2 —2"| <
1. Since |s —t| > 2 we have that n # m. On the other hand,
|2" —2M| = 2" —x —s+t+ a2 — 2" +s—t| < 2+|s—t|. Thus there
are only finitely many pairs (n,m) for which there is some x with
|s+x—2" < 1and |t+x—2™] < 1. Given any such (n,m) and z,
|z] < |z+s—2"+|s—2" < 1+|s—2"|so (—s+W)N(—t+W)NR
is bounded as claimed. But this contradicts the assumption that
n € p(R). N

It follows from (ii) above that J = f ~![p(R) \ W] is a closed
subset of N* which is a left ideal of (SN, +). Furthermore, it follows
from (i) above that N* - N* C J. and in particular J is a two sided
ideal of (N*,-). Let V denote the smallest compact subset of SN
which is both a left ideal of (8N, +) and satisfies N*-N* C V. Then
V C J. We claim that V is an ideal of (SN,-). To see this, let
n € N. Then by [6, Theorem 6.54] nV = Vn so it suffices to show
that nV C V. To see this, let W = {p € N :n-p € V}. Then it
is easy to verify that W is a compact subset of SN which is both
a left ideal of (SN, +) and satisfies N* - N* C W, and consequenty
V C W and therefore nv C V as required.
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We claim that LUV is a closed left ideal of (8N, +) and an ideal
of (BN, -). It is obviously a closed left ideal of (8N, +). To see that
it is an ideal of (SN, ), it is routine to verify that for any n € N,
n-L =L-n C L. Also, forany x € N*, (- L)U(L-x) C N*-N* C V.

We claim that the element p € P(N) defined above is not in V.
To see this, observe that f(v) € c¢lyr (E) and hence, by property (ii)
above, that SN+ v C f [clyr E] C f ~W]. So (BN +v)NJ =0
and consequently (BN +v) NV ={). Now let r = q—lier?\](n —1) xw.

Then p =r+wv € N+ v, so p ¢ V. We have already noted that
p¢ L. Thus P(N)Z LUYV. O
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