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SUBSEMIGROUPS OF βS

CONTAINING THE IDEMPOTENTS

NEIL HINDMAN AND DONA STRAUSS

Abstract. Let S be a discrete semigroup and let P (S) be
the set of points p in the Stone-Čech compactification, βS,
of S with the property that every neighborhood of p contains
arbitrarily large finite sum sets or finite product sets, (de-
pending on whether the operation in S is denoted by + or ·).
Then P (S) contains all of the idempotents of βS, where the
operation on βS extends that on S making βS into a right
topological semigroup with S contained in its topological cen-
ter. If S is commutative, then P (S) is a compact subsemi-
group of βS. Responding to a question of Vitaly Bergelson,
we show that if S is any semigroup which can be embedded
in a compact topological group, then P (S) is not the smallest
closed semigroup containing the idempotents of βS and the
closure of the semigroup generated by the idempotents of βS
is not a semigroup.

1. Introduction

In 1933 Richard Rado published [8] his remarkable theorem char-
acterizing those finite matrices with rational coefficients which are
kernel partition regular over the set N of positive integers. (A
u × v matrix A is kernel partition regular over N if and only if
whenever N is partitioned into finitely many classes, there will ex-
ist ~x ∈ Nv with all of its entries in one class such that A~x = ~0.)
As an easy consequence, one sees that the matrix

(
1 1 −1

)
is
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kernel partition regular over N. That is, whenever N is partitioned
into finitely many cells, there will be in one cell some x, y, and z
with x + y = z. This result is Schur’s Theorem [10]. More gener-
ally, it is an easy consequence of Rado’s Theorem that whenever
r ∈ N and N is divided into finitely many cells, there will exist a
finite sequence 〈xt〉rt=1 in N such that FS(〈xt〉rt=1) is contained in
one cell, where FS(〈xt〉rt=1) =

{ ∑
t∈F xt : ∅ 6= F ⊆ {1, 2, . . . , r}

}
.

(See [4, Corollary 2.4] for the details of how this follows easily from
Rado’s Theorem.) Much later Jon Sanders [9] and Jon Folkman
(unpublished) independently derived this same result.

In [3] an infinite version of this result was obtained. That is,
whenever N is divided into finitely many cells, there will exist a
sequence 〈xt〉∞t=1 in N such that FS(〈xt〉∞t=1) is contained in one
cell, where FS(〈xt〉∞t=1) = {

∑
t∈F xt : F ∈ Pf (N)}. (Here Pf (X)

is the set of finite nonempty subsets of X.) The proof given in [3]
was excruciatingly complicated. There is a much simpler proof due
to Fred Galvin and Steven Glazer, not published by either of them.
See the Notes to [6, Chapter 5] for the history of the discovery of
this proof.

Theorem 1.1. Let A ⊆ N. There exists a sequence 〈xt〉∞t=1 in N
with FS(〈xt〉∞t=1) ⊆ A if and only if there exists an idempotent p in
(βN,+) such that A ∈ p.

Proof. [6, Theorem 5.12]. �

In fact Theorem 1.1 holds more generally. Given any semigroup
(S, ·), not necessarily commutative, and given a sequence 〈xt〉∞t=1

in S, one defines FP (〈xt〉∞t=1) = {
∏

t∈F xt : F ∈ Pf (N)}, where
the product

∏
t∈F xt is taken in increasing order of indices. One

then has that for any A ⊆ S there exists a sequence 〈xt〉∞t=1 in S
with FP (〈xt〉∞t=1) ⊆ A if and only if there exists an idempotent p
in (βS, ·) such that A ∈ p.

Given a discrete space X, we are taking the points of βX to be
the ultrafilters on X, identifying the principal ultrafilters with the
points of X and thereby pretending that X ⊆ βX. We let X∗ =
βX \X. Given A ⊆ X, A = c`βXA = {p ∈ βS : A ∈ p}. If (S, ·) is
a discrete semigroup, the operation extends to βS making (βS, ·)
a right topological semigroup (meaning that for each p ∈ βS, the
function ρp : βS → βS defined by ρp(q) = q · p is continuous) with
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S contained in its topological center (meaning that for each x ∈ S,
the function λx : βS → βS defined by λx(q) = x · q is continuous).
Given p, q ∈ βS and A ⊆ S, one has that A ∈ p · q if and only if
{x ∈ S : x−1A ∈ q} ∈ p, where x−1A = {y ∈ S : x · y ∈ A}. If the
operation in S is denoted by +, we have that A ∈ p+ q if and only
if {x ∈ S : −x+A ∈ q} ∈ p, where −x+A = {y ∈ S : x+ y ∈ A}.
It is a fundamental fact, due originally to R. Ellis [1], that any
compact Hausdorff right topological semigroup has an idempotent.
See [6] for an elementary introduction to the structure of βS.

Recently Vitaly Bergelson asked whether there is some nice al-
gebraic description of the set of ultrafilters on N every member of
which contains arbitrarily large finite sums sets. This would be
the set P (N) defined below. (We state the definition multiplica-
tively because we will be dealing with these sets in a quite general
context.)

Definition 1.2. Let (S, ·) be a semigroup.

(a) For each r ∈ N,
Pr(S) = {p ∈ S∗ : (∀A ∈ p)(∃〈xt〉rt=1)(FP (〈xt〉rt=1) ⊆ A)}.

(b) P (S) =
⋂∞

r=1 Pr(S).

If S is commutative, it is easy to see that Pr(S) is a compact
subsemigroup of βS. (Given r ∈ N, p, q ∈ Pr(S), and A ∈ p · q,
one has that B = {x ∈ S : x−1A ∈ q} ∈ p so pick 〈xt〉rt=1 with
FP (〈xt〉rt=1) ⊆ B. Then C =

⋂
{z−1A : z ∈ FP (〈xt〉rt=1)} ∈ q so

pick 〈yt〉rt=1 with FP (〈yt〉rt=1) ⊆ C. Then FP (〈xt ·yt〉rt=1) ⊆ A.) By
[5, Theorem 3.9] (using a result of Nešetřil and Rödl [7]), for each
r > 1, Pr+1(N,+) is a proper subset of Pr(N,+). Further, it is an
immediate consequence of Theorem 1.1 that all idempotents of βN
are in P (N,+). Thus, a tempting answer to Bergelson’s question
would be that P (N,+) is the smallest compact subsemigroup of
(βN,+) containing the idempotents.

However, it was shown in [5] that the closure of the semigroup
generated by the idempotents of (βN,+) is not a semigroup and
that there is a compact subsemigroup of (βN,+) (denoted there by
M) which lies strictly between the smallest subsemigroup of (βN,+)
containing the idempotents and P (N,+). In Section 2 of this paper
we extend these results to semigroups which can be algebraically
embedded in compact topological groups.
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In Section 3 we restrict our attention to P (N,+), noting that as
a consequence of the following result, P (N,+) is an ideal of (βN, ·).

Theorem 1.3. Let r ∈ N. Then Pr(N,+) is an ideal of (βN, ·).

Proof. Let p ∈ Pr(N,+) and let q ∈ βN. To see that p·q ∈ Pr(N,+),
let A ∈ p · q. Pick 〈xt〉rt=1 such that FS(〈xt〉rt=1) ⊆ {y ∈ N : y−1A ∈
q. Then B =

⋂
{y−1A : y ∈ FS(〈xt〉rt=1)} ∈ q so pick a ∈ B. Then

FS(〈xt · a〉rt=1) ⊆ A.
To see that q · p ∈ Pr(N,+), let A ∈ q · p. Pick a ∈ N such that

a−1A ∈ p and pick 〈xt〉rt=1 such that FS(〈xt〉rt=1) ⊆ a−1A. Then
FS(〈a · xt〉rt=1) ⊆ A. �

Another tempting answer to Bergelson’s question then becomes
that P (N,+) is the smallest compact subset of βN which is both
a subsemigroup of (βN,+) and an ideal of (βN, ·). We show in
Section 3 that this is not the case.

All hypothesized topological spaces are Hausdorff.

2. Semigroups embeddable in compact topological
groups

We show in this section that if S is any semigroup which can be
embedded in a compact topological group, then the closure of the
semigroup generated by the idempotents of S∗ is not a semigroup.
(As is well known, such semigroups include all free semigroups and
all commutative cancellative semigroups.) We also show, under the
same assumption on S, that there is an element of P (S) which is not
a member of the smallest compact subsemigroup of βS containing
the idempotents of S∗. (This result is less interesting in the case
that S is not commutative, since then it is unlikely that P (S) will
be a semigroup.)

The following lemma is, as we are fond of saying, well known by
those who know it well.

Lemma 2.1. Let (S, ·) be a countably infinite semigroup. If S can
be algebraically embedded in a compact topological group, then S
can be algebraically embedded in a compact metrizable topological
group.
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Proof. Let G be a compact topological group with identity 1 and
let ϕ : S → G be an injective homomorphism. Let

H = {ϕ(s)ϕ(t)−1 : s, t ∈ S and s 6= t} .
For a ∈ H pick by [2, Theorem 22.14] a compact metrizable topo-
logical group Ca and a continuous homomorphism ha : G → Ca

such that ha(a) 6= ha(1). Let C = ×a∈H Ca and define ψ : S → C
by ψ(s)(a) = ha

(
ϕ(s)

)
for each a ∈ H. Given s 6= t in S, if

a = ϕ(s)ϕ(t)−1, then ψ(s)(a) 6= ψ(t)(a) so ψ is injective. �

The Lemma 2.3 will be used in the proofs of both of the theorems
of this section. If n ∈ N, supp(n) is the subset of ω determined by
n =

∑
t∈supp(n) 2t, where ω = N ∪ {0}.

Definition 2.2. (a) H =
⋂∞

n=1 c`βN(N2n).
(b) Let X be a subset of a semigroup. A function ψ : ω → X

will be called an H-map if it is bijective and if ψ(m+ n) =
ψ(m)ψ(n) whenever m,n ∈ N satisfy max supp(m) + 1 <
min supp(n).

Note that by [6, Lemma 6.6], H contains all of the idempotents
of (βN,+).

Lemma 2.3. Let S be a countable semigroup which can be embed-
ded in a compact topological group. Then there exist a countable
group G containg S, an H-map ψ : ω → G, and a subsemigroup
V of G∗ which contains all of the idempotents of G∗ such that
ψ̃|H is an isomorphism from H onto V . Further, there is a se-
quence 〈sn〉∞n=1 in S such that for each n, max supp ψ−1(sn) + 1 <
min supp ψ−1(sn+1).

Proof. By Lemma 2.1 there exist a compact metrizable topological
group C with identity 1 and an injective homomorphism ϕ : S → C.
Let G be the subgroup of C generated by ϕ[S] and let βGd be the
Stone-Čech compactification of G with the discrete topology. We
may assume in fact that S ⊆ G. Let ι : G → C be the inclusion
map and let ι̃ : βGd → C be its continuous extension. Let V =
G∗ ∩ ι̃−1[{1}]. By [6, Theorem 7.28] V is a subsemigroup of G∗

which contains all of the idempotents of G∗ and there is an H-map
ψ : ω → G such that ψ̃|H is an isomorphism from H onto V .

Now pick an idempotent q ∈ S∗. (By [6, Theorem 4.36] S∗

is a subsemigroup of βS so has an idempotent.) We choose the
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sequence 〈sn〉∞n=1 inductively, letting s1 be any element of S. Let
n ∈ N and assume that s1, s2, . . . , sn have been chosen. Let k =
max supp ψ−1(sn) + 2. Now q ∈ V so ψ̃−1(q) is an idempotent in
H and thus N2k ∈ ψ̃−1(q). By [6, Lemma 3.30] ψ[N2k] ∈ q so pick
sn+1 ∈ ψ[N2k]. �

Note that the idempotents pn hypothesized in the next lemma
exist by [6, Lemma 5.11].

Lemma 2.4. Let 〈xt〉∞t=1 be a sequence in N such that for all t,
max supp(xt) < min supp(xt+1). Let {En : n ∈ N} be a partition of
N into infinite sets and for each n let pn be an idempotent in βN
such that for each m ∈ N,

{
∑

t∈F xt : F ∈ Pf (En) and minF > m} ∈ pn .

Let p be a cluster point in βN of the sequence 〈pn〉∞n=1 and let
A =

{ ∑
t∈F xt +

∑
t∈G xt : F ∈ Pf (E1) and (∃n)

(
maxF < n <

minG and G ∈ Pf (En)
)}

. Then A ∈ p1 + p and there do not exist
r ∈ H and an idempotent q such that A ∈ r + q.

Proof. To see that A ∈ p1 + p we show that

FS(〈xt〉t∈E1) ⊆ {a ∈ N : −a+A ∈ p} .
So let F ∈ Pf (E1), let a =

∑
t∈F xt, and let

B = {
∑

t∈G xt : (∃n)(maxF < n < minG and G ∈ Pf (En)} .
Then B ⊆ −a + A so it suffices to show that B ∈ p. Suppose
instead B /∈ p and pick n > maxF such that pn ∈ N \B. Then
{
∑

t∈G xt : G ∈ Pf (En) and minG > n} is an element of pn which
is contained in B, a contradiction.

Now suppose that we have r ∈ H and an idempotent q such that
A ∈ r + q. Let X = FS(〈xt〉∞t=1). We claim first that X ∈ q, so
suppose instead that X /∈ q. Pick a ∈ N such that −a + A ∈ q
and pick k ∈ N such that max supp(a) < min supp(xk) and let
m = max supp(xk)+1. Pick b ∈ (−a+A)∩N2m \X. Then a+ b =∑

t∈F xt +
∑

t∈G xt, where F ∈ Pf (E1) and there is some n with
maxF < n < minG and G ∈ Pf (En). Let H = {t ∈ F ∪G : t < k}
and letK = {t ∈ F∪G : t > k}. Then since supp(xk)∩supp(a+b) =
∅, we haveH∪K = F∪G. Also, max supp(a) < min supp(

∑
t∈K xt)

and max supp(
∑

t∈H xt) < min supp(b) so a =
∑

t∈H xt and b =∑
t∈K xt, so b ∈ X, a contradiction.
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Define g : X → N by g(
∑

t∈F xt) = n if and only if maxF ∈ En.
We next claim that there is some n ∈ N such that

{y ∈ X : g(y) ≤ n} ∈ q .

So suppose instead that for all n ∈ N, {y ∈ X : g(y) > n} ∈ q. Pick
a ∈ N such that −a+A ∈ q. Let l = max supp(a). Now

{b ∈ (−a+A) : −b+ (−a+A) ∈ q} ∈ q ,

so pick b ∈ (−a + A) ∩ X ∩ N2l+1 such that −b + (−a + A) ∈ q.
Pick F ∈ Pf (E1) and n ∈ N such that maxF < n < minG,
G ∈ Pf (En), and a+ b =

∑
t∈F xt +

∑
t∈G xt. Then g(b) = n. Let

k = max supp(b) and pick

b′ ∈
(
− b+ (−a+A)

)
∩X ∩ N2k+1 ∩ {y ∈ X : g(y) > n} .

Then a+ b+ b′ ∈ A so a+ b+ b′ =
∑

t∈F ′ xt +
∑

t∈G′ xt for some
F ′ ∈ Pf (E1) and some G′ ∈ Pf (Em) where maxF ′ < m < minG′.
then m = g(b′) so m > n. But then a + b + b′ =

∑
t∈H xt where

H ∩ E1 6= ∅, H ∩ En 6= ∅, and H ∩ Em 6= ∅, a contradiction. Thus
we do have some n ∈ N such that {y ∈ X : g(y) ≤ n} ∈ q.

Now let k = max supp(xn) and pick a ∈ N2k+1 such that −a +
A ∈ q (using the fact here that r ∈ H). Let l = max supp(a) and
pick b ∈ (−a+ A) ∩ N2l+1 ∩ {y ∈ X : g(y) ≤ n}. Pick F ∈ Pf (E1)
and m and G such that G ∈ Pf (Em) and maxF < m < minG.
Then g(b) = m so m ≤ n. But min supp(a + b) > k so maxF ≥
minF > n so m > n, a contradiction. �

Recall that a semigroup (S, ·) is weakly cancellative provided that
for all x, y ∈ S, {s ∈ S : x · s = y or s · x = y} is finite.

Lemma 2.5. Let (S, ·) be an infinite weakly cancellative semigroup.
Then there is a countable subsemigroup T of S such that if q, r ∈
βS, q = q · q, and r · q ∈ T , then r ∈ T and q ∈ T . Furthermore,
if A is the subsemigroup of T generated by the idempotents of T ∗

and B is the subsemigroup of βS generated by the idempotents of
S∗, then c`A = T ∩ c`B.

Proof. Let C1 be an arbitrary countable subsemigroup of S. Given
n ∈ N and Cn, let

Dn = Cn ∪ {s ∈ S : (∃x ∈ Cn)(x · s ∈ Cn or s · x ∈ Cn)}
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and let Cn+1 be the semigroup generated by Dn. Let T =
⋃∞

n=1Cn.
Trivially T is a countable subsemigroup of S. Notice also that if
x ∈ T , s ∈ S, and either xs ∈ T or sx ∈ T , then s ∈ T .

Now assume that q, r ∈ βS, q = q · q, and r · q ∈ T . Then
T ∈ r · q = r · q · q so {x ∈ S : x−1T ∈ q} ∈ r · q. Pick x ∈ T such
that x−1T ∈ q. Then x−1T ⊆ T so T ∈ q.

Now {s ∈ S : s−1T ∈ q} ∈ r. We claim that

{s ∈ S : s−1T ∈ q} ⊆ T

so that T ∈ r. Let s ∈ S such that s−1T ∈ q. Pick x ∈ s−1T ∩ T .
Then sx ∈ T so s ∈ T .

One easily shows by induction on k that if k ∈ N and r1, r2, . . . , rk
are idempotents in βS and r1·r2 · · · rk ∈ T then {r1, r2, . . . , rk} ⊆ T .

Trivially c`A ⊆ T∩c`B. For the reverse inclusion, let p ∈ T∩c`B
and let C ∈ p. Now C ∩ T ∈ p so C ∩ T ∩ B 6= ∅ so pick k ∈ N
and idempotents r1, r2, . . . , rk in S∗ such that r1 · r2 · · · rk ∈ C ∩ T .
Then {r1, r2, . . . , rk} ⊆ T so r1 · r2 · · · rk ∈ C ∩A. �

We are now ready to fulfill the first of our objectives of this
section.

Theorem 2.6. Let S be a semigroup which is embeddable in a com-
pact topological group and let B be the subsemigroup of βS generated
by the idempotents of S∗. Then c`B is not a semigroup. In fact,
there exist an idempotent q1 of S∗ and a point q in the closure of
the set of idempotents of S∗ such that q1 · q /∈ c`B.

Proof. By Lemma 2.5 we may assume that S is countable. Pick by
Lemma 2.3 a countable group G containg S, an H-map ψ : ω → G,
and a subsemigroup V of G∗ which contains all of the idempotents
of G∗ such that ψ̃|H is an isomorphism from H onto V . Also pick a
sequence 〈sn〉∞n=1 in S such that for each n, max supp ψ−1(sn)+1 <
min supp ψ−1(sn+1). For each n, let xn = ψ−1(sn).

Let {En : n ∈ N} be a partition of N into infinite sets and for
each n let pn be an idempotent in βN such that for each m ∈ N,

{
∑

t∈F xt : F ∈ Pf (En) and minF > m} ∈ pn .

Let p be a cluster point in βN of the sequence 〈pn〉∞n=1 and pick by
Lemma 2.4 some A ∈ p1 +p such that there do not exist r ∈ H and
an idempotent q ∈ N∗ such that A ∈ r + q.
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Let q1 = ψ̃(p1) and let q = ψ̃(p). Then q1 is an idempotent of
G∗ and since p1 ∈ c`{xn : n ∈ N}, q1 ∈ c`{sn : n ∈ N} so q1 is
an idempotent of S∗. Similarly, each ψ̃(pn) ∈ S∗ so q ∈ S∗ and
q ∈ c`{ψ̃(pn) : n ∈ N}.

Now A ∈ p1 +p so ψ[A] ∈ ψ̃(p1 +p) = q1 ·q. Suppose ψ[A]∩B 6=
∅ and pick k ∈ N and idempotents r1, r2, . . . , rk in S∗ such that
ψ[A] ∈ r1 ·r2 · · · rk. (We may presume that k ≥ 2, since r1 = r1 ·r1.)
Then ψ̃−1(r1 · r2 · · · rk−1) ∈ H and ψ̃−1(rk) is an idempotent of N∗

and A ∈ ψ̃−1(r1 · r2 · · · rk−1) + ψ̃−1(rk), a contradiction. �

We now turn our attention to showing that under the same hy-
potheses P (S) is not the smallest compact subsemigroup of βS
containing the idempotents of S∗.

Lemma 2.7. Let S and T be discrete semigroups, let h : S → βT

be a homomorphism and let h̃ : βS → βT denote the continuous
extension of h. Then h̃[P (S)] ⊆ P (T ).

Proof. Let x ∈ P (S), let B ∈ h̃(x) and let n ∈ N with n ≥
3. Pick C ∈ x such that h̃[C ] ⊆ B and pick 〈at〉nt=1 such that
FP (〈at〉nt=1) ⊆ C. We shall construct inductively 〈bt〉nt=1 such that
FP (〈bt〉nt=1) ⊆ B.

Given z ∈ FP (〈h(at)〉nt=2), we have h(a1)z ∈ B so pick Dz ∈
h(a1) such that Dzz ⊆ B. Also B ∈ h(a1) so pick

b1 ∈ B ∩
⋂
{Dz : z ∈ FP (〈h(at)〉nt=2)} .

Now let m ∈ {1, 2, . . . , n− 2} and assume we have chosen 〈bt〉mt=1

such that for each c ∈ FP (〈bt〉mt=1) and z ∈ FP (〈h(at)〉nt=m+1),
cz ∈ B. Given c ∈ FP (〈bt〉mt=1) and z ∈ FP (〈h(at)〉nt=m+2) one has
h(am+1)z ∈ B, ch(am+1) ∈ B, and ch(am+1)z ∈ B. Since λc and
ρz are continuous, we may pick Dz, Ec, and Fc,z in h(am+1) such
that Dzz ⊆ B, cEc ⊆ B, and cFc,zz ⊆ B. Pick

bm+1 ∈ B ∩
⋂
{Dz : z ∈ FP (〈h(at)〉nt=m+1)}

∩
⋂
{Ec : c ∈ FP (〈bt〉mt=1)}

∩
⋂
{Fc,z : c ∈ FP (〈bt〉mt=1) and z ∈ FP (〈h(at)〉nt=m+1)}

Having chosen 〈bt〉n−1
t=1 , pick for each c ∈ FP (〈bt〉n−1

t=1 ), Ec ∈ h(an)
such that cEc ⊆ B and pick bn ∈ B

⋂
{Ec : c ∈ FP (〈bt〉n−1

t=1 )}. �
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Recall that if q ∈ βN, 〈xn〉∞n=1 is a sequence in a Hausdorff
topological space X, and y ∈ X, then y = q-lim

n∈N
xn if and only

if whenever U is a neighborhood of y in X, {n ∈ N : xn ∈ U} ∈ q.

Lemma 2.8. Let (S, ·) be a semigroup, let p ∈ βS, let q ∈ P (N,+),
and let r = q-lim

n∈N
pn. Then r ∈ P (S).

Proof. This follows immediately from Lemma 2.7 and the observa-
tion that the map n 7→ pn is a homomorphism from (N,+) into
βS. �

Given v ∈ N∗ and n ∈ N, we write n ∗ v for the sum of v with
itself n times. (The notation n · v represents the operation in the
semigroup (βN, ·), and n ∗ v need not equal n · v. For example, if v
is an idempotent, then 2 ∗ v = v and 2 · v 6= v.)

Lemma 2.9. Let 〈xn〉∞n=1 be a sequence in N such that for each
n ∈ N, max supp(xn) < min supp(xn+1), let q ∈ P (N), let

v ∈ {xn : n ∈ N}∗ ,
and let p = q-lim

n∈N
n ∗ v. Then

p ∈ H ∩ P (N) \ c`
⋃
{βN + e : e ∈ N∗ and e+ e = e} .

Proof. By Lemma 2.8 p ∈ P (N). One shows easily by induction on
n that for n, k ∈ N, {

∑
t∈F xt : |F | = n and minF > k} ∈ n ∗ v. In

particular, each n ∗ v ∈ H and so p ∈ H. Let

A = {
∑

t∈F xt : F ∈ Pf (N) and minF > |F |} .
Then given any n ∈ N, {

∑
t∈F xt : |F | = n and minF > n} ⊆ A

so A ∈ p.
We claim that A ∩

⋃
{βN + e : e ∈ N∗ and e + e = e} = ∅.

Suppose instead we have some e = e+e such that A∩ (βN+e) 6= ∅
and pick y ∈ N such that −y + A ∈ e. Pick l ∈ N such that
min supp(xl) > max supp(y). We claim that for each m ≥ l, if
k = max supp(xm), then y ∈ FS(〈xt〉mt=1 and (−y + A) ∩ N2k+1 ⊆
FS(〈xt〉∞t=m+1). So let z ∈ (−y + A) ∩ N2k+1. Then y + z ∈ A so
pick F ∈ Pf (N) such that y + z =

∑
t∈F xt. Let H = {t ∈ F :

t ≤ m} and let K = {t ∈ F : t > m}. Now supp(y) ∪ supp(z) =
supp(y + z) =

⋃
t∈F supp(xt) =

⋃
t∈H supp(xt) ∪

⋃
t∈K supp(xt).

Also max
⋃

t∈H supp(xt) ≤ max supp(xm) = k < min supp(z) and



SUBSEMIGROUPS OF βS 11

max supp(y) < min supp(xl) < min
⋃

t∈K supp(xt) so supp(y) =⋃
t∈H supp(xt) and supp(z) =

⋃
t∈K supp(xt) and so y =

∑
t∈H xt

and z =
∑

t∈K xt. Taking l = m, we have y ∈ FS(〈xt〉lt=1). Also
we have that for all m ≥ l, FS(〈rt〉∞t=m+1) ∈ e.

Given any B ∈ e, we let B? = {z ∈ B : −z + B ∈ e}. Then by
[6, Lemma 4.14], whenever z ∈ B?, −z + B? ∈ e. Now we choose
inductively 〈Fi〉li=1 with minF1 > l and for each i ∈ {1, 2, . . . , l−1},
maxFi < minFi+1, with

∑i
j=1

∑
t∈Fj

xt ∈ (−y + A)?. Since
(−y + A)? ∈ e, pick F1 with minF1 > l such that

∑
t∈F1

xt ∈
(−y + A)?. Having chosen 〈Fj〉ij=1, let m = maxFi and pick
z ∈ −(

∑i
j=1

∑
t∈Fj

xt) + (−y + A)? ∩ FS(〈xt〉∞t=m+1) and pick
Fi+1 with minFi+1 ≥ m + 1 such that z =

∑
t∈Fi+1

xt. Now

y+
∑l

j=1

∑
t∈Fj

xt ∈ A and y =
∑

t∈H xt for someH with maxH ≤
l so min(H ∪

⋃l
j=1 Fj) ≤ l while |H ∪

⋃l
j=1 Fj | ≥ l+1, a contradic-

tion. �

Theorem 2.10. Let S be a semigroup which can be embedded in a
compact topological group. Let

L = c`
⋃
{βS · e : e ∈ S∗ and e = e · e} .

Then L is a left ideal of βS and there exists r ∈ P (S) \ L. (So
if S is commutative, L ∩ P (S) is a compact subsemigroup of βS
containing the idempotents of S∗ and properly contained in P (S).)

Proof. By [6, Theorem 2.17], L is a left ideal of βS. We first show
that it suffices to assume that S is countable. To see this, pick by
Lemma 2.5 a countable subsemigroup T of S such that if q, r ∈ βS,
q = q · q, and r · q ∈ T , then r ∈ T and q ∈ T . Assume that we have
some r ∈ P (T ) \ c`

⋃
{T · e : e ∈ T ∗ and e = e · e}. Then r ∈ P (S).

If A ∈ r such that A ∩
⋃
{T · e : e ∈ T ∗ and e = e · e} = ∅, then

A ∩
⋃
{βS · e : e ∈ S∗ and e = e · e} = ∅. So we shall assume that

S is countable.
Pick by Lemma 2.3 a countable group G containg S, an H-map

ψ : ω → G, and a subsemigroup V of G∗ which contains all of
the idempotents of G∗ such that ψ̃|H is an isomorphism from H
onto V . Also pick a sequence 〈sn〉∞n=1 in S such that for each
n, max supp ψ−1(sn) + 1 < min supp ψ−1(sn+1). For each n, let
xn = ψ−1(sn). Let q ∈ P (N), let v ∈ {xn : n ∈ N}∗, and let
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p = q-lim
n∈N

n ∗ v. Then by Lemma 2.9

p ∈ H ∩ P (N) \ c`
⋃
{βN + e : e ∈ N∗ and e+ e = e} .

Let r = ψ̃(p) and let w = ψ̃(v). Then it is routine to establish that
r = q-lim

n∈N
wn and so, by Lemma 2.8 r ∈ P (S).

Now we claim that r /∈ L. To see this, pick A ∈ p such that
A∩

⋃
{βN+e : e ∈ N∗ and e+e = e} = ∅. Then ψ[A] ∈ r. We claim

that ψ[A] ∩
⋃
{βS · e : e ∈ S∗ and e = e · e} = ∅. Suppose instead

that we have some e = e · e ∈ S∗ and y ∈ S such that ψ[A] ∈ y · e.
Now ψ̃−1(e) is an idempotent in N∗, so it suffices to show that
A ∈ ψ−1(y) + ψ̃−1(e). Let u = ψ−1(y) and let k = max supp(u).
Since y−1ψ[A] ∈ e and consequently ψ−1

[
y−1ψ[A]

]
∈ ψ−1(e), it

suffices to show that N2k+2 ∩ ψ−1
[
y−1ψ[A]

]
⊆ −ψ−1(y) + A. So

let z ∈ N2k+2 ∩ ψ−1
[
y−1ψ[A]

]
. Then yψ(z) ∈ ψ[A] so ψ(u + z) =

ψ(u)ψ(z) = yψ(z) ∈ ψ[A] so u + z ∈ A and thus z ∈ −ψ−1(y) +
A. �

3. βN

Recall that we have seen that P (N,+), in addition to being a
compact subsemigroup of (βN,+) containing the idempotents, is
also a two sided ideal of (βN, ·). We see now that it is not the
smallest such.

Theorem 3.1. There is a compact subsemigroup of (βN,+) which
contains the idempotents of (βN,+), is a two sided ideal of (βN, ·),
and is properly contained in P (N,+).

Proof. Choose v ∈ {22n
: n ∈ N}∗ and q ∈ P (N). Let p =

q-lim
n∈N

n ∗ v. Then by Lemma 2.8, p ∈ P (N). Let

L = c`
⋃
{βN + e : e ∈ N∗ and e+ e = e} .

Then by Lemma 2.9, p /∈ L.
Define f : N → R by putting f(n) = log2(n), and let f̃ : βN →

uR denote the continuous extension of f , where uR denotes the
uniform compactification of R. We observe that R can be regarded
as a subspace of uR, because R can be embedded in uR by a topo-
logical isomorphism. Then by [11, Lemma 2.1 ], f̃ has the following
properties:
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(i) f̃(x · y) = f̃(x) + f̃(y) for every x, y ∈ βN and
(ii) f̃(x+ y) = f̃(y) for every x ∈ βN and every y ∈ N∗.

For a subset S of R, ρ(S) will denote c`uR(S) \ R. Let X =
ρ({2n : n ∈ N}). We claim that X ⊆ intρ(R)(ρ(R) \ (ρ(R) + ρ(R)).
To see this, put E = {2n : n ∈ N} and put F = R \

(
(−1, 1) + E

)
.

Using the uniform structure on R defined by the usual metric, it
follows from [6, Exercise 21.5.3] that there is a uniformly continuous
function φ : R → [0, 1] such that φ[E] = {0} and φ[F ] = {1}. Let
φ̃ : uR → [0, 1] denote the continuous extension of φ. If W =
φ̃−1

[
[0, 1

2)
]
, then W is an open neighbourhood of X in uR and

W ⊆ cluR
(
(−1, 1)+E

)
. We shall show that W ∩

(
ρ(R)+ρ(R)

)
= ∅.

To see this, assume that ξ, η ∈ ρ(R) and that ξ + η ∈ W . We can
choose s, t ∈ R with |s− t| > 2 such that s+η and t+η are both in
W , because {ζ ∈ uR : ζ+η ∈W} is a neighbourhood of ξ in uR, and
so its intersection with R is unbounded. (If B ⊆ R is bounded, then
c`uR(B) ⊆ R.) Then −s+W and −t+W are both neighbourhoods
of η. However, we claim that (−s+W )∩ (−t+W )∩R is bounded.
To see this, note that for any x ∈ (−s + W ) ∩ (−t + W ) ∩ R we
may pick n,m ∈ N such that |s + x − 2n| < 1 and |t + x − 2m| <
1. Since |s − t| > 2 we have that n 6= m. On the other hand,
|2n−2m| = |2n−x− s+ t+x−2m + s− t| < 2+ |s− t|. Thus there
are only finitely many pairs (n,m) for which there is some x with
|s+x− 2n| < 1 and |t+x− 2m| < 1. Given any such (n,m) and x,
|x| ≤ |x+s−2n|+ |s−2n| < 1+ |s−2n| so (−s+W )∩(−t+W )∩R
is bounded as claimed. But this contradicts the assumption that
η ∈ ρ(R).

It follows from (ii) above that J = f̃ −1[ρ(R) \ W ] is a closed
subset of N∗ which is a left ideal of (βN,+). Furthermore, it follows
from (i) above that N∗ ·N∗ ⊆ J . and in particular J is a two sided
ideal of (N∗, ·). Let V denote the smallest compact subset of βN
which is both a left ideal of (βN,+) and satisfies N∗ ·N∗ ⊆ V . Then
V ⊆ J . We claim that V is an ideal of (βN, ·). To see this, let
n ∈ N. Then by [6, Theorem 6.54] nV = V n so it suffices to show
that nV ⊆ V . To see this, let W = {p ∈ βN : n · p ∈ V }. Then it
is easy to verify that W is a compact subset of βN which is both
a left ideal of (βN,+) and satisfies N∗ · N∗ ⊆ W , and consequenty
V ⊆W and therefore nv ⊆ V as required.
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We claim that L∪V is a closed left ideal of (βN,+) and an ideal
of (βN, ·). It is obviously a closed left ideal of (βN,+). To see that
it is an ideal of (βN, ·), it is routine to verify that for any n ∈ N,
n·L = L·n ⊆ L. Also, for any x ∈ N∗, (x·L)∪(L·x) ⊆ N∗ ·N∗ ⊆ V .

We claim that the element p ∈ P (N) defined above is not in V .
To see this, observe that f̃(v) ∈ c`uR (E) and hence, by property (ii)
above, that βN + v ⊆ f̃ −1[c`uRE] ⊆ f̃ −1[W ]. So (βN + v)∩ J = ∅
and consequently (βN + v) ∩ V = ∅. Now let r = q-lim

n∈N
(n− 1) ∗ v.

Then p = r + v ∈ βN + v, so p /∈ V . We have already noted that
p /∈ L. Thus P (N) 6⊆ L ∪ V . �
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