This paper was published in Topology Proceedings 35 (2010), 233-246. To the best of my knowledge, this is the final version as it was submitted to the publisher.

# SUBSEMIGROUPS OF $\beta S$ CONTAINING THE IDEMPOTENTS 

NEIL HINDMAN AND DONA STRAUSS


#### Abstract

Let $S$ be a discrete semigroup and let $P(S)$ be the set of points $p$ in the Stone-Čech compactification, $\beta S$, of $S$ with the property that every neighborhood of $p$ contains arbitrarily large finite sum sets or finite product sets, (depending on whether the operation in $S$ is denoted by + or $\cdot$ ). Then $P(S)$ contains all of the idempotents of $\beta S$, where the operation on $\beta S$ extends that on $S$ making $\beta S$ into a right topological semigroup with $S$ contained in its topological center. If $S$ is commutative, then $P(S)$ is a compact subsemigroup of $\beta S$. Responding to a question of Vitaly Bergelson, we show that if $S$ is any semigroup which can be embedded in a compact topological group, then $P(S)$ is not the smallest closed semigroup containing the idempotents of $\beta S$ and the closure of the semigroup generated by the idempotents of $\beta S$ is not a semigroup.


## 1. Introduction

In 1933 Richard Rado published [8] his remarkable theorem characterizing those finite matrices with rational coefficients which are kernel partition regular over the set $\mathbb{N}$ of positive integers. (A $u \times v$ matrix $A$ is kernel partition regular over $\mathbb{N}$ if and only if whenever $\mathbb{N}$ is partitioned into finitely many classes, there will exist $\vec{x} \in \mathbb{N}^{v}$ with all of its entries in one class such that $A \vec{x}=\overrightarrow{0}$.) As an easy consequence, one sees that the matrix $\left(\begin{array}{ccc}1 & 1 & -1\end{array}\right)$ is

[^0]kernel partition regular over $\mathbb{N}$. That is, whenever $\mathbb{N}$ is partitioned into finitely many cells, there will be in one cell some $x, y$, and $z$ with $x+y=z$. This result is Schur's Theorem [10]. More generally, it is an easy consequence of Rado's Theorem that whenever $r \in \mathbb{N}$ and $\mathbb{N}$ is divided into finitely many cells, there will exist a finite sequence $\left\langle x_{t}\right\rangle_{t=1}^{r}$ in $\mathbb{N}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{r}\right)$ is contained in one cell, where $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{r}\right)=\left\{\sum_{t \in F} x_{t}: \emptyset \neq F \subseteq\{1,2, \ldots, r\}\right\}$. (See [4, Corollary 2.4] for the details of how this follows easily from Rado's Theorem.) Much later Jon Sanders [9] and Jon Folkman (unpublished) independently derived this same result.

In [3] an infinite version of this result was obtained. That is, whenever $\mathbb{N}$ is divided into finitely many cells, there will exist a sequence $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ in $\mathbb{N}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)$ is contained in one cell, where $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right\}$. (Here $\mathcal{P}_{f}(X)$ is the set of finite nonempty subsets of $X$.) The proof given in [3] was excruciatingly complicated. There is a much simpler proof due to Fred Galvin and Steven Glazer, not published by either of them. See the Notes to [6, Chapter 5] for the history of the discovery of this proof.

Theorem 1.1. Let $A \subseteq \mathbb{N}$. There exists a sequence $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ in $\mathbb{N}$ with $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$ if and only if there exists an idempotent $p$ in $(\beta \mathbb{N},+)$ such that $A \in p$.

Proof. [6, Theorem 5.12].
In fact Theorem 1.1 holds more generally. Given any semigroup $(S, \cdot)$, not necessarily commutative, and given a sequence $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ in $S$, one defines $F P\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)=\left\{\prod_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right\}$, where the product $\prod_{t \in F} x_{t}$ is taken in increasing order of indices. One then has that for any $A \subseteq S$ there exists a sequence $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ in $S$ with $F P\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right) \subseteq A$ if and only if there exists an idempotent $p$ in $(\beta S, \cdot)$ such that $A \in p$.

Given a discrete space $X$, we are taking the points of $\beta X$ to be the ultrafilters on $X$, identifying the principal ultrafilters with the points of $X$ and thereby pretending that $X \subseteq \beta X$. We let $X^{*}=$ $\beta X \backslash X$. Given $A \subseteq X, \bar{A}=c \ell_{\beta X} A=\{p \in \beta S: A \in p\}$. If $(S, \cdot)$ is a discrete semigroup, the operation extends to $\beta S$ making ( $\beta S, \cdot$ ) a right topological semigroup (meaning that for each $p \in \beta S$, the function $\rho_{p}: \beta S \rightarrow \beta S$ defined by $\rho_{p}(q)=q \cdot p$ is continuous) with
$S$ contained in its topological center (meaning that for each $x \in S$, the function $\lambda_{x}: \beta S \rightarrow \beta S$ defined by $\lambda_{x}(q)=x \cdot q$ is continuous). Given $p, q \in \beta S$ and $A \subseteq S$, one has that $A \in p \cdot q$ if and only if $\left\{x \in S: x^{-1} A \in q\right\} \in p$, where $x^{-1} A=\{y \in S: x \cdot y \in A\}$. If the operation in $S$ is denoted by + , we have that $A \in p+q$ if and only if $\{x \in S:-x+A \in q\} \in p$, where $-x+A=\{y \in S: x+y \in A\}$. It is a fundamental fact, due originally to R . Ellis [1], that any compact Hausdorff right topological semigroup has an idempotent. See [6] for an elementary introduction to the structure of $\beta S$.

Recently Vitaly Bergelson asked whether there is some nice algebraic description of the set of ultrafilters on $\mathbb{N}$ every member of which contains arbitrarily large finite sums sets. This would be the set $P(\mathbb{N})$ defined below. (We state the definition multiplicatively because we will be dealing with these sets in a quite general context.)

Definition 1.2. Let ( $S, \cdot \cdot$ ) be a semigroup.
(a) For each $r \in \mathbb{N}$,

$$
P_{r}(S)=\left\{p \in S^{*}:(\forall A \in p)\left(\exists\left\langle x_{t}\right\rangle_{t=1}^{r}\right)\left(F P\left(\left\langle x_{t}\right\rangle_{t=1}^{r}\right) \subseteq A\right)\right\}
$$

(b) $P(S)=\bigcap_{r=1}^{\infty} P_{r}(S)$.

If $S$ is commutative, it is easy to see that $P_{r}(S)$ is a compact subsemigroup of $\beta S$. (Given $r \in \mathbb{N}, p, q \in P_{r}(S)$, and $A \in p \cdot q$, one has that $B=\left\{x \in S: x^{-1} A \in q\right\} \in p$ so pick $\left\langle x_{t}\right\rangle_{t=1}^{r}$ with $F P\left(\left\langle x_{t}\right\rangle_{t=1}^{r}\right) \subseteq B$. Then $C=\bigcap\left\{z^{-1} A: z \in F P\left(\left\langle x_{t}\right\rangle_{t=1}^{r}\right)\right\} \in q$ so pick $\left\langle y_{t}\right\rangle_{t=1}^{r=1}$ with $F P\left(\left\langle y_{t}\right\rangle_{t=1}^{r}\right) \subseteq C$. Then $F P\left(\left\langle x_{t} \cdot y_{t}\right\rangle_{t=1}^{r}\right) \subseteq A$.) By [5, Theorem 3.9] (using a result of Nešetřil and Rödl [7]), for each $r>1, P_{r+1}(\mathbb{N},+)$ is a proper subset of $P_{r}(\mathbb{N},+)$. Further, it is an immediate consequence of Theorem 1.1 that all idempotents of $\beta \mathbb{N}$ are in $P(\mathbb{N},+)$. Thus, a tempting answer to Bergelson's question would be that $P(\mathbb{N},+)$ is the smallest compact subsemigroup of $(\beta \mathbb{N},+)$ containing the idempotents.

However, it was shown in [5] that the closure of the semigroup generated by the idempotents of ( $\beta \mathbb{N},+$ ) is not a semigroup and that there is a compact subsemigroup of $(\beta \mathbb{N},+)$ (denoted there by $M$ ) which lies strictly between the smallest subsemigroup of $(\beta \mathbb{N},+)$ containing the idempotents and $P(\mathbb{N},+)$. In Section 2 of this paper we extend these results to semigroups which can be algebraically embedded in compact topological groups.

In Section 3 we restrict our attention to $P(\mathbb{N},+)$, noting that as a consequence of the following result, $P(\mathbb{N},+)$ is an ideal of $(\beta \mathbb{N}, \cdot)$.

Theorem 1.3. Let $r \in \mathbb{N}$. Then $P_{r}(\mathbb{N},+)$ is an ideal of $(\beta \mathbb{N}, \cdot)$.
Proof. Let $p \in P_{r}(\mathbb{N},+)$ and let $q \in \beta \mathbb{N}$. To see that $p \cdot q \in P_{r}(\mathbb{N},+)$, let $A \in p \cdot q$. Pick $\left\langle x_{t}\right\rangle_{t=1}^{r}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{r}\right) \subseteq\left\{y \in \mathbb{N}: y^{-1} A \in\right.$ $q$. Then $B=\bigcap\left\{y^{-1} A: y \in F S\left(\left\langle x_{t}\right\rangle_{t=1}^{r}\right)\right\} \in q$ so pick $a \in B$. Then $F S\left(\left\langle x_{t} \cdot a\right\rangle_{t=1}^{r}\right) \subseteq A$.

To see that $q \cdot p \in P_{r}(\mathbb{N},+)$, let $A \in q \cdot p$. Pick $a \in \mathbb{N}$ such that $a^{-1} A \in p$ and pick $\left\langle x_{t}\right\rangle_{t=1}^{r}$ such that $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{r}\right) \subseteq a^{-1} A$. Then $F S\left(\left\langle a \cdot x_{t}\right\rangle_{t=1}^{r}\right) \subseteq A$.

Another tempting answer to Bergelson's question then becomes that $P(\mathbb{N},+)$ is the smallest compact subset of $\beta \mathbb{N}$ which is both a subsemigroup of $(\beta \mathbb{N},+)$ and an ideal of $(\beta \mathbb{N}, \cdot)$. We show in Section 3 that this is not the case.

All hypothesized topological spaces are Hausdorff.

## 2. SEMIGROUPS EMBEDDABLE IN COMPACT TOPOLOGICAL GROUPS

We show in this section that if $S$ is any semigroup which can be embedded in a compact topological group, then the closure of the semigroup generated by the idempotents of $S^{*}$ is not a semigroup. (As is well known, such semigroups include all free semigroups and all commutative cancellative semigroups.) We also show, under the same assumption on $S$, that there is an element of $P(S)$ which is not a member of the smallest compact subsemigroup of $\beta S$ containing the idempotents of $S^{*}$. (This result is less interesting in the case that $S$ is not commutative, since then it is unlikely that $P(S)$ will be a semigroup.)

The following lemma is, as we are fond of saying, well known by those who know it well.

Lemma 2.1. Let $(S, \cdot)$ be a countably infinite semigroup. If $S$ can be algebraically embedded in a compact topological group, then $S$ can be algebraically embedded in a compact metrizable topological group.

Proof. Let $G$ be a compact topological group with identity 1 and let $\varphi: S \rightarrow G$ be an injective homomorphism. Let

$$
H=\left\{\varphi(s) \varphi(t)^{-1}: s, t \in S \text { and } s \neq t\right\} .
$$

For $a \in H$ pick by [2, Theorem 22.14] a compact metrizable topological group $C_{a}$ and a continuous homomorphism $h_{a}: G \rightarrow C_{a}$ such that $h_{a}(a) \neq h_{a}(1)$. Let $C=\times_{a \in H} C_{a}$ and define $\psi: S \rightarrow C$ by $\psi(s)(a)=h_{a}(\varphi(s))$ for each $a \in H$. Given $s \neq t$ in $S$, if $a=\varphi(s) \varphi(t)^{-1}$, then $\psi(s)(a) \neq \psi(t)(a)$ so $\psi$ is injective.

The Lemma 2.3 will be used in the proofs of both of the theorems of this section. If $n \in \mathbb{N}, \operatorname{supp}(n)$ is the subset of $\omega$ determined by $n=\sum_{t \in \operatorname{supp}(n)} 2^{t}$, where $\omega=\mathbb{N} \cup\{0\}$.
Definition 2.2. (a) $\mathbb{H}=\bigcap_{n=1}^{\infty} c l_{\beta \mathbb{N}}\left(\mathbb{N} 2^{n}\right)$.
(b) Let $X$ be a subset of a semigroup. A function $\psi: \omega \rightarrow X$ will be called an $\mathbb{H}$-map if it is bijective and if $\psi(m+n)=$ $\psi(m) \psi(n)$ whenever $m, n \in \mathbb{N}$ satisfy $\max \operatorname{supp}(m)+1<$ $\min \operatorname{supp}(n)$.
Note that by [6, Lemma 6.6], $\mathbb{H}$ contains all of the idempotents of $(\beta \mathbb{N},+)$.
Lemma 2.3. Let $S$ be a countable semigroup which can be embedded in a compact topological group. Then there exist a countable group $G$ containg $S$, an $\mathbb{H}$-map $\psi: \omega \rightarrow G$, and a subsemigroup $V$ of $G^{*}$ which contains all of the idempotents of $G^{*}$ such that $\widetilde{\psi}_{\mid \mathbb{H}}$ is an isomorphism from $\mathbb{H}$ onto $V$. Further, there is a sequence $\left\langle s_{n}\right\rangle_{n=1}^{\infty}$ in $S$ such that for each $n$, maxsupp $\psi^{-1}\left(s_{n}\right)+1<$ $\min \operatorname{supp} \psi^{-1}\left(s_{n+1}\right)$.
Proof. By Lemma 2.1 there exist a compact metrizable topological group $C$ with identity 1 and an injective homomorphism $\varphi: S \rightarrow C$. Let $G$ be the subgroup of $C$ generated by $\varphi[S]$ and let $\beta G_{d}$ be the Stone-Cech compactification of $G$ with the discrete topology. We may assume in fact that $S \subseteq G$. Let $\iota: G \rightarrow C$ be the inclusion map and let $\tilde{\iota}: \beta G_{d} \rightarrow C$ be its continuous extension. Let $V=$ $G^{*} \cap \tau^{-1}[\{1\}]$. By [6, Theorem 7.28] $V$ is a subsemigroup of $G^{*}$ which contains all of the idempotents of $G^{*}$ and there is an $\mathbb{H}$-map $\psi: \omega \rightarrow G$ such that $\widetilde{\psi}_{\mid \mathbb{H}}$ is an isomorphism from $\mathbb{H}$ onto $V$.

Now pick an idempotent $q \in S^{*}$. (By [6, Theorem 4.36] $S^{*}$ is a subsemigroup of $\beta S$ so has an idempotent.) We choose the
sequence $\left\langle s_{n}\right\rangle_{n=1}^{\infty}$ inductively, letting $s_{1}$ be any element of $S$. Let $n \in \mathbb{N}$ and assume that $s_{1}, s_{2}, \ldots, s_{n}$ have been chosen. Let $k=$ $\max \operatorname{supp} \psi^{-1}\left(s_{n}\right)+2$. Now $q \in V$ so $\widetilde{\psi}^{-1}(q)$ is an idempotent in $\mathbb{H}$ and thus $\mathbb{N} 2^{k} \in \widetilde{\psi}^{-1}(q)$. By $\left[6\right.$, Lemma 3.30] $\psi\left[\mathbb{N} 2^{k}\right] \in q$ so pick $s_{n+1} \in \psi\left[\mathbb{N} 2^{k}\right]$.

Note that the idempotents $p_{n}$ hypothesized in the next lemma exist by [6, Lemma 5.11].
Lemma 2.4. Let $\left\langle x_{t}\right\rangle_{t=1}^{\infty}$ be a sequence in $\mathbb{N}$ such that for all $t$, $\max \operatorname{supp}\left(x_{t}\right)<\min \operatorname{supp}\left(x_{t+1}\right)$. Let $\left\{E_{n}: n \in \mathbb{N}\right\}$ be a partition of $\mathbb{N}$ into infinite sets and for each $n$ let $p_{n}$ be an idempotent in $\beta \mathbb{N}$ such that for each $m \in \mathbb{N}$,

$$
\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}\left(E_{n}\right) \text { and } \min F>m\right\} \in p_{n} .
$$

Let $p$ be a cluster point in $\beta \mathbb{N}$ of the sequence $\left\langle p_{n}\right\rangle_{n=1}^{\infty}$ and let $A=\left\{\sum_{t \in F} x_{t}+\sum_{t \in G} x_{t}: F \in \mathcal{P}_{f}\left(E_{1}\right)\right.$ and $(\exists n)(\max F<n<$ $\min G$ and $\left.\left.G \in \mathcal{P}_{f}\left(E_{n}\right)\right)\right\}$. Then $A \in p_{1}+p$ and there do not exist $r \in \mathbb{H}$ and an idempotent $q$ such that $A \in r+q$.

Proof. To see that $A \in p_{1}+p$ we show that

$$
F S\left(\left\langle x_{t}\right\rangle_{t \in E_{1}}\right) \subseteq\{a \in \mathbb{N}:-a+A \in p\} .
$$

So let $F \in \mathcal{P}_{f}\left(E_{1}\right)$, let $a=\sum_{t \in F} x_{t}$, and let

$$
B=\left\{\sum_{t \in G} x_{t}:(\exists n)\left(\max F<n<\min G \text { and } G \in \mathcal{P}_{f}\left(E_{n}\right)\right\}\right.
$$

Then $B \subseteq-a+A$ so it suffices to show that $B \in p$. Suppose instead $B \notin p$ and pick $n>\max F$ such that $p_{n} \in \overline{\mathbb{N} \backslash B}$. Then $\left\{\sum_{t \in G} x_{t}: G \in \mathcal{P}_{f}\left(E_{n}\right)\right.$ and $\left.\min G>n\right\}$ is an element of $p_{n}$ which is contained in $B$, a contradiction.

Now suppose that we have $r \in \mathbb{H}$ and an idempotent $q$ such that $A \in r+q$. Let $X=F S\left(\left\langle x_{t}\right\rangle_{t=1}^{\infty}\right)$. We claim first that $X \in q$, so suppose instead that $X \notin q$. Pick $a \in \mathbb{N}$ such that $-a+A \in q$ and pick $k \in \mathbb{N}$ such that $\max \operatorname{supp}(a)<\min \operatorname{supp}\left(x_{k}\right)$ and let $m=\max \operatorname{supp}\left(x_{k}\right)+1$. Pick $b \in(-a+A) \cap \mathbb{N} 2^{m} \backslash X$. Then $a+b=$ $\sum_{t \in F} x_{t}+\sum_{t \in G} x_{t}$, where $F \in \mathcal{P}_{f}\left(E_{1}\right)$ and there is some $n$ with $\max F<n<\min G$ and $G \in \mathcal{P}_{f}\left(E_{n}\right)$. Let $H=\{t \in F \cup G: t<k\}$ and let $K=\{t \in F \cup G: t>k\}$. Then since $\operatorname{supp}\left(x_{k}\right) \cap \operatorname{supp}(a+b)=$ $\emptyset$, we have $H \cup K=F \cup G$. Also, $\max \operatorname{supp}(a)<\min \operatorname{supp}\left(\sum_{t \in K} x_{t}\right)$ and $\max \operatorname{supp}\left(\sum_{t \in H} x_{t}\right)<\min \operatorname{supp}(b)$ so $a=\sum_{t \in H} x_{t}$ and $b=$ $\sum_{t \in K} x_{t}$, so $b \in X$, a contradiction.

Define $g: X \rightarrow \mathbb{N}$ by $g\left(\sum_{t \in F} x_{t}\right)=n$ if and only if $\max F \in E_{n}$. We next claim that there is some $n \in \mathbb{N}$ such that

$$
\{y \in X: g(y) \leq n\} \in q .
$$

So suppose instead that for all $n \in \mathbb{N},\{y \in X: g(y)>n\} \in q$. Pick $a \in \mathbb{N}$ such that $-a+A \in q$. Let $l=\max \operatorname{supp}(a)$. Now

$$
\{b \in(-a+A):-b+(-a+A) \in q\} \in q,
$$

so pick $b \in(-a+A) \cap X \cap \mathbb{N} 2^{l+1}$ such that $-b+(-a+A) \in q$. Pick $F \in \mathcal{P}_{f}\left(E_{1}\right)$ and $n \in \mathbb{N}$ such that $\max F<n<\min G$, $G \in \mathcal{P}_{f}\left(E_{n}\right)$, and $a+b=\sum_{t \in F} x_{t}+\sum_{t \in G} x_{t}$. Then $g(b)=n$. Let $k=\max \operatorname{supp}(b)$ and pick

$$
b^{\prime} \in(-b+(-a+A)) \cap X \cap \mathbb{N} 2^{k+1} \cap\{y \in X: g(y)>n\}
$$

Then $a+b+b^{\prime} \in A$ so $a+b+b^{\prime}=\sum_{t \in F^{\prime}} x_{t}+\sum_{t \in G^{\prime}} x_{t}$ for some $F^{\prime} \in \mathcal{P}_{f}\left(E_{1}\right)$ and some $G^{\prime} \in \mathcal{P}_{f}\left(E_{m}\right)$ where $\max F^{\prime}<m<\min G^{\prime}$. then $m=g\left(b^{\prime}\right)$ so $m>n$. But then $a+b+b^{\prime}=\sum_{t \in H} x_{t}$ where $H \cap E_{1} \neq \emptyset, H \cap E_{n} \neq \emptyset$, and $H \cap E_{m} \neq \emptyset$, a contradiction. Thus we do have some $n \in \mathbb{N}$ such that $\{y \in X: g(y) \leq n\} \in q$.

Now let $k=\max \operatorname{supp}\left(x_{n}\right)$ and pick $a \in \mathbb{N} 2^{k+1}$ such that $-a+$ $A \in q$ (using the fact here that $r \in \mathbb{H})$. Let $l=\max \operatorname{supp}(a)$ and pick $b \in(-a+A) \cap \mathbb{N} 2^{l+1} \cap\{y \in X: g(y) \leq n\}$. Pick $F \in \mathcal{P}_{f}\left(E_{1}\right)$ and $m$ and $G$ such that $G \in \mathcal{P}_{f}\left(E_{m}\right)$ and $\max F<m<\min G$. Then $g(b)=m$ so $m \leq n$. But $\min \operatorname{supp}(a+b)>k$ so $\max F \geq$ $\min F>n$ so $m>n$, a contradiction.

Recall that a semigroup $(S, \cdot)$ is weakly cancellative provided that for all $x, y \in S,\{s \in S: x \cdot s=y$ or $s \cdot x=y\}$ is finite.

Lemma 2.5. Let $(S, \cdot)$ be an infinite weakly cancellative semigroup. Then there is a countable subsemigroup $T$ of $S$ such that if $q, r \in$ $\beta S, q=q \cdot q$, and $r \cdot q \in \bar{T}$, then $r \in \bar{T}$ and $q \in \bar{T}$. Furthermore, if $A$ is the subsemigroup of $\bar{T}$ generated by the idempotents of $T^{*}$ and $B$ is the subsemigroup of $\beta S$ generated by the idempotents of $S^{*}$, then $c \ell A=\bar{T} \cap c \ell B$.

Proof. Let $C_{1}$ be an arbitrary countable subsemigroup of $S$. Given $n \in \mathbb{N}$ and $C_{n}$, let

$$
D_{n}=C_{n} \cup\left\{s \in S:\left(\exists x \in C_{n}\right)\left(x \cdot s \in C_{n} \text { or } s \cdot x \in C_{n}\right)\right\}
$$

and let $C_{n+1}$ be the semigroup generated by $D_{n}$. Let $T=\bigcup_{n=1}^{\infty} C_{n}$. Trivially $T$ is a countable subsemigroup of $S$. Notice also that if $x \in T, s \in S$, and either $x s \in T$ or $s x \in T$, then $s \in T$.

Now assume that $q, r \in \beta S, q=q \cdot q$, and $r \cdot q \in \bar{T}$. Then $T \in r \cdot q=r \cdot q \cdot q$ so $\left\{x \in S: x^{-1} T \in q\right\} \in r \cdot q$. Pick $x \in T$ such that $x^{-1} T \in q$. Then $x^{-1} T \subseteq T$ so $T \in q$.

Now $\left\{s \in S: s^{-1} T \in q\right\} \in r$. We claim that

$$
\left\{s \in S: s^{-1} T \in q\right\} \subseteq T
$$

so that $T \in r$. Let $s \in S$ such that $s^{-1} T \in q$. Pick $x \in s^{-1} T \cap T$. Then $s x \in T$ so $s \in T$.

One easily shows by induction on $k$ that if $k \in \mathbb{N}$ and $r_{1}, r_{2}, \ldots, r_{k}$ are idempotents in $\beta S$ and $r_{1} \cdot r_{2} \cdots r_{k} \in \bar{T}$ then $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \subseteq \bar{T}$.

Trivially $c \ell A \subseteq \bar{T} \cap c \ell B$. For the reverse inclusion, let $p \in \bar{T} \cap c \ell B$ and let $C \in p$. Now $C \cap T \in p$ so $\overline{C \cap T} \cap B \neq \emptyset$ so pick $k \in \mathbb{N}$ and idempotents $r_{1}, r_{2}, \ldots, r_{k}$ in $S^{*}$ such that $r_{1} \cdot r_{2} \cdots r_{k} \in \overline{C \cap T}$. Then $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \subseteq \bar{T}$ so $r_{1} \cdot r_{2} \cdots r_{k} \in \bar{C} \cap A$.

We are now ready to fulfill the first of our objectives of this section.

Theorem 2.6. Let $S$ be a semigroup which is embeddable in a compact topological group and let $B$ be the subsemigroup of $\beta S$ generated by the idempotents of $S^{*}$. Then $c \ell B$ is not a semigroup. In fact, there exist an idempotent $q_{1}$ of $S^{*}$ and a point $q$ in the closure of the set of idempotents of $S^{*}$ such that $q_{1} \cdot q \notin c \ell B$.

Proof. By Lemma 2.5 we may assume that $S$ is countable. Pick by Lemma 2.3 a countable group $G$ containg $S$, an $\mathbb{H}$-map $\psi: \omega \rightarrow G$, and a subsemigroup $V$ of $G^{*}$ which contains all of the idempotents of $G^{*}$ such that $\widetilde{\psi}_{\mid \mathbb{H}}$ is an isomorphism from $\mathbb{H}$ onto $V$. Also pick a sequence $\left\langle s_{n}\right\rangle_{n=1}^{\infty}$ in $S$ such that for each $n, \max \operatorname{supp} \psi^{-1}\left(s_{n}\right)+1<$ $\min \operatorname{supp} \psi^{-1}\left(s_{n+1}\right)$. For each $n$, let $x_{n}=\psi^{-1}\left(s_{n}\right)$.

Let $\left\{E_{n}: n \in \mathbb{N}\right\}$ be a partition of $\mathbb{N}$ into infinite sets and for each $n$ let $p_{n}$ be an idempotent in $\beta \mathbb{N}$ such that for each $m \in \mathbb{N}$,

$$
\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}\left(E_{n}\right) \text { and } \min F>m\right\} \in p_{n}
$$

Let $p$ be a cluster point in $\beta \mathbb{N}$ of the sequence $\left\langle p_{n}\right\rangle_{n=1}^{\infty}$ and pick by Lemma 2.4 some $A \in p_{1}+p$ such that there do not exist $r \in \mathbb{H}$ and an idempotent $q \in \mathbb{N}^{*}$ such that $A \in r+q$.

Let $q_{1}=\widetilde{\psi}\left(p_{1}\right)$ and let $q=\widetilde{\psi}(p)$. Then $q_{1}$ is an idempotent of $G^{*}$ and since $p_{1} \in c \ell\left\{x_{n}: n \in \mathbb{N}\right\}, q_{1} \in c \ell\left\{s_{n}: n \in \mathbb{N}\right\}$ so $q_{1}$ is an idempotent of $S^{*}$. Similarly, each $\widetilde{\psi}\left(p_{n}\right) \in S^{*}$ so $q \in S^{*}$ and $q \in c \ell\left\{\widetilde{\psi}\left(p_{n}\right): n \in \mathbb{N}\right\}$.

Now $A \in p_{1}+p$ so $\psi[A] \in \widetilde{\psi}\left(p_{1}+p\right)=q_{1} \cdot q$. Suppose $\overline{\psi[A]} \cap B \neq$ $\emptyset$ and pick $k \in \mathbb{N}$ and idempotents $r_{1}, r_{2}, \ldots, r_{k}$ in $S^{*}$ such that $\psi[A] \in r_{1} \cdot r_{2} \cdots r_{k}$. (We may presume that $k \geq 2$, since $r_{1}=r_{1} \cdot r_{1}$. ) Then $\widetilde{\psi}^{-1}\left(r_{1} \cdot r_{2} \cdots r_{k-1}\right) \in \mathbb{H}$ and $\widetilde{\psi}^{-1}\left(r_{k}\right)$ is an idempotent of $\mathbb{N}^{*}$ and $A \in \widetilde{\psi}^{-1}\left(r_{1} \cdot r_{2} \cdots r_{k-1}\right)+\widetilde{\psi}^{-1}\left(r_{k}\right)$, a contradiction.

We now turn our attention to showing that under the same hypotheses $P(S)$ is not the smallest compact subsemigroup of $\beta S$ containing the idempotents of $S^{*}$.

Lemma 2.7. Let $S$ and $T$ be discrete semigroups, let $h: S \rightarrow \beta T$ be a homomorphism and let $\widetilde{h}: \beta S \rightarrow \beta T$ denote the continuous extension of $h$. Then $\widetilde{h}[P(S)] \subseteq P(T)$.

Proof. Let $x \in P(S)$, let $B \in \widetilde{h}(x)$ and let $n \in \mathbb{N}$ with $n \geq$ 3. Pick $C \in x$ such that $\widetilde{h}[\bar{C}] \subseteq \bar{B}$ and pick $\left\langle a_{t}\right\rangle_{t=1}^{n}$ such that $F P\left(\left\langle a_{t}\right\rangle_{t=1}^{n}\right) \subseteq C$. We shall construct inductively $\left\langle b_{t}\right\rangle_{t=1}^{n}$ such that $F P\left(\left\langle b_{t}\right\rangle_{t=1}^{n}\right) \subseteq B$.

Given $z \in F P\left(\left\langle h\left(a_{t}\right)\right\rangle_{t=2}^{n}\right)$, we have $h\left(a_{1}\right) z \in \bar{B}$ so pick $D_{z} \in$ $h\left(a_{1}\right)$ such that $D_{z} z \subseteq \bar{B}$. Also $B \in h\left(a_{1}\right)$ so pick

$$
b_{1} \in B \cap \bigcap\left\{D_{z}: z \in F P\left(\left\langle h\left(a_{t}\right)\right\rangle_{t=2}^{n}\right)\right\}
$$

Now let $m \in\{1,2, \ldots, n-2\}$ and assume we have chosen $\left\langle b_{t}\right\rangle_{t=1}^{m}$ such that for each $c \in F P\left(\left\langle b_{t}\right\rangle_{t=1}^{m}\right)$ and $z \in F P\left(\left\langle h\left(a_{t}\right)\right\rangle_{t=m+1}^{n}\right)$, $c z \in \bar{B}$. Given $c \in F P\left(\left\langle b_{t}\right\rangle_{t=1}^{m}\right)$ and $z \in F P\left(\left\langle h\left(a_{t}\right)\right\rangle_{t=m+2}^{n}\right)$ one has $h\left(a_{m+1}\right) z \in \bar{B}, \operatorname{ch}\left(a_{m+1}\right) \in \bar{B}$, and $\operatorname{ch}\left(a_{m+1}\right) z \in \bar{B}$. Since $\lambda_{c}$ and $\rho_{z}$ are continuous, we may pick $D_{z}, E_{c}$, and $F_{c, z}$ in $h\left(a_{m+1}\right)$ such that $D_{z} z \subseteq \bar{B}, c E_{c} \subseteq \bar{B}$, and $c F_{c, z} z \subseteq \bar{B}$. Pick

$$
\begin{aligned}
b_{m+1} \in & B \cap \bigcap\left\{D_{z}: z \in F P\left(\left\langle h\left(a_{t}\right)\right\rangle_{t=m+1}^{n}\right)\right\} \\
& \cap \bigcap\left\{E_{c}: c \in F P\left(\left\langle b_{t}\right\rangle_{t=1}^{m}\right)\right\} \\
& \cap \bigcap\left\{F_{c, z}: c \in F P\left(\left\langle b_{t}\right\rangle_{t=1}^{m}\right) \text { and } z \in F P\left(\left\langle h\left(a_{t}\right)\right\rangle_{t=m+1}^{n}\right)\right\}
\end{aligned}
$$

Having chosen $\left\langle b_{t}\right\rangle_{t=1}^{n-1}$, pick for each $c \in F P\left(\left\langle b_{t}\right\rangle_{t=1}^{n-1}\right), E_{c} \in h\left(a_{n}\right)$ such that $c E_{c} \subseteq \bar{B}$ and pick $b_{n} \in B \bigcap\left\{E_{c}: c \in F P\left(\left\langle b_{t}\right\rangle_{t=1}^{n-1}\right)\right\}$.

Recall that if $q \in \beta \mathbb{N},\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is a sequence in a Hausdorff topological space $X$, and $y \in X$, then $y=q$ - $\lim _{n \in \mathbb{N}} x_{n}$ if and only if whenever $U$ is a neighborhood of $y$ in $X,\left\{n \in \mathbb{N}: x_{n} \in U\right\} \in q$.
Lemma 2.8. Let ( $S, \cdot$ ) be a semigroup, let $p \in \beta S$, let $q \in P(\mathbb{N},+)$, and let $r=q-\lim _{n \in \mathbb{N}} p^{n}$. Then $r \in P(S)$.
Proof. This follows immediately from Lemma 2.7 and the observation that the map $n \mapsto p^{n}$ is a homomorphism from ( $\mathbb{N},+$ ) into $\beta S$.

Given $v \in \mathbb{N}^{*}$ and $n \in \mathbb{N}$, we write $n * v$ for the sum of $v$ with itself $n$ times. (The notation $n \cdot v$ represents the operation in the semigroup ( $\beta \mathbb{N}, \cdot \cdot$, and $n * v$ need not equal $n \cdot v$. For example, if $v$ is an idempotent, then $2 * v=v$ and $2 \cdot v \neq v$.)
Lemma 2.9. Let $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ be a sequence in $\mathbb{N}$ such that for each $n \in \mathbb{N}$, max $\operatorname{supp}\left(x_{n}\right)<\min \operatorname{supp}\left(x_{n+1}\right)$, let $q \in P(\mathbb{N})$, let

$$
v \in\left\{x_{n}: n \in \mathbb{N}\right\}^{*},
$$

and let $p=q-\lim _{n \in \mathbb{N}} n * v$. Then

$$
p \in \mathbb{H} \cap P(\mathbb{N}) \backslash c \ell \bigcup\left\{\beta \mathbb{N}+e: e \in \mathbb{N}^{*} \text { and } e+e=e\right\}
$$

Proof. By Lemma $2.8 p \in P(\mathbb{N})$. One shows easily by induction on $n$ that for $n, k \in \mathbb{N},\left\{\sum_{t \in F} x_{t}:|F|=n\right.$ and $\left.\min F>k\right\} \in n * v$. In particular, each $n * v \in \mathbb{H}$ and so $p \in \mathbb{H}$. Let

$$
A=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N}) \text { and } \min F>|F|\right\} .
$$

Then given any $n \in \mathbb{N},\left\{\sum_{t \in F} x_{t}:|F|=n\right.$ and $\left.\min F>n\right\} \subseteq A$ so $A \in p$.

We claim that $\bar{A} \cap \bigcup\left\{\beta \mathbb{N}+e: e \in \mathbb{N}^{*}\right.$ and $\left.e+e=e\right\}=\emptyset$. Suppose instead we have some $e=e+e$ such that $\bar{A} \cap(\beta \mathbb{N}+e) \neq \emptyset$ and pick $y \in \mathbb{N}$ such that $-y+A \in e$. Pick $l \in \mathbb{N}$ such that $\min \operatorname{supp}\left(x_{l}\right)>\max \operatorname{supp}(y)$. We claim that for each $m \geq l$, if $k=\max \operatorname{supp}\left(x_{m}\right)$, then $y \in F S\left(\left\langle x_{t}\right\rangle_{t=1}^{m}\right.$ and $(-y+A) \cap \mathbb{N} 2^{k+1} \subseteq$ $F S\left(\left\langle x_{t}\right\rangle_{t=m+1}^{\infty}\right)$. So let $z \in(-y+A) \cap \mathbb{N} 2^{k+1}$. Then $y+z \in A$ so pick $F \in \mathcal{P}_{f}(\mathbb{N})$ such that $y+z=\sum_{t \in F} x_{t}$. Let $H=\{t \in F$ : $t \leq m\}$ and let $K=\{t \in F: t>m\}$. Now $\operatorname{supp}(y) \cup \operatorname{supp}(z)=$ $\operatorname{supp}(y+z)=\bigcup_{t \in F} \operatorname{supp}\left(x_{t}\right)=\bigcup_{t \in H} \operatorname{supp}\left(x_{t}\right) \cup \bigcup_{t \in K} \operatorname{supp}\left(x_{t}\right)$. Also $\max \bigcup_{t \in H} \operatorname{supp}\left(x_{t}\right) \leq \max \operatorname{supp}\left(x_{m}\right)=k<\min \operatorname{supp}(z)$ and
$\max \operatorname{supp}(y)<\min \operatorname{supp}\left(x_{l}\right)<\min \bigcup_{t \in K} \operatorname{supp}\left(x_{t}\right)$ so $\operatorname{supp}(y)=$ $\bigcup_{t \in H} \operatorname{supp}\left(x_{t}\right)$ and $\operatorname{supp}(z)=\bigcup_{t \in K} \operatorname{supp}\left(x_{t}\right)$ and so $y=\sum_{t \in H} x_{t}$ and $z=\sum_{t \in K} x_{t}$. Taking $l=m$, we have $y \in F S\left(\left\langle x_{t}\right\rangle_{t=1}^{l}\right)$. Also we have that for all $m \geq l, F S\left(\left\langle r_{t}\right\rangle_{t=m+1}^{\infty}\right) \in e$.

Given any $B \in e$, we let $B^{\star}=\{z \in B:-z+B \in e\}$. Then by [6, Lemma 4.14], whenever $z \in B^{\star},-z+B^{\star} \in e$. Now we choose inductively $\left\langle F_{i}\right\rangle_{i=1}^{l}$ with $\min F_{1}>l$ and for each $i \in\{1,2, \ldots, l-1\}$, $\max F_{i}<\min F_{i+1}$, with $\sum_{j=1}^{i} \sum_{t \in F_{j}} x_{t} \in(-y+A)^{\star}$. Since $(-y+A)^{\star} \in e$, pick $F_{1}$ with $\min F_{1}>l$ such that $\sum_{t \in F_{1}} x_{t} \in$ $(-y+A)^{\star}$. Having chosen $\left\langle F_{j}\right\rangle_{j=1}^{i}$, let $m=\max F_{i}$ and pick $z \in-\left(\sum_{j=1}^{i} \sum_{t \in F_{j}} x_{t}\right)+(-y+A)^{\star} \cap F S\left(\left\langle x_{t}\right\rangle_{t=m+1}^{\infty}\right)$ and pick $F_{i+1}$ with $\min F_{i+1} \geq m+1$ such that $z=\sum_{t \in F_{i+1}} x_{t}$. Now $y+\sum_{j=1}^{l} \sum_{t \in F_{j}} x_{t} \in A$ and $y=\sum_{t \in H} x_{t}$ for some $H$ with $\max H \leq$ $l$ so $\min \left(H \cup \bigcup_{j=1}^{l} F_{j}\right) \leq l$ while $\left|H \cup \bigcup_{j=1}^{l} F_{j}\right| \geq l+1$, a contradiction.

Theorem 2.10. Let $S$ be a semigroup which can be embedded in a compact topological group. Let

$$
L=c \ell \bigcup\left\{\beta S \cdot e: e \in S^{*} \text { and } e=e \cdot e\right\}
$$

Then $L$ is a left ideal of $\beta S$ and there exists $r \in P(S) \backslash L$. (So if $S$ is commutative, $L \cap P(S)$ is a compact subsemigroup of $\beta S$ containing the idempotents of $S^{*}$ and properly contained in $P(S)$.)

Proof. By [6, Theorem 2.17], $L$ is a left ideal of $\beta S$. We first show that it suffices to assume that $S$ is countable. To see this, pick by Lemma 2.5 a countable subsemigroup $T$ of $S$ such that if $q, r \in \beta S$, $q=q \cdot q$, and $r \cdot q \in \bar{T}$, then $r \in \bar{T}$ and $q \in \bar{T}$. Assume that we have some $r \in P(T) \backslash c \ell \bigcup\left\{\bar{T} \cdot e: e \in T^{*}\right.$ and $\left.e=e \cdot e\right\}$. Then $r \in P(S)$. If $A \in r$ such that $\bar{A} \cap \bigcup\left\{\bar{T} \cdot e: e \in T^{*}\right.$ and $\left.e=e \cdot e\right\}=\emptyset$, then $\bar{A} \cap \bigcup\left\{\beta S \cdot e: e \in S^{*}\right.$ and $\left.e=e \cdot e\right\}=\emptyset$. So we shall assume that $S$ is countable.

Pick by Lemma 2.3 a countable group $G$ containg $S$, an $\mathbb{H}$-map $\psi: \omega \rightarrow G$, and a subsemigroup $\underset{\sim}{V}$ of $G^{*}$ which contains all of the idempotents of $G^{*}$ such that $\widetilde{\psi}_{\mid \mathbb{H}}$ is an isomorphism from $\mathbb{H}$ onto $V$. Also pick a sequence $\left\langle s_{n}\right\rangle_{n=1}^{\infty}$ in $S$ such that for each $n$, max supp $\psi^{-1}\left(s_{n}\right)+1<\min \operatorname{supp} \psi^{-1}\left(s_{n+1}\right)$. For each $n$, let $x_{n}=\psi^{-1}\left(s_{n}\right)$. Let $q \in P(\mathbb{N})$, let $v \in\left\{x_{n}: n \in \mathbb{N}\right\}^{*}$, and let
$p=q-\lim _{n \in \mathbb{N}} n * v$. Then by Lemma 2.9

$$
p \in \mathbb{H} \cap P(\mathbb{N}) \backslash c \ell \bigcup\left\{\beta \mathbb{N}+e: e \in \mathbb{N}^{*} \text { and } e+e=e\right\}
$$

Let $r=\widetilde{\psi}(p)$ and let $w=\widetilde{\psi}(v)$. Then it is routine to establish that $r=q-\lim _{n \in \mathbb{N}} w^{n}$ and so, by Lemma $2.8 r \in P(S)$.

Now we claim that $r \notin L$. To see this, pick $A \in p$ such that $\bar{A} \cap \bigcup\left\{\beta \mathbb{N}+e: e \in \mathbb{N}^{*}\right.$ and $\left.e+e=e\right\}=\emptyset$. Then $\psi[A] \in r$. We claim that $\bar{\psi}[A] \cap \bigcup\left\{\beta S \cdot e: e \in S^{*}\right.$ and $\left.e=e \cdot e\right\}=\emptyset$. Suppose instead that we have some $e=e \cdot e \in S^{*}$ and $y \in S$ such that $\psi[A] \in y \cdot e$. Now $\widetilde{\psi}^{-1}(e)$ is an idempotent in $\mathbb{N}^{*}$, so it suffices to show that $A \in \psi^{-1}(y)+\widetilde{\psi}^{-1}(e)$. Let $u=\psi^{-1}(y)$ and let $k=\max \operatorname{supp}(u)$. Since $y^{-1} \psi[A] \in e$ and consequently $\psi^{-1}\left[y^{-1} \psi[A]\right] \in \psi^{-1}(e)$, it suffices to show that $\mathbb{N} 2^{k+2} \cap \psi^{-1}\left[y^{-1} \psi[A]\right] \subseteq-\psi^{-1}(y)+A$. So let $z \in \mathbb{N} 2^{k+2} \cap \psi^{-1}\left[y^{-1} \psi[A]\right]$. Then $y \psi(z) \in \psi[A]$ so $\psi(u+z)=$ $\psi(u) \psi(z)=y \psi(z) \in \psi[A]$ so $u+z \in A$ and thus $z \in-\psi^{-1}(y)+$ $A$.

$$
\text { 3. } \beta \mathbb{N}
$$

Recall that we have seen that $P(\mathbb{N},+)$, in addition to being a compact subsemigroup of $(\beta \mathbb{N},+)$ containing the idempotents, is also a two sided ideal of $(\beta \mathbb{N}, \cdot)$. We see now that it is not the smallest such.

Theorem 3.1. There is a compact subsemigroup of $(\beta \mathbb{N},+)$ which contains the idempotents of $(\beta \mathbb{N},+)$, is a two sided ideal of $(\beta \mathbb{N}, \cdot)$, and is properly contained in $P(\mathbb{N},+)$.

Proof. Choose $v \in\left\{2^{2^{n}}: n \in \mathbb{N}\right\}^{*}$ and $q \in P(\mathbb{N})$. Let $p=$ $q-\lim _{n \in \mathbb{N}} n * v$. Then by Lemma 2.8, $p \in P(\mathbb{N})$. Let

$$
L=c \ell \bigcup\left\{\beta \mathbb{N}+e: e \in \mathbb{N}^{*} \text { and } e+e=e\right\} .
$$

Then by Lemma 2.9, $p \notin L$.
Define $f: \mathbb{N} \rightarrow \mathbb{R}$ by putting $f(n)=\log _{2}(n)$, and let $\tilde{f}: \beta \mathbb{N} \rightarrow$ $u \mathbb{R}$ denote the continuous extension of $f$, where $u \mathbb{R}$ denotes the uniform compactification of $\mathbb{R}$. We observe that $\mathbb{R}$ can be regarded as a subspace of $u \mathbb{R}$, because $\mathbb{R}$ can be embedded in $u \mathbb{R}$ by a topological isomorphism. Then by [11, Lemma 2.1], $\widetilde{f}$ has the following properties:
(i) $\widetilde{f}(x \cdot y)=\widetilde{f}(x)+\widetilde{f}(y)$ for every $x, y \in \beta \mathbb{N}$ and
(ii) $\widetilde{f}(x+y)=\widetilde{f}(y)$ for every $x \in \beta \mathbb{N}$ and every $y \in \mathbb{N}^{*}$.

For a subset $S$ of $\mathbb{R}, \rho(S)$ will denote $c \ell_{u \mathbb{R}}(S) \backslash \mathbb{R}$. Let $X=$ $\rho\left(\left\{2^{n}: n \in \mathbb{N}\right\}\right)$. We claim that $X \subseteq \operatorname{int}_{\rho(\mathbb{R})}(\rho(\mathbb{R}) \backslash(\rho(\mathbb{R})+\rho(\mathbb{R}))$. To see this, put $E=\left\{2^{n}: n \in \mathbb{N}\right\}$ and put $F=\mathbb{R} \backslash((-1,1)+E)$. Using the uniform structure on $\mathbb{R}$ defined by the usual metric, it follows from [6, Exercise 21.5.3] that there is a uniformly continuous function $\phi: \mathbb{R} \rightarrow[0,1]$ such that $\phi[E]=\{0\}$ and $\phi[F]=\{1\}$. Let $\widetilde{\phi}: u \mathbb{R} \rightarrow[0,1]$ denote the continuous extension of $\phi$. If $W=$ $\widetilde{\phi}^{-1}\left[\left[0, \frac{1}{2}\right)\right]$, then $W$ is an open neighbourhood of $X$ in $u \mathbb{R}$ and $W \subseteq c l_{u \mathbb{R}}((-1,1)+E)$. We shall show that $W \cap(\rho(\mathbb{R})+\rho(\mathbb{R}))=\emptyset$. To see this, assume that $\xi, \eta \in \rho(\mathbb{R})$ and that $\xi+\eta \in W$. We can choose $s, t \in \mathbb{R}$ with $|s-t|>2$ such that $s+\eta$ and $t+\eta$ are both in $W$, because $\{\zeta \in u \mathbb{R}: \zeta+\eta \in W\}$ is a neighbourhood of $\xi$ in $u \mathbb{R}$, and so its intersection with $\mathbb{R}$ is unbounded. (If $B \subseteq \mathbb{R}$ is bounded, then $c \ell_{u \mathbb{R}}(B) \subseteq \mathbb{R}$.) Then $-s+W$ and $-t+W$ are both neighbourhoods of $\eta$. However, we claim that $(-s+W) \cap(-t+W) \cap \mathbb{R}$ is bounded. To see this, note that for any $x \in(-s+W) \cap(-t+W) \cap \mathbb{R}$ we may pick $n, m \in \mathbb{N}$ such that $\left|s+x-2^{n}\right|<1$ and $\left|t+x-2^{m}\right|<$ 1. Since $|s-t|>2$ we have that $n \neq m$. On the other hand, $\left|2^{n}-2^{m}\right|=\left|2^{n}-x-s+t+x-2^{m}+s-t\right|<2+|s-t|$. Thus there are only finitely many pairs $(n, m)$ for which there is some $x$ with $\left|s+x-2^{n}\right|<1$ and $\left|t+x-2^{m}\right|<1$. Given any such $(n, m)$ and $x$, $|x| \leq\left|x+s-2^{n}\right|+\left|s-2^{n}\right|<1+\left|s-2^{n}\right|$ so $(-s+W) \cap(-t+W) \cap \mathbb{R}$ is bounded as claimed. But this contradicts the assumption that $\eta \in \rho(\mathbb{R})$.

It follows from (ii) above that $J=\widetilde{f}^{-1}[\rho(\mathbb{R}) \backslash W]$ is a closed subset of $\mathbb{N}^{*}$ which is a left ideal of $(\beta \mathbb{N},+)$. Furthermore, it follows from (i) above that $\mathbb{N}^{*} \cdot \mathbb{N}^{*} \subseteq J$. and in particular $J$ is a two sided ideal of $\left(\mathbb{N}^{*}, \cdot\right)$. Let $V$ denote the smallest compact subset of $\beta \mathbb{N}$ which is both a left ideal of $(\beta \mathbb{N},+)$ and satisfies $\mathbb{N}^{*} \cdot \mathbb{N}^{*} \subseteq V$. Then $V \subseteq J$. We claim that $V$ is an ideal of $(\beta \mathbb{N}, \cdot)$. To see this, let $n \in \mathbb{N}$. Then by [6, Theorem 6.54] $n V=V n$ so it suffices to show that $n V \subseteq V$. To see this, let $W=\{p \in \beta \mathbb{N}: n \cdot p \in V\}$. Then it is easy to verify that $W$ is a compact subset of $\beta \mathbb{N}$ which is both a left ideal of $(\beta \mathbb{N},+)$ and satisfies $\mathbb{N}^{*} \cdot \mathbb{N}^{*} \subseteq W$, and consequenty $V \subseteq W$ and therefore $n v \subseteq V$ as required.

We claim that $L \cup V$ is a closed left ideal of $(\beta \mathbb{N},+)$ and an ideal of $(\beta \mathbb{N}, \cdot)$. It is obviously a closed left ideal of $(\beta \mathbb{N},+)$. To see that it is an ideal of $(\beta \mathbb{N}, \cdot)$, it is routine to verify that for any $n \in \mathbb{N}$, $n \cdot L=L \cdot n \subseteq L$. Also, for any $x \in \mathbb{N}^{*},(x \cdot L) \cup(L \cdot x) \subseteq \mathbb{N}^{*} \cdot \mathbb{N}^{*} \subseteq V$.

We claim that the element $p \in P(\mathbb{N})$ defined above is not in $V$. To see this, observe that $\widetilde{f}(v) \in c \ell_{u \mathbb{R}}(E)$ and hence, by property (ii) above, that $\beta \mathbb{N}+v \subseteq \widetilde{f}^{-1}\left[c \ell_{u \mathbb{R}} E\right] \subseteq \widetilde{f}^{-1}[W]$. So $(\beta \mathbb{N}+v) \cap J=\emptyset$ and consequently $(\beta \mathbb{N}+v) \cap V=\emptyset$. Now let $r=q-\lim _{n \in \mathbb{N}}(n-1) * v$. Then $p=r+v \in \beta \mathbb{N}+v$, so $p \notin V$. We have already noted that $p \notin L$. Thus $P(\mathbb{N}) \nsubseteq L \cup V$.

## References

[1] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969.
[2] E. Hewitt and K. Ross, Abstract Harmonic Analysis, I, Springer-Verlag, Berlin, 1963.
[3] N. Hindman, Finite sums from sequences within cells of a partition of $\mathbb{N}$, J. Comb. Theory (Series A) 17 (1974), 1-11.
[4] N. Hindman, Partition regularity of matrices, in Combinatorial Number Theory, B. Landman, M. Nathanson, J. Nesetril, R. Nowakowski, and C. Pomerance, editors, deGruyter, Berlin, 2007, 265-298.
[5] N. Hindman and D. Strauss, Compact subsemigroups of $(\beta \mathbb{N},+)$ containing the idempotents, Proc. Edinburgh Math. Soc. 39 (1996), 291-307.
[6] N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification: theory and applications, de Gruyter, Berlin, 1998.
[7] J. Nešetřil and V. Rödl, Finite union theorem with restrictions, Graphs and Comb. 2 (1986), 357-361.
[8] R. Rado, Studien zur Kombinatorik, Math. Zeit. 36 (1933), 242-280.
[9] Sanders, J., A generalization of Schur's theorem, Ph.D. Dissertation, Yale University (1968).
[10] I. Schur, Über die Kongruenz $x^{m}+y^{m}=z^{m}(\bmod p)$, Jahresbericht der Deutschen Math.-Verein. 25 (1916), 114-117.
[11] D. Strauss, The smallest ideals of $\beta \mathbb{N}$ under addition and multiplication, Topology Appl. 149 (2005), 289-292.

Department of Mathematics, Howard University, Washington, DC 20059

E-mail address: nhindman@aol.com
Department of Pure Mathematics, University of Leeds, Leeds LS2 9J2, UK

E-mail address: d.strauss@hull.ac.uk


[^0]:    2000 Mathematics Subject Classification. Primary 54D80,22A15; Secondary 54H13, 05D10.

    Key words and phrases. idempotents, subsemigroup, finite sums.
    The first author acknowledges support received from the National Science Foundation via Grant DMS-0554803.

