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Abstract

Let S be a discrete semigroup and let the Stone-Čech compactification βS of
S have the operation extending that of S which makes βS a right topological
semigroup with S contained in its topological center. We show that the closure
of the set of multiplicative idempotents in βN does not meet the set of additive
idempotents in βN. We also show that the following algebraically defined subsets
of βN are not Borel: the set of idempotents; the smallest ideal; any semiprincipal
right ideal of N∗; the set of idempotents in any left ideal; and N∗+N∗. We extend
these results to βS, where S is an infinite countable semigroup algebraically
embeddable in a compact topological group.
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1. Introduction

Let (S, ·) be a discrete semigroup. We take the Stone-Čech compactification
βS of S to be the set of ultrafilters on S with the points of S identified with
the principal ultrafilters. Given A ⊆ S, we let A = {p ∈ βS : A ∈ p}. The set
{A : A ⊆ S} is a basis for the open sets of βS as well as a basis for the closed
sets. The operation on S extends to βS so that the function ρp defined by
ρp(x) = x · p is continuous for each p ∈ βS. Furthermore, S is contained in the
topological center of βS, meaning that the function λy defined by λy(x) = y · x
is continuous for each y ∈ S.

So, for p, q ∈ βS, pq = lim
s→p

lim
t→q

st, where s and t denote elements of S. For

p, q ∈ βS and A ⊆ S, A ∈ pq if and only if {x ∈ S : x−1A ∈ q} ∈ p where
x−1A = {y ∈ S : xy ∈ A}. Given p ∈ βS, B ∈ p, and a sequence 〈xs〉s∈B in a
compact Hausdorff topological space, define p- lim

s∈B
xs = y if and only if for each

neighborhood U of y, {s ∈ B : xs ∈ U} ∈ p. Then if p, q ∈ βS, B ∈ p, and
for each s ∈ B, Ds ∈ q, then pq = p- lim

s∈B
(q- lim

t∈Ds

st). If A ⊆ S, A∗ will denote

c`βS(A) \A.
Every compact Hausdorff right topological semigroup T has important al-

gebraic properties, including the fact that it has at least one idempotent. If
V is a subset of T , E(V ) will denote the set of idempotents in V . T has a
smallest two sided ideal, K(T ), which is the union of all of the minimal right
ideals and the union of all of the minimal left ideals of T . Every right ideal of
T contains a minimal right ideal, and every left ideal of T contains a minimal
left ideal. The intersection of a minimal right ideal and a minimal left ideal is
a group; and all the subgroups of T which arise in this way are algebraically
isomorphic and are homeomorphic if they lie in the same minimal right ideal.
However, these groups need not be homeomorphic in general. In fact, if S is an
infinite cancellative and commutative semigroup, then by [7, Theorem 3] and [6,
Lemma 6.40] the maximal groups contained in any minimal left ideal lie in 2c

isomorphism classes. For an elementary introduction to the algebraic structure
of compact right topological semigroups, see [6, Part I].

We shall use N to denote the set of positive integers, ω to denote the set of
non-negative integers, Z to denote the set of all integers and R to denote the
set of real numbers. H will denote

⋂
n∈N c`βN(2nN). This is a subsemigroup of

βN which contains all the idempotents. In βN, we shall use + to denote the
semigroup operation which extends addition in N, although this operation is
very far from being commutative. We shall simply use juxtaposition to denote
the semigroup operation which extends multiplication in N.

The idempotents in K(βS) have been particularly important in combina-
torics and topological dynamics. These are called minimal idempotents. If p is
a minimal idempotent in βS, then pβSp is the group (pβS) ∩ (βSp).

The relation between the two operations on βN has had important appli-
cations in combinatorics. It was shown in [4, Lemma 2.5] that E(βN, ·) ∩
c`E(βN,+) 6= ∅ and as a consequence, given any finite coloring of N, there
is an infinite finite sum set S and an infinite finite product set P for which

2



S ∪ P is monochromatic. It was not until fourteen years later that an elemen-
tary proof of this fact was found in [2]. It was shown in [5, Theorem 7.6] that
(N∗+N∗)∩K(βN, ·) = ∅, so in particular K(βN,+)∩K(βN, ·) = ∅. We remark
that it remains an open question whether (N∗ + N∗) ∩ (N∗ · N∗) = ∅.

In [1, Theorem 5.4] it was shown that E
(
K(βN, ·)

)
∩c`E

(
K(βN,+)

)
6= ∅. In

[8, Corollary 2.3], it was shown that (N∗+N∗)∩c`K(βN, ·) = ∅, so in particular
K(βN,+) ∩ c`K(βN, ·) = ∅. In Section 2 of the present paper, we show that
E(βN,+) ∩ c`E(βN, ·) = ∅.

Anyone who has worked with βN, will not be surprised to learn that some of
the algebraically defined subsets of βN are not topologically simple, even though
they are very simple to define algebraically. In Section 3, we prove that the
following subsets of βN are not Borel: the set of idempotents; any semiprincipal
right ideal of N∗; the smallest ideal of βN; the set of idempotents in any left ideal
of βN. In Section 4, we extend these results to infinite countable semigroups
which can be algebraically embedded in compact Hausdorff topological groups.

2. E(βN,+) does not meet the closure of E(βN, ·)

We begin by introducing the uniform compactification of R.

Theorem 2.1. Let R have the usual topology. There is a topological compacti-
fication µR of R such that

(1) the operation + on R extends to µR making (µR,+) a right topological
semigroup with R contained in its topological center and

(2) if Y is a compact topological group and h : R → Y is a (uniformly)
continuous homomorphism, then there is an extension h̄ : µR → Y such
that h̄ is a continuous homomorphism.

Proof. [6, Theorems 21.41, 21.43, and 21.45]

Lemma 2.2. Let L : βN→ µR be the continuous extension of log : N→ R.

(1) For all u ∈ βN and all v ∈ N∗, L(u+ v) = L(v).

(2) For all u, v ∈ βN, L(uv) = L(u) + L(v).

Proof. [8, Lemma 2.1]

We regard the circle group T as R/Z, and π : R→ T will denote the canonical
homomorphism.

Definition 2.3. Let D = {x ∈ µR : for every continuous homomorphism
ϕ : µR→ T , ϕ(x) = 0}.

Note that D is a compact subsemigroup of µR which contains all the idem-
potents of µR.

Lemma 2.4. If s, t ∈ R and 0 < s < t, then (s+D) ∩ (t+D) = ∅.
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Proof. Suppose x, y ∈ D and s+ x = t+ y. Pick n > t and define h : R→ T by
h(z) = π( zn ). Then h is a uniformly continuous homomorphism, so by Theorem
2.1 (2) there is a continuous homomorphism h̄ : µR → T extending h. Then
h(s) = h(s)+h̄(x) = h̄(s+x) = h̄(t+y) = h(t)+h̄(y) = h(t), a contradiction.

Definition 2.5. C = {q ∈ H : qq = q}.

Lemma 2.6. Let q be an idempotent in (βN, ·).

(1) If 2N ∈ q, then q ∈ H.

(2) If 2N /∈ q, then either q = 1 or there is some r ∈ H such that q = r + 1.

Proof. Note that if q 6= 1, then q ∈ N∗. Assume first that 2N ∈ q. Let
n ∈ N and let h : βZ → Z2n denote the continuous extension of the natural
homomorphism from Z onto Z2n . By [6, Corollary 4.23], h is a homomorphism.
Let h(q) = m ∈ {0, 1, 2, . . . , 2n− 1} and note that m is even since 2N ∈ q. Then
m ≡ m2 (mod 2n). If m 6= 0, we can write m = 2rs, where r, s ∈ N, r < n
and s is odd. We then have 2rs = 22rs2 + t2n for some t ∈ Z. We obtain a
contradiction by dividing this equation by 2r. So m = 0 and thus q ∈ H.

Now assume that 2N /∈ q and q 6= 1. It suffices to show that for all k ∈ N,
2kN + 1 ∈ q, for then we may let r = {−1 + A : A ∈ q}. So suppose that for
some k ∈ N, 2kN + 1 /∈ q and pick the least such k, noting that k > 1. Then
since 2k−1N + 1 ∈ q, we have that 2kN + 2k−1 + 1 ∈ q. By [6, Theorem 5.8],
we may pick x and y in 2kN + 2k−1 + 1 such that xy ∈ 2kN + 2k−1 + 1. This is
easily seen to be impossible.

Lemma 2.7. If p = p+ p and p ∈ c`{q ∈ βN : qq = q}, then p ∈ c`C.

Proof. Let A ∈ p. We will show that there exists q ∈ H ∩ A such that qq = q.
Since p = p + p, 2N ∈ p. Pick q ∈ βN ∩ 2N ∩A such that qq = q. By Lemma
2.6 (1), q ∈ H.

Lemma 2.8. Let p ∈ βN. There is at most one n ∈ N such that (βN + p) ∩
c`(nC) 6= ∅.

Proof. By Lemma 2.2 (2), L[C] ⊆ D, because L[C] is contained in the set of
idempotents of µR. Also by Lemma 2.2 (2), if n ∈ N, then L[nC] = L(n) +
L[C] ⊆ L(n) + D and so L[c`(nC)] = c`L[nC] ⊆ L(n) + D. By Lemma 2.2
(1), L[βN + p] = {L(p)}. If (βN + p) ∩ c`(nC) 6= ∅, then L(p) ∈ L(n) + D. It
follows from Lemma 2.4 that there is at most one value of n for which this can
hold.

Lemma 2.9. Let A and B denote σ-compact subsets of βN. If A∩B 6= ∅, then
A ∩B 6= ∅ or A ∩B 6= ∅.

Proof. [6, Theorem 3.40]

Theorem 2.10. The closure of C does not meet N∗ + N∗.
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Proof. Suppose that p + q ∈ c`(C), where p, q ∈ N∗. We observe that there
is at most one value of m in N for which m + q ∈ H. By Lemma 2.8 there
is at most one value of n in N for which (βN + q) ∩ c`(nC) 6= ∅. Let M =
{n ∈ N : n + q /∈ H} and let K = {n ∈ N : (βN + q) ∩ c`(nC) = ∅}. Then
p + q ∈ c`(M + q) and C ⊆ c`

(⋃
n∈K c`(nC)

)
so c`(C) ⊆ c`

(⋃
n∈K c`(nC)

)
.

It follows from Lemma 2.9 that p′ + q ∈ c`(nC) for some p′ ∈ βN and some
n ∈ K, or else m+ q ∈ c`

(⋃
n∈K c`(nC)

)
for some m ∈M . The first possibility

contradicts the definition of K. The second possibility contradicts the definition
of M , because

⋃
n∈N c`(nC) ⊆ H.

Corollary 2.11. There is no additve idempotent of βN in the closure of the
multiplicative idempotents of βN.

Proof. Lemma 2.7 and Theorem 2.10.

Observe that we did not prove that (N∗ + N∗) ∩ c`E(βN, ·) = ∅.

Question 2.12. Is (N∗ + N∗) ∩ c`E(βN, ·) = ∅?

Notice that by Lemma 2.6, this question is equivalent to asking whether
(N∗ + N∗) ∩ c`{q ∈ H + 1 : qq = q} = ∅.

3. Subsets of βN which are not Borel

In this section, we shall show that the following subsets of (βN,+) are not
Borel: the set of idempotents in βN, the smallest ideal of βN; any semiprincipal
right ideal of N∗; the set of idempotents in any minimal left ideal of βN.

Lemma 3.1. Every Borel subset of βN is the union of a family of compact
subsets of βN of cardinality at most c.

Proof. We remind the reader that a family of subsets of a topological space
contains all the Borel subsets of the space if it contains all the open sets and all
the closed sets, and is closed under countable unions and countable intersections.
This follows from the fact that the Borel sets can be defined inductively by
starting from the family of open sets and their complements, and carrying out
the process of forming countable unions and countable intersections ω1 times.

Let F denote the family of subsets of βN which are the union of c or fewer
compact subsets of βN. F contains the open subsets of βN, because βN has a
basis of c clopen sets, and F obviously contains the closed subsets of βN. It is
also obvious that F is closed under countable unions. To see that F is closed
under countable intersections let 〈An〉∞n=1 be a sequence in F and for each n ∈ N,
pick a set Dn of at most c compact subsets of βN such that An =

⋃
Dn. Then⋂∞

n=1An =
⋃
{
⋂∞
n=1 F (n) : F ∈×∞n=1Dn} and |×∞n=1Dn| ≤ cω = c.

Definition 3.2. (a) For n ∈ N we define supp(n) ⊆ ω by n =
∑
t∈supp(n) 2t.

(b) For n ∈ N, θ(n) = min
(
supp(n)

)
and φ(n) = max

(
supp(n)

)
.
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The functions θ and φ extend to continuous functions from βN to βω which
we denote by the same symbols.

Lemma 3.3. Let 〈xn〉∞n=1 be a sequence in H on which φ is injective. If x is a
point of accumulation of the sequence, then x /∈ N∗ + N∗.

Proof. Suppose that x = y + z, where y, z ∈ N∗. We observe that there are at
most two values of n for which φ(xn) ∈ {φ(z), φ(z) + 1} and at most one value
of k in N for which k + z ∈ H. Put M =

{
n ∈ N : φ(xn) /∈ {φ(z), φ(z) + 1}

}
and K = {k ∈ N : k+ z /∈ H}. Since x ∈ cl{xn : n ∈M} and y+ z ∈ cl(K + z),
it follows from Lemma 2.9 that (i) x′ = k+ z for some x′ ∈ cl{xn : n ∈M} and
some k ∈ K, or else (ii) xn = u+ z for some n ∈M and some u ∈ βN. We shall
refute both these possibilities.

If (i) holds, k + z ∈ H, contradicting the definition of K.
So assume that (ii) holds. For s ∈ N, pick is ∈ {0, 1} such that

Bs = {t ∈ N : φ(s+ t) = φ(t) + is} ∈ z .

Pick j ∈ {0, 1} such that D = {s ∈ N : is = j} ∈ u. Since u + z =
u- lim

s∈D
(z- lim

t∈Bs

s+ t), we have that φ(xn) = φ(u+ z) = φ(z) + j so that n /∈M ,

a contradiction.

Definition 3.4. We put P = {2n : n ∈ N}.

Since φ(2n) = θ(2n) = n for every n ∈ N, φ[P ∗] = θ[P ∗] = N∗. So |φ[P ∗]| =
|θ[P ∗]| = 2c. We observe that P ∗ ⊆ H. So, for any x ∈ βN and any p ∈ P ∗,
φ(x+ p) = φ(p), and for any y ∈ H, θ(p+ y) = θ(p) by [6, Lemma 6.8].

Theorem 3.5. N∗ + N∗ and H + H are not Borel subsets of βN.

Proof. By Lemma 3.3, φ takes on only finitely many values on any compact
subset of N∗ + N∗. As we just observed, |φ[P ∗]| = 2c and so given any p ∈ H,
|φ[p + P ∗]| = 2c and therefore φ takes on 2c values on H + H. Thus Theorem
3.1 applies.

Theorem 3.6. The set of idempotents in βN is not a Borel subset of βN.

Proof. Let E be the set of idempotents in βN. By Lemma 3.3 any subset of E
on which φ assumes infinitely many values, has limit points in βN \ E. So, for
every compact subset C of E, φ[C] is finite. If E were Borel, it would follow
from Lemma 3.1 that |φ[E]| ≤ c. However, for every p ∈ P ∗, there exists an
idempotent q in the left ideal βN+ p of βN. Since φ(q) = φ(p), |φ[E]| = 2c.

The proofs of the next three theorems are similar.

Theorem 3.7. K(βN) is not a Borel subset of βN.
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Proof. It is sufficient to show that K(βN) ∩H is not a Borel subset of βN. We
assume the contrary. Suppose that C is a compact subset of K(βN) ∩ H. It
follows from Lemma 3.3 that φ[C] is finite, because any subset of H on which φ
assumes infinitely many values has limit points which are in N∗ \ (N∗+N∗) and
are therefore in N∗ \K(βN). So, by Lemma 3.1, φ assumes at most c distinct
values on K(βN) ∩H.

If q is a minimal idempotent in βN and p ∈ P ∗, then φ(q+ p) = φ(p). Since
q + p ∈ K(βN) ∩ H, it follows that φ[K(βN) ∩ H] = 2c. This contradiction
establishes that K(βN) ∩H is not Borel.

The next theorem is a corollary to Theorem 4.4, but has a simpler proof, so
we present it separately.

Theorem 3.8. Let q ∈ N∗ and let R = q + N∗. Then R is not a Borel subset
of βN.

Proof. We shall show that R ∩ H is not Borel. We assume the contrary. It
follows from Lemma 3.3 that φ[C] is finite if C is a compact subset of R ∩ H.
So, by Lemma 3.1, |φ[R ∩H]| ≤ c. Since R is a right ideal in N∗, R contains an
idempotent u. For every p ∈ P ∗, u+ p ∈ R ∩H and φ(u+ p) = φ(p). We have
observed that |φ[P ∗]| = 2c, and so φ[R∩H] = 2c. This contradiction establishes
that R ∩H is not Borel.

Notice that if q ∈ N∗, then q + N∗ and q + βN differ by a countable set, so
it is also true that q + βN is not Borel.

Theorem 3.9. Let L be a left ideal of βN. Then E(L) is not a Borel subset of
βN.

Proof. Let A be a subset of E(L) and assume that θ[A] is infinite. Choose a
sequence 〈qn〉∞n=1 in A such that θ(qn) 6= θ(qm) when m 6= n and {θ(qn) : n ∈ N}
is discrete. By [6, Theorem 6.15.1], if p is any cluster point of 〈qn〉∞n=1, then
p + p /∈ c`E(βN) and so p ∈ L \ E(L). Hence, if C is a compact subset of
E(L), θ[C] is finite. So, if E(L) were Borel, it would follow from Lemma 3.1
that |θ[E(L)]| ≤ c. However, for every p ∈ P ∗, there exists an idempotent q in
L ∩ (p + βN). Then q = p + x for some x ∈ βN. This equation implies that
x ∈ H and hence that θ(q) = θ(p). So θ[E(L)] = 2c.

Question 3.10. Are any of the maximal groups in K(βN) Borel?

We conjecture that the answer to this question is “no”.

4. Subsets of βS which are not Borel

In this section, we extend the results of Section 3 to countable semigroups
which can be algebraically embedded in compact Hausdorff topological groups.
We observe that this includes all countable commutative semigroups, as well as
free semigroups and free groups with countably many generators.
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Throughout this section, S will denote a countably infinite semigroup which
can be algebraically embedded in a compact Hausdorff topological group. By
Lemma 4.1 below, we may suppose that S is contained in a compact metrizable
topological group C with identity e. We assume that G is a countable subgroup
of C which contains S. We regard S and G as subsets of Cd, the group C
with the discrete topology, and we regard βS and βG as subsets of βCd. We
use h : βCd → C to denote the continuous homomorphism which extends the
identity map from Cd onto C. This maps an ultrafilter on C to the point of C
to which it converges.

Let V = G∗ ∩ h−1[{e}]. By [6, Theorem 7.28] there exists a function ψ :
ω 1-1−→

onto
G, whose continuous extension to a homeomorphism from βω onto βG

maps H isomorphically onto V . We shall use the same symbol ψ to denote this
continuous extension. Since e has a countable base of neighbourhoods in C,
we note that V is a compact Gδ-subsemigroup of G∗, which contains all the
idempotents of G∗.

The following lemma is well known. We thank Jan van Mill for providing
the simple argument presented here.

Lemma 4.1. Let G be a countable group which is embeddable in a compact
Hausdorff topological group. Then G is embeddable in a compact metrizable
topological group.

Proof. Assume that G is contained in a compact Hausdorff topological group
H with identity e. By [3, Theorem 8.7], there is a closed normal Gδ sugroup N
of H such that N ∩G = {e} and H/N is metrizable.

Lemma 4.2. Let M be a nonempty compact Gδ subset of H. Then |φ[M ]| =
|θ[M ]| = 2c.

Proof. Note that if U is open in βN, then U =
⋃
{A : A ⊆ U ∩ N} and for

A ⊆ N, φ[A ] = φ[A], so φ : βN→ βω is an open map. Since φ[M ] ⊆ N∗, φ[M ]
contains a nonempty Gδ subset of N∗. Therefore by [6, Theorem 3.36], φ[M ]
has nonempty interior in N∗ and thus |φ[M ]| = 2c.

By the same argument, |θ[M ]| = 2c.

Theorem 4.3. E(S∗) is not Borel in βS, K(βS) is not Borel in βS, and if L
is a left ideal of βS, then E(L) is not Borel in βS.

Proof. Let M = ψ−1[V ∩S∗], a compact Gδ subsemigroup of H. By Lemma 3.3,
φ can only assume a finite number of values on any compact subset of H + H.
By Lemma 4.2, |φ[M ]| = 2c. For every x ∈ M , there exists an idempotent p in
the left ideal M + x of M . Since φ(p) = φ(x) by [6, Lemma 6.8], it follows that
|φ[E(M)]| = 2c. So, by Lemma 3.1, E(M) is not a Borel subset of βω. Since
ψ is a homeomorhism, ψ[E(M)] = E(S∗) is not a Borel subset of βG. This
implies that E(S∗) is not a Borel subset of βS, because βS is a clopen subset
of βG.

Similarly, for every x ∈ M , the left ideal M + x of M meets K(M). So
φ[K(M)] = 2c. It follows from Lemmas 3.3 and 3.1 that K(M) is not a Borel
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subset of βω, and hence that ψ[K(M)] is not a Borel subset of βG. Now
ψ[K(M)] = K(V ∩S∗). Since V ∩S∗ contains all the idempotents of S∗, V ∩S∗
meets K(S∗) and so, by [6, Theorem 1.65], K(V ∩S∗) = K(βS)∩V . So K(βS)
is not a Borel subset of βG, and therefore it is not a Borel subset of βS.

Now let L be a left ideal in S∗. It follows from [6, Theorem 6.15.1] that θ can
assume only a finite number of values on any compact subset of ψ−1[E(L)] =
E(ψ−1[L]). We observe that ψ−1[L ∩ V ] is a left ideal of M . If x ∈ M , there
is an idempotent p in the intersection of ψ−1[L ∩ V ] and the right ideal x+M
of M . Then p = x + y for some y ∈ M so θ(p) = θ(x) by [6, Lemma 6.8]. By
Lemma 4.2, |θ[M ]| = 2c and so |ψ−1[E(L)]| = 2c. It follows from Lemma 3.1
that ψ−1[E(L)] is not Borel in βω, and hence that E(L) is not Borel in βG. So
E(L) is not Borel in βS.

Theorem 4.4. If p ∈ S∗, pS∗ is not a Borel subset of βS.

Proof. Let c = h(p). We may assume that c ∈ G.
Let q = c−1p ∈ βG. Then q ∈ V because h is a homomorphism. Let

x = ψ−1(q) ∈ H, let W = S∗ ∩ V and let M = ψ−1[W ]. Since W is a compact
Gδ subsemigroup of V , M is a compact Gδ subsemigroup of H.

Note that qS∗ ∩ V = qW . (If r ∈ S∗ and qr ∈ V , then h(r) = e, so r ∈ W .
The other inclusion is immmediate.) Now ψ−1[qW ] = x + M . By [6, Lemma
6.8], φ[x + M ] = φ[M ] and so by Lemma 4.2, |φ[x + M ]| = 2c. By Lemma
3.3, φ takes only finitely many values on any compact subset of H + H. So by
Lemma 3.1, x+M is not Borel in H and hence it is not Borel in βω. Therefore
qS∗ ∩ V = qW = ψ[x + M ] is not Borel in βG, and so qS∗ is not Borel in
βG. Since λc is a homeomorphism of βG, cqS∗ = pS∗ is not Borel in βG. This
implies that pS∗ is not Borel in βS, because βS is a clopen subset of βG.
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