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INFINITE PARTITION REGULAR MATRICES – SOLUTIONS IN

CENTRAL SETS

NEIL HINDMAN, IMRE LEADER, AND DONA STRAUSS

Abstract. A finite or infinite matrix A is image partition regular provided
that whenever N is finitely colored, there must be some ~x with entries from

N such that all entries of A~x are in the same color class. In contrast to

the finite case, infinite image partition regular matrices seem very hard to
analyze: they do not enjoy the closure and consistency properties of the finite

case, and it is difficult to construct new ones from old. In this paper we

introduce the stonger notion of central image partition regularity, meaning
that A must have images in every central subset of N. We describe some classes

of centrally image partition regular matrices and investigate the extent to

which they are better behaved than ordinary image partition regular matrices.
It turns out that the centrally image partition regular matrices are closed

under some natural operations, and this allows us to give new examples of
image partition regular matrices. In particular, we are able to solve a vexing

open problem by showing that whenever N is finitely colored, there must exist

injective sequences 〈xn〉∞n=0 and 〈zn〉∞n=0 in N with all sums of the forms
xn + xm and zn + 2zm with n < m in the same color class. This is the

first example of an image partition regular system whose regularity is not

guaranteed by the Milliken-Taylor Theorem, or variants thereof.

1. Introduction

In 1933, R. Rado [9] characterized those (finite) matrices with rational entries
which are kernel partition regular, that is, those matrices A with the property that
whenever N is finitely colored, there exists some ~x with monochrome entries such
that A~x = ~0. He showed that A is kernel partition regular if and only if A satisfies a
computable property called the columns condition. (See [4] or [7] for a presentation
and proof of Rado’s Theorem.)

Sixty years later, several characterizations of (finite) image partition regular ma-
trices were obtained [5]. These are the matrices A with the property that whenever
N is finitely colored, there will be some ~x (with entries from N) such that the en-
tries of A~x are monochrome. Image partition regular matrices are of special interest
because many of the classical theorems of Ramsey Theory are naturally stated as
statements about image partition regular matrices. For example, Schur’s Theorem

2000 Mathematics Subject Classification. Primary 05D10; Secondary 22A15, 54H13.
The first author acknowledges support received from the National Science Foundation (USA)

via grant DMS-0070593.

c©2002 American Mathematical Society

1



2 NEIL HINDMAN, IMRE LEADER, AND DONA STRAUSS

[10] and the length 4 version of van der Waerden’s Theorem [12] amount to the
assertions that the matrices 1 0

0 1
1 1

 and


1 0
1 1
1 2
1 3


are image partition regular.

In [6] additional characterizations of finite image partition regular matrices were
obtained. Some of these involve the notion of central sets. Central sets were intro-
duced by Furstenberg [3] and defined in terms of notions of topological dynamics.
These sets enjoy very strong combinatorial properties. (See [3, Proposition 8.21]
or [7, Chapter 14].) They have a nice characterization in terms of the algebraic
structure of βN, the Stone-Čech compactification of N. We shall present this char-
acterization below, after introducing the necessary background information.

Let (S,+) be an infinite discrete semigroup. We take the points of βS to be
the ultrafilters on S, the principal ultrafilters being identified with the points of S.
Given a set A ⊆ S, A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a basis for the
open sets (as well as a basis for the closed sets) of βS.

There is a natural extension of the operation + of S to βS making βS a compact
right topological semigroup with S contained in its topological center. This says
that for each p ∈ βS the function ρp : βS → βS is continuous and for each x ∈ S,
the function λx : βS → βS is continuous, where ρp(q) = q + p and λx(q) = x + q.
See [7] for an elementary introduction to the semigroup βS.

Any compact Hausdorff right topological semigroup (T,+) has a smallest two
sided ideal K(T ) which is the union of all of the minimal left ideals of T , each
of which is closed [7, Theorem 2.8], and any compact right topological semigroup
contains idempotents. Since the minimal left ideals are themselves compact right
topological semigroups, this says in particular that there are idempotents in the
smallest ideal. There is a partial ordering of the idempotents of T determined by
p ≤ q if and only if p = p+ q = q + p. An idempotent p is minimal with respect to
this order if and only if p ∈ K(T ) [7, Theorem 1.59]. Such an idempotent is called
simply “minimal”.

Definition 1.1. Let (S,+) be an infinite discrete semigroup. A set A ⊆ S is central
if and only if there is some minimal idempotent p such that A ∈ p.

See [7, Theorem 19.27] for a proof of the equivalence of the definition above with
the original dynamical definition.

We present in Theorem 1.2 a few known characterizations of finite image par-
tition regular matrices. (There and elsewhere we take N = {1, 2, 3, . . .} and ω =
{0, 1, 2, . . .}. Also, ω is the first infinite cardinal.) We use the ~x notation through-
out to represent both column and row vectors, expecting the reader to rely on the
context to tell which is meant.

Theorem 1.2. Let u, v ∈ N and let A be a u× v matrix with entries from Q. The
following statements are equivalent.
(a) A is image partition regular.
(b) For every central subset C of N, there exists ~x ∈ Nv such that A~x ∈ Cu.
(c) For every central subset C of N, {~x ∈ Nv : such that A~x ∈ Cu} is central in Nv.
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(d) For each ~r ∈ Qv\{~0} there exists b ∈ Q\{0} such that(
b~r
A

)
is image partition regular.
(e) For every central subset C of N, there exists ~x ∈ Nv such that ~y = A~x ∈ Cu,
all entries of ~x are distinct, and for all i, j ∈ {1, 2, . . . , u}, if rows i and j of A are
unequal, then yi 6= yj.

Proof. [6, Theorem 2.10]. �

Infinite image partition regular matrices are also of significant interest. For
example, the Finite Sums Theorem (see [4, Theorem 3.15] or [7, Corollary 5.9]) is
the assertion that the matrix 

1 0 0 . . .
0 1 0 . . .
1 1 0 . . .
0 0 1 . . .
0 1 1 . . .
1 1 1 . . .
...

...
...

. . .


,

(whose rows are all vectors with entries from {0, 1} with only finitely many 1’s and
not all 0’s) is image partition regular.

The fact, guaranteed by statement (d) of Theorem 1.2, that finite image partition
regular matrices can be almost arbitrarily extended is very useful (and a property we
would hope to maintain with infinite image partition regular matrices). Another
important property was originally established by W. Deuber in [1] in terms of
“(m, p, c)-sets”. That property is an immediate consequence of Theorem 1.2(b),
namely that if A and B are finite image partition regular matrices, then the matrix(

A O
O B

)
is also image partition regular.

The question of which infinite matrices are image partition regular seems to be
significantly more complicated than the finite case. For example, it was shown in
[2] that there are infinite image partition regular matrices A and B such that the

matrix

(
A O
O B

)
is not image partition regular. (See Theorem 2.2 below.) Not

many examples of infinite image partition regular matrices are known. The matrices
which we shall describe now have been essentially the only known examples, all
based on the Milliken-Taylor Theorem ([8], [11], or see [7, Section 18.1]) or variants
thereof.

Definition 1.3. Let ~a be a (finite or infinite) sequence in Q with only finitely
many nonzero entries. Then c(~a) is the finite sequence obtained by first deleting all
occurrences of 0 and then deleting any term equal to its predecessor. A compressed
sequence is a (necessarily finite) sequence ~a such that c(~a) = ~a.

For example, if ~a = (1, 0, 0, 1, 1,−2, 0,−2, 0, 3, 0, 0, 0, 0, . . .), then c(~a) = (1,−2, 3).
In [2, Theorem 2.5] it was shown that if A is an ω × ω matrix with entries from
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ω (and only finitely many nonzero entries on each row) such that the compressed
forms of all rows were equal, then A is image partition regular, and it is a con-
sequence of Corollary 3.6 below, that the same statement holds if the entries are
allowed to come from Z, provided the rightmost nonzero entries are positive.

It has not even been known if even the simplest diagonal sums are image partition
regular. For example, let

A =


1 1 0 · · ·
1 0 1 · · ·
0 1 1 · · ·
...

...
...

. . .

 and let B =


1 2 0 · · ·
1 0 2 · · ·
0 1 2 · · ·
...

...
...

. . .

 .

It is an immediate consequence of Ramsey’s Theorem that both A and B are image
partition regular by way of vectors ~x and ~z without repeated terms, but it has not

been known whether

(
A O
O B

)
is image partition regular in the same fashion.

That is, it has not been known whether whenever N is finitely colored, there must
exist injective sequences 〈xn〉∞n=0 and 〈zn〉∞n=0 in N with all sums of the forms
xn + xm and zn + 2zm with n < m in the same color class.

In Section 2 we shall present some contrasts between finite and infinite parti-
tion regular matrices and, motivated by considerations presented there, introduce
the notions of centrally image partition regular matrices (those having images in
any central subset of N) and strongly centrally image partition regular matrices
(those centrally image partition regular matrices for which distinct rows produce
distinct entries of the image). It turns out that these classes do have some of the
closure properties that one would like. In particular, if A and B are both centrally
image partition regular or both strongly centrally image partition regular, then(
A O
O B

)
has the corresponding property. It is not true that matrices whose

rows have the same compressed form are centrally image partition regular. How-
ever, we show in Section 3 that matrices whose rows have the same compressed form
and the same nonzero row sum are strongly centrally image partition regular, and
we show that the corresponding statement for matrices with row sums of zero is not
true. We obtain as a consequence, in Corollary 3.8, new results about (ordinary)
image partition regularity, such as the result mentioned in the abstract.

2. Contrasts between Finite and Infinite Matrices

We take as the principal good properties of finite partition regular matrices that
we would like infinite partition regular matrices to share, the characterization of
Theorem 1.2(d) and the result of [6, Corollary 2.11]. That is, we would like it to be

true that whenever A is an infinite image partition regular matrix and ~r ∈ Qω\{~0}
(with only finitely many nonzero entries) there should be some b ∈ Q\{0} such

that

(
b~r
A

)
is image partition regular. We would also like it to be the case that

whenever A and B are infinite image partition regular matrices, so is

(
A O
O B

)
.

(If A and B are ω × ω matrices, then

(
A O
O B

)
is an (ω + ω)× (ω + ω) matrix.

We shall blissfully ignore this and similar distinctions throughout this paper.)
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We shall see in Theorems 2.1 and 2.2 that neither of our main wishes with respect
to infinite image partition regular matrices can be granted.

Theorem 2.1. Let A be a matrix whose rows are all rows ~a ∈ Qω with only finitely
many nonzero entries such that c(~a) = (1, 2). Let ~r =

(
1 0 0 0 . . .

)
. Then

A is image partition regular, but there does not exist b ∈ Q such that

(
b~r
A

)
is

image partition regular.

Proof. As we remarked above, that A is image partition regular follows from [2,
Theorem 2.5].

Suppose we have b ∈ Q such that

(
b~r
A

)
is image partition regular, and notice

that trivially b > 0. Write b = m
n where m and n are relatively prime positive

integers.
Case 1. m 6= 1. Given x ∈ N, let α(x) = max{t ∈ ω : mt|x}. For i ∈ {0, 1}, let

Bi = {x ∈ N : α(x) ≡ i(mod 2)}. Choose i ∈ {0, 1} and ~x ∈ Nω such that(
b~r
A

)
~x ∈ Bωi .

Then the first row says that m
n x0 ∈ Bi and so α(mn x0) ≡ i(mod 2). Also α(mn x0) =

α(mx0) since m and n are relatively prime. Consequently, α(x0) 6≡ i(mod 2).
Let s = α(x0) and pick F ∈ Pf (N) such that ms+1|Σt∈F xt, where Pf (N) is the

set of finite nonempty subsets of N. Pick G ∈ Pf (N) such that maxF < minG

and ms+1|Σt∈G 2xt. Then x0 + Σt∈F xt + Σt∈G 2xt is an entry of

(
b~r
A

)
~x while

α(x0 + Σt∈F xt + Σt∈G 2xt) = s 6≡ i(mod 2), a contradiction.
Case 2. m = 1 and n 6= 1. Given x ∈ N, let α(x) = max{t ∈ ω : nt|x}. For

i ∈ {0, 1}, let Bi = {x ∈ N : α(x) ≡ i(mod 2). Choose i ∈ {0, 1} and ~x ∈ Nω such
that (

b~r
A

)
~x ∈ Bωi .

Then the first row says that 1
nx0 ∈ Bi and so α( 1

nx0) ≡ i(mod 2). Consequently,
α(x0) 6≡ i(mod 2). Choosing F and G as in Case 1, we again obtain a contradiction.

Case 3. b = 1. For x ∈ N, let ϕ(x) count the number of odd length blocks
of 0’s interior to the binary expansion of x. (More formally, if x = Σt∈F 2t and
k = maxF , then ϕ(x) = |{t ∈ F\{k} : (min{s ∈ F : s > t} − t) is even}.) For
j ∈ {0, 1, 2}, let Bj = {x ∈ N : ϕ(x) ≡ j(mod 3)}.

Choose j ∈ {0, 1, 2} and ~x ∈ Nω such that

(
~r
A

)
~x ∈ Bωj . The first row of

this equation says that ϕ(x0) ≡ j(mod 3). Choose inductively a sequence 〈Ht〉∞t=1

in Pf (N) such that for each t, maxHt < minHt+1 and, if 2s ≤ Σi∈Ht xi, then
2s+1|Σi∈Ht+1

xi. For each t ∈ N, let zt = Σi∈Ht
xi and choose Ft ∈ Pf (N) such

that zt = Σi∈Ft
2i. Notice that for each t, maxFt < minFt+1.

Pick s ∈ N such that 2s > x0. Choose u < k < l in N such that ϕ(xu) ≡ ϕ(xk) ≡
ϕ(xl)(mod 3), minFu ≡ minFk ≡ minFl(mod 2), and maxFu ≡ maxFk ≡
maxFl(mod 2). Notice that 2zl + zk + zu and 2zl + zk + zu + x0 are both en-

tries of

(
~r
A

)
~x and so 2zl + zk + zu ∈ Bj and 2zl + zk + zu + x0 ∈ Bj .
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Now ϕ(2zl+zk+zu) = ϕ(zl)+ϕ(zk)+ϕ(zu)+1. (Exactly one odd block of 0’s is
added in addition to those interior to the expansions of 2zl, zk, and zu. It is between
zk and zu if maxFu ≡ minFu(mod 2) and it is between 2zl and zk if maxFu 6≡
minFu(mod 2).) Consequently, ϕ(2zl + zk + zu) ≡ 1(mod 3) and thus j = 1 and
thus ϕ(x0) ≡ 1(mod 3). Now ϕ(2zl + zk + zu + x0) = ϕ(2zl + zk + zu) + ϕ(x0) + 1
or ϕ(2zl + zk + zu +x0) = ϕ(2zl + zk + zu) +ϕ(x0) depending on whether or not an
odd block of 0’s is introduced between the expansions of zu and x0. Consequently,
ϕ(2zl + zk + zu + x0) ≡ 0(mod 3) or ϕ(2zl + zk + zu + x0) ≡ 2(mod 3). In either
case, we have a contradiction. �

Theorem 2.2. Let ~b be a compressed sequence with entries from N such that ~b 6=
(1). Let A be a matrix whose rows are all rows ~a ∈ Qω with only finitely many

nonzero entries such that c(~a) = ~b. Let B be the finite sums matrix.
(a) The matrices A and B are image partition regular.
(b) There is a subset C of N which is a member of every idempotent in βN (and is
thus, in particular, central) such that for no ~x ∈ Nω does one have A~x ∈ Cω.
(c) The matrix (

A O
O B

)
is not image partition regular.

Proof. Note that B is a matrix whose rows are all rows ~a ∈ Qω with only finitely
many nonzero entries such that c(~a) = (1). That A and B are image partition
regular follows from [2, Theorem 2.5].

By [2, Theorem 3.14], there exist C1 and C2 such that N = C1 ∪ C2 and there
does not exist ~x ∈ Nω with A~x ∈ Cω1 and there does not exist ~y ∈ Nω with B~y ∈ Cω2
and thus (

A O
O B

)
is not image partition regular. By [7, Theorem 5.8], C2 is not a member of any
idempotent in βN, and thus C1 is a member of every idempotent in βN. �

By way of contrast with Theorem 2.2(c), we see that infinite image partition
regular matrices can be extended by finite ones. (We are grateful to V. Rödl for
providing us with this result and its proof.)

Lemma 2.3. Let A and B be finite and infinite image partition regular matrices
respectively (with rational coefficients). Then(

A O
O B

)
is image partition regular.

Proof. Assume that A is a u × v matrix. Let r ∈ N and let N be r-colored by ϕ.
Let (by compactness) n be large enough so that whenever {1, 2, . . . , n} is r-colored,
there exists ~x ∈ Nv such that the entries of A~x are monochrome.

Now color N with rn colors via ψ, where ψ(x) = ψ(y) if and only if for all
t ∈ {1, 2, . . . , n}, ϕ(tx) = ϕ(ty). Pick ~y ∈ Nω such that the entries of B~y are
monochrome with respect to ψ. Pick an entry a of B~y and define γ : {1, 2, . . . ,
n} → {1, 2, . . . , r} by γ(i) = ϕ(ia). Pick ~x ∈ Nv such that the entries of A~x are
monochrome with respect to γ. Pick an entry i of A~x and let j = γ(i).
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Let ~z =

(
a~x
i~y

)
. We claim that for any row ~w of

(
A O
O B

)
, ϕ(~w · ~z) = j. To

see this, first assume that ~w is a row of
(
A O

)
, so that ~w = ~s_~0, where ~s is a

row of A. Then ~w · ~z = a(~s · ~x) and j = γ(~s · ~x) = ϕ
(
a(~s · ~x)

)
= ϕ(~w · ~z).

Next assume that ~w is a row of
(

O B
)
, so that ~w = ~0_~s where ~s is a row of

B. Then ~w · ~z = i(~s · ~y). Now ψ(~s · ~y) = ψ(a) so ϕ
(
i(~s · ~y)

)
= ϕ(ia) = γ(i) = j. �

Definition 2.4. Let A be a finite or infinite matrix with entries from Q. Then
C(A) = {p ∈ βN : for every P ∈ p, there exists ~x with entries from N such that all
the entries of A~x are in P}.

Lemma 2.5. Let A be a matrix with entries from Q.
(a) The set C(A) is compact and C(A) 6= ∅ if and only if A is image partition
regular.
(b) If A is a finite image partition regular matrix, then C(A) is a subsemigroup of
βN.

Proof. (a) The fact that C(A) is compact is trivial as is the fact that A is image
partition regular if C(A) 6= ∅. Assume that A is image partition regular and let

C = {B ⊆ N : for every ~x with entries from N and the same number of
entries as A has columns, if every entry of A~x is in N,
then some entry of A~x is in B} .

We claim that C has the finite intersection property. To see this, suppose in-
stead that we have n ∈ N and B1, B2, . . . , Bn ∈ C with

⋂n
i=1Bi = ∅. Then

N =
⋃n
i=1(N\Bi) and so there are some i ∈ {1, 2, . . . , n} and some ~x with all

entries of A~x in N\Bi, contradicting the fact that Bi ∈ C.
Since C has the finite intersection property, pick p ∈ βN with C ⊆ p. To see that

p ∈ C(A), let P ∈ p. If there were no ~x with entries from N such that all entries of
A~x are in P , we would have N\P ∈ C ⊆ p, a contradiction.

(b) Let u, v ∈ N such that A is a u× v matrix. We have that C(A) 6= ∅ by (a).
Let p, q ∈ C(A) and let B ∈ p + q. Then C = {y ∈ N : −y + B ∈ q} ∈ p so pick
~x ∈ Nv such that ~y = A~x ∈ Cu. Then D =

⋂u
i=1(−yi +B) ∈ q so pick ~z ∈ Nv such

that A~z ∈ Du. Then A(~x+ ~z) ∈ Bu. �

The set C(A) need not be a semigroup if A is an infinite image partition regular
matrix, as can be seen from Theorem 2.2 wherein the matrix A is image partition
regular, but C(A) contains no idempotents.

Corollary 2.6. Let F denote the set of finite image partition regular matrices over
Q. If B is an infinite partition regular matrix, then C(B) ∩

⋂
A∈F C(A) 6= ∅.

Proof. Let A1, A2, · · · , An be a finite number of elements of F . Let

M =


A1 O · · · O O
O A2 · · · O O
...

...
. . .

...
...

O O · · · An O
O O · · · O B

 .

By Lemma 2.3, M is image partition regular and so ∅ 6= C(M) ⊆ C(B)∩
⋂n
i=1 C(Ai).

Our claim now follows from compactness. �
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We saw in Theorem 2.2(b) that the characterization of Theorem 1.2(b) need not
be valid for infinite image partition regular matrices. This leads us to hope that
perhaps matrices with this stronger property are better behaved.

Definition 2.7. Let A be an ω × ω matrix. Then A is centrally image partition
regular if and only if whenever C is a central set in N, there exists ~x ∈ Nω such
that A~x ∈ Cω.

It is trivial that whenever A and B are centrally image partition regular matrices,
then so is (

A O
O B

)
.

Unfortunately, our other desired characteristic does not hold.

Proposition 2.8. There is an ω × 2 centrally image partition regular matrix A

with entries from Q such that there does not exist b ∈ Q making

(
−b b
A

)
image

partition regular. In fact, there do not exist b ∈ Q and ~x =

(
x0

x1

)
∈ N2 with(

−b b
A

)
~x ∈ Nω.

Proof. Let

A =



1
2

1
2

1
3

2
3

1
4

3
4

1
5

4
5

...
...


.

Given any central set C, pick a ∈ C and let ~x =

(
a
a

)
. Then all entries of A~x are

equal to a.

Suppose that we have b ∈ Q and ~x =

(
x0

x1

)
∈ N2 with

(
−b b
A

)
~x ∈ Nω.

Since −b·x0+b·x1 ∈ N, we have that x0 6= x1. Pick n ∈ N such that |x0−x1| < n.
Then 1

n · x0 + n−1
n · x1 ∈ N while 1

n · x0 + n−1
n · x1 = x1 + x0−x1

n . But x1 ∈ N and

0 < |x0−x1|
n < 1, a contradiction. �

We now turn our attention to the characterization of Theorem 1.2(e). Consid-
ering the matrix of Proposition 2.8 which could only produce entries in N if the
entries of ~x were equal, it seems reasonable to ask that the entries of ~x be required
to be distinct. However, we see now that this also would do no good. (We also see
that requiring the entries of the matrix to come from Z rather than Q is of no use
either.)

Proposition 2.9. There is an ω×2 matrix A with entries from Z with the property
that whenever C is a central set in N, there exists x0 6= x1 such that all entries
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of A

(
x0

x1

)
are in C, but there does not exist b ∈ Q making

(
2b − b
A

)
image

partition regular.

Proof. Let

A =



1 0
3 −1
5 −2
...

...
2n+ 1 −n

...
...


and let {D1, D2} be any partition of N such that neither D1 nor D2 contains infinite
arithmetic progressions.

To see that A has the first claimed property, let C be a central set and pick
x0 ∈ C. Let x1 = 2x0. Then all entries of A~x are equal to x0.

Suppose that we have b ∈ Q, i ∈ {1, 2} and ~x =

(
x0

x1

)
∈ N2 with(

2b − b
A

)
~x ∈ Dω

i .

Then 2bx0 − bx1 > 0 so 2x0 6= x1. Let a = x1

x0
. Then the nth entry of A~x is

x0 + (2− a) · x0 · n. This tells us in fact that a < 2 and consequently Di contains
an infinite arithmetic progression, a contradiction. �

In view of Proposition 2.9, we turn our attention to the other half of the char-
acterization of Theorem 1.2(e).

Definition 2.10. Let A be an ω × ω matrix. Then A is strongly centrally image
partition regular if and only if whenever C is a central set in N, there exists ~x ∈ Nω
such that ~y = A~x ∈ Cω and for all i, j ∈ ω, if rows i and j of A are unequal, then
yi 6= yj .

There is a simple necessary condition for a matrix to be strongly centrally image
partition regular.

Theorem 2.11. Let A be a strongly centrally image partition regular matrix without
repeated rows. Then for each k ∈ N, {i : for all j ≥ k, ai,j = 0} is finite.

Proof. Suppose instead that {i : for all j ≥ k, ai,j = 0} is infinite. Then by
discarding the other rows we may presume that A is an ω × k matrix. Let D =
{~x ∈ Nk : all entries of A~x are distinct}. Enumerate D as 〈~x(n)〉∞n=1. Inductively
choose distinct yn and zn in A~x(n), with {yn, zn}∩(

{
yt : t ∈ {1, 2, . . . , n−1}

}
∪
{
zt :

t ∈ {1, 2, . . . , n− 1}
}

) = ∅ if n > 1. Let C = {yn : n ∈ N}. Then there is no ~x ∈ D
with A~x ∈ Cω and no ~x ∈ D with A~x ∈ (N\C)ω. �

We shall see in Theorem 3.9 that there is a strongly centrally image partition

regular matrix A such that there is no b ∈ Q\{0} for which

(
b~r
A

)
is image

partition regular, where ~r =
(

1 0 0 0 . . .
)
.

We shall see in Corollary 2.14 that the strongly centrally image partition regular
matrices do maintain one of the properties that we desire. First we shall have need
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of the following algebraic result which we think is of interest in its own right. (The
information about the minimal left and minimal right ideals involved is not needed
here. But it is interesting algebraically and costs us little additional effort.) Notice
that since, by [7, Theorem 2.7] R ∩ L is a group, p is the unique idempotent of
R ∩ L.

Theorem 2.12. Let p be a minimal idempotent in (βN,+) and let L and R be
respectively the minimal left and minimal right ideals of (βN,+) with p ∈ L ∩ R.
Then for each C ∈ p, there are 2c minimal idempotents in L ∩ C and 2c minimal
idempotents in R ∩ C.

Proof. Let C ∈ p, let C? = {x ∈ C : −x + C ∈ p}, and notice that, by [7, Lemma
4.14], for each x ∈ C?, −x+ C? ∈ p. For each m ∈ ω, let

Sm = 2mN ∩ C? ∩
⋂{
− k + C? : k ∈ C? ∩ {1, 2, . . . ,m}

}
.

Let V =
⋂
m∈N Sm. For every m ∈ N, 2mN ∈ p (by [7, Lemma 6.6]) and so Sm ∈ p.

Thus p ∈ V .
We show that V is a subsemigroup of βN, using [7, Theorem 4.20]. So, let m ∈ N

and let n ∈ Sm. It suffices to show that n+ Sm+n ⊆ Sm. Let r ∈ Sm+n. Certainly
n+ r ∈ 2mN. Since n ∈ C? ∩ {1, 2, . . . ,m+ n}, n+ r ∈ C?. Let k ∈ C? ∩ {1, 2, . . . ,
m}. Then n ∈ −k+C? so k+n ∈ C?∩{1, 2, . . . ,m+n} and thus r ∈ −(k+n)+C?

so that n+ r ∈ −k + C? as required.
Since p ∈ V we have by [7, Theorem 6.32] that V contains a copy of H =⋂∞
n=1 N2n. (This copy is guaranteed to be both an algebraic and topological copy,

via the same function, but here we only care about the fact that it is an algebraic
copy.) By [7, Theorem 6.9], (βN,+) has 2c minimal left ideals, so there is a set
W ⊆ βN of idempotents such that |W | = 2c and whenever u and v are distinct
members of W , u+ v 6= u and v + u 6= v. Since by [7, Lemma 6.6], W ⊆ H and V
contains a copy of H, we have a set E ⊆ V of idempotents such that |E| = 2c and
whenever u and v are distinct members of E, u+ v 6= u and v + u 6= v.

By [7, Corollary 6.20], if u and v are distinct members of E, then (βN + u) ∩
(βN + v) = ∅, so in particular (V + u) ∩ (V + v) = ∅. For each u ∈ E, pick an
idempotent αu ∈ (p + V ) ∩ (V + u) with αu minimal in V . (By [7, Corollary 2.6
and Theorem 2.7], p + V contains a minimal right ideal of V and V + u contains
a minimal left ideal of V , and the intersection of a minimal right ideal of V with
a minimal left ideal of V is a group. Let αu be the identity of this group.) Then
{αu : u ∈ E} is a set of 2c idempotents in p + V ⊆ R, each minimal in V . Since
p ∈ V ∩ K(βN) we have that K(V ) = V ∩ K(βN) by [7, Theorem 1.65], so that
each αu is minimal in βN.

Now we verify the assertion about L. For each x ∈ N define supp(x) ∈ Pf (ω)
by x =

∑
t∈supp(x) 2t. Inductively choose a sequence 〈rn〉∞n=1 in N such that, for

each n ∈ N, rn ∈ Sn and max supp(rn) < min supp(rn+1). Let X = {rn : n ∈ N}
and note that X ∩ N∗ = βN\N ⊆ V . Note also that, since Sn ⊆ N2n, V ⊆ H.

Define f : N → ω by f(n) = min supp(n) and let f̃ : βN → βω be its continuous

extension. Notice that if x ∈ βN and q ∈ H, then f̃(x + q) = f̃(x). (To see this it

suffices to show that the continuous functions f̃ ◦ρq and f̃ agree on N. If n ∈ N and

m = f(n)+1 then f̃ ◦λn is constantly equal to f(n) on N2m and so f̃(n+q) = f(n).)

For each y ∈ f̃ [X ∩ N∗] one has {q ∈ V : f̃(q) = y} is a right ideal of V so

pick an idempotent δy ∈ {q ∈ V : f̃(q) = y} ∩ L which is minimal in V . Each δy
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is minimal in V , hence in βN, and if y 6= z, then {q ∈ V : f̃(q) = y} ∩ {q ∈ V :

f̃(q) = z} = ∅. It thus suffices to show that |f̃ [X ∩ N∗]| = 2c. To see this, let v be
any nonprincipal ultrafilter on {f(rn) : n ∈ N} (of which there are 2c). For A ∈ v,
let B(A) = {rn : f(rn) ∈ A}. Then {B(A) : A ∈ v} has the finite intersection
property, so pick q ∈ βN with {B(A) : A ∈ v} ⊆ q. Since

⋂
A∈v B(A) = ∅, q ∈ N∗.

And f̃(q) = v. �

Corollary 2.13. Let C be a central set in N. Then there exists a sequence 〈Cn〉∞n=1

of pairwise disjoint central sets in N with
⋃∞
n=1 Cn ⊆ C.

Proof. By Theorem 2.12, the set of minimal idempotents in C is infinite, hence
contains an infinite strongly discrete subset. (Alternatively, there are two minimal
idempotents in C so that C can be split into two central sets, C1 and D1. Then
D1 can be split into two central sets, C2 and D2, and so on.) �

Corollary 2.14. For each n ∈ N, let An be a strongly centrally image partition
regular matrix. Then the matrix

M =


A1 O O . . .
O A2 O . . .
O O A3 . . .
...

...
...

. . .


is also strongly centrally image partition regular.

Proof. Let C be a central set and choose by Corollary 2.13 a sequence 〈Cn〉∞n=1

of pairwise disjoint central sets in N with
⋃∞
n=1 Cn ⊆ C. For each n ∈ N choose

~x(n) ∈ Nω such that ~y(n) = An~x
(n) ∈ Cωn and if rows i and j of An are unequal,

y
(n)
i 6= y

(n)
j . Let

~z =

 ~x(1)

~x(2)

...

 .

Then all entries of M~z are in C and entries from distinct rows are unequal. �

Of course Corollary 2.14 remains valid if “strongly centrally image partition
regular” is replaced by “centrally image partition regular”. The same proof applies
and one does not need to introduce the pairwise disjoint central sets, which were
required to guarantee that the entries of M~z from distinct rows were distinct.

3. Constant Row Sums

Notice that trivially, if A is an ω × ω matrix with entries from Q and there is
some positive m ∈ Q such that each row of A sums to m, then A is centrally image
partition regular. (Given a central set C, simply pick d ∈ N such that dm ∈ C,
which one can do because for each n ∈ N, Nn is a member of every idempotent by
[7, Lemma 6.6]. Then let xi = d for each i ∈ ω.) We also saw in Theorem 2.2(b)

that if ~b is a compressed sequence with entries from ω such that ~b 6= (1) and A is
a matrix whose rows are all rows ~a ∈ Qω with only finitely many nonzero entries

such that c(~a) = ~b, then A is not centrally image partition regular.
We shall show in this section (in Theorem 3.7) that if A is a matrix with entries

from Z with finitely many nonzero entries in each row such that the compressed
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form of all rows of A are the same and all rows of A have the same nonzero sum, then
A is strongly centrally image partition regular. We shall also show (in Corollary
3.15) that a matrix with the same compressed form for all rows and zero sum for
each row need not be centrally image partition regular.

We show now that any matrix with constant positive row sums and a limited
number of patterns in any finite set of columns can be extended at will. That the
restriction on the number of patterns in a finite set of columns is needed can be
seen by considering the matrix of Proposition 2.8. We shall see in Theorem 3.9 that
we cannot extend the following theorem to the case in which m ∈ Z.

In Theorem 3.1 we talk of adding finitely many rows, rather than adding rows
one at a time as in Theorem 1.2(d), because we cannot simply iterate the procedure.
(If the row sums of A are all m and the sum of row ~r is not 0, one can multiply ~r
by b so that its sum is m and iterate. However, in the interesting cases, some or all
of the added rows will sum to 0.)

Theorem 3.1. Let k ∈ N, let m ∈ Q with m > 0, and let A be an ω × ω matrix
with entries from Q such that
(i) the sum of each row of A is m and
(ii) for each l ∈ ω, {〈ai,0, ai,1, . . . , ai,l〉 : i ∈ ω} is finite.

Let ~r(1), ~r(2), . . . , ~r(k) ∈ Qω\{~0} such that each ~r(i) has only finitely many nonzero
entries. Then there exist b1, b2, . . . , bk ∈ Q\{0} such that

b1~r
(1)

b2~r
(2)

...
bk~r

(k)

A


is centrally image partition regular.

Proof. Pick l ∈ N such that for every j ∈ {1, 2, . . . , k} and every i ≥ l, r
(j)
i = 0.

For each j ∈ {1, 2, . . . , k}, let s(j) = 〈r(j)
0 , r

(j)
1 , . . . , r

(j)
l 〉. Enumerate

{〈ai,0, ai,1, . . . , ai,l−1〉 : i ∈ ω}

as ~w(0), ~w(1), . . . , ~w(u). For each i ∈ {0, 1, . . . , u}, let di = m−
∑l−1
j=0 w

(i)
j . Let E be

the (u+ 1)× (l + 1) matrix with entries

ei,j =

{
w

(i)
j if j ∈ {0, 1, . . . , l − 1}
di if j = l .

Then E has constant row sums, so is image partition regular. By applying
Theorem 1.2(d) u+ 1 times, pick b1, b2, . . . , bk ∈ Q\{0} such that the matrix

H =


b1~s

(1)

b2~s
(2)

...
bk~s

(k)

E


is image partition regular, hence, by Theorem 1.2(b), centrally image partition
regular.
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Let C be a central set and pick 〈z0, z1, . . . , zl〉 ∈ Nl+1 such that H~z ∈ Cu+1. For
n ∈ {0, 1, . . . , l − 1}, let xn = zn. For n ∈ {l, l + 1, l + 2, . . .}, let xn = zl. Then

b1~r
(1)

b2~r
(2)

...
bk~r

(k)

A

 ~x ∈ Cω.

�

We see now that matrices with constant positive row sums need not be strongly
centrally image partition regular.

Proposition 3.2. Let A be an ω × ω matrix whose rows are all those rows with
entries from {0, 1, 2} with exactly one 1 and exactly one 2 (and no repeated rows).
While A is centrally image partition regular, it is not strongly centrally image par-
tition regular. In fact, there is a two cell partition {D0, D1} of N such that there
do not exist t ∈ {0, 1} and ~x ∈ Nω with ~y = A~x ∈ Dω

t and all entries of ~y distinct.

Proof. For x ∈ N, let f(x) = max supp(x), where x =
∑
t∈supp(x) 2t. (Then

2f(x) ≤ x < 2f(x)+1.) For t ∈ {0, 1}, let Dt = {x ∈ N : f(x) ≡ t (mod 2)}. Suppose
that we have t ∈ {0, 1} and ~x ∈ Nω with ~y = A~x ∈ Dω

t and all entries of ~y distinct.
Then also all entries of ~x are distinct. (If i 6= j, then 2xi + xj and xi + 2xj are
distinct entries of ~y.)

Pick k < l < m in ω such that f(xk) + 3 < f(xl) < f(xm). If we had i < j in
{k, l,m} such that xj < 2f(xj)+1 − 2xi, then we would have f(xj + 2xi) = f(xj)
while f(2xj + xi) = f(xj) + 1, a contradiction. Thus for i < j in {k, l,m} we have

xj ≥ 2f(xj)+1 − 2xi and f(xj + 2xi) = f(xj) + 1. In particular

(∗) xl ≥ 2f(xl)+1 − 2xk and
(∗∗) xm ≥ 2f(xm)+1 − 2xk.
If we had 2xm ≥ 2f(xm)+2 − xl, then we would have f(2xm + xl) = f(xm) + 2 6≡
f(xm + 2xl) (mod 2), again a contradiction. Thus, using (∗) and (∗∗), we have

2f(xm)+2 − 4xk ≤ 2xm < 2f(xm)+2 − xl ≤ 2f(xm)+2 − 2f(xl)+1 + 2xk

so that xl < 2f(xl)+1 < 6xk < 8xk < 2f(xk)+4 ≤ 2f(xl) ≤ xl, a contradiction. �

Notice that any finite set of rows of the matrix A in Proposition 3.2 form a finite
image partition regular matrix (after throwing away columns with all zeroes). Thus
by Theorem 1.2(e), given any central set C and any n ∈ N, there must exist ~x ∈ Nω
such that the first n entries of A~x are distinct and lie in C.

It is a consequence of Theorem 3.7 below that if the matrix A defined in Proposi-
tion 3.2 is modified by requiring that the occurrence of 1 come before the occurrence
of 2 on each row (or vice versa) then the resulting matrix is strongly centrally image
partition regular. The proof of Theorem 3.7 uses a quite general construction which
we present now.

Recall that if D is a discrete space, p ∈ βD, X is a topological space, y ∈ X,
and f : D → X, then p- lim

s∈D
f(s) = y if and only if for every neighborhood U of y

in X, {s ∈ D : f(s) ∈ U} ∈ p. See [7, Section 3.5] for a presentation of the basic
properties of these limits.
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Given a sequence 〈xk〉∞k=0 in a semigroup (S, ·), we write

FP (〈xk〉∞k=0) = {
∏
k∈F xk : F ∈ Pf (ω)}

for the set of finite products of terms of the sequence. If the operation is denoted
by +, then we write FS(〈xk〉∞k=0) = {

∑
k∈F xk : F ∈ Pf (ω)}.

Theorem 3.3. Let S and T be discrete spaces, let n ∈ N, and let f : Sn → T .
Define g : βS → βT by

g(p) = p- lim
s1∈S

p- lim
s2∈S

. . . p- lim
sn∈S

f(s1, s2, . . . , sn) .

Let p ∈ S∗ = βS\S, let h :
⋃∞
k=1 S

k → p, let Q ∈ g(p), and let A ∈ p.
(1) There exists a sequence 〈xk〉∞k=0 in A such that, whenever r1 < r2 < . . . < rn,
f(xr1 , xr2 , . . . , xrn) ∈ Q, and for each k ∈ N, xk ∈ h(x0, x1, . . . , xk−1).
(2) If (S, ·) is a semigroup and p is an idempotent, then the sequence 〈xk〉∞k=0 can
be chosen so that, in addition to the above conclusions, FP (〈xk〉∞k=0) ⊆ A and
whenever F1, F2, . . . , Fn are finite nonempty subsets of ω with maxFk < minFk+1

for every k ∈ {1, 2, . . . , n− 1}, one has f(Πt∈F1 xt,Πt∈F2 xt, . . . ,Πt∈Fn xt) ∈ Q.

Proof. Let P = {z ∈ A : p- lim
s2∈S

p- lim
s3∈S

. . . p- lim
sn∈S

f(z, s2, s3, . . . , sn) ∈ Q} and notice

that P ∈ p. For k ∈ {1, 2, . . . , n − 2} and y1, y2, . . . , yk ∈ S, let Py1,y2,...,yk =

{z ∈ S : p- lim
sk+2∈S

p- lim
sk+3∈S

. . . p- lim
sn∈S

f(y1, y2, . . . , yk, z, sk+2, . . . , sn) ∈ Q} and for

y1, y2, . . . , yn−1 ∈ S, let Py1,y2,...,yn−1 = {z ∈ S : f(y1, y2, . . . , yn−1, z) ∈ Q}.
Notice that, if y ∈ P , then Py ∈ p and, if k ∈ {1, 2, . . . , n − 2} and yk+1 ∈

Py1,y2,...,yk , then Py1,y2,...,yk+1
∈ p.

To establish the conclusions in (1), pick x0 ∈ P , let m ∈ ω, and assume that we
have chosen x0, x1, . . . , xm ∈ P such that
(i) for each k ∈ {1, 2, . . . ,m}, xk ∈ h(x1, x2, . . . , xk−1), and
(ii) for each k ∈ {1, 2, . . . ,m}, if k ≤ n and 0 ≤ r1 < r2 < . . . < rk ≤ m, then
xrk ∈ Pxr1 ,xr2 ,...,xrk−1

.

For k ∈ {1, 2, . . . , n− 1}, let

Vk = {(xr1 , xr2 , . . . , xrk) : 0 ≤ r1 < r2 < . . . < rk ≤ m} .
Choose

xm+1 ∈ P ∩ h(x0, x1, . . . , xm) ∩
⋂min{n−1,m+1}
k=1

⋂
(y1,y2,...,yk)∈Vk

Py1,y2,...,yk .

The induction hypotheses guarantee that the set on the right is a member of p, and
is therefore nonempty.

Now, to verify the conclusions in (2), assume that (S, ·) is a semigroup and
p = p · p. For any B ∈ p, let B? = {x ∈ B : x−1B ∈ p}, where x−1B = {y ∈
S : x · y ∈ B}. Then B? ∈ p and by [7, Lemma 4.14], whenever x ∈ B?, one has
x−1B? ∈ p.

Choose x0 ∈ P ?. Let m ∈ N, and assume that we have chosen x0, x1, . . . , xm
such that
(i) for each k ∈ {1, 2, . . . ,m}, xk ∈ h(x1, x2, . . . , xk−1),
(ii) if ∅ 6= F ⊆ {0, 1, . . . ,m}, then Πt∈F xt ∈ P ?, and
(iii) if k ∈ {2, 3, . . . , n} and F1, F2, . . . , Fk ∈ Pf ({1, 2, . . . ,m}) with maxFj <
minFj+1 for each j ∈ {1, 2, . . . , k − 1}, then

Πt∈Fk
xt ∈ (PΠt∈F1

xt,Πt∈F2
xt,...,Πt∈Fk−1

xt
)? .
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For r ∈ {0, 1, . . . ,m}, let Er =
{

Πt∈F xt : ∅ 6= F ⊆ {r, r + 1, . . . ,m}
}

and for
k ∈ {1, 2, . . . , n− 1} and r ∈ {0, 1, . . . ,m}, let

Wk,r =
{

(Πt∈F1 xt,Πt∈F2 xt, . . . ,Πt∈Fk
xt) : F1, F2, . . . , Fk ∈ Pf ({0, 1, . . . , r})

and maxFj < minFj+1 for every j ∈ {1, 2, . . . , k − 1}
}
.

Note that Wk,r 6= ∅ if and only if k ≤ m+ 1.
Hypothesis (ii) tells us that if y ∈ E0 (equivalently if (y) ∈ W1,m), then y ∈ P ?

so that y−1P ? ∈ p and Py ∈ p.
Hypothesis (iii) tells us that whenever k ∈ {2, 3, . . . , n−1} and (y1, y2, . . . , yk) ∈

Wk,m, one has yk ∈ Py1,y2,...,yk−1
so that Py1,y2,...,yk ∈ p.

Hypothesis (iii) also tells us that if r ∈ {0, 1, . . . ,m − 1}, k ∈ {1, 2, . . . , n − 1},
(y1, y2, . . . , yk) ∈Wk,r, and z ∈ Er+1, then z ∈ (Py1,y2,...,yk)? and thus

z−1(Py1,y2,...,yk)? ∈ p .
Thus we may choose

xm+1 ∈ h(x0, x1, . . . , xm) ∩ P ? ∩
⋂
y∈E0

y−1P ?

∩
⋂min{m+1,n−1}
k=1

⋂
(y1,y2,...,yk)∈Wk,m

(Py1,y2,...,yk)?

∩
⋂m−1
r=0

⋂min{r+1,n−1}
k=1

⋂
(y1,y2,...,yk)∈Wk,r

⋂
z∈Er+1

z−1(Py1,y2,...,yk)?

because this set is a member of p and is therefore nonempty.
Hypothesis (i) holds directly. To verify hypothesis (ii), let ∅ 6= F ⊆ {1, 2, . . . ,

m + 1} with m + 1 ∈ F . If F = {m + 1}, then Πt∈F xt = xm+1 ∈ P ?. Otherwise,
let G = F\{m + 1} and let y = Πt∈G xt. Then y ∈ E0 and so xm+1 ∈ y−1P ? and
thus Πt∈F xt ∈ P ?.

To verify hypothesis (iii), let k ∈ {2, 3, . . . , n} and let F1, F2, . . . , Fk ∈ Pf ({1, 2,
. . . ,m+1}) with maxFj < minFj+1 for each j ∈ {1, 2, . . . , k−1} and with m+1 ∈
Fk. If Fk = {m+ 1}, then we have∏

t∈Fk
xt = xm+1 ∈ (PΠt∈F1

xt,Πt∈F2
xt,...,Πt∈Fk−1

xt
)? ,

so assume that Fk 6= {m+ 1}, let G = F\{m+ 1}, and let r = minG− 1. Let z =
Πt∈G xt and for j ∈ {1, 2, . . . , k − 1}, let yj = Πt∈Fj

xt. Then (y1, y2, . . . , yk−1) ∈
Wk−1,r and z ∈ Er+1 so that Πt∈Fk

xt = z ·xm+1 ∈ (Py1,y2,...,yk−1
)? as required. �

As we have previously remarked, in [2, Theorem 2.5] it was shown that if A is
an ω × ω matrix with entries from ω (and only finitely many nonzero entries on
each row) such that the compressed forms of all rows were equal, then A is image
partition regular. We extend this result now to allow negative entries. Notice that
in the following lemma and beyond, if p ∈ βN and a ∈ Z, the product a · p refers to
multiplication in the semigroup (βZ, ·). In particular, if a ∈ N, a · p is not the sum
of p with itself a times. (If, as here, p = p+ p, that sum is just p.)

In our remaining results we shall be assuming that the entries of our matrices
come from Z rather than Q. This is a convenient, but not essential, restriction
because we shall also be assuming that the compressed forms of all rows are equal,
so that any such matrix with rational entries can be turned into one with integer
entries by multiplying by a constant. Since multiplying a central set by a constant
produces another central set [6, Lemma 2.1], the corresponding results hold.

Lemma 3.4. Let 〈a1, a2, . . . , ak〉 be a sequence in Z\{0}. Let m = max
{
|aj | : j ∈

{1, 2, . . . , k}
}

, let p be an idempotent in βN, and let q = a1 · p + a2 · p + . . . + ak ·
p ∈ βZ. If A ∈ q and P ∈ p, then there is a sequence 〈xn〉∞n=0 in N such that
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xn+1 > 2m ·
∑n
t=0 xt for each n ∈ ω, FS(〈xn〉∞n=0) ⊆ P and

{∑k
t=1 at ·

∑
n∈Ft

xn :

F1, F2, . . . , Fk ∈ Pf (N) and maxFt < minFt+1 for t ∈ {1, 2, . . . , k − 1}
}
⊆ A.

Proof. Define h :
⋃∞
n=1 Nn → p and f : Nk → Z by h(x0, x1, . . . , xn−1) = {z ∈ N :

z > 2m ·
∑n−1
t=1 xt} and f(y1, y2, . . . , yk) = a1 · y1 + a2 · y2 + . . .+ ak · yk. Then

p- lim
y1∈N

p- lim
y2∈N

. . . p- lim
yk∈N

f(y1, y2, . . . , yk) = a1 · p+ a2 · p+ . . .+ ak · p

so Theorem 3.3 applied to the semigroup (N,+) yields the desired conclusion. �

We observe now that the sequence produced in Lemma 3.4 satisfies a strong
uniqueness of sums property.

Lemma 3.5. Let 〈a1, a2, . . . , ak〉 be a compressed sequence in Z\{0}, let m =
max

{
|aj | : j ∈ {1, 2, . . . , k}

}
, and let 〈xn〉∞n=0 be a sequence in N such that xn+1 >

2m ·
∑n
t=0 xt for each n ∈ ω. Then whenever F1, F2, . . . , Fk, G1, G2, . . . , Gk ∈

Pf (N), maxFt < minFt+1 and maxGt < minGt+1 for t ∈ {1, 2, . . . , k − 1}, and∑k
t=1 at·

∑
n∈Ft

xn =
∑k
t=1 at·

∑
n∈Gt

xn, one must have Ft = Gt for each t ∈ {1, 2,
. . . , k}.

Proof. Suppose instead that we have some F1, F2, . . . , Fk, G1, G2, . . . , Gk ∈ Pf (N)
such that maxFt < minFt+1 and maxGt < minGt+1 for t ∈ {1, 2, . . . , k − 1},∑k
t=1 at ·

∑
n∈Ft

xn =
∑k
t=1 at ·

∑
n∈Gt

xn, but Ft 6= Gt for some t ∈ {1, 2, . . . , k}.
Pick the largest l ∈ {1, 2, . . . , k} such that Fl 6= Gl. Then

∑l
t=1 at ·

∑
n∈Ft

xn =∑l
t=1 at ·

∑
n∈Gt

xn. Let r = max(Fl∆Gl). By subtracting any larger terms from

both sides of the last equation, we may presume that r = max(Fl ∪ Gl). Assume
without loss of generality that r ∈ Fl. We may also assume that al > 0. (Otherwise,
multiply both sides by −1.) Then∑l

t=1 at ·
∑
n∈Ft

xn ≥ arxr −
∑r−1
n=1mxn

>
∑r−1
n=1mxn

≥
∑l
t=1 at ·

∑
n∈Gt

xn, a contradiction.

�

Corollary 3.6. Let 〈a1, a2, . . . , ak〉 be a compressed sequence in Z\{0} with ak >
0. Let M be a matrix, with finitely many nonzero entries in each row, such that
the compressed form of each row is 〈a1, a2, . . . , ak〉. Then M is image partition
regular. Indeed, given any idempotent p ∈ βN and any function h :

⋃
t∈N Nt → p,

if q = a1 · p + a2 · p + . . . + ak · p, then q ∈
⋂∞
n=1 nN and for any A ∈ q and any

P ∈ p, there is an increasing sequence ~x ∈ Nω such that FS(〈xn〉∞n=0) ⊆ P , xn+1 ∈
h(xi1 , xi2 , · · · , xim) for every n ∈ N and every choice of 0 ≤ i1 < i2 . . . < im ≤ n,
M~x ∈ Aω, and entries which correspond to distinct rows are distinct.

Proof. Let p be an idempotent in βN and let q = a1 · p + a2 · p + . . . + ak · p. Let
T =

⋂∞
n=1 nZ. We show first that q ∈ T ∩ βN =

⋂∞
n=1 nN. By [7, Lemma 6.6]

p ∈ T . Since, by [7, Theorems 2.15 and 2.17] T is an ideal of (βZ, ·), we have that
each ai ·p ∈ T . By [7, Exercise 2.3.2] T is a subsemigroup of (βZ,+), and so q ∈ T .
Since ak > 0, ak · p ∈ N∗ and so q ∈ βN by [7, Exercise 4.3.5].

Let A ∈ q and P ∈ p and choose a sequence 〈xn〉∞n=0 as guaranteed by Lemma
3.4 for A and P . If ~x = 〈xn〉∞n=0, then all the entries of M~x are in A. By Lemma
3.5, entries which correspond to distinct rows are distinct. �
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Notice that if ~x is as guaranteed by Corollary 3.6 and ~z is a subsequence of ~x,
then also M~z ∈ Aω, and entries which correspond to distinct rows are distinct,
because any entry of M~z is also an entry of M~x.

We remark that the possibility of choosing xn+1 ∈ h(xi1 , xi2 , · · · , xim), guaran-
teed by Corollary 3.6, yields non-trivial information about simple finite matrices.

For example, let A =

(
1 2
0 1

)
. Then A is image partition regular. Color N

according to the parity of max
(
supp(n)

)
. (Recall that supp(n) ∈ Pf (ω) is de-

fined for n ∈ N by n =
∑
i∈supp(n) 2i.) We cannot choose ~x ∈ N2 such that

min
(
supp(x2)

)
> max

(
supp(x1)

)
and the entries of A~x are monochrome. How-

ever, if B =

(
1 1 2
0 1 2

)
, then, defining h(x) = {y ∈ N : min

(
supp(y)

)
>

max
(
supp(x)

)}
and h(x, y) = {z ∈ N : min

(
supp(z)

)
> max

(
supp(y)

)}
, Corol-

lary 3.6 guarantees that, in any finite coloring of N, there exists ~x ∈ N3 such that
min

(
supp(xi+1)

)
> max

(
supp(xi)

)
if i ∈ {1, 2} and the entries of B~x are mono-

chrome.

Theorem 3.7. Let k ∈ N, let 〈a1, a2, . . . , ak〉 be a compressed sequence in Z\{0}
with ak > 0, and let m ∈ Z\{0}. Let M be a matrix, with finitely many nonzero
entries in each row, such that
(i) the compressed form of each row is 〈a1, a2, . . . , ak〉 and
(ii) the sum of each row is m.
Then M is strongly centrally image partition regular.

Proof. Let

L = {q ∈ βN : for every A ∈ q and every k ∈ N , there exists
~x ∈ {k + 1, k + 2, k + 3, . . .}ω such that M~x ∈ Aω and entries
corresponding to distinct rows of M are distinct} .

It is obvious that L is closed. By Corollary 3.6, L ∩ |m| · βN 6= ∅.
We claim that L∩|m|·βN is a left ideal of |m|·βN. To this end, let q ∈ L∩|m|·βN.

It suffices to show that |m| · N + q ⊆ L ∩ |m| · βN. We have immediately that
|m|·N+q ⊆ |m|·βN. To see that |m|·N+q ⊆ L, let n ∈ N, let A ∈ |m|·n+q, and let
k ∈ N. Pick ~x ∈ {k+n+1, k+n+2, k+n+3, . . .}ω such that ~y = M~x ∈ (−|m|·n+A)ω

and the entries of ~y corresponding to distinct rows are distinct. Let s = |m|
m and

for each i ∈ ω let zi = sn + xi. Then each zi > k. Let ~w = M~z. Then for each
j ∈ ω, wj = |m| · n+ yj ∈ A and entries of ~w corresponding to distinct rows of M
are distinct.

Let C be a central set in N and pick a minimal idempotent r in βN such that
C ∈ r. Let p = 1

ak
· r (multiplication in βQd, where Qd is the set Q with the

discrete topology). It is routine to check that p ∈ βN, p+p = p, and ak ·p = r. Let
q = a1 · p+ a2 · p+ . . .+ ak · p. By Corollary 3.6 q ∈ L ∩ |m| · βN. Since ak · p = r,
q ∈ βZ + r = βZ + r + r ⊆ βN + r (the last inclusion by [7, Exercise 4.3.5]). Since
q ∈ |m| · βN and r ∈ |m| · βN, we have that q ∈ |m| · βN + r.

Now r ∈ |m| · βN ∩K(βN), so by [7, Theorem 1.65], r ∈ K(|m| · βN). Thus, by
[7, Theorem 2.9], |m| · βN + r is a minimal left ideal of |m| · βN. Since

q ∈ (L ∩ |m| · βN) ∩ (|m| · βN + r)

we have |m| · βN + r ⊆ L and so r = r + r ∈ |m| · βN + r ⊆ L. �
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Observe that, if all terms of ~a come from N, then the number of entries of any
row of a matrix M as in Theorem 3.7 is limited. However, this need not be the
case if one or more entries are negative. We shall see in Theorem 3.14 that the
requirement that m 6= 0 cannot be eliminated. (We saw in Theorem 2.2(b) that
the restriction on the row sums cannot simply be omitted.)

Consider the following consequence of Theorem 3.7. Let

M =


−2 1 0 . . .
−2 0 1 . . .
0 −2 1 . . .
...

...
...

. . .

 ,

a matrix whose rows have somewhere a single −2 followed somewhere by a single
1. Even though matrices with constant positive row sums are trivially centrally
image partition regular via a constant vector ~x, it does not seem to be trivial that
the matrix M is even centrally image partition regular, while Theorem 3.7 tells us
that it is in fact strongly centrally image partition regular.

As we have earlier promised, we obtain as a consequence of our consideration
of strongly centrally image partition regular matrices, new results about ordinary
image partition regular matrices. (The last result mentioned in the abstract is the

instance of Corollary 3.8 for which ~a = 〈1〉, ~b = 〈1, 2〉, m = 2, and n = 3.)

Corollary 3.8. Let k, s ∈ N, let ~a = 〈a1, a2, . . . , ak〉 and ~b = 〈b1, b2, . . . , bs〉 be
compressed sequences in Z\{0} with ak > 0 and bs > 0, let m,n ∈ Z\{0}, and

assume that there exist ~r,~t ∈ Zω such that c(~r) = ~a, c(~t) = ~b,
∑∞
j=0 rj = m, and∑∞

j=0 tj = n. Let q ∈ N and let N =
⋃q
i=0 Ci. Then there exist i ∈ {1, 2, . . . , q}

and injective sequences 〈xn〉∞n=0 and 〈zn〉∞n=0 in N such that, for every ~r and ~g in

Zω with only finitely many nonzero entries, if c(~r) = ~a, c(~g) = ~b,
∑∞
j=0 rj = m,

and
∑∞
j=0 gj = n, then

∑∞
j=0 rj · xj ∈ Ci,

∑∞
j=0 gj · zj ∈ Ci, and

∑∞
j=0 rj · xj 6=∑∞

j=0 gj · zj.

Proof. Let M and N be matrices with finitely many nonzero entries in each row
such that
(a) the compressed form of each row of M is ~a;
(b) the sum of each row of M is m;
(c) all rows with compressed form ~a and sum m occur in M ;

(d) the compressed form of each row of N is ~b;
(e) the sum of each row of N is n; and

(f) all rows with compressed form ~b and sum n occur in N .

Then by Theorem 3.7 and Corollary 2.14, the matrix

(
M O
O N

)
is strongly cen-

trally image partition regular, so pick i ∈ {1, 2, . . . , q} such that Ci is central and

pick ~x and ~z in Nω such that all entries of

(
M O
O N

)(
~x
~z

)
are in Ci and entries

corresponding to distinct rows of

(
M O
O N

)
are distinct. One has then immedi-

ately that for any row ~r of M and any row ~g of N ,
∑∞
u=0 ru ·xu 6=

∑∞
u=0 gu · zu. To

see, for example, that ~x is injective let j < l in ω and pick t0, t1, . . . , tv ∈ Z\{0} such
that c(〈t0, t1, . . . , tv〉) = ~a and

∑v
u=0 tu = m. Define ~r and ~g in Zω by rj = gl = t0,
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rl+u = gl+u = tu for u ∈ {1, 2, . . . , v} (if any), and all other entries of ~r and ~g are
equal to 0. Then ~r and ~g are distinct rows of m, so

∑∞
u=0 ru · xu 6=

∑∞
u=0 gu · xu

and thus xj 6= xl. �

We see now that strongly centrally image partition regular matrices need not
have one of our desired properties, namely the analogue of Theorem 1.2(d).

Proposition 3.9. Let ~r =
(

1 0 0 0 . . .
)
. There is an ω×ω matrix M with

entries from Z such that the compressed form of each row is (−2, 1) and the sum
of each row is −1 (so M is strongly centrally image partition regular), but there is

no b ∈ Q\{0} such that the matrix

(
b~r
M

)
is image partition regular.

Proof. Let

M =


−2 1 0 . . .
−2 0 1 . . .
0 −2 1 . . .
...

...
...

. . .


as described above. Suppose that

(
b~r
M

)
is image partition regular for some

b ∈ Q\{0}. This implies that b > 0. Let b = k
l , where k, l ∈ N. Let r be a prime

number satisfying r > k + 2l.
Each n ∈ N can be expressed uniquely as n =

∑
i∈ω air

i, where each i ∈
{0, 1, 2, . . . , r − 1}. Let suppr(n) = {i ∈ ω : ai 6= 0} and m(n) = min

(
suppr(n)

)
.

We define f : N→ {1, 2, . . . , r − 1} by f(n) = am(n).

Choose ~x ∈ Nω and c ∈ {1, 2, . . . , r − 1} such that

(
b~r
M

)
~x ∈ Cω, where

C = f−1[{c}]. Then bx0 ∈ C and −2xm + xn ∈ C whenever n,m ∈ ω with m < n.
Let d = f(x0).

We claim that m(xn) ≤ m(x0) for every n ∈ N. To see this, observe that
m(xn) > m(x0) implies that f(−2x0 + xn) = −2d in Zr. Since f(bx0) = k

l d in Zr,
−2d = k

l d in Zr and k + 2l = 0 in Zr – a contradiction.
Thus, by the pigeon hole principle, there exists s, t ∈ N such that t > s, m(xt) =

m(xs) and f(xt) = f(xs) = e, say. Then f(−2xs + xt) = −e = c in Zr.
We consider two cases:
(i) If m(xs) = m(2x0), then f(−2x0 + xs) = −2d + e = c in Zr, and so d = −c

in Zr. We also have k
l d = c in Zr and thus k + l = 0 in Zr – a contradiction.

(ii) If m(xs) < m(2x0), then f(−2x0 + xs) = e. So e = −e in Zr – again a
contradiction. �

The fact that the row sums in Proposition 3.9 were negative is needed to prevent

the image partition regularity of

(
b~r
M

)
, as we shall see now. We do not know

whether matrices with fixed compressed form and fix positive row sum can neces-
sarily be arbitrarily extended to strongly centrally image partition regular matrices.

Corollary 3.10. Let k, l,m ∈ N, let 〈a1, a2, . . . , ak〉 be a compressed sequence in
Z\{0}, and let A be an ω × ω matrix such that
(i) the compressed form of each row is ~a and
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(ii) the sum of each row of A is m.

Let ~r(1), ~r(2), . . . , ~r(l) ∈ Qω\{~0} such that each ~r(i) has only finitely many nonzero
entries. Then there exist b1, b2, . . . , bk ∈ Q\{0} such that

b1~r
(1)

b2~r
(2)

...
bk~r

(l)

A


is centrally image partition regular.

Proof. The matrix A satisfies the hypotheses of Theorem 3.1. �

We note now that the requirement in Theorem 3.7 that ak > 0 is essential.

Theorem 3.11. Let k ∈ N, let 〈a1, a2, . . . , ak〉 be a compressed sequence in Z\{0}
with ak < 0, and let m ∈ Z be any number expressible in the form

∑k
t=1 αtat where

each αt ∈ N. Let M be a matrix (with finitely many nonzero entries in each row)
such that
(i) the compressed form of each row is 〈a1, a2, . . . , ak〉,
(ii) the sum of each row is m, and
(iii) any row with compressed form 〈a1, a2, . . . , ak〉 and row sum m occurs in M .
Then M is not strongly centrally image partition regular, and if m ≤ 0, M is not
centrally image partition regular.

Proof. If M~x ∈ Nω and either the entries of M~x corresponding to distinct rows are
distinct or m ≤ 0, there must be infinitely many distinct entries in ~x. This in turn
forces some entries of M~x to be negative. �

Recall that we have defined the (binary) support of a positive integer n by
n =

∑
t∈supp(n) 2t. We introduce now some special notation needed for the proof

of Theorem 3.14.

Definition 3.12. Let n ∈ N. The set H is a block of n if and only if H is a maximal
set of consecutive integers contained in supp(n). Also b(n) is the number of blocks
of n.

Thus if, written in binary, n = 10011101011, then the blocks of n are {0, 1}, {3},
{5, 6, 7}, and {10}, and so b(n) = 4.

Lemma 3.13. Let B = {n ∈ N : b(n) ≡ 0 (mod 2)}.
(a) For n ∈ N, let h(n) ∈ {0, 1} be such that h(n) ≡ b(n) (mod 2). Let h̃ : βN→ Z2

be the continuous extension of h. Then the restriction of h̃ to
⋂∞
n=1 c` (N2n) is a

homomorphism.
(b) If q + q = q ∈ βN, then B ∈ q.
(c) If p ∈ βN and for each n ∈ N, N2n ∈ p, then B /∈ −p+ p.

Proof. (a) This is an immediate consequence of [7, Theorem 4.21].
(b) By [7, Lemma 6.6] q ∈

⋂∞
n=1 c` (N2n), so this follows from (a).

(c) Let D0 = {x ∈ N : min
(
supp(x)

)
+ 1 /∈ supp(x)} and let D1 = {x ∈ N :

min
(
supp(x)

)
+ 1 ∈ supp(x)}.
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Notice that if x, y ∈ D0 and max
(
supp(x)

)
+ 1 < min

(
supp(y)

)
, then b(y−x) =

b(y) + b(x) − 1, while if x, y ∈ D1 and max
(
supp(x)

)
+ 1 < min

(
supp(y)

)
, then

b(y − x) = b(y) + b(x) + 1. Hence, in either case, if b(x) ≡ b(y) (mod 2), then
y − x /∈ B.

Pick t ∈ {0, 1} such that Dt ∈ p. Also pick i ∈ {0, 1} such that C ∈ p,
where C = {x ∈ N : b(x) ≡ i (mod 2)}. Now {y − x : x, y ∈ C ∩ Dt and
max

(
supp(x)

)
+ 1 < min

(
supp(y)

)
} ∈ −p+ p by [7, Theorem 4.15]. We have seen

that this set does not meet B, so B /∈ −p+ p. �

Theorem 3.14. Let A be an ω×ω matrix with the property that ~r ∈ Qω occurs as
a row of A if and only if the nonzero entries of ~r are 1, −1, −1, 1, in that order.
Then there is a subset B of N which is a member of every idempotent in βN and
there is no ~x ∈ Nω for which all the entries of A~x are in B.

Proof. Let B = {n ∈ N : b(n) ≡ 0 (mod 2)} and suppose we have ~x ∈ Nω with
A~x ∈ Bω. Note that we cannot have more than three entries of ~x with the same
value, since otherwise 0 would be an entry of A~x. Thus we may pick q ∈ N∗ ∩{xn :
n ∈ ω}. Since {xn1

− xn2
− xn3

+ xn4
: n1 < n2 < n3 < n4} ⊆ B, we have that

B ∈ q +−q +−q + q.
Let p = −q + q. Then p ∈ βN by [7, Exercise 4.3.5]. Also −p = q + −q by [7,

Lemma 13.1] so that B ∈ −p+p. It is easy to check that N2n ∈ p for each n ∈ N by
picking i ∈ {0, 1, . . . , 2n − 1} such that N2n + i ∈ q. Thus we have a contradiction
to Lemma 3.13(c). �

Corollary 3.15. Let M be a matrix (with finitely many nonzero entries in each
row) such that
(i) the compressed form of each row is 〈1,−1, 1〉,
(ii) the sum of each row is 0, and
(iii) any row with compressed form 〈1,−1, 1〉 and row sum 0 occurs in M .
Then M is not centrally image partition regular.

Proof. The matrix M includes all the rows of the matrix A of Theorem 3.14. �

Let F denote the set of finite image partition regular matrices over Q. For
F ∈ F , let C(F ) be defined as in Definition 2.4. We know, from Theorem 1.2(b)
and Lemma 2.5(b), that

⋂
F∈F C(F ) contains the smallest closed subsemigroup of

βN containing the minimal idempotents. We now see that
⋂
F∈F C(F ) contains

elements which do not belong to this semigroup.

Corollary 3.16. The set
⋂
F∈F C(F ) contains elements which do not belong to the

smallest closed subsemigroup of βN containing the idempotents.

Proof. Let A be the matrix defined in Theorem 3.14. Let B = {n ∈ N : b(n) ≡
0 (mod 2)}. By Theorem 3.13(a) and the fact from [7, Lemma 6.6] that each
idempotent is in

⋂∞
n=1 c` βN(N2n), we have that c` βN(B) contains the smallest

closed subsemigroup of βN which contains the idempotents. By Theorem 3.14,
C(A) ∩ c` βN(B) = ∅. However, by Corollary 2.6, C(A) ∩

⋂
F∈F C(F ) 6= ∅. �

On the other hand, we see that some matrices with all row sums equal to 0 are
strongly centrally image partition regular.

Theorem 3.17. Let A be an ω × ω matrix whose entries are all in {−1, 0, 1}.
Assume that
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(i) the number of non-zero entries in each row is positive but finite,
(ii) the last non-zero entry in each row is 1, and
(iii) the non-zero entries in each row alternate in sign.
Then, A is strongly centrally image partition regular. In fact, if P is a member
of any idempotent in βN, there is an increasing sequence ~x ∈ Nω such that all the
entries of A~x are in P and entries corresponding to distinct rows are distinct.

Proof. We can choose a sequence 〈vn〉∞n=0 such that FS(〈vn〉∞n=0) ⊆ P by [7, Theo-
rem 5.8]. By taking sums of terms, we may suppose that vn+1 >

∑n
i=0 vi for every

n ∈ ω, and hence that
∑
i∈F1

vi 6=
∑
i∈F2

vi if F1 and F2 are distinct members of

Pf (ω). For every n ∈ ω, let xn =
∑n
i=0 vi.

Suppose that ~r ∈ {−1, 0, 1}ω\~0 has a finite number of non-zero entries and that
its non-zero entries alternate in sign. Let rn be the last non-zero entry of ~r. It is
easy to see, by induction on the number of non-zero entries in ~r, that there exists
F ∈ Pf (ω) such that max(F ) = n and ~r·~x =

∑
i∈F vi if rn = 1 and ~r·~x = −

∑
i∈F vi

if rn = −1. It follows that the entries of A~x are in P . It is simple to verify that
entries corresponding to distinct rows are distinct. �

We do not know whether there is any matrix with all rows having a fixed com-
pressed form and zero sums which is centrally image partition regular. We see
however, that if such exists, it is also strongly centrally image partition regular.

Theorem 3.18. Let k ∈ N, let 〈a1, a2, . . . , ak〉 be a compressed sequence in Z\{0}
with ak > 0, and assume that 0 is expressible in the form

∑k
t=1 αtat where each

αt ∈ N. Let M be a matrix (with finitely many nonzero entries in each row) such
that
(i) the compressed form of each row is 〈a1, a2, . . . , ak〉,
(ii) the sum of each row is 0, and
(iii) any row with compressed form 〈a1, a2, . . . , ak〉 and row sum 0 occurs in M .
If M is centrally image partition regular, then M is strongly centrally image parti-
tion regular.

Proof. Let C be central in N and pick ~x ∈ Nω such that M~x ∈ Cω. We claim
first that no value of ~x repeats infinitely often. Suppose instead that we have d
such that |{n ∈ N : xn = d}| = ω. Pick b1, b2, . . . , bs such that

∑s
t=1 bt = 0 and

c(〈b1, b2, . . . , bs〉) = ~a. Pick t1 < t2 < . . . < ts such that xt1 = xt2 = . . . = xts = d.
Pick a row i of M which has for each j ∈ {1, 2, . . . , s}, mi,tj = bj and all other

entries equal to 0. Then
∑∞
j=0mi,jxj =

∑s
j=1 bjd = 0 /∈ C, a contradiction.

Let m = max
{
|aj | : j ∈ {1, 2, . . . , k}

}
. Since no value of ~x repeats infinitely

often, choose an infinite B ⊆ ω such that for each n ∈ B with n > minB,

xn > 2m ·
∑
{xt : t ∈ B and t < n} .

Let D be the matrix consisting of those columns of M corresponding to members
of B. Then let A be the matrix consisting of those rows of D that sum to 0.
Let 〈zn〉∞n=0 enumerate in order {xn : n ∈ B}. Then A has all of the rows of M ,
~y = A~z ∈ Cω and, by Lemma 3.5, if i and j are distinct rows of A, then yi 6= yj . �

Piecewise syndetic subsets of N are characterized [7, Theorem 4.40] as those sets
whose closure meets K(βN). In particular, any central set is piecewise syndetic.
Further, piecewise syndetic sets are guaranteed to contain substantial combinatorial
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structures. For example [7, Theorem 14.1] any piecewise syndetic subset of N
contains arbitrarily long arithmetic progressions.

We note that the matrix A in the next theorem need not be centrally image
partition regular. Indeed, if each ai ∈ N, k > 1, and every row with compressed
form 〈a1, a2, . . . , ak〉 occurs in A, then as a consequence of [2, Theorem 3.14], one
has that any idempotent p ∈ βN has a member P such that no ~x ∈ Nω has A~x ∈ Pω.

Theorem 3.19. Let k ∈ N and let 〈a1, a2, . . . , ak〉 be a compressed sequence in
Z\{0} with ak > 0. Let A be an ω×ω matrix with entries in Z, such that each row
has a finite number of non-zero entries and has 〈a1, a2, . . . , ak〉 as its compressed
form. If C is a piecewise syndetic subset of N, there exist c ∈ N and an increas-
ing sequence ~x ∈ Nω such that all the entries of A~x are in −c + C and entries
corresponding to distinct rows are distinct.

Proof. Pick by [7, Theorem 2.8] a minimal left ideal L of βN such that C ∩ L 6= ∅
and pick s ∈ C ∩ L. Pick by [7, Corollary 2.6] an idempotent r ∈ L. Let p = 1

ak
· r

and let q = a1 · p + a2 · p + . . . + ak · p. Then as in the proof of Theorem 3.7, p is
an idempotent and q ∈ L. Thus L = l+ q by [7, Lemma 1.52] so s = t+ q for some
t ∈ L. Since C ∈ s, there is some c ∈ N such that −c+C ∈ q. The conclusion now
follows by Corollary 3.6. �
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