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Recent results on partition regularity

of infinite matrices

Neil Hindman ∗†

Abstract

We survey results obtained in the last ten years on image and kernel
partition regularity of infinite matrices.

1 Introduction

We let N be the set of positive integers and ω = N ∪ {0}. We shall treat u ∈ N
as an ordinal, so that u = {0, 1, . . . , u − 1}. Also ω = {0, 1, 2, . . .} is the first
infinite ordinal. Thus, if u, v ∈ N ∪ {ω}, and A is a u× v matrix, the rows and
columns of A will be indexed by u = {i : i < u} and v = {i : i < v}, respectively.

As is standard in Ramsey Theory, a finite coloring of a set X is a function
whose domain is X and whose range is finite. Similarly, a κ-coloring has range
with cardinality κ. Given a coloring f of X, a subset B of X is monochromatic
if and only if f is constant on B.

Definition 1.1. Let u, v ∈ N∪{ω}, let A be a u×v matrix with rational entries
and finitely many nonzero entries per row, let S be a nontrivial subsemigroup
of (Q,+), and let G be the subgroup of Q generated by S.

(a) The matrix A is kernel partition regular over S if and only if whenever
S \ {0} is finitely colored, there exists ~x ∈ (S \ {0})v such that A~x = ~0
and the entries of ~x are monochromatic.

(b) The matrix A is image partition regular over S if and only if whenever
S \ {0} is finitely colored, there exists ~x ∈ (S \ {0})v such that the entries
of A~x are monochromatic.

(c) The matrix A is weakly image partition regular over S if and only if when-
ever S \ {0} is finitely colored, there exists ~x ∈ Gv such that the entries
of A~x are monochromatic.
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The definition of kernel partition regularity given is the only one that makes
sense. However, different choices can be made for image partition regularity
and weak image partition regularity, and the reader will find a sampling of
these different choices in the references to this paper (unfortunately including
some of the references with Hindman as an author). The reader will also find
some places where one or the other of these notions is referred to simply as
“partition regular”.

Space consideration prevents me from explaining why these notions are in-
teresting. The reader who needs convincing on this point is referred to the
introduction to [11].

In 2005 I presented a survey [10] about image and kernel partition regularity
of finite and infinite matrices at the Integers Conference 2005 in Celebration of
the 70th Birthday of Ron Graham. The situation with respect to finite matrices
was largely settled at that time, and consequently, there have not been many new
results dealing with partition regularity of finite matrices published since then.
In particular, characterizations of both kernel and image partition regularity
were known (and included in [10]). And the relations among kernel and image
partition regularity over various subsemigroups of (R,+) were largely settled.

In the case of infinite matrices, nothing close to a characterization of kernel
or image partition regularity was known then, and that remains true today.
(However, the main result of Section 3 completely characterizes kernel partition
regularity in terms of image partition regularity.) And there were (and are)
many open problems related to relationships among the notions. Progress on
these problems is the subject of the current paper.

Throughout this paper, when I write that something “was known” without
saying when, the reader may assume I mean “was known when [10] was written”.

In Section 2 we present four examples showing that different suggestions for
necessary or sufficient conditions for image or kernel partition regularity do not
work.

In Section 3 we present a result showing that, given a matrix A there is
a matrix B such that, for each nontrivial subsemigroup S of Q, B is image
partition regular over S if and only if A is kernel partition regular over S. We
also present examples showing that two attempts to go in the other direction
do not work.

In Section 4 we present a result establishing that if R and S are subrings of
Q with 1 as a member and R \ S 6= ∅, then there is a matrix which is kernel
partition regular over R but not kernel partition regular over S.

As a consequence of the results presented in Sections 3 and 4 one has imme-
diately that if R and S are subrings of Q with 1 as a member and R \ S 6= ∅,
then there is a matrix which is image partition regular over R but not image
partition regular over S. We begin Section 5 with this observation. Section
5 also includes new results showing that an elaborate pattern of implications

3



among various versions of image partition regularity has no valid implications
except those diagramed.

Among the earliest known infinite matrices that are image partition regular
over N are the Milliken-Taylor matrices. Section 6 consists of some new results
about these matrices.

The final section, Section 7, presents some results establishing that certain
matrices are or are not image partition regular.

Throughout the paper, we will assume that hypothesized matrices have
finitely many nonzero entries in each row. We will follow the custom of de-
noting the entries of a matrix with a capital letter name by the lower case letter
corresponding to that name. Given a semigroup S we will abbreviate “kernel
partition regular over S”, “image partition regular over S”, and “weakly image
partition regular over S” by KPR/S, IPR/S, and WIPR/S respectively.

2 In search of necessary or sufficient conditions

Rado in [21] and [22] characterized kernel partition regularity of a finite matrix
A with rational entries over N, Z, Q, or R via the columns property . (That is,
if S is any one of N, Z, Q, or R, then A is KPR/S if and only if S satisfies the
columns property.)

Definition 2.1. Let u, v ∈ N and let A be a u × v matrix with entries from
Q. Denote the columns of A by 〈~ci〉v−1i=0 . The matrix A satisfies the columns
property if and only if there exist m ∈ {1, 2, . . . , v} and a partition 〈It〉m−1t=0 of
{0, 1, . . . , v − 1} such that

(1)
∑
i∈I0 ~ci = ~0 and

(2) for each t ∈ {1, 2, . . . ,m − 1},
∑
i∈It ~ci is a linear combination with coef-

ficients from Q of {~ci : i ∈
⋃t−1
j=0 Ij}.

The columns property has an obvious extension to infinite matrices.

Definition 2.2. Let A be a countably infinite matrix with entries from Q and
columns indexed by a set J . Denote the columns of A by 〈~ci〉i∈J . The matrix
A satisfies the columns property if and only if there exists a partition 〈Iσ〉σ<µ
of J , where µ ∈ N ∪ {ω}, such that

(1)
∑
i∈I0 ~ci = ~0 and

(2) for each t ∈ µ\{0},
∑
i∈It ~ci is a linear combination with coefficients from

Q of {~ci : i ∈
⋃
j<t Ij}.

Note that the sums make sense even if Ij is infinite, since each row has only
finitely many nonzero entries. It has been known that there are infinite matrices
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with integer entries satisfying the columns property that are not KPR/N, but
all previously known examples of matrices KPR/N had satisfied the columns
property.

In the following theorem, B is an ω × (ω + ω) matrix, so the definition of
KPR/N requires an obvious adjustment.

Theorem 2.3. Let A be the ω × ω matrix such that, for i, j ∈ ω,

ai,j =

 2 if j = i,
1 if 2i ≤ j < 2i+1,
0 otherwise,

and let B =
(
A −I

)
, where I is the ω × ω identity matrix. Then B is

KPR/N and B does not satisfy the columns property. In fact, no nonempty set
of columns of B sum to ~0.

Proof. [4, Theorem 2.1].

On the other hand, it is shown in [4, Theorem 2.2] that if A is a countably
infinite matrix with integer entries and bounded row sums, then some nonempty
set of columns of A do sum to ~0.

A version of a problem posed in [12] asked whether, if an infinite matrix
A is IPR/N, 〈dn〉∞n=0 is a sequence in N, and N is finitely colored, must there
exist ~x such that the entries of A~x are monochromatic and for each n < ω,
xn ≡ 0 (mod dn). In [5, Proposition 5], Barber and Leader give an example
showing that the answer is “no” with dn = 2n for each n.

All known examples of matrices that were KPR/N had bounded entries in
each column. (More precisely, given a matrix A, one can first multiply each row
by a constant so that the smallest absolute value of a nonzero entry in that row
is 1, and then ask whether there is a column with unbounded entries.)

Theorem 2.4. The matrix

A =


2 1 −1 0 0 0 0 0 0 0 0 0 0 . . .
4 0 0 1 1 −1 −1 0 0 0 0 0 0 . . .
8 0 0 0 0 0 0 1 1 1 −1 −1 −1 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .


is KPR/N.

Proof. [2, Theorem 9].
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3 Relations between image and kernel partition
regularity

The new result that is the most definitive is a complete characterization of kernel
partition regularity in terms of image partition regularity.

Theorem 3.1. Let u, v ∈ N ∪ {ω} and let A be a u × v matrix with rational
entries. Then there is a v× v matrix B with rational entries such that for each
nontrivial subsemigroup S of Q,

{~x ∈ (S \ {0})v : A~x = ~0} = {B~y : ~y ∈ (S \ {0})v} ∩ (S \ {0})v .

Further for each such S, A is KPR/S if and only if B is IPR/S.

Proof. [16, Theorem 2.4].

Notice that in Theorem 3.1, the relevant kernel members of A are exactly
equal to the relevant image members of B.

There is a corresponding result starting with an image partition regular
matrix, but it only applies when S = Q. In fact, it is shown in [16] that if S
is a nontrivial proper subsemigroup of Q+ = {x ∈ Q : x > 0} or a nontrivial
proper subgroup of Q, then there is a 3× 2 matrix B which is IPR/S for which
the conclusion of Theorem 3.2 fails.

Theorem 3.2. Let u, v ∈ N∪{ω}, let B be a u×v matrix with rational entries.
Then there exist J ⊆ u and a J × u matrix A such that

{~y ∈ (Q \ {0})u : A~y = ~0} = {B~x : ~x ∈ Qv} ∩ (Q \ {0})u .

Further, A is WIPR/Q if and only if B is KPR/Q.

Proof. [16, Theorem 2.8].

Given a matrix A which is IPR/N and has linearly dependent rows, there is a
naturally associated matrix B(A) which is KPR/N. (This matrix is constructed
using the linear dependence among the rows of A. See [16, Theorem 2.6] for
details.) It was known that there exists an infinite matrix A with rational
entries for which B(A) is KPR/N but A is not IPR/N. But what happened if
the entries of A were integers was not known. In [5] Barber and Leader showed
that there are matrices A1 and A2 with integer entries such that A1 is IPR/N,
A2 is not IPR/N, but B(A2) = B(A1) and so B(A2) is KPR/N.
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4 Relations among kernel partition regularity
for different subsemigroups of R

It was known ([17, Theorem 2.6]) that there exist infinite matrices which are
IPR/Q but not IPR/N. But the corresponding question for kernel partition
regularity remained open. The main motivation for [13] was the question of
whether the matrix

A =


1 1 −1 0 0 0 0 . . .
1
2 0 0 1 −1 0 0 . . .
1
3 0 0 0 0 1 −1 . . .
...

...
...

...
...

...
...

. . .


was KPR/Q. (It is trivial that A is not KPR/N.) Unfortunately (from the
point of view of trying to answer the question), it is a consequence of the main
result of [13] that this matrix is not even KPR/R.

A few years later, the question of whether every matrix which is KPR/Q
must also be KPR/N was answered.

Theorem 4.1. The matrix

A =


1
2 1 −1 0 0 0 0 0 0 0 0 0 0 . . .
1
4 0 0 1 1 −1 −1 0 0 0 0 0 0 . . .
1
8 0 0 0 0 0 0 1 1 1 −1 −1 −1 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .


is KPR/Q but not KPR/N. In fact, A is KPR/D, where D is the set of dyadic
rationals.

Proof. [2, Theorem 12].

Theorem 4.1 was significantly extended in [3].

Definition 4.2. Let P be the set of primes and let F ⊆ P . Then

GF = {a/b : a ∈ Z , b ∈ N and all prime factors of b are in F} .

It is not hard to see that {GF : F ⊆ P} is exactly the set of subrings R of
Q with 1 ∈ R.

Theorem 4.3. Let 〈dn〉∞n=1 be a sequence in Q and let

A =


d1 1 1 −1 0 0 0 0 0 0 0 0 0 . . .
d2 0 0 0 1 1 1 −1 0 0 0 0 0 . . .
d3 0 0 0 0 0 0 0 1 1 1 1 −1 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .

 .
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(1) Let F and H be subsets of P with H \F 6= ∅, pick q ∈ H \F , and for each
n ∈ N, let dn = 1

qn . Then A is KPR/GH and A~x = ~0 has no solutions in
GF .

(2) Enumerate P as 〈pn〉∞n=1. For each n ∈ N, let dn =
∏n
t=1

1
pnt

. Then A is

KPR/Q and A~x = ~0 has no solutions in GF for any proper subset F of
P .

Proof. [3, Theorems 4.3 and 4.4].

5 Relations among image partition regularity
for different subsemigroups of R

We begin this section with an immediate consequence of results established
earlier.

Theorem 5.1. (1) Let F and H be subsets of P with H \ F 6= ∅. There is a
matrix B such that B is IPR/GH and no image of C is contained in GF .

(2) There is a matrix B such that B is IPR/Q, and for each proper subset F
of Q, B has no image contained in GF .

Proof. Theorems 3.1 and 4.3.

In [6] the following two notions of image partition regularity near zero were
introduced.

Definition 5.2. Let S be a subsemigroup of (R,+) with 0 in the closure of S,
let u, v ∈ N ∪ {ω}, and let A be a u× v matrix with entries from Q.

(a) The matrix A is image partition regular over S near zero (abbreviated
IPR/S0) if and only if, whenever S \ {0} is finitely colored and δ > 0,
there exists ~x ∈ Sv such that the entries of A~x are monochromatic and lie
in the interval (−δ, δ).

(b) If v = ω, then A is image partition regular over S near zero in the strong
sense (abbreviated IPR/S0s) if and only if, whenever S \ {0} is finitely
colored and δ > 0, there exists ~x ∈ Sω such that lim

n→∞
xn = 0 and the

entries of A~x are monochromatic and lie in the interval (−δ, δ).

It is trivial that all of the implications diagrammed in Figure 1 hold. (In
[6] IPR/S was defined so that, if S is a group, the notion is equivalent to what
we have defined as WIPR/S.) Examples were presented in [6] showing that
most of the missing implications were not valid in general. There were actually
seventeen missing implications, but it was shown that if one had an example of
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Figure 1: Diagram of Implications

a matrix which was IPR/N but not IPR/R0, then none of the seventeen missing
implications was valid. (For example, it was not known whether every matrix
which was IPR/D must be IPR/Q0. A matrix which is IPR/N but not IPR/R0

is IPR/D and is not IPR/Q0.) It was shown in [6] that the matrix

A =



1 0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 0 . . .
2 1 0 0 0 0 0 0 . . .
0 0 1 1 0 0 0 0 . . .
4 0 1 0 0 0 0 0 . . .
4 0 0 1 0 0 0 0 . . .
0 0 0 0 1 1 1 1 . . .
8 0 0 0 1 0 0 0 . . .
8 0 0 0 0 1 0 0 . . .
8 0 0 0 0 0 1 0 . . .
8 0 0 0 0 0 0 1 . . .
...

...
...

...
...

...
...

...
. . .


is not IPR/R0, and the question was asked whether A is IPR/N.

In [2] a different matrix was shown to be IPR/N but not IPR/R0, establish-
ing that none of the missing implications in Figure 1 is valid. In [1], Barber
established that the matrix A above is IPR/N.

It is easy to see that a matrix which is IPR/Q need not be WIPR/N. For
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example, the matrix 
1 0 0 . . .
1
2 1 0 . . .
1
3 0 1 . . .
...

...
...

. . .


from [17, Theorem 2.6] is easily seen to be IPR/Q but not WIPR/N. But the
question arises as to what happens if the entries of the matrix are assumed to
be integers. Barber and Leader showed that the implication is still not valid.

Theorem 5.3. There exists a sequence 〈cn〉∞n=1 in N such that the matrix

1 0 0 0 0 0 0 . . .
0 2 0 0 0 0 0 . . .
c1 2 0 0 0 0 0 . . .
0 0 4 0 0 0 0 . . .
0 0 0 4 0 0 0 . . .
c2 0 4 4 0 0 0 . . .
0 0 0 0 8 0 0 . . .
0 0 0 0 0 8 0 . . .
0 0 0 0 0 0 8 . . .
c3 0 0 0 8 8 8 . . .
...

...
...

...
...

...
...

. . .


is IPR/Q but not WIPR/N.

Proof. [5, p. 296]. (The definition of image partition regularity they were
using gave WIPR/Q rather than IPR/Q, but it is easy to see that their proof
establishes that the matrix is IPR/Q.)

6 Milliken-Taylor matrices

Among the earliest known infinite matrices that are IPR/N are the Milliken-
Taylor matrices. They are so named because the fact that they are IPR/N
follows easily from the Milliken-Taylor Theorem [19, Theorem 2.2], [23, Lemma
2.2].

Definition 6.1. Let k ∈ ω and let ~a = 〈a0, a1, . . . , ak〉 be a sequence in R such
that ~a 6= ~0. The sequence ~a is compressed if and only if no ai = 0 and for
each i ∈ {0, 1, . . . , k − 1}, ai 6= ai+1. The sequence c(~a) = 〈c0, c1, . . . , cm〉 is the
compressed sequence obtained from ~a by first deleting all occurrences of 0 and
then deleting any entry which is equal to its successor. Then c(~a) is called the
compressed form of ~a. And ~a is said to be a compressed sequence if ~a = c(~a).

Definition 6.2. Let k ∈ ω, let ~a = 〈a0, a1, . . . , ak〉 be a compressed sequence
in R \ {0}, and let A be an ω × ω matrix. Then A is an MT (~a)-matrix if and
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only if the rows of A are all rows ~r ∈ Zω such that c(~r) = ~a. The matrix A is a
Milliken-Taylor matrix if and only if it is an MT (~a)-matrix for some ~a.

Let ~a and ~b be compressed sequences in Z \ {0}, let A be an MT (~a)-matrix,

and let B be an MT (~b)-matrix. Two basic facts were known about A and B.

First, A and B are IPR/Z. Second, if ~a is not a rational multiple of ~b, then
there is a partition of Z \ {0} into two cells neither of which contains an image
of both A and B.

In [7], De and Paul identified what is needed for a subfamily of a semigroup
to contain images of all Milliken-Taylor matrices for compressed sequences in
N. (Restricting to positive entries in ~a was needed here since they were working
with arbitrary semigroups, where (−1)x may not mean anything.)

Theorem 6.3. Let (S,+) be an arbitrary (not necessarily commutative) semi-
group, let ~a be a compressed sequence in N, and let A ⊆ P(S) such that

(a) (∀A ∈ A)(∀B ∈ A)(A ∩B ∈ A);

(b) A 6= ∅ and ∅ /∈ A;

(c) (∀A ∈ A)(∀a ∈ A)(∃B ∈ A)(a+B ⊆ A); and

(d) (∀A ∈ A)(∃B ∈ A)(B +B ⊆ A).

Then whenever S is finitely colored, A ∈ A, and M is an MT (~a) matrix, there
exists ~x ∈ Sω such that the entries of M~x are monochromatic and in A.

Proof. [7, Theorem 2.6].

In [8], the same authors extended the image partition regularity of Milliken-
Taylor matrices to allow the entries of ~a to come from R \ {0}.

Theorem 6.4. Let ~a be a compressed sequence in R \ {0} with a0 > 0 and let
M be an MT (~a) matrix. Then M is IPR/R+

0 .

Proof. [8, Theorem 3.6].

Quite recently, the ability to separate Milliken-Taylor matrices was extended
to the group Q, allowing the compressed sequence to come from Q \ {0}. (The
fact that one can allow the terms of ~a to come from Q\{0} is essentially trivial.
The substance is producing the ability to appropriately color Q \ {0}.)

Theorem 6.5. Let ~a and ~b be compressed sequences in Q\{0} such that ~b is not

a multiple of ~a, let A be an MT (~a)-matrix, and let B be an MT (~b) matrix. There
exists a 2-coloring of Q \ {0} such that there do not exist ~x and ~y in (Q \ {0})ω
with the entries of A~x together with the entries of B~y monochromatic.
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Proof. [18, Corollary 4.5].

The conclusion of Theorem 6.5 (minus the information about the number

of colors) can be restated as saying that the matrix

(
A O
O B

)
is not IPR/Q.

(The matrix is (ω + ω) × (ω + ω) rather than ω × ω so Definition 1.1 requires
an obvious adjustment.)

Consequently, we find the following theorem to be very surprising. It says
that Milliken-Taylor matrices determined by compressed sequences with final
term equal to 1 are almost compatible. In this theorem, 1 and 0 are the length ω
column vectors with constant value 1 and 0 respectively. Also F is an MT (〈1〉)-
matrix; that is a finite sums matrix. (The matrix B is an ω · (m + 2) × ω
matrix.)

Theorem 6.6. Let m ∈ ω and for each i ∈ {0, 1, . . . ,m}, let k(i) ∈ N, let
~ai = 〈ai,0, ai,1, . . . , ai,k(i)〉 be a compressed sequence in Z \ {0} with ai,k(i) = 1,
and let Mi be an MT (~ai)-matrix. Then

B =


1 0 . . . 0 M0

0 1 . . . 0 M1

...
...

. . .
...

...
0 0 . . . 1 Mm

0 0 . . . 0 F


is IPR/N.

Proof. [15, Corollary 6.4].

7 Some special matrices

The first special kind of matrix with which we are concerned in this section is
intimately related to the Milliken-Taylor matrices.

Definition 7.1. Let k ∈ ω and let ~a = 〈a0, a1, . . . , ak−1〉 be a sequence in
Z\{0}. Then M(~a ) is an ω×ω matrix which has all rows with a single 1 as the
only nonzero entry as well as all rows whose nonzero entries are a0, a1, . . . , ak−1
in order, each occurring only once.

Note that we are not assuming that ~a is a compressed sequence. If ~x ∈ Nω,
then the entries of M(~a )~x are the entries of ~x together with all sums of the form∑k−1
i=0 aixn(i), where n(0) < n(1) < . . . < n(k−1). We would like to characterize

those sequences ~a for which M(~a) is IPR/N (and such a characterization is
obtained in [9] for finite versions of M(~a )). For infinite matrices, we are only
able to obtain a characterization in the case that each ai is plus or minus a
power of a fixed integer.
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Theorem 7.2. Let k, b ∈ N and let ~a = 〈a0, a1, . . . , ak−1〉 be a sequence in
Z \ {0} such that for each i ∈ {0, 1, . . . , k − 1}, there is some c ∈ ω such that
ai = bc or ai = −bc. Then M(~a ) is IPR/N if and only if one of

(1) a0 + a1 + . . .+ ak−1 = 0 and ak−1 = 1;

(2) a0 + a1 + . . .+ ak−1 = 1; or

(3) a0 = a1 = . . . = ak−1 = 1.

Proof. [9, Theorem 2.2].

For the rest of this section we will be dealing with matrices that have constant
row sums. Any such matrix will automatically be image partition regular via a
constant sequence. (It is known – see [10, Theorem 4.8] – that a finite matrix
A is IPR/N if and only if whenever N is finitely colored, there is some injective
~x such that the entries of A~x are monochromatic.)

Definition 7.3. Let (S,+) be a semigroup, let κ be an infinite cardinal, and
let A be a κ × κ matrix. Then A is injectively IPR/S if and only if, whenever
S is finitely colored, there exists an injective ~x ∈ Sκ such that the entries of A~x
are monochromatic.

Definition 7.4. For k ∈ N \ {1} let Rk be an ω × ω matrix with entries from
ω consisting of all rows, the sum of whose entries equals k.

If ~x ∈ Rω, then the entries of Rk~x are all sums of the form
∑k−1
i=0 xn(i) where

n(0) ≤ n(1) ≤ . . . ≤ n(k − 1).

It is an old question of Owings [20] whether, whenever N is 2-colored, there
must exist injective ~x ∈ Nω with the entries of F2~x monochromatic. And it
was known (and not hard to see) that for any k ∈ N \ {1}, Rk is not injectively
IPR/N. It was not known whether Rk is injectively IPR/Q or injectively IPR/R.
(The latter is still not known without some special set theoretic assumptions.)

Since the entries of Rk are nonnegative integers, there is an obvious extension
of the definition of injective image partition regularity to any semigroup (S,+).
We denote the nth infinite cardinal by ωn, where as usual, a cardinal is the first
ordinal of a given size, and we denote the cardinal of R by c.

Theorem 7.5. Let n ∈ ω, let k ∈ N \ {1}, and let G be the direct sum of ωn
copies of Q. Then Rk is not injectively IPR/G. In particular, if c < ωω+1, then
Rk is not injectively IPR/R.

Proof. [14, Theorem 2.8].

Definition 7.6. For k ∈ N\{1} and an infinite cardinal κ, Fκk is a κ×κ matrix
with entries from {0, 1} consisting of all rows with exactly k occurrences of 1.
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Of course for any k ∈ N\{1}, Fωk is injectively IPR/N and therefore IPR/R.
Also, if κ > ω, it is impossible for a κ× κ matrix to be injectively IPR/Q. We
do not know whether for some or all k ∈ N \ {1}, Fω1

k is injectively IPR/R, but
the following result shows that F c

k is not. The coloring involved does not even
depend on k.

Theorem 7.7. There is a 2-coloring of R such that given any k ∈ N\{1}, there
is no injective ~x ∈ Rc with the entries of (F c

k)~x monochromatic.

Proof. [14, Theorem 3.2].
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