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ABSTRACT. We consider infinite matrices with entries from Z (and only finitely many nonzero entries on
any row). A matrix A is partition regular over IN provided that, whenever the set IN of positive integers

is partitioned into finitely many classes there is a vector = with entries in Zsuch that all entries of Az lie
in the same cell of the partition. We show that, in marked contrast with the situation for finite matrices,
there exists a finite partition of N no cell of which contains solutions for all partition regular matrices and
determine which of our pairs of matrices must always have solutions in the same cell of a partition.

1. Introduction. Let A be a matrix with integer entries. If A has infinitely many columns we
demand also that each row of A has only finitely many nonzero entries. We say that A is partition
regular (over IN) provided that, whenever the set IN of positive integers is partitioned into finitely
many classes there is a vector z with entries in Z (and with the same number of entries as A has
columns) such that all entries of AT lie in the same cell of the partition. In this case we say that the
cell of the partition contains a “solution” to A.

The situation in the event A is finite is well understood. The classification of partition regular
matrices is in terms of “(m,p,c) — sets” from [2]. We should remark that this is an alternative
definition of a partition regular matrix. Instead of asking that the entries of A% lie in one cell of a
partition, one asks that one can get Z with all entries in the same cell such that Az = 6 (kernel

partition regular). In the case of finite matrices, the two definitions give rise to equivalent theories.
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1.1 Definition: Let m,p,c be in IN.

(a) Let T e N™. S(m,p,c,z) = {cay +Z;ﬂ:t+1/\ixi cte{l,2,...,m}andfort < i < m,A; €
Z with |X;| < p}.

(b) A subset B C IN is an (m, p, ¢)-set if and only if there is some z € IN™ such that B = S(m,p,ec, ;)

(¢) An ! x m matrix 4 is an (m, p, ¢)-matrix if and only if whenever z € N™, and A7 = y one has

S(m,p, e, C_L:) =A{y1,y2,.-.,Ye} (where £ is the number of rows of A).

For example, the matrix

1 2
1 1
i g) is a (2,2,1)-matrix.
1 2
0 1

The key to the characterization of partition regular finite matrices is the following theorem.

1.2 Theorem: Let A be a u x v matrix with integer entries. Then A is partition regular if and only
if there exist m,p,c in IN and an (m,p,c)-matrix B so that whenever Y € Z™ there exists z € Z°

with all entries of AZ included in the entries of By .

Proof: We only sketch the proof. For a related argument we refer to [6].

By [2], for every (m,p,c) € IN? and for every partition of IN into finitely many classes, some one
of these classes contains an (m,p, ¢)-set. This establishes the “only if” part.

For the “if” part we use the following result from [2]: A matrix A is kernel partition regular,
if there exist (m,p,c) € IN® such that every (m,p,c)-set contains a solution of A7 = 0. Now, let
AZ = Y be partition regular. By substituting successively the z;’s, we obtain a system Ay = 6

(which might be the equation 0 = 0). Now applying the above mentioned results finishes the proof. B

1.3 Definition: A subset D of N is “large” if and only if for all m,p, ¢ in IN there exists T e N™
with S(m, p, C,E) CD.

Thus a large subset of IN contains solutions for all partition regular (finite) matrices by Theorem
1.2. The fundamental result to complete the understanding of finite partition regular matrices is the

following.
1.4 Theorem: If N is partitioned into finitely many cells, one of these cells is large.

Proof: This follows from [2, Satz 3.1.]. [ |



One can define a corresponding notion of large for infinite partition regular matrices and ask
whether the analogue of Theorem 1.4 remains true. We shall obtain in Section 3 a strong negative
answer to this question.

Earlier investigations of infinite partition regular matrices led to the notion of an (m, p, ¢)-system

[3], [7]. The notation below generalizes F'S(< zn >521) = {)_,cp Tn : I is finite nonempty subset of IN}.

1.5 Definition: Fix (for the remainder of the paper) an enumeration < (m(n),p(n),c(n)) >, of

IN®.

(a) V = x5, IN™),

(b) Given T € V,S(Z,m) = S(m(n),p(n), e(n), F(m)) = {e(m) - Z(m)(®) + S0, AT (m)(3)
te{1,2,...,m(n)} and for i € {t+ 1,t +2,...,m(n)}, \; € Z with |\;| < p(n)}, where z(n)(i)
denotes the 1’th entry of g(n)

(¢) Given z € V and £ € N, FS(< S(z,n) >%2,) = {2 nep Wn : I is a finite non empty subset of
IN with min F > ¢ and for each n € F,w, € S(z,n)}.

(d) A subset D of IN is an (m, p,c)-system if and only if there exists some z € V such that D =
FS(< S(z,n) >2)).

In [3] it was shown that (m,p,c)-systems are partition regular in the sense that whenever IN is
partitioned into finitely many classes, some one of them contains an (m,p,c)-system. In [7] it was
shown in fact that a stronger partition regularity holds: whenever an (m,p, ¢)-system is partitioned
into finitely many classes some one of them contains another (m, p, ¢)-system.

We were led to conjecture that perhaps (m,p, c)-systems were universal for infinite partition
regular matrices in the same sense (Theorem 1.2) that (m,p, ¢)-sets are universal for finite partition
regular matrices. That is, given an infinite partition regular matrix A one would ask that for every
Z € V there would exist some y € x o ,Z with all entries of Ay in FS(< S(:_L:,n) > ). We shall
introduce in Section 2 a class of infinite partition regular systems which provide a strong negative
answer to this conjecture as well. We remark that the corresponding question for kernel partition
regular matrices also turns out to have a negative answer — see Section 4.

In some of our proofs we utilize the topological-algebraic system (SIN,+,-), where SN is the
Stone-Cech compactification of the discrete space IN and + and - are the extensions of ordinary
addition an d multiplication to SIN making (fIN,+) and (BIN,-) left topological semigroups with IN

contained in their topological center. That is for each ¢ € fIN the functions v - g+ v and v — ¢ -v



are continuous and for each # € IN the functions ¥ — v + z and v — v -  are continuous. See [5]
for an elementary construction of the semigroups (SIN,+) and (8IN,-), whose points we take to be
ultrafilters on IN. We write Ng = INU {0} = {0,1,2,... }.

2. Milliken-Taylor systems. In 1975 K. Milliken and A. Taylor independently proved a general-
ization of Ramsey’s Theorem which allows us to produce infinite partition regular matrices which do
not arise as part of (m,p, ¢)-systems and which establish that two infinite partition regular matrices

need not have solutions in the same cell of a partition.

2.1 Definition: Let < D, >22, be a sequence of finite nonempty subsets of INg and let £ € IN.
[FU(< Dp >521)1% = {(Uner, Dn,Uner,Da, ... ,Uner, Dy) : Fi, Fo, ..., Fy are
finite nonempty subsets of IN and for each 7 € {1,2,...,k — 1}, max F; < min F;;}.
2.2 Theorem: (Milliken, Taylor). Let < D, >22; be a sequence of finite nonempty subsets of INg
such that for each n € N, max D, < min D,41. Let k,» € N and let [FU(< D, >52,)]% = Ul_, B;.
There exist ¢ € {1,2,...,r} and a sequence < H,, >, of finite nonempty subsets of IN such that for
each n, max H,, < min Hp41 and, if B, = Usem, Dy, then [FU(< E, >Zo:1)]li C B;.
Proof: [8, Theorem 2.2], [9, Lemma 2.2]. [ |
We introduce now systems motivated by this theorem.
2.3 Definition: Let a = (ai,as,...,ag) be a finite sequence in IN and let < z, >22; be a se-

n=1

quence in IN. Then the Milliken-Taylor system for @ is MT(a,< &, >2,) = {Ele at Y per, Tn

Fy, Fy, ..., Fy, are finite nonempty subsets of IN with max F; < min Fy,; for ¢ € {1,2,...,k — 1}}.
Observe that any Milliken-Taylor system MT(E, <z >0 ) is generated by a matrix-in fact by

n=1

any of uncountably many matrices obtained from one another by permuting rows. For example if
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then MT((1,2),< z, >52,) is the set of entries in Az.

2.4 Definition: If @ is a finite sequence in IN and A is an infinite matrix such that for each
T =<, >, MT(d,< x, >2,) is the set of entries of AZ, then A is said to generate Milliken-

Taylor systems for a.

o]
n=1

2.5 Theorem: Let a be a finite sequence in IN and let < vy, > be a sequence in IN. Let
IN = U;_, B;. Then there is a sequence < H, >p2, of finite nonempty subsets of IN with max H,, <
min Hyy; for each n € N and there is some ¢ € {1,2,...,r} such that, if z, = ), . v, then
MT(E, <z, > ,) C B;. In particular, if 4 is a matrix generating Milliken-Taylor systems for a,
then A is partition regular.

Proof: For each n let D, = {n}, so that U,epD, = F. Let k be the length of @ and for
i e {1,2,...,r}, let B; = {(F1,Fa,...,Fr) : each F; is a finite nonempty subset of IN and for
t € {1,2,...,k},max F; < min F;;; and Zleat “Yoner, Yn € Bi}. Pick i € {1,2,...,r} and
< Hp >52, as guaranteed by Theorem 2.2. For each n, let z,, = EﬁeHn Ye.

To see that J\/[T(E, < zp >2,) C By, let Fy Py, ..., Fy, be finite nonempty subsets of IN with
max Fy < min Fy4q, fort € {1,2,...,k—1}. For each n, H, = Usep, D, so [FU(< Hy >;L'°:1)]’2 C B;.
For each t € {1,2,...,k}, let Gy = Upep, H,. Then (G1,Gs,...,Gy) € [FU(< H, >7010:1)]12 SO
Yot @i Yreq, Ve € By Since 0y a1 Ypeq, Yo = Yoymn Ot Lonery Yosen, Yo = Sopmt G Loner, Tn

we are done. [ |



As an immediate consequence, we see that Milliken-Taylor systems are themselves partition reg-

ular.

2.6 Corollary: Let < y, >22, be a sequence in IN, let @ be a finite sequence in IN, and let
1WT(E,< Yn >0 1) = Ui_; B;. Then there exist i € {1,2,...,7} and a sequence < z, >52,, such
that MT(a,< z, >2,) C B;.

The Milliken-Taylor systems provide already a counterexample to our conjecture about univer-
sality of (m, p, ¢)-systems. Although it is not hard to verify this directly we omit the verification here
since the conclusion is an immediate corollary of our results in Section 3.

We now extend the Milliken-Taylor systems in the same way that (m,p, ¢)-systems extend finite

sums.

2.7 Definition: Letz € V andlet @ = (a1,as,...,ax) be afinite sequence in IN and let £ € IN. Then
MT(a,< S(z,n) >2,) = {Ele at-) per, Wn : F1, Fa, ..., Fy, are finite nonempty subsets of IN with
¢ < min F} and with max F; < min Fy4; fort € {1,2,...,k — 1} andifn € UY_,F,, then w, €

S(;, n)}. We call such a system a Milliken-Taylor (m, p, ¢)-system.

Then MT((1),< S(z,n) >°°,) = FS(< S(z,n) >°,). That is, the Milliken-Taylor (m, p, c)
systems generalize the ordinary (m,p,c)-systems. As with the ordinary Milliken-Taylor systems, the
Milliken-Taylor (m, p, ¢)-systems are generated by matrices.

In order to state our theorem about the partition regularity of Milliken-Taylor (m, p, ¢)-systems in
their full generality, we need to introduce some more notation from [7]. Recall that we are taking the
points of AN to be ultrafilters on IN (the points of IN being identified with the principal ultrafilters).

For ¢ € BN and A C N, the statements “A € ¢” and “clgnA is a neighborhood of ¢” are synonymous.

2.8 Definition:

(a) U={¢q€ PN : for each A € ¢ there exists Z € V such that for all n € ]N,S(E, n) C A}.

(b) Given z € V,T(z) = UUNZ, clanFS(< S(z,n) >°2,).

(¢) V*¥= {Z € V: for each n € N, each a € S(E,n), and each b € S(z,n +1), if t = max{i: 2 <
a}, then 2¢*! divides b}.

(d) For z € V* and a € FS(< S(z,n) >°2,), F(z,a) is the unique finite nonempty subset of IN
such that there is a choice of w, € S(:_L:,n) for each n € F(E, a) so that a = ZneF(?,a) Wy, .

(e) For z € V* wesay y refines  if and only if y € V*, FS(< S(?j,n) > ) CFS(< S(Z,n) >

n=1

6



) and for each n € IN, each a € S(Z,n), and each b € S(y,n + 1) one has maxF(Z,a) <
minF(;,b).

L= — — . — — — — — —
Observe that if z,y, and z are in V*, y refines ¢ and z refines y, then z refines .

One can achieve the “in particular” part of the following Theorem 2.10 in a fashion similar
to the derivation of Theorem 2.5, replacing the appeal to the Milliken-Taylor Theorem (Theorem
2.2) by an appeal to [7]. However, Theorem 2.10 gives additional information about the algebraic
structure of FIN. Observe that for ¢ € IN and p in SIN, by a - p we mean the product of a and
p in (BIN,-) and not the sum of p with itself a times. In particular, given A C IN;A € a - p if
and only if A/a € p where AfJa = {# € IN : z -a € A} (and of course given p,¢g € SN and
ACN,Aep+qgifandonlyif {zeIN: A—z € p}eq).

2.9 Lemma: Let 7z €V, let a = (a1,as,...,ax) be a finite sequence in IN and let p € T(;?) Then

for eacth]N,MT(E,<S(z,n) > )€ay -ptag_1-p+---+a-p.

Proof: We prove the lemma (for all £ € IN) by induction on k. First assume k£ = 1 and let £ € IN
given. Since p € T(z) we have FS(< S(z,n) >2,) € p. Then MT((a1),< S(z,n) >%,) =
a; - FS(< S(z,n) >°,) € a; - p.

Now let k > 1 and assume the lemma has been established for all sequences of length k¥ — 1 and
all £ € N. Let A = MT(a,< S(z,n) >,). We show that MT((a;), < S(z,n) >22,) C {z €
IN:A—z€ap-p+ -+ ay-p}, which will suffice. Let z € MT((a1),< S(Z,n) >°2,) and pick a
finite set F; C {¢{,£+ 1,...} and for each n € Fy, pick w, € S(:?,n) such that z = ay - ) cp wn.
Let v = max F; + 1. Then by the induction hypothesis MT((as,as, ..., az),< S(z,n) >2.) €
ag -p+---+ay-p, while MT((as,as, ..., ay),< S(z,n) > ) C A— 2. [ |
2.10 Theorem: Let z € V* let a = (a1,as,...,a;) be a finite sequence in IN, let p be an

—

idempotent in 7T'(z), and let A € ar -p+ ap—1-p+ -+ + a1 - p. There exists Y refining Z such

—

y,n) >2,) C A. In particular, if MT(a,< S(z,n) >52,) = Ul_, A;, then there

n=1

that MT(a,< S(
exist some y refining z and some i € {1,2,...,r} such that MT(H, < S(y_j, n) >% ) C A;.

Proof: We show first that the “In particular” statement follows. By [7, Lemma 2.4] T(E) is a
compact subsemigroup of (5N, +) so by [4, Corollary 2.10] we may pick such an idempotent p € T(E)
By Lemma 2.9, U/_, A; € ag-p+---+a;-psopicksome i € {1,2,...,r} such that A; € az-p+---+a;-p.

We now proceed to inductively construct ?j(n) for n € IN, as well as a few auxiliary items needed

7



for the induction. Specifically we choose ?j(n) e N™™ D, € p,E, € p, g(n) € N,7(n) € IN, and for

te€ N with 1 <t <min{n k},B,;: €ar -p+ar_1-p+---+a-pand Cp; € a; - p satisfying the

following induction hypotheses:

(1) Bpy = A and for ¢t € {2,3,..., min{n, k}}, Bn: = N{Bj:—1 — az_1 'ZzeF we : F C {t —
1,¢,...,n—1} and j = min F' and for all £ € F,w, € 5(3,12)}.

(2) Fort € {1,2,... min{n, k- 1}},Cry = {2 € N : B,y —2 € a -p+ -+ + as41 - p} and if
n>k Cor=Bnpg.

(3) Dp C Cpi/ay and if n > 1,D, = D, ; N IN27»=D+1 0 FS(< S(z,m) >

m:g(n—1)+1) n

ﬂ?:irll{n’k}Cnyt/at NN{Dp_1 —w:we S(Zj, n—1)}.
(4) E,={z€eN:D, —=z € p}
(5) S(¥,n) € DaNE,NFS(< S(Z,m) >4 ) and
(6) 7(n) =max{seN:3a € S(;_Lj,n) with 2° < a}.

To ground the induction let g(0) = 0 let By; = A and let Ci; = {# € N : By —z €
ap-p+---+as-p}unless k = 1 in which case C11 = By 1. Let Dy = Cy1/a;. Since C11 € a1 -p, D1 €
p=p+p Let By = {x € N: Dy —z € p}. Since p € U and D; N E; € p, pick g_j(l) e N
such that S(y,1) C Dy N E;. Pick g(1) € IN such that S(y,1) € FS(< S(z,m) >fr51:)1) and let
7(1) = max{s € IN: there is some a € S(Zj, 1) with 2° < a}. All hypotheses are satisfied.

Now let » > 1 and assume the construction has proceeded through n — 1. Let B, ; and C, ; for
t€{1,2,...,min{n, k}} be as required by hypotheses (1) and (2) and let D,, and FE, be as required
by hypotheses (3) and (4).

Before proceeding to the choice of Z(n), we show that these sets chosen above are where they are
supposed to be. To do this we show first by induction on |F| that if F C {1,2,...,n—1},j = min F,
and for each £ € F,w, € S(]_j,f), then ), pw, € Dj. If F' = {j} this follows from hypothesis (5)
so assume |F| > 1 and let » = min F\{j}. Then by our subsidiary induction hypothesis we have
ZﬁeF\{j} wg € D,. By hypothesis (3) D, C D;jy; € D; — w; so that )°, pw, € Dj as claimed.
Certainly B, 1 € a -p+---+a; -p. Let t € {2,3,...,min{n,k}}. Now B, , is the intersection of
finitely many sets of the form B; ;_1 —a;_1 - Z‘geF wy so it suffices to show that each of these is in
ap -p+---+a;-p. Tothisend, let F C {t—1,¢,...,n— 1}, let j = min F, and for each £ € F,
let w, € S(y_j,ﬁ). As we have seen, then ), »w, € D;. By hypothesis (3) D; C Cj;_1/a;_; so

ai—1-) 4ep We € Cj 41 so by hypothesis (2) By i1 —a;_1-) ,cp W € ag-p+---+a; - p as required.

8



Given t € {1,2,... ,min{n,k}} we have B, ; € ap -p+ --- + a; - p so one concludes immediately that
Chi € as - p.

Now D,_; € p. Since p = p + p,IN27(*=D+1 ¢ In fact, for any £ € IN, we have IN( € p.
The easiest way to see this is to consider the congruence classes mod £. Since p € T(E), we have
FS(< S(E,m) >frf:g(n_1)+1) €p. Givent € {1,2,...,min{n,k}},Cph;: € a; -p so Cp 1/as € p. Since
S(ﬂ, n—1) C Ep—1 by hypothesis (5) we have D,_; — w € p for each w € S(Z, n — 1). Consequently
D, €p. Since D, ep=p+p,E, €p.

Now D, NE, € pand p € U, so pick y(n) € N™™ with S(y,n) C D, N E,,.

pick g(n) with S(y,n) C FS(< S(z,m) >9(n) ).

As D, C FS(< S(Z,m) >9(n) m=g(n—1)+1

meg(n—1)+1)

Let 7(n) be as required by condition (6).
The induction being complete observe that the choice of 7(n) guarantees that y € V* and the
choice of g(n) guarantees that Y refines z. To complete the proof we want to show that MT(E, <
S(y,n) >°°,) C A. To this end, let Fy, Fy,..., F} be finite nonempty subsets of IN with max F; <
min Fy,, for t € {1,2,...,k — 1} and for each £ € UF_, F, pick w, € S(j_j,ﬁ). Let n(t) = min F}
and note that n(t) > ¢t. We show by downward induction on ¢ € {1,2,...,k} that az - ),y we +
4@y ) pep, We € Bpyy. For t = k we have by hypothesis (3) that Dy C Cpyp/ar. As
we have previously etablished ), . we € Dy, 80 ax - ) _yep, We € Creyx = Bpryp- Now let
t€{2,3,...,k} and assume ay, - ) ,cp We+ -+ @), p Wi € Bpry,t. By hypothesis (1) By C
Bp(i—1),t-1 — @1 ZﬁeFi_l wy, SO ay, - ZﬁeFk wy+ -+ a1 ~Z£€Ft_1 wg € Bp(y_1)4—1 as required.

Thus we have ag -3y p, we + -+ a1 -3 pep, Wi € Braya = 4. n

Recall that we are investigating the question of whether for any finite partition of IN one cell
contains solutions to all partition regular infinite matrices. Before providing a strong negative answer
to this question in the next section we close this section with two results which establish a certain

amount of uniformity among the Milliken-Taylor (m, p, ¢)-systems.

2.11 Corollary: Let B be a finite set of finite sequences in IN and let IN = U]_; A;. There exists

Z € V* such that for each @ € B there is some i € {1,2,...,7} with MT(E, < S(z,n) > ) C A

Proof: Pick any yo € V* and apply Theorem 2.10 | B| times, in each case refining the previously

chosen sequence. |

Recall that a subset A of IN is “large” if and only if for each m,p, ¢ in IN there is some T eN™

9



such that S(m,p, c,z) C A. Thus U = {¢q € BIN: for each A € ¢, A is large }.

2.12 Theorem: Let @ = (a1,...,ar) be a finite sequence in IN and let IN = Ul_; A;. Then there
exists 1 € {1,2,...,r} such that

(1) A; is large and

(2) there is some = € V* with MT(a,< S(z,n) > ,) C A;.

Proof: By [2, Lemma 2] U is a compact subsemigroup of (4N, +) and by [7, Lemma 2.4] so is T(z).
So pick by [4, Corollary 2.10] an idempotent p in T(E) By [1, Lemma 2.2], U is an ideal of (8NN, )
so that each a; -p € U. Consequently, ay -p+ag_1 -p+---+a1 -p€ U. Picki € {1,2,...,r} such
that A; €ap -p+---+ay-p. Since ap, -p+---+a; -p € U, conclusion (1) holds while conclusion (2)
holds by Theorem 2.10. [ |

It is a consequence of results in the next section that one cannot strengthen Theorem 2.12 to

read “A; contains an (m, p, ¢)-system”, since F.S(< S(z,n) >, ) = MT((1),< S(z,n) >5,).

3. Separating Milliken-Taylor Systems. We restrict our attention here to ordinary Milliken-

Taylor systems. That is, sets of the form MT(E, < 2n >p2;) (Definition 2.3).
3.1 Definition:

(a) S={a:a is a finite sequence in IN}.

(b) The function ¢ : S — S deletes any consecutive repeated terms.
(So ¢((1,3,1,1,2,2,2)) = (1,3,1,2).)

(c) An element a of Sis “compressed” if and only if @ = C(E).

—

(d) An equivalence relation & on S is defined by @ = b if and only if there is a (positive) rational «

such that o ~c(z) = c(;)

3.2 Theorem: Let a,b € S and assume @ ~ b. Then whenever N = U!_, A;, there exist i €
{1,2,...,7} and two sequences < z, >3, and < y, >, with MT(E,< z, >02,) C A; and

Proof: Observe that MT(a,< 2, >°2,) C MT(c(a),< z, >2,) for any sequence < z, >°,.
(If a; = azq1 then a4y ~E£€Ft+1 Zz) + a; 'ZzeF, Ty, = a; - ZﬁeFtUFHl z;). Consequently we may
presume @ and b are compressed and hence that for some positive rational o we have a'a = b. Pick

m,r € IN such that « = "% and let d = ma. Pick by Theorem 2.5 some sequence < z, >> , and

10



some 7 € {1,2,...,r} with MT(d,< z, >52;) C A;. For each n let z, = m -z, and let y, = r - z,.

n=1

Then MT(a,< &, >52,) = MT(b,< yp >22,) = MT(d, < 25 >22,). n

n=1

The rest of this section is devoted to a proof of the converse of Theorem 3.2, which we state

below.

3.3 Theorem: Let E,; € S and assume that whenever » € IN and IN = Uj_; A;, there exist
i € {1,2,...,r} and sequences < z, >, and < y, >3, with MT(E,< zn >22;) C A; and
MT(3,< yn >22,) C A;. Then @ ~ b.

The proof will include a sequence of lemmas. We start by noting that we may restrict our

attention to compressed sequences.

3.4 Lemma: Let a € S and let < z, >2° | be a sequence in IN. There exists < y, >,2; such that

MT(c(a),< yn >5%,) C MT(a,< 2, >22,).

Proof: Let £ be the largest integer such that there is some ¢ with a; = @441 = --- = as4¢—1. For
each n let y, = Ele Tonti- [ |

As a consequence of Lemma 3.4 and the fact that always 1WT(E,< z, >02,) C jWT(c(E),
<7, > ) it suffices to restrict our attention to compressed sequences.

We will adopt the common “chromatic” terminology and talk about a finite “coloring” of IN
rather than dividing IN into finitely many classes. Our construction is somewhat complex, so we start
with an informal presentation of a special case, namely when the compressed sequences @ and Z,
called patterns in the following, consist of powers of 2.

Take a pattern, i.e. a compressed sequence, say 1, 2, 4. The length (3, here) will be n. We will
start by putting on more and more colors in a coloring, so that more and more is forced on a sequence
< &; >$2, for which the Milliken-Taylor system generated by the pattern and < z; >52, is monochro-
matic, and then at the end we will distinguish two arbitrary patterns of the form 2%1,... 2%,

When a number is written in binary, its start will be the position of its most significant 1 (the
unit digit is position 0, etc.), its end will be the position of its least significant 1, and its gap sequence
will be the sequence of gaps between consecutive 1s. For example, the number 11001000100 has start
10, end 2, and gap sequence 0,2,3.

Pick a number k&, much larger than a, b, ¢ and n. Suppose we have a sequence z1, 5, ... such that

all the numbers formed by the pattern 1,24 on the z; have the same color in some given coloring. By
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taking linear combinations, we may as well assume that each z; starts way to the left of z;_;. Say
the end of z; is at least k£ greater than the start of z;_;. From now on, any reference to an z; will be
restricted to ¢ > n, so that each z; could occur in a sum with coefficient 1,2 or 4.

Color by start mod k and end mod k (i.e., we have k? colors so far). Then all the 4z; start in the
same place mod k (as i > n), so all the z; start in the same place mod k. Similarly, all the z; end in
the same place mod k. Thus the gap between an z; and an z;_; is fixed mod k: say it is g (so, mod
k,g is the difference between the end of #; and the start of #;_;, with 1 subtracted).

Now color by the number, mod &, of gaps of length congruent to j mod &, for each 0 < j < k. So
we have k* new colors (and hence k**2 colors in total). Given a number y formed from the pattern
(in other words, belonging to the Milliken-Taylor system generated by the pattern and < z; >£2,),
say ending with 4z;_; (i.e. the largest z in the sum forming y is z;_;, with of course coefficient 4), we
are free to add 4z; or not, as we please - both y and y 4+ 4z; must have the same color. Now, adding
4z; to y puts in some new gaps: one of length g (mod k), and also all the gaps inside z;. We conclude
that the distribution of gap-lengths (mod k) inside each z; is the same, namely: the number of gaps
in the gap sequence of z; which are congruent to j mod k is -1 if j = ¢ mod k, and 0 otherwise (‘=1
and ‘0’ are meant mod k).

We remark that at this stage we can already distinguish various patterns. For example, what
is the gap-distribution for our pattern 1,2,47 Any y in that pattern must have gap-distribution as
follows: —3 gaps of length ¢ mod &, 2 gaps of length ¢ + 1 mod %, and no gap of length each other
j mod k. So, having colored IN like this, and found our z;, we can read off the value of g - it is
that value mod k for which the number of gaps congruent to it is —3. Thus to distinguish 1,2,4 from
2,4,16, say, we pick our large k (larger than the numbers in both patterns), color IN as above, and
find our alleged z; for 1,24 and z} for 2,4,16. Then the distribution vector for the pattern on the z;
is of the form (0,0,...,0,—3,2,0,...,0) (where the jth entry in this vector is supposed to denote the
number of gaps of length j mod k). However, the distribution vector for the other pattern is of the
form (0,0,...,0,—3,1,1,0,...,0). No vector is of both these forms, so we are done.

Of course, we cannot yet distinguish 1,2,8 from 1,4,8, and we certainly cannot distinguish 1,2,1,4,1
from 1,4,1,2/1. So we proceed to more colors. The next bit will do both (i.e., we won’t have some
more colors just to distinguish 1,2,8 from 1,4,8—we’ll go for the whole 1,2,1,4,1 versus 1,4,1,2/1). One

little remark: if we added colors to see where (mod k) each gap started (how many gaps of length j
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start in position h, and so on), we would indeed be able to distinguish 1,2,8 from 1,4,8. However, we
would still not be able to distinguish 1,2/1,4,1 from 1,4,1,2,1, and it just happens that the colors we
will use for this do not need to involve the start position.

Introduce new colors as follows, keeping all the old colors as well. For each ordered pair (h,j)
of numbers mod &, we count how many times in the gap sequence of z (the number we are coloring)
we have an h followed later by a k, which gives k** new colors. Note that we do not insist that the
j must be immediately after the A, and each A and j can be counted lots of times. For example, if
z has gap sequence (2,1,3,2,7,1,7) then the ordered pair (2,1) occurs 3 times, while the ordered pair
(3,7) occurs twice, and the pair (2,2) occurs once.

What happens when we consider a y in the pattern, say ending with 4z;,_;? We know that y and
y + 4xz; must have the same color. But what have we done to the ordered-pair-counts when we put on
this 42;7 Thinking of y + 4z; as being made up of 4z;, then a “dividing gap” (of length g) between
the 4z; and the y, and then the y, we have three places new gap-pairs could come in: (A) pairs of
gaps both in the 4z;, (B) pairs of gaps of which the first is in the 4z; and the second is the dividing
gap, and (C) pairs of gaps of which the first is either in 4z; or the dividing gap and the second is in
the y. Now, (C) contributes nothing at all to any pair (h,j), for the simple reason that the gaps of z;,
together with one g, have distribution vector (0, ...,0), as we saw a few paragraphs ago. (B) is easy:
it adds —1 copies of (g, ¢) and 0 copies of everything else (again, this is by the distribution vector of
z;). We conclude that the pair-counts inside z; must be 1 for (g, g) and 0 for each other (h, ).

So each z; has gap count of —1 gaps of length g and 0 of each other length, and we also know
that each z; has gap-pair count of 1 ordered pair of gaps of lengths (g,¢) and 0 of each other pair
of lengths. Thus, for example, a pattern element formed from the pattern (1,2) will have gap-pairs
counts as follows (for some g): 3 of type (g,¢), —1 of type (9,9 + 1), —1 of type (¢ + 1, ¢) and 0 each
other type. Note also that in a pattern with n = 3, for example 1,82, the only gap-pair count which
is not 0 and is not of a type (a, g) or (g, b) for any a and b is the type (¢ — 2, g+ 3), which gets a count
of 1.

Now we look at triples (ordered triples of gaps). Just as above, when we add in colors for these
counts we’ll get that the triples-distribution of an z; is —1 of type (g,¢,9) and 0 of each other type.
Also, in a pattern of n = 4, like 1,2,8,1, the only triple which does not contain a ¢ and does not get

count 0 is the triple (—3,2,1), which gets a count of 1.
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Then on to quadruples, where each z; will have 1 of type (g,9,9,¢) and 0 of each other type, and
so on. Thus, in total, to distinguish any two patterns (of powers of 2), say the patterns 291, ..., 2%
and 2%, .. 2% where m < n, we do the following:

Pick a k much larger than all the 2% and 2% and n. Color IN by start, end gap distribution,
gap-pair distribution, and so on up to (n — 1)-tuple distribution all mod k. Suppose that we have z;
for the first pattern and z; for the second pattern so that both patterns yield the same color class. We
can assume that each z; starts far to the left to z;_1, and similarly for the ;. Then the distribution
of gaps of y, a typical element of the first pattern, has —n in exactly one place (that of length g, say),
and all other coefficients are between 0 and n — 1. Similarly for 3, a typical member of the second
pattern. Thus m = n.

So now we also know g. There is a unique (n — 1)-tuple (in the distribution of y) which does not
contain a g and does not get coefficient 0, namely (¢ + an — @n-1,9 + an—1 — an_29,...,9 + az — ay).
Hence, as this must be the same for y', we have a; — a;_1 = b; — b;_1 for every i. Thus one pattern is
a multiple of the other, as required.

Now we will turn to the general case, and present a much more formal proof of Theorem 3.3.

We assume we have compressed sequences @ = (a1,as2,...,a,) and ; = (b1,ba,...,bp) with the
property that whenever IN is finitely colored, there exist sequences < z; >{2; and < z} >$2, with
MT(a,< & >2,)U MT(3,< z; >2,) monochrome (i.e., all elements get the same color). We
assume without loss of generality that m < n. (We shall in fact show in Lemma 3.7 that m = n).

Pick a prime p > max{a;b; : 1€ {1,2,...,n} and j € {1,2,...,m}}.

Let k =2n+ 1. We write Zy, = {-n,—n+1,...,0,1,...,n— 1,n} (The idea is we want to be
able to talk about negative members of Z).

Now we introduce the notion of “gap”, based very loosely on our power of 2 construction.

Given ¢ = (de) € {1,2,....,p—1} x {p,p+1,...,p?> — 1}, pick v € {1,2,...,p — 1} and
v € {0,1,...,p— 1} such that e = u-p+ v. Let z € IN. Then a E—gap of xz is an occurrence of
d0...0Ouv in the base p-expansion of z. (It does not matter whether one requires at least one 0 between
d and u, although of course one should make up one’s mind. We shall require a 0.) The location of
the gap is the location of d. More formally, given z = Ele a;p*) where (1) < i(2) < --- < i(£) and
each oy € {1,2,...,p—1}, a ¢-gap of z occurs at location i(t) ifonly and if ay = d, i(t —1) < i(t) — 1,

a; 1 =uandoneof (1)t >2,i(t—2)=i(¢t—1)—1,and ay_3 =v,0r (2)t > 2,i(t —2) < i(t—1)—1,
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and v=0,0r (3)t=2,i(1) > 0and v =0.
Now let P = {1,2,...,p—1} x {p,p+1,...,p? — 1}. For each t € {1,2,...,n — 1} we define
a function ¢; : IN x P* — Z; as follows. Given cePandz € ]N,gol(a:,z) is the number, mod

k, of c-gaps of z. More generally, given ¢t € {1,2,...,n — 1},z € IN, and ¢4, ¢s,..., ¢c; € P,

iz, Ci,¢Ca,... ,?t) is the number, mod k, of ordered ¢-tuples (a1, @, ..., a;) € N' such that a; <
as < --- < a; and for each 1 € {1,2,...,t}, a ?i—gap occurs at location «; in the base p expansion of

T.

Next we define functions A : N — {p,p+1,...,p2 — 1} and p : N — {1,2,...,p — 1}. Given
z € IN, \(z) represents the leftmost two significant digits of #, and p(x) is the rightmost nonzero digit
of z, all in the base p expansion. Thus, if c € {1,2,...,p— 1} and d € {0,1,...,p — 1} and for some
re€WNg,ep’ +dp" ! <z <ep’ +(d+1)p"~ !, then MN(z) = cp+d. If c€ {1,2,...,p—1} and d,r € N
and z = p"(d - p + ¢), then p(z) = c.

Now we are prepared to define our coloring of IN. Given z and y in IN, agree that = and y get
the same color if and only if p(z) = p(y) and for each ¢t € {1,2,...,n — 1} and each C1,Co,..., C1E

—

P, got(a:,?l, Coy., ?t) = pi(y, c1, o, .. .,?t). (Note that there are (p — 1) - k* colors where o =
Yo pir - 1))

We choose sequences < ; >82, and < &} >, such that MT(a, < z; >, )UMT(E, <zl >2))
is monochrome. By Theorem 2.5 applied to F/S(< z; >$2,) = MT((1),< ®; > ;) and FS(< zf >2,)
we may refine the sequence so that (using the same names for the refined sequences) for each j €
{1,2,...,n}, FS(< ajz; >$2,) is monochrome with respect to our given coloring and with respect to A
and for each j € {1,2,...,m}, FS(< bjz; >£2,) is monochrome with respect to our given coloring and
with respect to A. Taking one further refinement we can also assume that for each ¢ € IN and r € N,
if p” < z;, then p"*3 divides z;4; and similarly if p” < z!, then p"*3 divides z}. This guarantees that
for any j,s € {1,2,...,n} there will be at least one 0 between the rightmost nonzero digit of a;z;41
and the leftmost nonzero digit of a,z;. We may do this since given z; some p" 3 terms of < z; >;‘;Z»+1
must be congruent to 0 mod p"*3 and hence their sum is divisible by p”+3.

Define functions f: {1,2,...,n} = {p,p+1,...,p> =1}, f : {1,2,.... m} = {p,p+1,...,p% —
1},9 :{1,2,...,n} = {1,2,...,p—1},and ¢’ : {1,2,...,m} — {1,2,...,p — 1} by f(j) = Aa;z1),
(7)) = A(bjxy), 9(j) = plajzy1), and ¢'(j) = p(bjz’). For j € {1,2,...,n}, let Ej = (9(4), f()) and

—

for j €{1,2,...,m} let d = (¢'(j), f'(j)). For j € {1,2,...,n— 1} let ?j =(9(j+1), f(§)) and for
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—

je{l,2,...,m—1} let ?; =(9'(j +1), f'(j)). Thus there is a d;-gap in ajz2+ a;z; and an ?j—gap
in aj 4122 + ajz.

—

Several of the following lemmas will be stated in terms of a,< x; >2.,f,9,d; and ?j, corre-

l.

sponding lemmas for b,< z; >2,, f',¢', d},

and E} are of course also valid and we will feel free to

utilize them.
3.5 Lemma: Lets,je {1,2,...,n} with s <n. Then ¢, # dj.

Proof: Suppose €, = Ej. Then g(s+ 1) = g(j) and f(s) = f(j). That is p(as4121) = p(a;z,) and
Maszy) = Majzi). Now aj,a,4q1 € {1,2,...,p— 1} and computation of the rightmost nonzero digit
of a product is merely multiplication mod p, so by cancellation we have a,4, = a;.

We now claim that since A(asz1) = A(a;jz1), we have a; = a;. To see this, let 7 be the position of
the leftmost significant digit of z;. That is, p” < z1 < p"*'. Let cp + d = A(asz1) = A(ajz1), where
ce{l,2,...,p—1} and d € {0,1,...,p — 1}. Assume first that a, < a;. If equality holds we have
established our claim, so assume a, < aj. Note that p” < a,z1 < ajzy < p" T2
Case 1. ajz; < p"*!. Then (ignoring the second digit) we have cp” < as21 < ajz1 < (c+ 1)p”, so
ajz1 < (c+1)p" =cp” +p" <asz1 +p" so z1 < (a; —a,)x1 < p’, a contradiction.

Case 2. a,z; < p"t! < ajz;. Then cp” + dp"~ ! < as21 < ep” + (d+ 1)p"~! and ep™*t! + dp” <
ajzy < cp't+(d+1)p" soajzy > eptr+dp” =p-(c-p"+(d+1)-p"")—p" > p-asz1 —p". Then
p" > (p-a; —aj)x; > x> p’, acontradiction. (Note p-a, >p>aj,sop-a, —a; > 1.)

Case 3. p'*! <ayzy. Then ep" ! +dp” < a,z1 < ajzy < ep™ T4+ (d+1)p" so ajzy < ep™ Tt +dp™ +
p" < asxi+p <asxi+ z1 < ajry, acontradiction.

The case a; > a; is handled the same way.

Thus we have established that a; = a;. Since we saw earlier that a,41 = a;, we have a; = a,41,
contradicting the fact that @ is a compressed sequence. ]

We first consider just gaps—later we will go on to pairs of gaps, triples of gaps and so on.

3.6 Lemma: Let ¢ € P and let j € {1,2,...,n}. Then

- 1 i =d;
ei(ajzy, c) = ,
0 otherwise .

Proof: Let £ be the location of the rightmost nonzero digit of a;z5. There is a d;-gap located at £.

16



Consequently, we have

N gol(aja:Q,?)—}—gol(ajxl,?)—{—l if ¢ = d;
pr(ajes + a2y, ¢) = - - I
p1(ajza, c) + p1(ajzr, c) if ¢ #d;.
Since p1(ajzs + ajxl,?) = gol(asz,?) = p1(ajz, ?), the conclusion follows. [ |

Already from Lemma 3.6, we can read off information about our sequences. Let A = {d; : j €

{1,2,...,n}} and let A’ = {d’ : j € {1,2,...,m}}.
3.7 Lemma: A =A’and m=n.

Proof: Define I' : P — Z; by I‘(?) = p1(antn + ap_12p_1+ -+ alxl,?) and note that also
F(?) = o1(bmal, + b1zl 1+ -+ blx’l,?), because MT(E, <z >, )U MT(Z,< z} >21)
is monochrome with respect to our given coloring. We show that A = {¢ € P : I'(¢) < 0} and
that 3 I'(¢) = —n. Since we can conclude similarly that A’ = {¢ € P : I'(¢) < 0} and
Z?GA' F(?) = —m, we will be able to conclude that n = m.

For each j € {1,2,...,n — 1}, let £(j) be the location of the rightmost nonzero digit of aj412;j41.
Then there is an ?j—gap of any + ap_12n_1 + ...+ a1z located at £(j). Consequently, given any
Te P,F(?) =pi1(antn + apn_12p_1+ -+ alxl,?)

=Ygz, )+ {ie{l,2,...,n—1}:

=i p1(ajzy, )+ {7 €{L,2,...,n—1}: ¢ =¢;}|.

If ¢ € A, then by Lemma 3.5, ¢ # ?j forany j € {1,2,...,n—1} s0 F(?) =—|{j€{1,2,...,n}:
c= g]}| by Lemma 3.6.

If ¢ = ¢, for some j, then ¢ ¢ A by Lemma 3.5s0 by Lemma 3.6, T'(¢) = [{ € {1,2,...,n—1} :
c=¢;}. HegAU{e; :je{1,2,...,n—1}}, then by Lemma 3.6, T(c) = 0. All conclusions

follow now. [ |

— —

We now turn our attention to ¢-tuples of gaps. In the next lemma we compute ¢ (a;2;, ?1, Cay.vny Cy)
and ¢4(a;z; + f(j),?l,?g, . ,?t). Note that the effect of adding f(j) is to install a d;-gap at ¢,
where £ is the location of the rightmost digit of ajz;. This lemma is the key to the success of our

construction.

3.8 Lemma: Let j € {1,2,....n}, let t € {1,2,...,n — 1} and let ¢4, ¢y,..., ¢y € P. Then
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—_ = —

pi(ajzj, c1,ca,..., Ct)

— = —

0if (c1,co,...,cy) #(dj, dj,...,

.l

i)
— — —

=4 -1lif(e1,ca,..., ct):(gj,gj,...,gj) and ¢ is odd

—_ = —

Lif (€1, Ca,..., o) = (dy, d;

JERREE)

.l

;) and t is even

and ¢ (a;z; + f(j),?l,?Q, . ,?t) =0.
Proof: We establish both statements by induction on ¢. For ¢ = 1, the first statement holds by

Lemma 3.6. For the second we have that

al

orlasay) i T #

c,ol(ajxj)+ 1 lf? = dj.

er(aje; + £(j), ©) = ’

Now let t € {2,3,...,n—1} and assume both statements are valid for t—1. Let £ = {(a1,a3a,...,0¢) €
IN':a; < as < --- < ay and for each i € {1,2,...,t}, a ?i—gap of ajzj41 + ajx; occurs at o;}. Let £
be the location of the leftmost nonzero digit of a;z; and let r be the location of the rightmost nonzero
digit of a;z;41. Note that r > £ 4 1.

Let A= {(a1,9,...,¢) € E: ay < {}.

For i € {1,2,...,t — 1}, let B; = {(a1,02,...,0;) € F : a; < £ and ;41 > r}. Let C =
{(a1,a2,...,0¢) € E: a1 =r} and let D = {(a1,a3a,...,a;) € E : ag > r}. Then the listed sets are
pairwise disjoint and £ = AU U;;%Bi ucub.

—

bad band . . .
Now |A| = ¢4(ajzj, c1, ¢a,..., cy), where this and other congruences in this proof are always

— —_ = —

mod k. Fori € {1,2,...,t—1}, |B;| = got_i(ajxj+1+f(j),?i+1,?i+2,..., ci)pilajzj, c1, ca,..., Cy),

for there is a dj-gap of ajz;41 + a;z; located at r and there is a dj-gap of a;z;41 + f(j) located

at r. If ¢ # dj, then C = 0. If Cy = dj, then |C| = got_l(ajxj+1,?2,?3,...,?t). Moreover,
|D| = got(ajxj+1,?1,?2,...,?t).

By the induction hypothesis we have for each i € {1,2,...,t—1} that |B;| = 0, since ¢;_;(a;zj41+

.

R — P— — — — _

f(4), ¢it1,...,¢¢) = 0. Then we have that if ¢, # dj, pi(ajzj41 + aj25,¢1,¢9,...,¢¢) =
-

— — — — — — = — —
pi(ajzj, cq1, ca,..., cy)+@i(ajzjqr, 1, €oy ..., cy) and if ¢y = dj, then py(ajzj11 + a5z, c1, ¢,
— _ — — — — — — — — — .
) =pi(ajry, cr,ca,. ., c)Fpio1(aTipa, €o, €3y, €o)F@i(ajTi41, €1, Ca, ..., €4). Since

— — — — — — — — —
pi(ajzjpr + ajxj, c1, Co,..., Cq) = @i(a;zj, c1,Co,..., 1) = @i(ajTjqp1, €1, Cay..., ¢y) and
—
— — — — — — —
pi_1(ajzjpr, o, C3,...,¢4) = pi_1(ajzj, co, c3,..., cy), we conclude that when ¢y # dj, then
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—

_
— — — . = — — — —_
pi(ajzj, ¢, ca,..., c¢) = 0 while if ¢1 = dj, ¢i(ajzj, c1, ¢a,..., ¢s) = —pr_1(ajzj, ca, ..., Ce).

Thus the first statement holds.

To establish the second equation note that if ¢; # gj, then ¢;(ajz; + f(j),?l,?g, . ,?t) =
@t(ajxj,?l,?g,...,?t) = 0. Thus assume ¢ = Ej. Then ¢q(ajz; +f(j),?1,?2,...,?¢) =
0i-1(a;2, €2, T3y, 1) + 0elajz;, T1, Cayonny Co). I (Cay Cayenn, o) # (dj, dy,y ..., dj), then
both of these last terms are 0. If (?2, Cs, ..., ?t) = (gj, Ej, . .,Et), one of them is 1 and the other
is —1. ]

From Lemma 3.8 we can read off the effect on a;z; of adding f(j — 1).

3.9 Lemma: Let j € {2,3,...,n}, let t € {1,2,...,n — 1} and let ¢y, ¢s,..., ¢y € P. Then

wilaje; + f(5 — 1),?1,?2, . ,?t)

1if(?l,??,...,?t):(d]',dj,...,dj) and t is even
—1if(¢1,¢a,...,¢s)=(dj,dj,...,d;) and t is odd
=4 -1 if(?l,?g,...,?t):(gj_l,dj,...,dj) and t is even

—_ =

lif(c1,¢a,...,¢1)=(€j_1,dj,...,d;) and ¢ is odd

0 otherwise.

Proof: Note that adding f(j — 1) installs an gj_l—gap at r where 7 is the location of the rightmost
nonzero digit of a;jz;. Then, if ¢, # gj_l, we have that ¢,(a;z; + f(t — 1),?1,?2,... ?,) =

)

—_ = — . e — — — = —

pi(ajzj, cq, ca,..., cy), while if ¢y = e;_; we have that ¢i(a;z; + f(t —1),cq1,ca,...,¢c¢) =
— — — . — — — .

pi_1(ajz;, cq, c3,..., cy), since py(ajz;, cq1,ca,...,c4) = 0. Then the conclusion follows from

Lemma 3.8. ]

We will apply the information we have learned in Lemmas 3.6 to 3.9, by starting with the case
t=1.

—

¢)

3.10 Lemma: Let j € {1,2,...,n} and let ¢ € P. Then oi1(ajz; +aj_qxj_q + -+ ayzq,

[ief{l,2,...,j}:C=di}|ifceA
Hie{1,2,...,j—1}:¢c ="¢;}|if ¢ =€, for

some i € {1,2,...,5—1}

0 otherwise.
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Proof: If r(7) is the location of the rightmost nonzero digit of a;412;41 then foreachi € {1,2,...,j—
1}, there is an ?i—gap of ajz; + aj_1zj_1 + - + a1x1 located at r(7). Consequently, ¢1(a;z; +
aj_1Zj_1+ -+ alxl,?) = 25:1 ¢1(aimi,?) +{ie{l,2,...;5—1}: c = ?Z}| Then Lemma 3.6

applies. ]

We now turn to general ¢-tuples of gaps. In the following two lemmas we will see the importance
of Lemma 3.8.
3.11 Lemma: Let j € {1,2,...,n}, lett€{1,2,... . n—1}andlet ¢y, ¢y,..., ¢; € P.
(a) If py(ajz; + aj_1zj_1 + -+ ar 21, Ci,¢Ca,... ,?t) # 0, then either

(1) {¢1,¢a,..., ci}NA#B, or

(2) There exist 1 < £(1) < £(2) < ... < £(t) < j such that for each i € {1,2,...,t},¢; = Eg(i).

(b) If (a)(2) holds and ¢t = j — 1, then ¢y(ajz; + aj_1zj_1 + - -+ ai1z1, €1, Coa,.. .,?t) =1.

Proof: We proceed by induction on min{j,¢}. If j = 1 (in which case ¢t # j—1) this is a consequence
of Lemma 3.8. If ¢ = 1 this is a consequence of Lemma 3.10. If (a)(2) holds and ¢ = j — 1, one has
j=2so0|{i€f{l,2,....j—1}:c="¢;} =1

Now assume min{j,t} > 1 and the lemma is true for smaller values. We proceed as in the
proof of Lemma 3.8. Let £ = {(a1,a2,...,0¢) € N’ : @ < as < -+ < a; and for each i €
{1,2,...,t}, a zi—gap of ajz; + aj_1xj_1 + --- + a121 occurs at a;}. Let £ be the location of the
leftmost nonzero digit of a;_;z;_1 and let r be the location of the rightmost nonzero digit of a;z;.
Let A= {(a1,9,...,¢) € E: ay < {}.

For i € {1,2,...,t — 1}, let B; = {(a1,a3,...,0¢) € E : a; < Land ;41 > r}. Let C =
{(a1,a2,...,a¢) € E : a1 = v} and let D = {(a1,a2,...,a¢:) € E : a; > r}. Then the listed
sets are pairwise disjoint and £ = AU UE;%BZ' UCUD. Then |A] = gi(aj_1zj_1 + aj_szj_s +

cday®1, €1, €y, cq). Fori €{1,2,... t =1}, |Bi| = pi_iaje; + f(G— 1), Cig1, Ciga,eor C1) -

vi(aj_1zj_1 + aj_2zj_9 + -+ a121, c1, Ca, ..., ¢;), since ajz; + f(j — 1) and ajz; + aj_125-1 +

---+4 ajz; both have an gj_l—gap at r.

If ¢, # gj_l, then we have that |C| = @t(djﬁj,?l,??,...)?t), and if ¢; = ?j_l, then
|C| = @t_l(ajxj,zg,zg,...,?t) +<pt(ajxj,?1,?2,...,?t). And |D| = got(ajxj,?l,?g,...,?t).

Assume first that ,(ajz;+a;_12; 1+ -+ajzq, €1, Ca,.. ., ?t) # 0 and that {?1,?2, . ,?t}ﬂ

A = (). Then by Lemma 3.8, |C| = 0 and |D| = 0. If |A| # 0, we have by the induction hypothesis that
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—

there exist 1 < £(1) < £(2) < --- < £(t) < j—1 such that for each i € {1,2,...,t}, we have ¢; = € 1(i)-
Since then £(¢) < j, conclusion (2) holds. Now assume |A| = 0. Then for some 7 € {1,2,...,t — 1} we
must have |B;| # 0 so that, in particular, ¢;_;(a;z; + f(j—1), ?i+1,?i+2, . ,?t) # 0. By Lemma 3.9
theni=t¢—1and ¢; = ?j_l. Then also ¢;_1(aj_12j_1+aj_2zj_2+- - ~+a1x1,?1,?2, ... ,?t_l) #0
so by the induction hypothesis there exist 1 < (1) < --- < £(t — 1) < j — 1 such that for each
i€{1,2,...,t =1}, ¢, = €. Letting £(t) = j — 1, we see that conclusion (2) holds.

Turning to (b), assume that (2) holds and that ¢ = j—1. Then since 1 < £(1) < £(2) < --- < £(t) <
j we have for each i € {1,2,...,t} that £(i) = i. We have by Lemma 3.5 that {¢1, c2,..., ¢:}NA = 0.
Then by Lemma 3.8 |C| = |D| = 0. If we had |A| # 0 we would have by the induction hypothesis
some 1 < (1) < £(2) < --- < #(t) < j— 1 which is impossible since ¢t = j — 1. Further, if

i € {1,2,...,t — 2} we have by Lemma 3.9 that ¢, ;(ajz; + f(j — 1),?i+1,?i+2,..., ct) = 0.

Thus we must have ¢;(ajz; + aj_12j-1 + -+ + alxl,?l,?g, . ,?t) = ¢1(ajz; + f(j — 1),?]'_1) .
wio1(aj_1zj_1+aj_sxj_o+- - Farx, _6'1,_6'2, o ,gj_g). The first of these terms equals 1 by Lemma
3.9 and the second equals 1 by the induction hypothesis. ]

— — —
€

3.12 Lemma: (e, es,...

—

n) = (?’1, ey, ..., en)and g(1) = ¢'(1).

Proof: First ¢(1) = p(aiz1) = p(an@n + an_1Zpn_1 + -+ a121) = p(bpz) + by_12,_; + -+
bizt) = p(biz}) = ¢'(1). By the dual of Lemma 3.11 we have ¢,_1(bpz}, + bp_12, 1 + -+ +

blxg,E'g,E';,...,E';_l) =1.

Since pp_1(an®n + @n_1Zn_1+ -+ alxl,g’l,g’z, . ,E”n_l) = pn_1(bpzl, + bp_1zl,_ 1+ -+
blx’l,gll,?g,...,z;_l),we have by Lemma 3.11 that either {?’1,?’2,...,?;_1}0A¢ 0 or (?’1,3’2,...,
el )=(€1,€9,...,€n 1).

By the dual of Lemma 3.5, {€},¢5,..., e¢._,} N A’ = 0, while by Lemma 3.7, A = A’. Thus
(e}, ¢b, ..., el _)=(€1,€a,..., €n_1) as required. [ |

The following lemma completes the proof of Theorem 3.3.
3.13 Lemma: a ~ ;

Proof: By Lemma 3.12 we have that for each j € {1,2,...,n},9(j) = ¢'(j). Tt suffices to show that
for j € {1,2,...,n — 1} we have bj1/aj41 = b;j/a; (for then, letting o = b; /a; we have b= aa).
Solet j € {1,2,...,n —1}. Let d = p(z1) and let d' = p(z}). Then (with congrence mod p) we
have b;d’ = p(b;z}) = ¢'(j) = 9(j) = p(ajz1) = a;d and similarily b;,d" = aj41d. Thus aj4q1b;d" =
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ajy1a;d = ajbj11d so by cancellation we have a;j41b; = ajbj41. Since p > max{a;j41b;,a;bj41} we

must then have that a;j116; = a;bj41 so that bj/a; = bj1/aj41. [ |

In the proof of Theorem 3.3 we used (p — 1) - k* colors, where o = Z?:_f p'(p — 1)?. In other
words, to distinguish between @ and ;, where the longer of the lengths of @ and ; is n and their

maximum entry is M, we needed of the order of nM°" colors. We now show that to distinguish a and

7{, where a % 7{, two colors will do. In fact, more generally we have the following result:

3.14 Theorem: Let a(1),a(2),..., d(r) be finite sequences such that a (i) % a(j) whenever i # j.
Then there is a partition IN = UJ_; A; such that whenever ¢,j € {1,2,...,7} and < 2, >2, is a

sequence in IN with MT(?[(Z'), <z, >n2,) C Aj one has i =j.

Proof: By Theorem 3.3 there is for each i # j a finite coloring which distinguishes between
MT(a(i),< z, >22,) and MT(da(j),< yn >52,) whenever these are both monochrome. Conse-
quently, by taking a common refinement, there is a partition IN = U;_; B; such that there do not
exist 7 # jin {1,2,...,r},t € {1,2,...,s} and sequences < z, >3, and < y, >52, in IN with
MT(3(0), < n >320) UMT(G(§), < yn >52,) C B

For each i € {1,2,...,r — 1} let A; = U{B; : t € {1,2,...,s} and there exists < z,, >52; with
MT(a(i),< xn >5%, ) C Bi}. Let A, = N\ U/Z} 4; and note that A, D U{B; :t € {1,2,...,s} and
there exists < z, >, with MT(a (i), < 2, >52,) C B} (some B;’s may contain no Milliken-Taylor
systems). Then IN = LTJizlAi, solet 7,5 € {1,2,...,r} and assume we have a sequence < y, >3,

with MT(a (i), < yn >22,) € A;}. Then MT(a (i), < yn >22,) CU{B; : t € {1,2,...,5} and B, C

A;}. Thus by Corollary 2.6 we may pick < z, >02, and ¢t € {1,2,...,s} such that B, C A4; and

MT(a(i),< &n >2,) C B;. Then B; C A;, s0i = j. [

n=1

4. Separating Kernel Partition Regular Systems. In this final section we turn our attention
to kernel partition regularity. Recall from the Introduction that a matrix A (with only finitely many
non-zero entries on each row) is said to be kernel partition regular if, whenever IN is partitioned into
finitely many classes, there is a vector = with all its entries in the same class such that Az = 6
Our aim in this section is to exhibit kernel partition matrices A and B such that the diagonal
matrix formed by A and B is not kernel partition regular. In other words, there is a partition of IN

into finitely many classes such that whenever Az = 0 and By = 0 we cannot have all entries from 7
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and y belonging to the same color class. It follows that there is no ‘universal’ kernel partition regular
system, and in particular that (m,p,c)-systems are not universal for kernel partition regularity.
Given a matrix A, let us define a matrix A’, representing the linear dependence of the rows of
A, as follows. Let the rows of A be {?l 1€ I}. Choose a maximal linearly independent (over Q)
set of these rows: say {?] tJE J}. Thus, for each 7 € I'\ J, we may write T; as a rational linear

combination of the ?j: say

=Y g7,

jed
where each ¢; € Q and only finitely many of the ¢; are non-zero. We now let A’ be the matrix whose
rows are indexed by I\ J and whose columns are indexed by I, with
q;(2) ifje]
A;»J» = —1 ifj=1
0 otherwise.

It is immediate that if A is partition regular then A’ is kernel partition regular. Indeed, given a
finite coloring of IN, choose an integer vector Z with A7 monochromatic, and set y; = (Az)Z Then
by the definition of A’ we have A’y = 0.

In the converse direction, suppose that A’ is kernel partition regular. Given a finite coloring of
IN, choose a monochromatic vector y with A’y = 0. Then any vector satisfying (AE:)]» = y; for all
j € J also satisfies Az = y. It follows that we may find a vector z, with all its entries rational, such
that A7 is monochromatic — indeed, to solve (A;)j =y; for all j € J we are merely solving a family
of linearly independent rational equations. So A is ‘close’ to being partition regular.

We are now ready for our main result.

4.1 Theorem: There exist kernel partition regular matrices A and B, and a finite coloring of IN,
such that if Az = 0 and By = 0 then z and y cannot have all entries belonging to the same color

class.

Proof: Choose matrices A and B that generate the Milliken-Taylor systems for the sequences (1) and
(1,2) respectively (these two sequences are just chosen for convenience). Then A and B are partition
regular (by Theorem 2.5), and so the matrices A’ and B’ formed as above are kernel partition regular.

We claim, however, that the diagonal matrix formed from A’ and B’ is not kernel partition

regular. Indeed, choose a coloring of IN that separates A from B (this is possible by Theorem 3.3),
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and suppose that there are vectors Z and Z, with all entries in the same class, such that Az =0
and B’y = 0. Then, by the above remarks, there are rational vectors 7 and w with all entries of AZ
and Bw belonging to the same color class.

Now, each entry of Z is also an entry of AZ, and so in fact each entry of Z is an integer. Also,
for any ¢ > 2, both w;_; + w; + 2w;4+1 and w;_1 + 2w; + 2w;41 are entries of BE, and so w; 1s an
integer. However, this contradicts the choice of the coloring. ]

We remark that it would not be very pleasant to write down explicitly the matrix B’ in the above

example.
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