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Infinite Partition Regular Matrices, 11
— Extending the Finite Results

Neil Hindman!
and

Dona Strauss

Abstract. A finite or infinite matrix A is image partition regular provided that when-
ever N is finitely colored, there must be some ¥ with entries from N such that all
entries of AZ are in the same color class. Using the algebraic structure of the Stone-
Cech compactification AN of N, along with a good deal of elementary combinatorics, we
investigate the degree to which the known characterizations of finite image partition
regular matrices can be extended to infinite image partition regular matrices. We also
describe new ways of constructing infinite image partition regular matrices.

1. Introduction

In 1993 several characterizations of finite image partition reqular matrices were obtained
[5]. A uw x v matrix A is image partition regular if and only if whenever » € N and
N = |J;_, C;, there must exist i € {1,2,...,r} and & € N’ such that A7 € C;*. (Here
and elsewhere we use the & notation for both column and row vectors, expecting the
reader to rely on the context to tell which is intended.) More recently, in [6], several
additional characterizations of finite image partition regular matrices were obtained.
Image partition regular matrices are of special interest because many of the classical
theorems of Ramsey Theory are naturally stated as statements about image partition
regular matrices. For example, Schur’s Theorem [11] and the length 4 version of van

der Waerden’s Theorem [12] amount to the assertions that the matrices
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are image partition regular.

The notion of image partition regular matrices extends naturally to infinite w x w
matrices, provided the matrix has only finitely many nonzero entries in each row. (Here
w, the first infinite cardinal, is also the set of nonnegative integers. We take N to be the
set of positive integers.) These matrices also occur naturally in Ramsey Theory. For
example, the Finite Sums Theorem (see [4, Theorem 3.15] or [9, Corollary 5.9]) is the

assertion that the matrix

RO O kO
= O == O
= O OO

(whose rows are all vectors with entries from {0, 1} with only finitely many 1’s and not
all 0’s) is image partition regular.

Previous results in [2] and [7] have shown that none of the simple characterizations
of finite image partition regular matrices apply to infinite matrices. In this paper we shall
be concerned with the extent to which the known results about finite image partition
regular matrices can be extended.

Several characterizations of finite image partition regular matrices involve the no-
tion of a “first entries matrix”, a concept based on Deuber’s (m,p,c) sets. We follow
here, and elsewhere, the custom of denoting the entries of a matrix by the lower case

letter corresponding to the upper case letter denoting the matrix.

1.1 Definition. Let A be a u x v matrix with rational entries. Then A is a first entries
matriz if and only if no row of A is 0 and there exist dy,ds, ... ,d, € {zreQ:x>0}
such that, whenever ¢ € {1,2,...,u} and [ = min{j € {1,2,...,v} : a; ; # 0}, one has
a;; = d;. If there exists ¢ € {1,2,...,u} such that | = min{j € {1,2,...,v} : a; ; # 0},
then d; is a first entry of A.

A u x v matrix A is kernel partition regular if and only if whenever » € N and
N = J/_, Ci, there must exist i € {1,2,...,7} and Z € C;” such that AZ = 0. In 1933
R. Rado showed that A is kernel partition regular if and only if A satisfies a computable
property called the columns condition. One of the characterizations of finite image
partition regular matrices converts the problem into the determination of whether a

certain matrix is kernel partition regular, thereby allowing the use of Rado’s Theorem.
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1.2 Definition. Let u,v € N, let A be a u x v matrix with entries from Q, and let
C1,C3,...,Cy be the columns of A. The matrix A satisfies the columns condition if and
only if there exist m € N and Iy, Io, ..., I,, such that
(1) {L,12,...,I,} is a partition of {1,2,...,v},
(2) Yier, @ = 0, and
(3) if m > 1 and t € {2,3,...,m}, then } ., ¢ is a linear combination of
{@:ieU_i L}
It is not hard to show that the u x v matrix A satisfies the columns condition if
and only if there exist m and a v x m first entries matrix B such that AB = O, where

O is the © x m matrix with all zero entries.

1.3 Theorem (Rado). Let u,v € N and let A be a u X v matriz with entries from Q.

The matrixz A is kernel partition reqular if and only if A satisfies the columns condition.
Proof. [10]. Or see [4, Theorem 3.5] or [9, Theorem 15.20]. O

Some of the known characterizations of finite image partition regular matrices in-
volve the notion of central sets. Central sets were introduced by Furstenberg [3] and
defined in terms of notions of topological dynamics. These sets enjoy very strong com-
binatorial properties. (See [3, Proposition 8.21] or [9, Chapter 14].) They have a nice
characterization in terms of the algebraic structure of SN, the Stone-Cech compactifica-
tion of N. We shall present this characterization below, after introducing the necessary
background information.

Let (S,+) be an infinite discrete semigroup. We take the points of 35S to be the
ultrafilters on S, the principal ultrafilters being identified with the points of S. Given
aset ACS, A={pecpBS:Acp}l Theset {A: A C S}is a basis for the open sets
(as well as a basis for the closed sets) of 35.

There is a natural extension of the operation + of S to 84S making 55 a compact
right topological semigroup with S contained in its topological center. This says that for
each p € 8S the function p, : 8S — (S5 is continuous and for each x € S, the function
Az : 38 — (BS is continuous, where p,(q) = ¢ + p and A\;(¢) = x + q. We are denoting
the operation by + because we shall be primarily concerned with the semigroup (N, +).
However, the reader should be cautioned that, even if the operation on .S is commutative,
it is very unlikely to be commutative on (3S. See [9] for an elementary introduction to
the semigroup (S.

Any compact Hausdorff right topological semigroup (7', +) has a smallest two sided
ideal K (T") which is the union of all of the minimal left ideals of T, each of which is closed
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[9, Theorem 2.8|, and any compact right topological semigroup contains idempotents.
Since the minimal left ideals are themselves compact right topological semigroups, this
says in particular that there are idempotents in the smallest ideal. There is a partial
ordering of the idempotents of T" determined by p < ¢ if and only if p = p+q¢ = g+p. An
idempotent p is minimal with respect to this order if and only if p € K(T) [9, Theorem

1.59]. Such an idempotent is called simply “minimal”

1.4 Definition. Let (S,+) be an infinite discrete semigroup. A set A C S is central if

and only if there is some minimal idempotent p such that A € p.

See [9, Theorem 19.27] for a proof of the equivalence of the definition above with

the original dynamical definition.

We present now most of the known characterizations of finite image partition reg-
ular matrices. We write Q1 for {z € Q : z > 0}.

1.5 Theorem. Let u,v € N and let A be a u X v matriz with entries from Q. The

following statements are equivalent.

(a) A is image partition reqular.

(b) For every central set C in N, there exists ¥ € N' such that AT € C".

(c) For every central set C in N, {Z € N" : such that A¥ € C"} is central in N".
(d) There exist t1,to,...,t, € QT such that the matriz

tlal,l t2a1,2 t3a173 e tvCLLU —1 0 0 e 0
tlag’l t2a272 t3a273 . tvagw 0 -1 0 . 0
M = t1a371 t2a372 t3a373 . tvag,ﬂ, 0 0 -1 . 0
tlawl tQCL%Q tgau73 . tUCLu7v 0 0 0 oo —1

15 kernel partition regular.

(e) There exist by, b, ... b, € QT such that the matriz

by 0 O ... O
0 b 0 ... 0
0O 0 b3 ... O
N = A A :
0O 0 0 ... b
A

s 1mage partition reqular.



(f) There exist t1,ta, ..., t, € QT such that the matriz

1 0 0 0

0 1 0 0

0 0 1 0

p 0 0 0 . 1
| tiarn tearp tzarz ... tuaiy
tiaz1 toaz tzazsz ... tyaoy
tiaz  t2az2 t3azz ... tyasy
t1Gy,1 12042 13043 ... TyQyuy

18 1mage partition reqular.

(9) There exist m € N and a u x m first entries matriz B such that for each ij € N™
there exists ¥ € NV such that AT = Byj.

(h) There exist m € N, a u x m first entries matriz B with all entries from w, and
¢ € N such that ¢ is the only first entry of B and for each ij € N™ there exists
Z € NY such that A¥ = By.

(i) There exist m € N, a v x m matrix G with entries from w and no row equal to 6,
and a u X m first entries matrix B with entries from w such that AG = B.

(j) For each 7 € Q"\{0} there exists b € Q\{0} such that

(%)

(k) Whenever m € N, ¢1,¢9,...,¢, are non zero linear mappings from QY to Q,
and C' is central in N, there exists T € N" such that AZ € C" and, for each
i€ {1,2,....,m}, ¢:i(%) £ 0.

(1) For every central set C' in N, there exists T € N such that ¥ = Az € C*, all entries

1 1mage partition regqular.

of  are distinct, and for all i,j € {1,2,...,u}, if rows i and j of A are unequal,
then y; # ;.
Proof. [6, Theorem 2.3]. 0
It is an immediate consequence of Theorem 1.5(b) that whenever A and B are finite
image partition regular matrices, so is é g , where O represents a matrix of the

appropriate size with all zero entries. (This fact was first established by W. Deuber in
[1].) However, it is a consequence of [2, Theorem 3.14] that the corresponding result

is not true for infinite image partition regular matrices. (Technically, if A and B are
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A
O B

distinction, and we shall ignore it.)

w X w matrices, then is an (w+w) X (w+w) matrix. This is not a substantive

Inspired by this distinction and by the condition of Theorem 1.5(1), we introduced
in [7] the notions of “centrally image partition regular” matrices and “strongly centrally

image partition regular” matrices.

1.6 Definition. Let A be an w X w matrix with entries from Q.

(a) The matrix A is centrally image partition regular if and only if for every central
subset C' of N there exists ¥ € N such that A¥ € C¥.

(b) The matrix A is strongly centrally image partition regular if and only if for every
central subset C' of N there exists ¥ € N such that A7 € C¥ and entries of A¥

corresponding to distinct rows of A are distinct.

In Section 2 we show that there are severe limitations on the combinations of row
patterns that occur often in infinite image partition regular matrices.

In Section 3 we investigate an infinite analogue of the notion of first entries matrix
and the extent to which analogues of the implications in Theorem 1.5 hold.

In Section 4 we present some classes of matrices that are to be image partition
regular, as well as methods of constructing such matrices from known image partition

regular matrices.
2. Digit Patterns in Rows

In [2] it was shown that matrices with positive digits occurring in a fixed pattern are
image partition regular, and in [7] this result was extended to allow negative entries.
(See Theorem 2.2 below.) In this section we show that there are severe restrictions on

the combinations of digit patterns that can occur in image partition regular matrices.

2.1 Definition. Let ¥ € Z*. Then

(a) d(Z) is the sequence obtained by deleting all occurrences of 0 from &

(b) ¢(Z) is the sequence obtained by deleting every digit in d(&) which is equal to its
predecessor; and

(c) & is a compressed sequence if and only if & = ¢(Z).

For example, if # = (—1,0,-1,3,0,2,2,0,2,0,0,...), then d(¥) = (-1,-1,3,2,2,2)
and ¢(Z) = (—1,3,2).



2.2 Theorem. Let @ be a (finite) sequence in Z\{0} such that ¢(@) = @ and the last
entry of @ is positive. Let A be an w X w matrixz such that for each row 7 of A, ¢(7) = d.

Then A is image partition reqular.
Proof. This is [2, Theorem 2.5] and [7, Corollary 3.6]. O

2.3 Lemma. Let k,m € w, let {ag,a1,...,ax) € (Z\{O})FTL, let (by,b1,...,bn) €

(Z\{0})™ "L, and let A be an w x w matriz with the property that every Z € Z° such

that d(Z) = @ or d(Z) = b occurs as a row of A.

(i) If there exists ¥ € N¥ such that all entries of AZ are in N and {z, : n € w} is

bounded, then 35 a; > 0 and 37 b > 0.

(ii) If there exists & € N* such that all entries of AZ are in N and {x,, : n € w} is
unbounded, then ap > 0 and b,, > 0.

(15i) If ap # by, then there is a coloring of N (with at most 3 colors) such that there is
no & € N¥ with all entries of AT monochrome and {x,, : n € w} unbounded.

() If Zf:o a; # > ity bi, then there is a coloring of N (with at most 2 colors) such that

there is no & € N* with all entries of AT monochrome and {x, : n € w} bounded.

Proof. Let | = max{k,m}.

(i). Pick ng < m; < ... < my and v with z,, = z,, = ... = z,, = v. Then
S iz, = (X a) v and 7 b, = (37, bi) - v are entries of AZ and so are
in N.

(ii). Pick n > such that

x, > max{aoro + a1y + ... + ax—1Tk—1,b0r0 + b1x1 + ...+ bp_1Tm-1}.

Then apzg + @121 + ... + ap—1%rp—1 + apx, and boxrg + bix1 + ... + byp_1Tp—1 + binTn
are entries of AZ and so are in N.
(iii). If either ax < 0 or b,, < 0, then by (ii) a single color will do. Therefore we

assume that ax > 0 and b,, > 0. We assume without loss of generality that ap < b,,

and pick o € R such that 1 < a < Om < o and define ¢ : N — {0,1,2} so that
o(z) = |log, x| (mod 3). Suppose thata\’fve have Z € N“ such that the entries of AZ are
monochrome and {z,, : n € w} is unbounded.

Let w = max{|apxo +a1x1 + ...+ ag—12k—1], |boxo + b1x1 + ... + bppo—_1Tm-1|}. (Of
course, if say k = 0, then apxg + a121 + ... + ag—12x—1 = 0.) Pick n > [ such that
(a+1) w (1+a2)-w}

b, — aa = arc? —b,, |

Tp > mMax {w,
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We have that agzg+ai1x1+...+ap_125_1+arx, and bgxg+bix1+...+bpm_1Tk_1+bmx,
are entries of AZ. Pick t, s € Nsuch that of < agzo+aiz1+. . .+ap_125—1+apz, < alt!
and a® < boxg +b1x1 + ... +bp1Tk—1 + bz, < a*tL. Then t = s (mod 3). Now by

the choice of z,,,

—w + bypx
W+ ATy
< box() + bl.ilfl + ...+ bmfll‘kfl + meL’n
T apxot+ a1+ ...+ ap_1Tp_1 + apxy,
w + by, x
< — M~ o’

—W + ATy
and so ot < bozo+b1z1+ ... Fbm1Tk-1+bmTy, < '3 Thus s =t+1ors=1t+2,
a contradiction.

(iv). If either Zf:o a; < 0or X" b; <0, then by (i) a single color will do. So
assume that Z?:o a; > 0 and Y ;" b; > 0. Assume without loss of generality that
Z?:o a; < Yoi b and let
Z;‘io bi
Zf:o ai
Define ¢ : N — {0,1} so that ¢(x) = |log, x| (mod 2). Suppose that we have ¥ € N¥

such that the entries of AZ are monochrome and {z, : n € w} is bounded. Pick ng <

o =

ny < ... <ngand vsuch that z,, = z,, = ... = x,, =v. Then Zf:o ATy, = U-Zfzo a;
and Y7 by, = v-37", b; are both entries of A% and p(v-31" bi) = @(v-3F_ a;)+1,
a contradiction. O

2.4 Theorem. Let k,m € w, let {ag,ai,...,a;) € (Z\{0})¥*TL, let (by,b1,...,by) €
(Z\{0})™*L, and let A be an w x w matriz with the property that every Z € Z* such
that d(Z) = @ or d(Z) = b occurs as a row of A. If A is image partition regular, then
either ap = b,, > 0 or Zf:o ai =y ob; > 0.

Proof. By Lemma 2.3(iii) and (iv), either a = by, or Y% a; = Y7 by

Assume first that ax = b,, < 0. Then by Lemma 2.3(i) and (ii), Zf:o a; > 0
and Y27 b; > 0. Suppose that 32  a; # Y7, b; > 0 and pick a coloring of N as
guaranteed by Lemma 2.3(iv). Pick & € N* such that the entries of AZ are monochrome.
Then by Lemma 2.3(iv), {z, : n € w} is unbounded so by Lemma 2.3(ii) a; > 0 and
br > 0, a contradiction.

The assertion that Z,’fzo a; = Y i o bi <0 is handled similarly. O

2.5 Theorem. Let k,m € w, let (ag,ar,...,a) € (Z\{O}) 1 with S-F_ a; # 0 and
let (bo,b1,...,by) € (Z\{0})™H with Y ;" b; #0. Let A be an w X w matriz with the
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property that every Z € Z* such that d(Z) = @ or d(2) = b occurs as a row of A. If A is

image partition reqular, then either ag = by or Zf:o a; =Y b
Proof. Let | = max{k,m}. Pick a prime

k k
r> max{|a0|, |b0’7 ’ao - bO’, ’ Zi:o ai’? ’ 2;10 bz’a ’ Zi:O a; — Z:io bl‘} .

For each z € Z\{0}, let v(z) = max{t € w: z € r'Z} and pick f(z) € {1,2,...,r — 1}
such that % = f(z) (mod r). (Thus f(x) =j €{1,2,...,r — 1} if and only if there
is some z € Z such that = z- 7@+ 4 5. 7)) Observe that for any = € Z\{0} and
any c € {1,2,...,r =1}, f(c-z) =c- f(x) (mod r).

Pick ¥ € N* such that the entries of AZ are monochrome with respect to f. Assume
first that {y(z,) : n € w} is unbounded. Let t = y(xg) and pick n; < ny < ... < my
such that vy(z,,) > t for each ¢ € {1,2,...,1}. Let j = f(xo). Then f(aoxo + a1x,, +
oot agzy,) =ao-j (mod r) and f(boxo 4+ b12pn, + ... + by, ) =bo-j (mod r). Since
apxo + a1%n, + ... + agxy, and bozo + bi1xp, + ... + byxy,, are entries of AZ, we have
that ag-j =bg-j (mod r). Since r > |ag — bg|, we have that ag = bo.

Now assume that {v(x,) : n € w} is bounded. Pick by the pigeon hole principle
tew,je{l,2,...,r =1}, and np < ny < ... < n; such that y(z,,) = vy(zp,) = ... =
Y(zpn,) =t and f(zn,) = f(@n,) = ... = f(xn,) = j. Fori e {0,1,...,1} pick y; € Z
such that z,, = y; - "1 + j - rt. Then

S i, = (O a) rt (0 @) gt

Since Z?:o a; # 0 and 7 > |Zf:0 a;| we have that f(Zf:O a;iTy,) = (Zf::o a;) - j
(mod 7). Similarly f(X 7, bizn,) = (X0 bi) -7 (mod 7). Since ¥ asz,, and
S bizy, are entries of AZ, we have that (Zf:o a;) 7= b;i) - j (mod r). Since
r>| Zf:o a; — >t o bi|, we have that Zf:o a; = iv o bi O

2.6 Corollary. Let k,m € w, let (ag,a1,...,ar) € (Z\{0})**! with Z?:o a; # 0 and
let (bg,b1,...,by) € (Z\{0})™H with ;" b; #0. Let A be an w X w matriz with the
property that every 7 € Z* such that d(Z) = @ or d(Z) = b occurs as a row of A. If A is

image partition regqular, then either
(i) ag = by and a, = b, >0 or

. k m
(11) > i g@i =Y i ¢ bi
Proof. This follows immediately from Theorems 2.4 and 2.5. U
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3. Segmented Image Partition Regular Matrices

We know that a verbatim extension of “first entries matrix” to infinite matrices will
not necessarily produce even image partition regular matrices. (If 7= (1,0,0,...) and

A is a matrix whose rows are all rows @ € Q% with only finitely many nonzero entries

—

such that ¢(@) = (1,2), then ( '

A) is a first entries matrix while by [7, Theorem 2.1],

A
first entries matrix does turn out to be useful.

(T > is not image partition regular.) However, a restricted version of the notion of

3.1 Definition. Let A be an w X w matrix with entries from Q. Then A is a segmented
image partition reqular matriz if and only if

(1) no row of A is 0;

(2) for each i € w, {j € w:a;; # 0} is finite; and

o0

(3) there is an increasing sequence (a,)o2

in w such that ag = 0 and for each n € w,

{<ai,an7 Qi +15 Qi o +25 - - - 7ai,an+1*1> S w}\{a}

is empty or is the set of rows of a finite image partition regular matrix.
If each of these finite image partition regular matrices is a first entries matrix, we shall
say that A is a segmented first entries matriz. If also the first nonzero entry of each
(@i, s Qiyevn+15 Qi 425 - - - > Giyan sy —1), i any, is 1, then A is a monic segmented first

entries matrix.

Any finite sums matrix is an example of a segmented first entries matrix. Other

examples are the matrices generating the (M,P,C)-systems of [8].

3.2 Theorem. Let A be a segmented image partition reqular matriz. Then A is strongly

centrally image partition reqular.

Proof. Let ¢j,c1,¢3,. .. denote the columns of A. Let (a,,)72, be as in the definition
of a segmented image partition regular matrix. For each n € w, let A,, be the matrix
whose columns are C,,,, Ca, 415 - - - » Ca, i —1- Lhen the set of non-zero rows of A, is finite
and, if non-empty, is the set of rows of a finite image partition regular matrix. (Notice
that we are not saying that A, has only finitely many nonzero rows; just that there are
only finitely many distinct rows of A,,.) Let B, = (Ag 41 ... A,).

Let C be a central subset of N and let p be a minimal idempotent in SN such
that C € p. Let C* = {n € C : —n+ C € p}. Then C* € p and, for every n € C*,
—n+ C* € p by [9, Lemma 4.14].
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By Theorem 1.5(1), we can choose Z (%) € N*'~% guch that, if 7 = AgZ (), then
y; € C* for every i € w for which the i*" row of Ay is non-zero, and entries of § which

correspond to unequal rows of Ay are distinct.

We now make the inductive assumption that, for some m € w, we have chosen

f(o),f(l),...(,:)f’(m) such that £ € N*+1~% for every i € {0,1,2,...,m}, and, if
= (0
X
ZzM)
iy = B, : , then y; € C* for every j € w for which the ™ row of B,, is non-
7(m)

zero. We also suppose that entries of ¢ which correspond to unequal rows of B, are
distinct.

Let D = {j € w : row j of By, +1 is not 6} and note that for each j € w, —y,; +C* € p.
(Either y; = 0 or y; € C*.) Let | = max{y; : i € w} + 1 and note that NI € p by 9,
Lemma 6.6]. Thus by Theorem 1.5(1) we can choose Z(™*1) € N*m+2=%m+1 gych that, if
7= Ay Z™FD then z; € NIN,ep(—y: +C*) for every j € D, and z; # 2 whenever
rows j and k of A,, 1 are distinct and not equal to 0. Because each z; € NI, we also

have that y; + z; # yx + 2, whenever j, k € D and rows j and k of By, are distinct.
Thus we can choose an inﬁniteé )sequence (f(i)>i€w such that, for every i € w,
= (0
X
| 7
£ e N¥+17% and, if y = B; : , then y; € C™* for every j € w for which the
f'(i)

4§ row of B; is non-zero. Furthermore, entries of ¢ which correspond to distinct rows

of B; are distinct.

Z(0)
z @
Let £ = | z(2 | and let ¥ = AZ. We note that, for every j € w, there exists
Z(0)
ZzM
m € w such that y; is the ™ entry of B; : whenever ¢ > m. Thus all the entries
2 ()
of y are in C* and entries which correspond to distinct rows are distinct. U

We set out to show that analogues of some of the implications of Theorem 1.5 can
be established. The next result shows that the analogue of Theorem 1.5(f) is valid for

segmented image partition regular matrices.

3.3 Theorem. Let A be a segmented image partition reqular matriz with columns

11



€0, C1,Ca, ... . Then there exist a sequence (sp)52 in Q" such that the matriz

1 0 0
$0a0,0 S1Q0,1 S200,2
0 1 0
R =
Spa1,0 S14a1,1 S201,2

0 0 1

is a segmented image partition reqular matrix. If A is a segmented first entries matriz,
then R can be chosen to be a monic segmented first entries matriz. If, in addition, A

is momnic, then this occurs with s, = 1 for every n.

Proof. The conclusions in the last two sentences of the theorem are immediate.
Now assume that A is simply a segmented image partition regular matrix and let
(an )22y be as guaranteed by Definition 3.1. For each n, let B,, be a u(n) x v(n) image

partition regular matrix such that

{<ai70¢n y Ai o +15 Qi oy 425+ + - 9 ai7an+1_1> S w}\{ﬁ}

is contained in the set of rows of B,,, where v(n) = a;,+1 — . Denote the entry in row i

and column j of B,, by bl(-f;-). By Theorem 1.5(f), pick for each n a sequence <t§-n)>§(:%)_1

such that the matrix

1 0 0 0
0 1 0 0
0 0 1 0
Cn = (>O<> ()O() <>O() <>1<>
" to bo,o t bO,l 12) bo,2 tv(n)bO,U(n)
tgmbg?jg tﬁ”)bﬁ) tg">b§72) o tgyg)bgﬁg(n)
(n); (n) (n) () (n) () T 0
to bu(n),O ty bu(n),l t bu(n),Q T tv(n) u(n),v(n)

is image partition regular.

)

For each n € w and each j € {0,1,...,v(n)—1}, let 5o, 4+ = t;n . Then for each n,

{<Ti,ana T +1yTi 0 4+25 - - - ari,an+1—1> S w}\{()}
is contained in the set of rows of C,,. O
The following lemma is not quite as trivial as its finite version.
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3.4 Lemma. Let A be a segmented first entries matriz and let 7 € Z°\{0} with finitely

—

many nonzero entries. Then there exists b € Q\{0} such that <br

A) is a segmented first

entries matrix.

Proof. Let (a,)o2, be as guaranteed by Definition 3.1. Pick m € N such that for all
t > am, 7t = 0. Let I = min{j : r; # 0} and pick d € Q" such that for all i € w,
if | = min{j : a;; # 0}, then a;; = d. Let b = Til. Let 69 = 0 and for n > 0, let

dn = Qmin—1. Then the sequence (9,,)72 , is as required by Definition 3.1 for (ZX) .0

3.5 Definition. Let A be an w X w matrix.

(a) The matrix A is kernel partition reqular if and only if whenever r € N and N =
Ui_, Ci, there exist i € {1,2,...,r} and & € C;* such that AZ = 0.

(b) The matrix A is centrally kernel partition regular if and only if for every central
subset C' of N, there exists # € C* such that A% = 0.

3.6 Theorem. Let A be an w X w matrix with entries from Q and columns ¢y, cy, .. ..
Consider the following statements.
(a) A is a segmented image partition regular matriz.

b) There exists a sequence (s,)°%, in QT such that the matriz
n=0

1 0 0
Sp0@p,0 S1Q0,1 S200,2
0 1 0
R =
Sod1,0 S1a1,1 S201,2

0 0 1

15 a segmented image partition reqular matriz. In particular R is strongly centrally
image partition reqular.

(c) There exists a sequence (5,)>% o in Q1 such that the matriz
P = (Sogo —50 8151 —51 8252 —52 e )

s centrally kernel partition reqular, where €, denotes the n™® w x 1 unit vector.
(d) There exist a segmented first entries matriz D with entries from w and a matriz G
with entries from w and no row equal to 0 such that AG = D.
(e) There exists a matriz G with entries from w and no row equal to 0 such that
for every 7 € w\{0} with finitely many nonzero entries, there exist b€ QT and a

segmented first entries matrix D, with all entries nonnegative and all entries except

possibly those in the first row from w, such that (Z) G=D.

13



(f) There exists a segmented first entries matriz D with entries from w such that

(i) for every y € w® there exists x € w* such that AZ = Dy and

(i1) for every y € N¥ there erists x € N¥ such that AT = Dy.

(9) There exists a segmented first entries matrix D with entries from w such that for
every y € N¥ there exists © € N“ such that AT = Dyj.

(h) A is centrally image partition reqular.

Then:

(1) Statement (a) implies statement (b) which implies statement (c). If A is a
monic segmented first entries matriz, then the sequence (s,)S2, can be chosen constantly
equal to 1.

(2) Statement (a) implies statement (d).

(3) Statements (d) and (e) are equivalent and imply statement (f).

(4) Statement (f)(i) implies the weaker version of statement (d) which does not
demand that no row of G be 0.

(5) Statement (f) implies statement (g) which implies statement (h).

Proof. That statement (a) implies statement (b) was proved in Theorems 3.2 and
3.3, as was the second sentence of conclusion (1). To see that statement (b) implies
statement (c), note that (with the same sequence (s,)5% ), PR = O. Let a central
subset C' of N be given. Pick & € N* such that ¥ = RZ € C*¥. Then Py = 0.

To verify conclusion (2), let (o, )72, be as guaranteed by Definition 3.1. To simplify

the discussion, we shall assume that for each n,

{(a’i,an7ai,an+1a Qi o +25 - - 7ai,an+1—1> S w}\{a} 7é @

(If it happens that this set is empty, simply add a new row with a 1 in position «,, and
all other entries equal to 0.)
For each n € w, choose u(n) and v(n) in N and a image partition regular u(n) x v(n)

matrix A,, such that
{<ai,o¢n;ai,an+17 Qi 0, +25 - - - 7a’i,an+1*1> S w}\{ﬁ}

is the set of rows of A,,. (Necessarily v(n) = an+1 — @p.)
By Theorem 1.5(i), pick for each n € w some m(n) € N and a v(n) x m(n) matrix

G,, with entries from w and no row equal to 0 and u(n) x m(n) first entries matrix D,

14



with entries from w such that A, G, = D,,. Let

Go O O
O G, O
G=10 0 G

and let D = AG.
Trivially G' has no row equal to 0 and has all entries from w. Let o/(0) = 0 and for

n e N, let o/(n) = Z;:Ol m(t). It is a routine exercise to verify that D is a segmented

(e @]
n=0

first entries matrix with entries from w where (a/(n)) is as required by Definition
3.1(3).

Now we verify conclusion (3). That (e) implies (d) is trivial. To see that (d) implies
(e), let 7 € w*\{0} with finitely many nonzero entries, and let § = #G. Notice that
§ € w\{0} and § has only finitely many nonzero entries. (Some r; # 0 and for this i
some g; j 7 0s0 s; > r;-g;; > 0. Also, if k € Nand r; = 0 for all ¢ > k, then pick | € N

such that for all ¢ € {0,1,...,k} and all j > [, g;; = 0. Then for all j > [, s; = 0.)
bs

By Lemma 3.4, pick b € Q" such that D

(5)e- ()

To see that (d) implies (f), given % in w* or in N¥| let ¥ = Gy.

is a segmented first entries matrix. Then

To verify conclusion (4), assme that (f)(i) holds. For each i € w, let é; be column
1 of the w x w identity matrix and pick z; € w® such that Az; = Dé¢;. Let G =
(2o 21 @3 ...). Then AG = D.

For conclusion (5), the fact that (f) implies (g) is trivial. To see that (g) implies
(h), let C' be a central set and pick by Theorem 3.2 some § € N* such that Dy € C¥.
Pick & such that Az = Dy. U

We note that conclusion (4) in the above theorem cannot be strengthened to having

statement (f)(i) imply the entirety of statement (d).

3.7 Theorem. There is a matriz A with entries from w which satisfies statement (f)(i)
of Theorem 3.6 but is not image partition regular. In particular, statement (f)(i) does
not imply either of statements (f)(ii) or (d).

Proof. The “in particular” conclusion follows from the fact that statements (f) and (d)
each imply statement (h) in Theorem 3.6.
Choose a matrix A such that a row 7 is a row of A if and only if

(a) either 7o =1 or 7y = 2 and
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(b) for some finite nonempty subset F of N, r; =0 if i e N\F and r; =1 if i € F.

Let D be the matrix obtained by deleting the first column of A. Then D is a
segmented first entries matrix. Given i € w*, define ¥ € w* by o =0 and z,, = y,_1
for n € N. Then A% = Dy.

Now we show that A is not image partition regular. Given x € N, let m(x) =
max{t € w: x € 2!N}. For i € {0,1}, let C; = {x € N: m(x) =i (mod 2)}. Suppose
that we have i € {0,1} and & € N“ such that A¥ € C;*. Pick a finite subset F' of N
such that 2m(*0)+2 divides 3", _, @, (by choosing 2™(*0)+2 terms x,, congruent to each
other mod 2™(@0)+2) Then x9+ ., . Tn and 229+ Y., . p T, are both entries of A7,
while m(2z0 + ), cp Tn) = m(20 + ), cp Tn) + 1, a contradiction. ad

We now see that some of the conclusions of Theorem 3.6 need not hold for all

strongly centrally image partition regular matrices.

3.8 Theorem. There is a strongly centrally image partition reqular matric M which
fails to satisfy statement (c) of Theorem 3.6.

Proof. Let

That is, M is a matrix whose rows have somewhere a single —2 followed somewhere by
a single 1. By [7, Corollary 3.7], M is strongly centrally image partition regular.

Let ¢, ¢1, Ca, ... be the columns of M and suppose that we have a sequence (s,)52
in Q" so that

P = (SOCO —€p S1C1 —€1 S2C2 —€9 )

is kernel partition regular. For each ¢ € w, pick k;,[; € N such that s; = & and
(i) 1i) = 1. '

Pick a prime r > 5. If there exist u < v < w < z in w such that for each
i € {u,v,w,z}, s; # 1, then choose such u, v, w, and z and require also that r > 2k;l; +
kjli + 1;l; for all 4,5 € {u,v,w,z}. For each z € N, let m(z) = max{t € w: x € r'N}
and pick a(z) € w and f(z) € {1,2,...,7—1} such that z = a(z) - r™@+1 4 f(z).rm@),
Choose # € N” and ¢ € {1,2,...,r—1} such that PZ = 0 and for each n € w, f(z,) = c.

We show first that there do not exist © < v < w < z in w such that for each
i € {u,v,w, z}, s; # 1. Suppose instead we have chosen such u, v, w, and z. We claim
that for 4, j € {u,v,w, 2z} with i < j, —2s; +s; € {0,1}. We have some t € 2w + 1 such
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that z; = —2s;29; + sjz2; and thus
lilja(ﬁt)rm(mt)-l-l + lileTm(xt) + 2kilja<$2i)7ﬂm(w2i)+1 + 2kilj07”m(w2i) _
kjlia($2j)'rm($2j)+1 + kjlicrm(wzj) '

Suppose first that m(za;) < m(zg;). Since r™(#2i) divides the right side of the above
equation, we must have that m(x2;) = m(z:) and l;ljc + 2k;l;¢ = 0 (mod 7). But then
2s; + 1 = 0, contradicting the fact that s; > 0.

Now suppose that m(x2;) > m(xz;). Then we have that m(xe;) = m(x;) and [;l;c =
k;l;c (mod r), and thus that s; = 1, a contradiction. Thus we must have that m(xy;) =
m(za;) and m(z) > m(xe;). If m(xy) > m(xe;) we have that 2k;l¢c = k;l;c (mod r)
and so 2s; = s;. If m(x¢) = m(xg;) we have that [;l;c + 2k;ljc = kjl;c (mod r) and so
1+ 2s; = s;. Thus we have established that —2s; + s; € {0,1} as claimed.

Since —2s; + s, € {0,1} for i € {u,v,w} we have some i < j in {u,v,w} with
s; = sj. But then —2s; +s; ¢ {0,1}, a contradiction.

We therefore have that T = {i € w : s; = 1} is infinite. Given ¢ < j in T we have

a(xt)rm(m)-i-l + Crm(zt) + za(in)Tm(mzi)-i-l + 2crm(mzi) — a(x2j),’,,m($2j)+1 + CTm(mzj).

If we had any ¢ < j in T with m(xe;) < m(xe;) we would have m(x;) = m(xe;) and
¢+ 2¢ = 0 (mod ), which is a contradiction since r > 5. Thus we can pick ¢ < j in
T with m(x2;) = m(x2;). But then, if m(z;) = m(x;) we have 3¢ = ¢ (mod r), and if

m(x) > m(xq;) we have 2¢ = ¢ (mod r). 0

Notice that the presence of negative entries in the matrix M in Theorem 3.8 is
essential. In fact, if A is any matrix with nonnegative entries and row sums constantly
equal to m, then taking s, = % for each n, one has that P is centrally kernel partition
regular. (Given a central set C' and any a € C, let each x,, = a.) We see now, however,
that even with positive entries and constant row sums, statement (b) of Theorem 3.6

need not be satisfied.

3.9 Theorem. Let A be a matriz consisting of all rows Z° with d(Z) = (2,1). Then A
is strongly centrally image partition regular but there does not exist a sequence (s,)5
such that the matriz R of statement (b) of Theorem 3.6 is strongly centrally image

partition regqular.

Proof. By [7, Theorem 3.7] A is strongly centrally image partition regular.

Suppose that we have a sequence (s,,)72 ; so that the matrix R is strongly centrally

(2

image partition regular. For each ¢ € w, pick k; and [; in N such that s; = T
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Pick a prime r > 5. If there exist © < v < w in w such that for each i € {u,v, w},
s; ¢ {1, %, %}, then choose such u, v, and w and require also that r > 2k;l; + k;l; + L;l;
for all 4,5 € {u,v,w}. For each z € N, let m(z) = max{t € w : x € r'N} and pick
a(z) € wand f(z) € {1,2,...,r —1} such that x = a(z) - 7@+ 4 f(z)-r™*)_ Choose
ce{1,2,...,r — 1} such that {z € N: f(z) = ¢} is central. Choose ¥ € N* such that
for every entry y of R¥, f(y) = ¢ and entries corresponding to distinct rows of R are
distinct.

We show first that there do not exist © < v < w in w such that for each i €
{u,v,w}, s; ¢ {1, %, %} Suppose instead we have chosen such u, v, and w. Then for
i < jin {u,v,w}, we have x;, z;, and 2s;x; + s;x; are entries of RZ so we have z; =
a(z;)rm@EDFL 4o epm@) g = q(z;)rm @D oo™ and 2835 + sjzy = drtt 4+ or™
where d = a(2s,x; + s;x;) and n = m(2s;z; + sjz;). Thus we have

2k;lja(x;)r™ @I 4 2k Ler™@) 4 kilia(xy)rm @D 4 flerm(@) =
liljdr”Jrl + liljer™.
If we had m(z;) > m(z;), we would have k;l;c = [;l;c (mod r) so that k;l; = [;; and
thus s; = 1. If we had m(z;) < m(z;), we would have 2k;l;c = [;ljc (mod r) so that
2k;l; = l;l; and thus s; = %

in {u,v,w} and thus that 2k;ljc + k;l;c = l;l;c (mod ) so that 2s; + s; = 1. But the
1

g.
Now we claim that we do not have infinitely many ¢’s for which s; = 1. Suppose

Thus we must have m(x;) = m(z;) for any choice of i < j
equations 2s, + s, = 1, 2s,, + s, = 1, and 2s, + s, = 1 imply that s, = s, = 5, =

instead that we do and pick i < j such that s; = s; = 1 and m(z;) < m(z;). Then as

above we have
2a(zy)r™@ITL Lo (@) g (g )rm@EDFL o epm(@s) = gpntl e

If m(z;) = m(x;) we conclude that 3¢ = ¢ (mod r) and if m(z;) < m(x;) we conclude
that 2¢ = ¢ (mod 7).

Thus there exist an infinite set J C w and s € {3, 3} such that for all i € J, s; = s.
Let B be the matrix which results from deleting all columns j of R for which j ¢ J and
deleting all rows ¢ of R for which there is some j ¢ J with r; ; # 0. Then B is also
strongly centrally image partition regular and B has the property that every 2 € Z*
with d(Z) = (2s,s) or d(Z) = (1) occurs as a row of B. Thus by Lemma 2.3(iii) there
is a finite coloring of N such that no Z € N* with the entries of BZ monochrome has
{z, : n € w} unbounded. Since for n # m, z, and z,, are entries of BZ corresponding
to different rows, this contradicts the claim that B is strongly centrally image partition

regular. U
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4. Additional Classes of Image Partition Regular Matrices

In this section we introduce the restricted triangular matrices, a class of strongly cen-
trally image partition regular matrices, and investigate ways to construct new image

partition regular or centrally image partition regular matrices, based on existing ones.

4.1 Definition. Let A be an w X w matrix. Then A is a restricted triangular matrix if
and only if all entries of A are from Z and there exist d € N and an increasing function
j :w — w such that for all i € w,

(1) a; ;i) €{1,2,...,d},

(2) for all I > j(7), a;; =0, and

(3) for all k > and all t € {1,2,...,d}, t|ag ;c)-

4.2 Theorem. Let A be a restricted triangular matriz. Then A is strongly centrally
image partition reqular. In fact, if p € (), cnclgn(nN) and P € p, then there exivts

Z € N¥ such that the entries of AZ are distinct elements of P.

Proof. Since Nd! € p, we may assume that P C Nd!.

If j(0) = 0, pick yo € P and let xo = yo/ag o). Otherwise, for ¢t € {0,1,...,
j(0) — 1}, let ; = d! and pick yo € P such that y, > Zz(zoo)_lao,txt. Let x;) =
(yo — Ez(zoo)_lao,tiﬂt)/ao,j(o)-

Inductively, given i € N, for t € {j(i — 1)+ 1,j(i — 1)+ 2,...,j(i) — 1}, if any, let
x; = d!. Pick y; € P such that y; > Eg(:%_lai,txt and v; ¢ {yo,y1,---,%i—1}. Then d!|y;
and if t ¢ {5(0),5(1),...,j(i—1)}, then z, = d!. If t € {j(0),5(1),...,7(i—1)}, then by
conditions (1) and (3) of Definition 4.1, a; j(;)|a; . Thus a;, ;¢ divides y; —Eig%_laiyt:pt.
Let z;0) = (yi — E‘Z(:%_lai,tl‘t)/ai,j(i)-

The induction being complete, one has AZ = i € P“. U

4.3 Corollary. Let A be an w X w matriz with entries from Z. If there exists an
increasing function j : w — w such that for all i € w,

(1) am(i) =1 and

(2) for alll> j(i), a;; =0,

then A is strongly centrally image partition reqular.
Proof. One has that A is a restricted triangular matrix with d = 1. U

4.4 Corollary. Let A be an w X w matriz with entries from Z and only finitely many
nonzero entries in each row. If there exist d € N and a function j : w — w such that
foralli € w,
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(1) a; ;i) € {1,2,...,d} and

(2) fOT all k 7é i, Ak, j(i) = 0,
then A is strongly centrally image partition regqular.

Proof. By rearranging columns, one may presume that for each i and each [ > j(1),
a;; = 0. (This can be done inductively by rows. By condition (2), the assignment at
stage i cannot affect the conclusion for earlier rows.) Then by rearranging rows, one

may presume that j is an increasing function. Thus A is a restricted triangular matrix.

g

4.5 Theorem. Let

A:

RN =
RN RO
N = OO
= O OO

Then A satisfies statement (h) of Theorem 3.6 but does not satisfy statement (d).

Proof. By Corollary 4.3, A is strongly centrally image partition regular. Suppose that
there do exist a matrix G with entries from w and no row equal to 0 and a segmented
first entries matrix D with entries from w such that AG = D.

Some column, say column j, of D is not 0. Then column j of G is not 0 and thus
the entries of column j of AG are unbounded while the entries of column j of D are

bounded, a contradiction. O

We know by [7, Theorem 3.9] that strongly centrally image partition regular matri-
ces do not in general have the property that they can be extended by some multiple of
an arbitrary row with the resulting matrix being image partition regular. But we saw
in Lemma 3.4 that segmented first entries matrices do have the property that they can
be extended with the resulting matrix being strongly centrally image partition regular.

We show now that the same statement applies to restricted triangular matrices.

4.6 Theorem. Let A be a restricted triangular matriz and let 7 € Z°\{0} with finitely

br

many nonzero entries. Then there exist b € Q\{0} such that (A

) 1s strongly centrally
mage partition reqular.

Proof. Pick d € N and j : w — w as guaranteed by Definition 4.1. Pick { > j(0) such
that r; = 0 for all 4 > [ and pick v € w such that j(y) <1< j(y+1).

Let B be the upper left (y+1) x (I+1) corner of A. By Theorem 4.2, A is centrally
image partition regular and thus B is image partition regular. Applying Theorem 1.5(j)
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[ + 2 times, pick bg, b1, ...,b;,b in Q such that

bTo le bTQ . le
bp O 0O ... 0
0O b 0 ... O
D— 0 0 b 0
0 0 0 ... U
B
- o br\ . . o
is image partition regular. To see that FRE centrally image partition regular, let
C be a central set. Let ¢ be a common multiple of the numerators of by, b1, ...,0b;.
Then C' N Ned! is central. By Theorem 1.5(1) pick xg, z1,...,x; such that all entries of
Zo
1
Dl . are in C'N Ned! and are distinct. For ¢ € {0,1,...,1}, one has in particular
Iy

that b,y € Ned! and thus x; € Nd!. For t > [, choose z; exactly as in the proof of

—

Theorem 4.2. One concludes immediately that all entries of (Z) Z are in C' and are

distinct.

Now we turn our attention to methods of constructing new image partition regular

or centrally image partition regular matrices based on existing ones.

4.7 Theorem. Let A be a centrally image partition reqular matriz and let (b)), be

a sequence in N. Let

b 0 0O .-
0 b 0 -- O B

B = 0 0 bz . Then j g

18 centrally image partition reqular.

Proof. Let C be a central subset of N. Pick a minimal idempotent p in SN such that
Cep. Let D={zeC:—x+C € p}. Then by [9, Lemma 4.14] D € p and thus D is
central. So pick # € N¥ such that AZ € D¥.

Given n € w, let ¢, = ¥2pant - x¢. Then C N (—¢, + C) € p, so pick z, €
CN(—c,+C)NNb, and let y,, = 2, /b,,. Then

O B\ ,.
A O (ﬁ)ecw‘”w.
A BJ) \Y
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Our remaining examples are based on one method of construction.

4.8 Definition. Let 7,0 € w U {w} and let C' be a v x § matrix with finitely many
nonzero entries in each row. For each t < ¢, let B; be a finite matrix of dimension
up X v;. Let R = {(i,j) i< vyand je Xu6{0,1,...,u — 1}} Given t < § and
ke {0,1,...,u; — 1}, denote by l;,gt) the k*® row of B,. Then D is an insertion matriz

of (Bt)t<s into C if and only if the rows of D are all rows of the form

where (i,7) € R.

) 1 0 1 1 0 1
Forexample,1f0-(2 1),30—(5 7>,andB1—(3 3),then
1
7
2
2

1 0 0
) 0 0
2 0 1
2 3 3
10 14 0 1
10 14 3 3

is an insertion matrix of (B;);<2 into C.

4.9 Lemma. Let C be a segmented first entries matrix and for each t < w, let B; be a
ug X v (finite) first entries matriz. Then any insertion matriz of (Bi)i<. into C is a

segmented first entries matrizx.

Proof. Let (ov,)52, be as guaranteed by Definition 3.1 for C. Let §p = 0 and inductively

An41 —1
t=ay,

given n € w, let d,,11 = 6, + 2 ve. Then (6,,)0%  is as required by Definition 3.1

for the insertion matrix. [l

4.10 Theorem. Let C be a segmented first entries matrixz and for each t < w, let By be
a uy X vy (finite) image partition regular matriz. Then any insertion matriz of (Bi)t<w

into C' is centrally image partition regular.

Proof. Let A be an insertion matrix of (B;)i<, into C. For each t € w, pick by
Theorem 1.5(g), some m; € N and a wu; x my first entries matrix D; such that for all
iy € N™ there exists ¥ € N such that B;¥ = D;ij. Let E be an insertion matrix of
(Dy¢) i<y into C' where the rows occur in the corresponding position to those of A. That
is,ifi <w and j € Xy,{0,1,...,u; — 1}} and

PO~ )~
¢ bjg) it bi)
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is row k of A, then

cio - dijoy “cin - di) "
is row k of E.
Let H be a central subset of N. By Lemma 4.9, FE is a segmented first entries
matrix so pick ¥ € N“ such that all entries of Ey are in H. Let dg = 9 = 0 and for

n € Nlet §,, = 27" Jv; and let 7, = 7"m;. For each n € w, pick

zs, zs,, Yy,
Ts,+1 Zs,+1 Yyn+1
) € N such that By . =D, )
Lopy1-1 Lént1—1 Yynt1-1
Then AT = EY. U

We see next that for certain image partition regular matrices, an analogue of The-

orem 4.10 is valid.

4.11 Definition. Let @ = (ag,a1,...,a;) be a compressed sequence in Z\{0} with
a; > 0. Then C' is a Milliken-Taylor matriz for @ if and only if C' consists of all rows
7 € Z* such that ¢(7) = d.

If C is a Milliken-Taylor matrix for @, where all entries of @ are positive, and
Z € N¥, then the set of entries of C'% is the Milliken-Taylor system MT(d, ¥) as defined
in [2, Definition 2.3]. It is a consequence of [2, Theorem 2.5] (when the entries of @ are
positive) and [7, Corollary 3.6] (for the general case) that any Milliken-Taylor matrix
is image partition regular. On the other hand, it is a consequence of [2, Theorem 3.14]
that if @ = (ag,a1,...,a;) is a compressed sequence with entries from N and [ > 0, then

any Milliken-Taylor matrix for @ is not centrally image partition regular.

4.12 Theorem. Letd = (ag,ay,...,a;) be a compressed sequence in Z\{0} with a; > 0,
let C' be a Milliken-Taylor matrixz for d, and for each t < w, let By be a uy X vy (finite)
image partition reqular matriz. Then any insertion matriz of (Bt)i<, into C is image

partition reqular.

Proof. Assume first that [ = 0. Then C is in fact a segmented first entries matrix so
the result follows from Theorem 4.10.

Assume then that [ > 0. Let oy = 0 and inductively let a,,+1 = ay,, + v,. Pick
by [9, Corollary 2.6] some p € K(SN) such that p = p + p. Recall from [9, Lemma
4.14] that if A € pand A* ={z € A: —x+ A € p}, then A* € p and for all x € A*,
—x + A* € p.
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Note that a;p is the product of a; with p in the semigroup (5Z,-). (If a; > 0, then
a;p is not the sum of p with itself a; times, which is just p.) Also, by [9, Exercise 4.3.5],
aop+a1p+...+ap € BN, since a; > 0. Let G be a finite partition of N and pick A € G
such that A € app +ai1p+ ...+ aip.

Now {z € Z: —z+ A € a1p+ asp+ ...+ aip} € app so that Dy = {x € Z :
—apx + A € a1p+ asp + ... + a;p} € p. Then Dy* € p so pick by Theorem 1.5(b),

0, X1, .- Ta;—1 € N such that
Zo
By | Dy*)o
0 : G( 0 ) .
xalfl
Let Hy be the set of entries of
To
T
By
xal—l

Inductively, let n € N and assume that we have chosen (z;)f"; " in N, (Dy)7Z; in
p, and (Hy)}Z, in the set Py(N) of finite nonempty subsets of N such that for r € {0, 1,
coon— 1},
(I) H, is the set of entries of

To,
xar‘i‘l
B, . ;
Loyqq—1
(I1) if  # F € {0,1,...,7}, k = min F, and for each t € F, y; € Hy, then Ycp y; €

Dy

(IT1) if r <n —1, then D, 41 C D,;

(IV) it m € {0,1,...,1 — 1}, Fy, Fy,..., F,, are nonempty subsets of {0,1,...,7}, for
each i € {0,1,...,m — 1}, max F; < min Fj4, and for each ¢t € |~ Fi, y+ € Hy,
then =7 ja;Xicr, Y+ + A € Q1P + Qma2p + ... + aip;

(V) if r <n—1, Fo, Fy,...,Fi_1 are nonempty subsets of {0,1,...,7}, for each i €
{0,1,...,m — 1}, max F; < minF,4,, and for each t € .-, F;, y € Hy, then
Dry1 C a7 (=200 Ser e+ A); and

(VI) if r <n—1, m € {0,1,...,1 — 2}, Fy, Fy,..., F,, are nonempty subsets of {0, 1,
...,r}, foreach i € {0,1,...,m—1}, max F; < min Fj4, and for each t € |J~, 7,
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ye € Hy, then D,y C {zx € Z : —am12 + (=X 00iZicr, yi + A) € amyop +

Q3P+ ...+ ap}.

At n =1, hypotheses (I), (II), and (IV) hold directly while (III), (V), and (VI) are
vacuous.

For m € {0,1,...,1— 1}, let

Gm = {X¥pailier, v+ © Fo, Fi,...,F,, are nonempty subsets of{0,1,...,n — 1},
for each i € {0,1,...,m — 1}, max F; < min F} 1,
and for each t € U:-l_ol F;, ys € H;}.

For k € {0,1,...,n— 1}, let
E,={3cry:0#FC{0,1,...,n—1}, minF =k, and foreach t € F', y; € H;}.
Given b € Ej, we have that b € D;* by hypothesis (IT) and so —b + Dy* € p. If
d € G_1, then by (IV), —d+ A € a;p so that a; "} (=d+ A) € p. f m € {0,1,...,1—2}
and d € G, then by (IV), —d+ A € ayy41p + ami2p + ... + a;p so that
{r€Z:—am1x+ (—d+ A) € amiop+ amasp+ ... +ap} €p.

Thus we have that D,, € p, where
n—1 * _
Dp = DnaN(izg ﬂbeEk(_b + D7) N ﬂder_l @~ (=d+ A)
N mlrr:io deG,, {.’17 SN/ —Am+1T + (—d + A) S Am+42P + Am+3P + ...+ alp} .

(Here, if say [ =1 or n < [, we are using the convention that () = Z.)

Pick, again by Theorem 1.5(b), xq,,, Ta, +1;---»Ta,,,—1 € N such that

Ta,
wan—i—l
B, . e (D)4 .

|

Let H,, be the set of entries of
Za,
xan+1
By,
Loy p1-1

Then hypotheses (I), (III), (V), and (VI) hold directly.

To verify hypothesis (IT), let ) # F C {0,1,...,n}, let k = min F', and for t € F,
let y; € Hy. If n ¢ F, then Yyep y¢ € D™ by hypothesis (II) at n — 1, so assume that
n € F. If F = {n}, then we have that y,, € D,,* directly so assume that F' # {n}. Let
b= Yicp\{n} Yt- Then b € Ej and so y,, € —b+ D} and thus b+y, € D™ as required.
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To verify hypothesis (IV), let m € {0,1,...,l — 1} and let Fy, Fy,...,F,, be
nonempty subsets of {0,1,...,n} such that for each i € {0,1,...,m — 1}, max F; <
min Fj4, and for each t € |-, F;, let y, € Hy. If m = 0, then Xiep, yr € Do™ by (II)
and (III) so that —apXicr, yr + A € a1p + asp + ... + a;p as required.

So assume that m > 0. Let k = min F,,, and j = max F},_1. Then

Yier, Yo € Di” by (II)
C Do by (I11)
C {z€Z: —apz+ (—E;’;BlaiZteFi ye + A)
€ Ama1P + Amyop + ...+ aip} by (VI)
as required.
The induction being complete, we claim that whenever Fy, Fi, ..., F; are nonempty
subsets of w such that for each i € {0,1,...,l — 1}, max F; < min F;;1, and for each

t e U,lL-IO F;, v+ € Hy, then X!_ja;Ycr, yi € A. To see this, let k& = min F} and
let j = maxFj_y. Then Yiep e € Di¥ € Djry C ap (=212 0aiSier, y: + A) by
hypothesis (V), and so X!_ya;5er, y: € A as claimed.

Let @ be an insertion matrix of (B)i<, into C. We claim that all entries of QF

are in A. To see this, let 7 < w be given and let j € X;.,{0,1,...,u; — 1}, so that

7 (0) ~ (1) ~
Cy,0 - bj(O) Cy,1 - bj(l) ce

is a typical row of @, say row §. For each t € {0,1,...,m}, let y, = EZ;_Olb;t&)’k “Toy+k

(so that y, € H;). Then X,g5s - x5 = X{%gCy,t - ¥+ Choose nonempty subsets
Fo, F1,...,F;of {0,1,...,m} such that for each i € {0,1,...,l—1}, max F; < min F; 1,
and for each 7 € {0,1,...,l} and each t € F}, ¢y + = a;. (One can do this because C' is
a Milliken-Taylor matrix for @.) Then X% cy ¢+ - yr = EézoaiEtGFi Yy € A. O

It is natural to expect that one could let C' be any image partition regular matrix
in Theorem 4.12. We see now that this fails badly, even in the finite case and even with

the sequence (Bi)i<s taken to be constant.

4.13 Theorem. Let C = (; ?) and let
1 0
Bo=B1=|1 1
0 1

Then C' is image partition reqular, Bo = By is a first entries matrixz, and any insertion

matriz of (Byi)i<2 into C is not image partition regular.
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Proof. Trivially C' is image partition regular and By = Bj is a first entries matrix.

Let A be an insertion matrix of (By)¢<2 into C. The rows of the matrix

1 0 2 0

1 0 2
2 01
2 00

_ o N

consist of some of the rows of A and one of the columns of this matrix is 0 and so it

suffices to show that the matrix

NN = =
O~ NN
— o N O

is not image partition regular.
It is an easy exercise to show that there do not exist tg,t1,t2 € QT such that the

matrix
to 2t 0 -1 0 0

0

o 2t1 2t 0 -1 0 0
2t 01 0 0 0 -1 0
2to 0 to 0 0 0 -1

satisfies the columns condition. Theorems 1.3 and 1.5(d) then yield the desired conclu-

sion. [l

We do see that by taking the sequence (Bi)i«s to be constantly equal to B and
not allowing choices of different rows from B, one is guaranteed a new image partition

regular matrix.

4.14 Theorem. Let C be an infinite image partition regular matriz and let B be a ux v

(finite) image partition reqular matriz. Let A be a matriz with all rows of the form

— —

Ci0 - bACZ‘71 : bﬁci’z -b... 5
where 1 € w and b is a row of B, is image partition reqular.

Proof. Let ¢ : N — {1,2,...,r}. Let n be large enough so that whenever {1,2,... n}
is r-colored, there exists & € N” such that the entries of BZ are monochrome. (This
is possible by a standard compactness argument. See, for example, [9, Section 5.5].)
Color N with r™ colors via ¢ where () = ¢ (y) if and only if p(tx) = ¢(ty) for all
te€{1,2,...,n}. Pick ¥ € N¥ such that the entries of C'yj are monochrome with respect
to 1.

Choose an entry a of Cy and define v : {1,2,...,n} — {1,2,...,7} by v(i) = ¢(ia).

Pick # € N such that the entries of BZ are monochrome with respect to . Define
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Z € N¥ by specifying that for | € w and j € {0,1,...,v — 1}, zjp4; = ¥ - ;. Pick an

entry d of B¥. We show that for any entry g of AZ, p(g) = ¢(da), so let an entry g be

given. Then for some i € w, s € {1,2,...,u}, and m € N,

m v—1
9= 21202 j=0 Ci sy Y1 T =6

where o = Z?;O ciy -y and 0 = Z;;S bs,j - xj. Then ¢ and d are entries of BZ and so

p(da) = p(da). Also o and a are entries of C'y and so ¢(da) = p(da). 0

1
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