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Abstract

Let (S,+) be an infinite commutative semigroup with identity 0. Let u, v ∈ N
and let A be a u×v matrix with nonnegative integer entries. If S is cancellative,
let the entries of A come from Z. Then A is image partition regular over S
(IPR/S) iff whenever S \{0} is finitely colored, there exists ~x ∈ (S \{0})v such
that the entries of A~x are monochromatic. The matrix A is centrally image
partition regular over S (CIPR/S) iff whenever C is a central subset of S, there
exists ~x ∈ (S \ {0})v such that A~x ∈ Cu. These notions have been extensively
studied for subsemigroups of (R,+) or (R, ·). We obtain some necessary and
some sufficient conditions for A to be IPR/S or CIPR/S. For example, if G is
an infinite divisible group, then A is CIPR/G iff A is IPR/Z. If for all c ∈ N,
cS 6= {0} and A is IPR/N, then A is IPR/S. If S is cancellative, c ∈ N, and
cS = {0}, we obtain a simple sufficient condition for A to be IPR/S. It is
well-known that A is IPR/S if A is a first entries matrix with the property that
cS is a central∗ subset of S for every first entry c of A. We extend this theorem
to first entries matrices whose first entries may not satisfy this condition. We
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discuss whether, if S is finitely colored, there exists ~x ∈ (S \{0})v, with distinct
entries, for which the entries of A~x are monochromatic and distinct. Along the
way, we obtain several new results about the algebra of βS, the Stone-Čech
compactification of the discrete semigroup S.
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1. Introduction

We investigate in this paper the image partition regularity of finite matrices
with integer or nonnegative integer entries over commutative semigroups. We
observe that this is a subject with important applications in Ramsey Theory, as
some classical theorems – such as Shur’s Theorem or van der Waerden’s Theorem
– are equivalent to the statement that a certain finite matrix is IPR/N. We
restrict our attention to commutative semgroups because we don’t have any
interesting results for noncommutative semigroups. A fundamental tool is that
if (S,+) is a commutative semigroup, u, v ∈ N, the set of positive integers,
and A is a u × v matrix with entries from ω = N ∪ {0}, then the mapping
~x 7→ A~x from Sv → Su is a homomorphism. (And of course, if S is cancellative,
then the mapping x 7→ 2x from S to S is a homomorphism if and only if S is
commutative.)

We often restrict the entries of A to ω because for x ∈ S, −x may not mean
anything. However, if S is cancellative (so that it can be embedded in its group
G of differences) we allow the entries of A to come from Z and, if ~x ∈ Sv, we
regard A~x as having entries in G. When multiplication by a fraction makes
sense, we may allow the entries to come from Q.

We shall commonly assume that (S,+) has an identity 0. If a semigroup,
such as (N,+), does not have an identity, one may be adjoined. None of the
matrices we consider will have a row or column consisting entirely of zeroes.
Such matrices are uninteresting from a Ramsey Theoretic point of view.

Definition 1.1. Let u, v ∈ N and let A be a u× v matrix with entries from Q.
Then A is admissible if and only if it has no row or column consisting entirely
of zeroes. Given a commutative semigroup S, the matrix A is appropriate for
S provided it is admissible and has entries from ω if S is not cancellative and
has entries from Z if S is cancellative.

The study of partition regularity of matrices over N was begun by R. Rado
[11], and later [12] over other subsemigroups of R. He characterized those sys-
tems of homogeneous linear equations which have the property that whenever
N is partitioned into finitely many classes (or “finitely colored”), one of these
classes contains a solution to the system (or “there is a monochromatic solu-
tion”). In terminology due to W. Deuber, the coefficient matrix of such a system
is said to be kernel partition regular .

2



Definition 1.2. Let u, v ∈ N and let A be an admissible matrix with entries
from Q. Then A is kernel partition regular over N if and only if whenever N is
finitely colored, there exists monochromatic ~x ∈ Nv such that A~x = ~0.

Definition 1.3. Let u, v ∈ N and let A be a u × v matrix with entries from
Q. Let F = Q or F = Z. Denote the columns of A by ~c1, ~c2, . . . , ~cv. Then A
satisfies the columns condition over F if and only if there exist m ∈ {1, 2, . . . , v}
and a partition {I1, I2, . . . , Im} of {1, 2, . . . , v} into nonempty sets such that

(a)
∑
i∈I1 ~ci = ~0 and

(b) for each t ∈ {2, 3, . . . ,m} (if any),
∑
i∈It ~ci is a linear combination with

coefficients from F of {~ci : i ∈
⋃t−1
j=1 Ij}.

Theorem 1.4. Let u, v ∈ N and let A be a u × v matrix with entries from Q.
Then A is kernel partition regular over N if and only if A satisfies the columns
condition over Q.

Proof. [11, Satz IV].

In [2], W. Deuber proved what was known as Rado’s Conjecture.

Theorem 1.5 (Deuber). Call a subset E of N large if whenever u, v ∈ N and
A is a u × v matrix which is kernel partition regular, there exists ~x ∈ Ev such
that A~x = ~0. If a large set E is finitely colored, then there is a monochromatic
large set.

The proof of Theorem 1.5 used the fact that certain sets, called by Deuber
(m, p, c) sets, are partition regular over N in the sense that whenever N is finitely
colored, there must be a monochromatic (m, p, c) set. Deuber’s (m, p, c) sets are
images of certain matrices which satisfy the first entries condition. We follow
the convention of denoting the entries of a matrix by the lower case of the capital
letter which denotes the matrix.

Definition 1.6. Let u, v ∈ N and let A be an admissible u × v matrix with
entries from Q. Then A satisfies the first entries condition if and only if

(1) the first (leftmost) nonzero entry of each row is positive and

(2) if i, j ∈ {1, 2, . . . , u}, k ∈ {1, 2, . . . , v}, aik is the first nonzero entry in row
i, and ajk is the first nonzero entry in row j, then aik = ajk.

A number b is a first entry of A if and only if there is some row i ∈ {1, 2, . . . , v}
such that b is the first nonzero entry in row i.

We will call a matrix which satisfies the first entries condition a first entries
matrix .

Notice that a u × v matrix A satisfies the columns condition over Q if and
only if there exist m ∈ {1, 2, . . . , v} and a v × m first entries matrix B with
entries from Q and all first entries equal to 1 such that AB = O, where O is
the u×m matrix with all entries equal to 0.
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Definition 1.7. Let u, v ∈ N and let A be an admissible u × v matrix with
entries from Q. Then A is image partition regular over N (IPR/N) if and only
if whenever N is finitely colored, there exists ~x ∈ Nv such that the entries of A~x
are monochromatic.

Deuber showed that the first entries matrices that produced his (m, p, c)
sets are IPR/N. Rado’s conjecture dates from the 1930’s and Deuber’s proof of
Rado’s conjecture was published in 1973. But it was not until the publication of
[8] in 1993 that any characterizations of matrices that are IPR/N were found.
Now [10, Theorem 15.24] includes 12 statements equivalent to the assertion that
A is IPR/N.

Since then, several investigations into image partition regularity over other
semigroups have been made. And unfortunately, the definitions vary. (The first
author of this paper is responsible for at least three of these versions. A fact for
which he apologizes.)

(1) In [10], IPR/S is defined for an arbitrary commutative semigroup (S,+)
and an admissible u× v matrix A with entries from ω. There A is IPR/S
if and only if whenever S is finitely colored, there exists ~x ∈ (S \ {0})v
with the entries of A~x monochromatic.

(2) In [6], IPR/S is defined for a subsemigroup of (R,+) and an admissible
u × v matrix A with entries from Q. There A is IPR/S if and only if
whenever S \ {0} is finitely colored, there exists ~x ∈ Sv with the entries
of A~x monochromatic.

(3) In [9], IPR/S is defined for a subsemigroup of (R,+) and an admissible
u × v matrix A with entries from Q. There A is IPR/S if and only if
whenever S \ {0} is finitely colored, there exists ~x ∈ (S \ {0})v with the
entries of A~x monochromatic.

Notice that from the point of view of Ramsey Theory, one wants to have
no zero entries in ~x. (Consider how uninteresting van der Waerden’s Theorem
would be, if one had to allow the increment to be 0.)

All three definitions apply to S = Z. It is a consequence of [8, Theorem 2.2,
(I) ⇔ (V )] that definitions (2) and (3) are equivalent for S = Z. And if the
entries of A are restricted to ω, then all three versions are equivalent for S = Z.
But, if one allows the entries of A to come from Z (as we shall do in this paper

when S is a cancellative semigroup), then the matrix A =

(
1 −1
2 −2

)
satisfies

definition (1) but not definitions (2) or (3) because it is easy to color Z \ {0} so
that x and 2x are never the same color.

Having said all of that, we introduce the versions we will use in this paper.

Definition 1.8. Let (S,+) be a commutative semigroup with identity 0, let
u, v ∈ N, and let A be a u× v matrix which is appropriate for S.
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(a) A is image partition regular over S (IPR/S) if and only if whenever S\{0}
is finitely colored, there exists ~x ∈ (S \ {0})v such that the entries of A~x
are monochromatic.

(b) If S is cancellative, let G be its group of differences. Then A is weakly
image partition regular over S (WIPR/S) if and only if whenever S \ {0}
is finitely colored, there exists ~x ∈ (G \ {0})v such that the entries of A~x
are monochromatic.

It is shown in [8, Pages 461-462] that the matrix 1 −1
3 2
4 6


is WIPR/N but not IPR/N.

In Section 3 we will obtain sufficient conditions for a matrix to be IPR/S
or WIPR/S. For example, if for each c ∈ N, cS 6= {0}, and A is IPR/N, then
A is IPR/S. (Here cS = {cx : x ∈ S}.) The results of Section 3 depend on
results about centrally image partition regular matrices, which we shall present
in Section 2.

The results about central sets utilize the algebraic structure of the Stone-
Čech compactification βS of the discrete space S. We take the points of S to be
the ultrafilters on S, identifying the points of S with the principal ultrafilters.
Given B ⊆ S, B = {p ∈ βS : B ∈ p} and {B : B ⊆ S} is a basis for
the open sets and a basis for the closed sets of βS. The operation + on S
extends to βS so that βS is a right topological semigroup (meaning that the
function ρp : βS → βS defined by ρp(q) = q + p is continuous for each p ∈ βS).
Also S is contained in the topological center of βS (meaning that the function
λx : βS → βS defined by λx(q) = x + q is continuous for each x ∈ S). The
reader should be cautioned that (βS,+) is not likely to be commutative. In fact
if S is cancellative, then the center of βS is equal to the center of S. Given
p, q ∈ βS and B ⊆ S one has B ∈ p+ q if and only if {x ∈ S : −x+B ∈ q} ∈ p,
where −x+B = {y ∈ S : x+ y ∈ B}. We write S∗ = βS \ S.

As does any compact Hausdorff right topological semigroup, βS has a small-
est two sided ideal, K(βS), which is the union of all of the minimal right ideals
and the union of all of the minimal left ideals. The intersection of any minimal
right ideal with any minimal left ideal is a group. If L is a minimal left ideal, R
is a minimal right ideal, and p is the identity of L∩R, then L∩R = p+βS+ p.

An idempotent p ∈ βS is minimal if and only if p ∈ K(βS). And the
idempotent p is minimal if and only if it is mimimal with respect to the ordering
of idempotents wherein p ≤ q if and only if p = p+q = q+p. A subset A of S is
an IP set if and only if it is a member of some idempotent in βS. Equivalently by
[10, Theorem 5.12], A is an IP set if and only if there is some sequence 〈xn〉∞n=1

in S such that FS(〈xn〉∞n=1) ⊆ A, where FS(〈xn〉∞n=1) = {
∑
n∈F : F ∈ Pf (N)}

and for any set X, Pf (X) is the set of finite nonempty subsets of X. See [10,
Part I] for an elementary introduction to the algebra of βS.
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Definition 1.9. Let S be an infinite commutative semigroup with identity 0.
If S is cancellative, let R denote the group of differences of S. Otherwise, let
R = S. Let u, v ∈ N and let A be a u × v matrix which is appropriate for S.
Then ~x 7→ A~x is a homomorphism from Sv to Ru which extends to a continuous
homomorphism from β(Sv) to (βR)u by [10, Theorem 4.8]. We denote this

continuous extension by Ã.

In the following lemma, we state a basic fact which we shall use frequently.

Lemma 1.10. Let (S,+) be an infinite commutative semigroup with identity 0,
let u, v ∈ N, and let A be a u × v matrix which is appropriate for S. Let p be
an idempotent in βS and let p = (p, p, p, . . . , p) ∈ (βS)u. Assume that for every

P ∈ p, there exists ~x ∈ Sv such that A~x ∈ Pu. Then Ã−1[{p}] is a compact

subsemigroup of β(Sv). In particular, Ã−1[{p}] contains an idempotent. If

q ∈ Ã−1[{p}], then, for every P ∈ p, there exists Q ∈ q such that A~x ∈ Pu for
every ~x ∈ Q.

Proof. If S is cancellative, let R be its group of differences. Otherwise, let
R = S. By assumption, p ∈ c`(βR)uÃ[Sv] = Ã[β(Sv)], so Ã−1[{ p }] 6= ∅. Since

Ã is a homomorphism and p is an idempotent, Ã−1[{ p }] is a compact semigroup.

If P ∈ p, then P
u

is a neighborhood of p so Ã−1[P
u

] is a neighborhood of q

and so there exists Q ∈ q such that Q ⊆ Ã−1[P
u

].

Central subsets of N were introduced by Furstenberg in [4], defined in terms
of topological dynamics. It was an idea of V. Bergelson that we might be able
to show that a subset of N is central if and only if it is a member of a minimal
idempotent, and (with the assistance of B. Weiss) we were able to prove this in
[1, Corollary 6.12]. In [13], H. Shi and H. Yang established that for an arbitrary
semigroup S, a subset satisfies the dynamical definition of a central set if and
only if it is a member of a minimal idempotent in βS.

Definition 1.11. Let (S,+) be a (not necessarily commutative) semigroup.

(a) A set A ⊆ S is central if and only if A is a member of a minimal idempotent
in βS.

(b) A set A ⊆ S is central* if and only if A has nonempty intersection with
every central subset of S.

Equivalently, A is central* if and only if A is a member of every minimal
idempotent in βS.

We present now some results about central sets and some related notions
which we will use later in the paper, beginning with two simple results which
do not seem to have been noted before.

Lemma 1.12. Let (S,+) be a commutative cancellative semigroup and let G
be its group of differences. If p is a minimal idempotent in βS, then βS + p =
βG+ p, βG+ p is a minimal left ideal of βG, and consequently p is minimal in
βG. In particular, any set central in S is central in G and K(βS) = K(βG)∩βS.
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Proof. Let p be a minimal idempotent in βS. To see that βS + p = βG + p,
it suffices to show that βG + p ⊆ βS + p. For this it in turn suffices to show
that G + p ⊆ βS + p because βG + p = c`(G + p). So let x ∈ G and pick
s, t ∈ S such that x = t − s. Let q be the inverse of s + p = p + s + p in the
group p+ βS + p. Then s+ q + p = q + s+ p = p so q + p = −s+ p and thus
−s + p ∈ βS + p so that x + p = t − s + p ∈ βS + p as required. If L is a left
ideal of βG with L ⊆ βG + p, then L is a left ideal of βS and so L = βS + p.
Therefore βG + p is a minimal left ideal of βG and so p is minimal in βG. To
see that K(βS) = K(βG) ∩ βS, pick any minimal idempotent p in βS. Then
p ∈ K(βS) ∩K(βG) so [10, Theorem 1.65] applies.

The following two lemmas do not need the assumption that S is commuta-
tive. However, we shall use additive notation because this fits in better with
the theorems in this paper.

Lemma 1.13. Let (S,+) be an arbitrary semigroup with identity 0. If E is a
compact subsemigroup of βS which contains 0 as a minimal idempotent, then
E is a finite group. In particular, if S is infinite, then 0 is not a minimal
idempotent of βS.

Proof. E is a group, because E = 0 + E + 0. Now 0 is an isolated point of E.
E is homogeneous because, for every x ∈ E, ρx : E → E is a homeomorphism.
So every point of E is isolated and E must be finite.

Lemma 1.14. Let (S,+) be an arbitrary semigroup with identity 0. Let V
be a compact right topological semigroup and let h : V → βS be a continuous
homomorphism. If h(q) = 0 for some q ∈ K(V ), then h[V ] is a finite group.

Proof. By [10, Exercise 1.7.3], h[K(V )] = K(h[V ]). So 0 is an idempotent in
K(h[V ]) .

Definition 1.15. Let (S,+) be a (not necessarily commutative) semigroup.

(a) A set A ⊆ S is IP* if and only if A is a member of every idempotent in
βS.

(b) A set A ⊆ S is piecewise syndetic if and only if A ∩K(βS) 6= ∅.

We have taken an algebraic definition of piecewise syndetic. By [10, Theorem
4.40], A is piecewise syndetic if and only if there exists G ∈ Pf (S) such that for
all F ∈ Pf (S), there exists x ∈ S such that F + x ⊆

⋃
t∈G(−t+A).

Notice that if (S,+) is a commutative group and c ∈ N, then the following
theorem applies with H = cS.

Theorem 1.16. Let (S,+) be a commutative group and let H be a subgroup of
S. The following statements are equivalent.

(1) H is IP* in S.

(2) H is central* in S.
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(3) H is central in S.

(4) H is piecewise syndetic in S.

Proof. It is trivial that (1) implies (2), (2) implies (3), and (3) implies (4). To
see that (4) implies (1), assume that H is piecewise syndetic in S and pick
p ∈ H ∩K(βS). Let L be the minimal left ideal of βS to which p belongs. To
see that H is IP* in S, let s be an idempotent in βS. Pick a minimal left ideal
M of βS with M ⊆ βS + s and let r be an idempotent in M . Let R = r + βS.
Then R is a minimal right ideal of βS by [10, Theorem 1.59], so R ∩ L is a
group. Let q be the identity of R ∩ L. Since p ∈ L = βS + q, by [10, Lemma
1.30], p+ q = p. Therefore H ∈ p+ q so {x ∈ S : −x+H ∈ q} ∈ p. Pick x ∈ H
such that −x + H ∈ q. That is, H ∈ q. Now q ∈ r + βS so r + q = q and
therefore {x ∈ S : −x + H ∈ q} ∈ r. Observe that {x ∈ S : −x + H ∈ q} ⊆ H
so that H ∈ r. Since r ∈ βS + s, r + s = r. As we saw above, this implies that
H ∈ s as required.

Corollary 1.17. Let (S,+) be a commutative cancellative semigroup, let G be
its group of differences, and let c ∈ N. If cS is piecewise syndetic in S, then cG
is IP* in G.

Proof. Assume cS is piecewise syndetic in S. Then by Lemma 1.12, cS ∩
K(βG) 6= ∅ so cS is piecewise syndetic in G and therefore cG is piecewise
syndetic in G. By Theorem 1.16, cG is IP* in G.

It is a consequence of Theorem 1.20 below that one cannot conclude that cS
is IP* in S in Corollary 1.17.

Definition 1.18. Let (S,+) be an infinite commutative semigroup and let

c ∈ N. Then lc : S → S is defined by lc(x) = cx and l̃c : βS → βS is the

continuous extension of lc. For q ∈ βS, cq = l̃c(q).

Note that, for example, 2q is not likely to equal q + q if q ∈ S∗.

Theorem 1.19. Let (S,+) be an infinite commutative semigroup with identity
0 and let c ∈ N. The following statements are equivalent.

(1) cS is piecewise syndetic.

(2) {p ∈ βS : cp ∈ K(βS)} 6= ∅.

(3) {p ∈ βS : cp ∈ K(βS)} is an ideal of βS.

(4) l̃c[K(βS)] ⊆ K(βS).

(5) l̃c
[
E
(
K(βS)

)]
⊆ E

(
K(βS)

)
, where E

(
K(βS)

)
is the set of idempotents

in K(βS).

(6) cS is central.
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Proof. To see that (1) implies (2), pick q ∈ K(βS)∩ cS. Let A = {l−1c [A] : A ∈
q}. We claim that A has the finite intersection property, for which it suffices
that l−1c [A] 6= ∅ for each A ∈ q, and this follows from the fact that A ∩ cS ∈ q.
Pick p ∈ βS such that A ⊆ p. Then cp = l̃c(p) = q.

That (2) implies (3) follows immediately from the fact ([10, Corollary 4.22])

that l̃c is a homomorphism.
That (3) implies (4) follows from the fact that K(βS) ⊆ {p ∈ βS : cp ∈

K(βS)}.
Since l̃c is a homomorphism, one has immediately that (4) implies (5).

To see that (5) implies (6), pick an idempotent p ∈ K(βS). Then l̃c(p) is an

idempotent in K(βS) and cS ∈ l̃c(p) because S ∈ p.
It is trivial that (6) implies (1).

A set A ⊆ S is syndetic provided that for every minimal left ideal L of βS,
A∩L 6= ∅. Equivalently, there exists F ∈ Pf (S) such that S ⊆

⋃
x∈F (−x+A).

The set A is thick if and only if for every F ∈ Pf (S), there exists x ∈ S such
that F + x ⊆ A. Thus A is syndetic if and only if S \ A is not thick. For a
diagram showing the relationships among these (and several other) notions of
size, see [7, Section 2].

Since every central* set is syndetic, if S is a group and cS is piecewise
syndetic, then cS is syndetic by Theorem 1.16. By way of contrast we have the
following.

Theorem 1.20. There is a countable, cancellative, and commutative semigroup
(S,+) with identity 0 such that

⋂∞
c=1 cS is thick (and therefore central and

piecewise syndetic) but
⋃∞
c=2 cS is not syndetic.

Proof. Let T =
⊕∞

n=1 Q. For t ∈ N, define et ∈ T by et(t) = 1 and et(i) = 0
if i 6= t. For x ∈ T \ {0}, let supp(x) = {t ∈ N : x(t) 6= 0} and, for notational
convenience, let supp(0) = {0}. Let

S = {x ∈ T : if t = max supp(x), then x(t) > 0
and if t is odd, then x(t) ∈ N} .

Since S is a subsemigroup of T we have immediately that S is countable, can-
cellative, and commutative. To see that

⋂∞
c=1 cS is thick, let F ∈ Pf (S) be

given. Pick even t ∈ N such that t > max supp(x) for each x ∈ F . We
claim that F + et ⊆

⋂∞
c=1 cS. So let c ∈ N be given and let x ∈ F . Then

t = max supp(x+ et) so 1
c (x+ et) ∈ S.

Now suppose that D =
⋃∞
c=2 cS is syndetic and pick F ∈ Pf (S) such that

S ⊆
⋃
x∈F (−x + D). Pick odd t ∈ N such that t > max supp(x) for each

x ∈ F . Pick x ∈ F and c ∈ N \ {1} such that x + et ∈ cS. Pick y ∈ S such
that x + et = cy. Then t = max supp(y) so (cy)(t) ≥ c > 1 = (x + et)(t), a
contradiction.

The equivalence of (1) and (6) in Theorem 1.19 holds in a more general
setting.
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Theorem 1.21. Let (S,+) be an infinite semigroup, not necessarily commu-
tative, and let V be a subsemigroup of S. Then V is piecewise syndetic if and
only if V is central.

Proof. The sufficiency is trivial, so assume V is piecewise syndetic. One has V
is a subsemigroup of βS by [10, Exercise 2.3.2]. Since V is piecewise syndetic,
V ∩ K(βS) 6= ∅ so by [10, Theorem 1.65] K(V ) = V ∩ K(βS) and therefore
any idempotent in K(V ) is minimal in βS.

Some of our results in Sections 4 and 5 will have as part of their hypothesis
that certain subsets of N are closed under multiplication.

Corollary 1.22. Let (S,+) be an infinite commutative semigroup with identity
0 and let c, d ∈ N. If cS is piecewise syndetic and dS is piecewise syndetic, then
(cd)S is piecewise syndetic.

Proof. l̃c ◦ l̃d and l̃cd are continuous functions agreeing on S, hence on βS.
Therefore, using Theorem 1.19, (cd)K(βS) = c

(
dK(βS)

)
⊆ cK(βS) ⊆ K(βS).

Definition 1.23. Let (S,+) be a commutative semigroup with identity 0, let
u, v ∈ N, and let A be a u× v matrix which is appropriate for S.

(a) A is centrally image partition regular over S (CIPR/S) if and only if
whenever C is a central subset of S, there exists ~x ∈ (S \ {0})v such that
A~x ∈ Cu.

(b) If S is cancellative, let G be its group of differences. Then A is centrally
weakly image partition regular over S (CWIPR/S) if and only if whenever
C is a central subset of S, there exists ~x ∈ (G \ {0})v such that A~x ∈ Cu.

We have seen that if (S,+) is an infinite semigroup with identity 0, then 0
is not a minimal idempotent of βS. So whenever S \ {0} is finitely colored, one
of the color classes must be central, so CIPR/S implies IPR/S.

It is known [10, Theorem 15.24] that CIPR/N and IPR/N are equivalent
and [6, Theorem 4.13] that CWIPR/N and WIPR/N (which is the same as
IPR/Z) are equivalent. We shall establish in Section 2 conditions on S that
guarantee that if A is IPR/N, then A is CIPR/S and if A is WIPR/N, then
A is CWIPR/S.

In Section 4 we will prove what we call the “A~x+ B~y theorem” and derive
some of its consequences. Among these consequences are conditions guarantee-
ing that certain first entries matrices are IPR/S. It is a well-known fact [10,
Theorem 15.5] that a first entries matrix A with entries from ω is IPR/S if cS
is a central* subset of S for every first entry c of A. The requirement that cS
is central* can be very restrictive. For example, in the semigroup (N, ·), there
is no positive integer c 6= 1 such that {xc : x ∈ N} (the multiplicative analogue
of cS) is piecewise syndetic. (See Corollary 2.8.)

The proof of [10, Theorem 15.5] can be easily modified to prove that if A is
a first entries matrix which is appropriate for S and p is a minimal idempotent
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in βS such that cS ∈ p for every first entry c of A, then every member of p
contains an image of A. We present this result (with a different proof) as part
of Corollary 4.9.

It is a consequence of [10, Theorem 15.24] that whenever A is a u×v matrix
which is IPR/N and N is finitely colored, there exist ~x ∈ Nv and ~y ∈ Nu such
that ~y = A~x, the entries of ~x are distinct, and the entries of ~y are monochromatic
and distinct. We shall obtain a similar result for S in Theorem 3.3 under the
assumption that cS 6= {0} for all c ∈ N. In Section 5 we restrict our attention
to cancellative semigroups and obtain results about conditions that guarantee
that one can get images with distinct entries in members of certain idempotents,
including cases where one does have cS = {0} for some c ∈ N.

2. Centrally image partition regular matrices

We begin this section with a lemma which will allow us to establish that for
a central set C, the ability to find ~x ∈ Sv with A~x ∈ Cu suffices to show that A
is CIPR/S.

Lemma 2.1. Let S be an infinite commutative semigroup. If S is cancellative,
let R be its group of differences. Otherwise let R = S. Assume that either
N = R or N = S. Let p be a minimal idempotent in βS. Let u, v ∈ N, let A
be a u× v matrix which is appropriate for S, and assume that for every C ∈ p,
there exists ~x ∈ Nv such that A~x ∈ Cu. View A as mapping Nv to Ru, so
that Ã : β(Nv) → (βR)u. Let p = (p, p, . . . , p) ∈ (βS)u. Let q be a minimal

idempotent in the compact semigroup Ã−1[{ p }]. Then q is minimal in β(Nv)
and (N \ {0})v ∈ q.

Proof. By Lemma 1.10, Ã−1[{ p }] is a compact subsemigroup of β(Nv). If S is
cancellative, then by Lemma 1.12, p is minimal in βR. (And, of course, if S is
not cancellative, then p is minimal in βR.) By [10, Theorem 2.23], p is minimal
in (βR)u. To see that q is minimal in β(Nv), let r be an idempotent in β(Nv)

such that r ≤ q. Since Ã is a homomorphism, Ã(r) ≤ Ã(q) = p so Ã(r) = p

because p is minimal in (βR)u. Then r ∈ Ã−1[{ p }] and so r = q as required.
For i ∈ {1, 2, . . . , v}, let Bi = {x ∈ Nv : xi 6= 0}. We claim each Bi ∈ q.

So suppose instead we have Bi /∈ q and let π̃i : β(Nv)→ βN be the continuous
extension of the projection πi. Then π̃i is constantly equal to 0 on a member of
q and so π̃i(q) = 0. But then by [10, Exercise 1.7.3], 0 is a minimal idempotent
in βN , contradicting Lemma 1.13. Therefore (N \ {0})v =

⋂v
i=1Bi ∈ q.

In Definition 1.23, we defined a matrix A to be CIPR/S if and only if
whenever C is a central subset of S, there exists ~x ∈ (S \ {0})v such that
A~x ∈ Cu. As we mentioned in the introduction, another choice would be to
only require that ~x ∈ Sv \ {~0}. We see now that this choice would be equivalent
to the one we made.

Theorem 2.2. Let (S,+) be an infinite commutative semigroup with identity
0. Let u, v ∈ N and let A be a u× v matrix which is appropriate for S. Let p be
a minimal idempotent in βS. The following statements are equivalent.

11



(1) Whenever C ∈ p, there exists ~x ∈ Sv \ {~0} such that A~x ∈ Cu.

(2) Whenever C ∈ p, there exists ~x ∈ (S \ {0})v such that A~x ∈ Cu.

Proof. It is trivial that (2) implies (1). To see that (1) implies (2), assume that
(1) holds and let C ∈ p. Then every member of p is central, so by assumption,
p satisfies the hypotheses of Lemma 2.1 with N = S, and therefore there exists
~x ∈ (S \ {0})v such that A~x ∈ Cu.

A similar situation applies to the notion of CWIPR/S.

Theorem 2.3. Let (S,+) be an infinite commutative cancellative semigroup
with identity 0 and let G be its group of differences. Let u, v ∈ N and let A
be a u × v matrix which is appropriate for S. The following statements are
equivalent.

(1) Whenever C is a central subset of S, there exists ~x ∈ Gv \ {~0} such that
A~x ∈ Cu.

(2) A is CWIPR/S. That is, whenever C is a central subset of S, there exists
~x ∈ (G \ {0})v such that A~x ∈ Cu.

Proof. Apply Lemma 2.1 with N = R = G.

By [10, Theorem 15.24(g)], if u, v ∈ N and A is an admissible u × v matrix
with entries from Q, then A is IPR/N if and only if there exist m ∈ N, an
admissible v×m matrix H with entries from ω, c ∈ N, and a u×m first entries
matrix B with entries from ω and all first entries equal to c such that AH = B.
We see now that there is a similar characterization of IPR/Z, an easy fact that
seems not to have been noted before.

Lemma 2.4. Let u, v ∈ N and let A be a u× v matrix which is appropriate for
Z. Then A is IPR/Z if and only if there exist m ∈ N, an admissible v × m
matrix H with entries from Z, c ∈ N, and a u ×m first entries matrix B with
entries from ω and all first entries equal to c such that AH = B.

Proof. The sufficiency will follow from Theorem 2.6(c) below, so assume that
A is IPR/Z. Then A is WIPR/N so by (I) ⇒ (II) in [8, Theorem 2.2], pick
t1, t2, . . . , tv in Q \ {0} such that (

AT −I
)

is kernel partition regular over N, where I is the u× u identity matrix and

T =


t1 0 . . . 0
0 t2 . . . 0
...

...
. . .

...
0 0 . . . tv

 .

Pick n ∈ N such that all entries of nT are integers. By [10, Lemma 15.15]
and its proof, pick m, d ∈ N and a (u+v)×m first entries matrix D with entries
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from ω and all first entries equal to d such that
(
A(nT ) −nI

)
D = O, where

O is the u ×m matrix with all entries equal to 0. Let E consist of the first v
rows of D and let F consist of the last u rows of D. Let c = nd, let H = (nT )E,
and let B = nF .

Definition 2.5. Let u, v ∈ N and let A be an admissible u × v matrix with
integer entries. Let

γ(A) = {c ∈ N : (∃m ∈ N)(∃H)(∃B)(H is an admissible v ×m matrix
with entries from ω, B is a u×m first entries matrix with
entries from ω and all first entries equal to c and AH = B)} .

and let

γ′(A) = {c ∈ N : (∃m ∈ N)(∃H)(∃B)(H is an admissible v ×m matrix
with entries from Z, B is a u×m first entries matrix with
entries from ω and all first entries equal to c and AH = B)} .

Theorem 2.6. Let (S,+) be an infinite commutative semigroup with identity
0. Let u, v ∈ N and let A be a u× v matrix which is appropriate for S.

(a) If there is some c ∈ γ(A) such that cS is central* in S, then A is CIPR/S.

(b) If S is cancellative and there is some c ∈ γ′(A) such that cS is central* in
S, then A is CWIPR/S.

(c) If S is a group and there is some c ∈ γ′(A) such that cS is central* in S,
then A is CIPR/S.

Proof. (a). Assume that c ∈ γ(A) and cS is central* in S. Pick m, H, and B as
guaranteed by the fact that c ∈ γ(A). By [10, Theorem 15.5], for each central
set C in S, there exists ~y ∈ Sm such that B~y ∈ Cu so if ~x = H~y, then A~x ∈ Cu.

Now let C be a central set in S and pick a minimal idempotent p in βS with
C ∈ p. Then by Lemma 2.1 with N = S, there is some ~x ∈ (S \ {0})v such that
A~x ∈ Cu.

The proof of (b) is nearly identical, noting that since the entries of H are
allowed to be negative if c ∈ γ′(A), one has ~x ∈ Gv, where G is the group of
differences of S.

Conclusion (c) is an immediate consequence of (b).

Corollary 2.7. Let (S,+) be an infinite commutative semigroup with identity
0. Let u, v ∈ N and let A be a u× v matrix which is appropriate for S. Assume
that for every c ∈ N, cS is central* in S.

(a) If A is IPR/N, then A is CIPR/S.

(b) If S is cancellative and A is IPR/Z, then A is CWIPR/S.

(c) If S is a group and A is IPR/Z, then A is CIPR/S.
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Proof. (a). By [10, Theorem 15.24(g)], γ(A) 6= ∅.
(b) and (c). By Lemma 2.4, γ′(A) 6= ∅.

The condition of Corollary 2.7 is not satisfied by some familiar semigroups
such as (N, ·). This is not hard to prove directly, but it follows immediately
from the following corollary to Theorem 1.16. We write Q+ for {x ∈ Q : x > 0}.

Corollary 2.8. Let c ∈ N \ {1}. Then {xc : x ∈ N} is not piecewise syndetic
in (N, ·) and {xc : x ∈ Q+} is not piecewise syndetic in (Q+, ·).

Proof. By Corollary 1.17 it suffices to show that {xc : x ∈ Q+} is not IP* in
(Q+, ·). Suppose instead that {xc : x ∈ Q+} is IP* in (Q+, ·). Let 〈yt〉∞t=1 be
the sequence of primes in increasing order and let FP (〈yt〉∞t=1) = {

∏
t∈F yt : F

is a finite nonempty subset of N}. By [10, Lemma 5.11], pick an idempotent
p in (βQ+, ·) such that FP (〈yt〉∞t=1) ∈ p. (Here βQ+ is the Stone-Čech com-
pactification of Q+ with the discrete topology.) Since also {xc : x ∈ Q+} ∈ p,
there exist some finite nonempty subset F of N and some x ∈ Q+ such that∏
t∈F yt = xc. Since xc ∈ N, we must have x ∈ N. But there are no repeated

prime factors in
∏
t∈F yt = xc, a contradiction.

We saw in Corollary 2.7(c) that if S is a commutative group and cS is
central* for every c ∈ N, then every admissible matrix with integer entries which
is IPR/Z is CIPR/S. We shall see in Theorem 2.11 that if G is an infinite
divisible group, then an admissible matrix with integer entries is CIPR/G if
and only if it is IPR/Z.

Lemma 2.9. Let (S,+) and (T,+) be infinite commutative semigroups with
identities. Let u, v ∈ N and let A be an admissible u × v matrix with entries
from ω. If S and T are cancellative, allow the entries of A to come from Z. If
there is a surjective homomorphism from S to T and A is CIPR/S, then A is
CIPR/T .

Proof. Let ϕ : S → T be a surjective homomorphism and let ϕ̃ : βS → βT
be its continuous extension. By [10, Exercise 3.4.1 and Corollary 4.22], ϕ̃ is a
surjective homomorphism.

Let C be a central subset of T and pick a minimal idempotent p ∈ C. By
[10, Exercise 1.7.3] pick a minimal idempotent q in βS such that ϕ̃(q) = p. Pick
B ∈ q such that ϕ̃[B ] ⊆ C. Pick ~x ∈ (S \ {0})v such that A~x ∈ Bu. Given
i ∈ {1, 2, . . . , u}, ϕ(

∑v
j=1 aijxj) ∈ C and ϕ(

∑v
j=1 aijxj) =

∑v
j=1 aijϕ(xj), so if

~y =


ϕ(x1)
ϕ(x2)

...
ϕ(xv)

 ,

then A~y ∈ Cu.

Lemma 2.10. Let (G,+) be a divisible group. Let u, v ∈ N and let A be a u×v
matrix which is appropriate for G. If A is CIPR/G, then A is IPR/Z.
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Proof. Assume that A is CIPR/G. By [9, Theorem 2.4(II)], A is IPR/Z if and
only if A is IPR/Q, so it suffices to show that A is IPR/Q.

By [3, Theorem 19.1], G is a direct sum of copies of Q and quasicyclic groups.
Since each direct summand is a homomorphic image of G, by Lemma 2.9 A is
centrally image partition regular over each direct summand. If one of these
summands is Q, we are done. So it suffices to let H be a quasicyclic group such
that A is CIPR/H, and show that A is IPR/Q.

We represent H as {Z + a
pn : a ∈ Z and n ∈ N} for some prime p, so H

is a subgroup of Q/Z. To see that A is IPR/Q, let r ∈ N and let ψ : Q →
{1, 2, . . . , r}. Let f : Q ∩ [− 1

2 ,
1
2 ) 1-1−→

onto
Q/Z be the restriction of the projection;

that is for x ∈ Q∩[− 1
2 ,

1
2 ), f(x) = Z+x. Let ϕ be the restriction of ψ◦f−1 to H.

Pick k ∈ {1, 2, . . . , r} such that ϕ−1[{k}] is central in H and let p be a minimal
idempotent in βH such that ϕ−1[{k}] ∈ p. (Here we are giving H the discrete
topology.) Pick by Lemma 2.1 (with N = R = H) an idempotent q ∈ β(Hv)
such that (H \ {0})v ∈ q and for every C ∈ p, there exists W ∈ q such that for
all ~x ∈W , A~x ∈ Cu. Pick W ∈ q such that for all ~x ∈W , A~x ∈ ϕ−1[{k}]u.

Note that if a, b ∈ Z\{0}, ε ≤ 1

2(|a|+ |b|)
, and x, y ∈ (−ε, ε), then ax+ by ∈

(− 1
2 ,

1
2 ) and f(ax+ by) = af(x) + bf(y). Consequently, there is a neighborhood

U of ~0 in (Q/Z)v such that, if ~x ∈ U and ~y = A~x, then

A ·


f−1(x1)
f−1(x2)

...
f−1(xv)

 =


f−1(y1)
f−1(y2)

...
f−1(yu)

 .

(Here we are giving Q its usual topology, Q/Z the quotient topology, and (Q/Z)v

the product topology.)
Since q is an idempotent and U is a neighborhood of ~0, U ∈ q. Pick ~x ∈W∩U

and let ~y = A~x. Then ~y = A~x ∈ ϕ−1[{k}]u so for each i ∈ {1, 2, . . . , u},
ψ
(
f−1(yi)

)
= k as required.

Theorem 2.11. Let (G,+) be a divisible group. Let u, v ∈ N and let A be a
u× v matrix which is appropriate for G. Then A is CIPR/G if and only if A
is IPR/Z.

Proof. The necessity is Lemma 2.10. Since G is divisible, for each c ∈ N,
cG = G, so the sufficiency follows from Corollary 2.7(c).

3. Image partition regular matrices

We saw in Corollary 2.7 that for a commutative semigroup (S,+), the as-
sumption that cS is central* in S for each c ∈ N yields the conclusion that an
admissible matrix being IPR/N implies that it is CIPR/S and, if S is cancella-
tive, then IPR/Z implies CWIPR/S. We have also seen that the assumption
that cS is central* can fail in some very civilized semigroups.
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We shall show in Theorem 3.3 that the much weaker assumption that cS 6=
{0} for each c ∈ N yields the facts that IPR/N implies IPR/S and, if S is
cancellative, then IPR/Z implies WIPR/S.

If A =

(
1 3
2 2

)
, then A is trivially IPR/N. As a consequence of [10,

Theorem 15.24(m)], such a matrix is also nontrivially IPR/N. That is, if u, v ∈
N and A is a u× v matrix with entries from Q which is IPR/N, then given any
central subset C of N, there exists ~x ∈ Nv such that the entries of ~x are distinct,
A~x ∈ Cu, and entries of A~x corresponding to distinct rows of A are distinct.
The corresponding fact for matrices that are IPR/Z as we are defining that
notion in this paper, does not seem to have been spelled out before.

Lemma 3.1. Let u, v ∈ N and let A be an admissible u× v matrix with entries
from Q which is IPR/Z. Then given any central subset C of N, there exists
~x ∈ (Z \ {0})v such that the entries of ~x are distinct, A~x ∈ Cu, and entries of
A~x corresponding to distinct rows of A are distinct.

Proof. In [6], IPR/Z was defined by coloring Z \ {0} and asking for ~x in Zv
with A~x monochromatic. For the purposes of this proof, let us say that a u× v
matrix B is IPR∗/Z if and only if, whenever Z \ {0} is finitely colored, there
exists ~x ∈ Zv such that the entries of B~x are monochromatic.

In [6, Theorem 4.13], it is shown that if A is IPR∗/Z, then there exist
b1, b2, . . . , bv ∈ Q \ {0} such that the matrix

B =



b1 0 0 . . . 0
0 b2 0 . . . 0
0 0 b3 . . . 0
...

...
...

. . .
...

0 0 0 · · · bv

A


is IPR∗/Z, and that given any central subset C of N, there exists ~x ∈ Zv such
that the entries of ~x are distinct, A~x ∈ Cu, and entries of A~x corresponding to
distinct rows of A are distinct.

Note that our given matrix A is IPR∗/Z. First apply [6, Theorem 4.13]
to A, getting b1, b2, . . . , bv ∈ Q \ {0} so that B is IPR∗/Z, then apply that
theorem to B to get ~x ∈ Zv such that the entries of ~x are distinct, B~x ∈ Cv+u,
and entries of B~x corresponding to distinct rows of B are distinct. Since each
bixi ∈ N, ~x ∈ (Z \ {0})v.

Lemma 3.2. Let u, v ∈ N and let A be an admissible u× v matrix with entries
from Z.

(a) If A is IPR/N, then for each r ∈ N there exists k ∈ N such that whenever
ϕ : {1, 2, . . . , k} → {1, 2, . . . , r}, there exists ~x ∈ {1, 2, . . . , k}v such that
ϕ is constant on A~x, the entries of ~x are distinct, and the entries of A~x
corresponding to distinct rows of A are distinct.
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(b) If A is IPR/Z, then for each r ∈ N there exists k ∈ N such that whenever
ϕ : {1, 2, . . . , k} → {1, 2, . . . , r}, there exists ~x ∈ {t ∈ Z : 0 < |t| ≤ k}v
such that ϕ is constant on A~x, the entries of ~x are distinct, and the entries
of A~x corresponding to distinct rows of A are distinct.

Proof. These are both standard compactness arguments. We will spell out the
details for (b). So assume A is IPR/Z, let r ∈ N, and suppose the conclusion
fails. For each k ∈ N, pick ϕk : {1, 2, . . . , k} → {1, 2, . . . , r} such that there is no
~x ∈ {t ∈ Z : 0 < |t| ≤ k}v such that ϕk is constant on A~x, the entries of ~x are
distinct, and the entries of A~x corresponding to distinct rows of A are distinct.
Define ψk : N→ {1, 2, . . . , r} by ψk(t) = ϕk(t) if t ≤ k and ψk(t) = 1 if t > k.

Let τ be a cluster point of 〈ψk〉∞k=1 in the product space×∞n=1{1, 2, . . . , r},
where {1, 2, . . . , r} has the discrete topololgy. Pick m ∈ {1, 2, . . . , r} such that
τ−1[{m}] is central in N and let C = τ−1[{m}]. By Lemma 3.1, pick ~x ∈
(Z \ {0})v such that A~x ∈ Cu, the entries of ~x are distinct, and entries of
A~x corresponding to distinct rows of A are distinct. Let ~y = A~x and let l =
max

({
|xi| : i ∈ {1, 2, . . . , v}

}
∪
{
yj : j ∈ {1, 2, . . . , u}

})
. Let

U = {γ ∈×∞n=1{1, 2, . . . , r} : for all t ∈ {1, 2, . . . , l} , γ(t) = τ(t)} .

Then U is a neighborhood of τ so pick k > l such that ψk ∈ U . Since the entries
of ~x are distinct and entries of ~y corresponding to distinct rows of A are distinct,
there must be some i and s in {1, 2, . . . , u} such that ϕk(yi) 6= ϕk(ys). Since
yi ≤ l < k and ys ≤ l < k, we have m = τ(yi) = ψk(yi) = ϕk(yi) 6= ϕk(ys) =
ψk(ys) = τ(ys) = m, a contradiction.

Theorem 3.3. Let (S,+) be an infinite commutative semigroup with identity
0. Let u, v ∈ N and let A be a u× v matrix which is appropriate for S. Assume
that for all c ∈ N, cS 6= {0}.

(a) If A is IPR/N, then A is IPR/S. If S is cancellative, then whenever
S \ {0} is finitely colored, there exists ~x ∈ (S \ {0})v such that the entries
of ~x are distinct, the entries of A~x are monochromatic, and entries of A~x
corresponding to distinct rows of A are distinct.

(b) If S is cancellative and A is IPR/Z, then A is WIPR/S. In fact, if
S \{0} is finitely colored and G is the group of differences of S, then there
exists ~x ∈ (G \ {0})v such that the entries of ~x are distinct, the entries of
A~x are monochromatic, and entries of A~x corresponding to distinct rows
of A are distinct.

(c) If S is a group and A is IPR/Z, then A is IPR/S. In fact, if S \ {0}
is finitely colored, then there exists ~x ∈ (S \ {0})v such that the entries
of ~x are distinct, the entries of A~x are monochromatic, and entries of A~x
corresponding to distinct rows of A are distinct.

Proof. To verify (a), assume that A is IPR/N. Let r ∈ N and let ψ : S \
{0} → {1, 2, . . . , r}. Pick k ∈ N as guaranteed by Lemma 3.2(a). Pick z ∈ S
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such that {z, 2z, . . . , kz} ∩ {0} = ∅. (If no such z existed, one would have
(k!)S = {0}.) Define ϕ : {1, 2, . . . , k} → {1, 2, . . . , r} by ϕ(t) = ψ(tz). Pick
by Lemma 3.2(a) ~w ∈ {1, 2, . . . , k}v such that ϕ is constant on A~w, the entries
of ~w are distinct, and entries of A~w corresponding to distinct rows of A are
distinct. Define ~x ∈ (S \ {0})v by, for j ∈ {1, 2, . . . , v}, xj = wjz. Given i ∈
{1, 2, . . . , u},

∑v
j=1 aijxj =

∑v
j=1 aijwjz = (

∑v
j=1 aijwj)z so ψ(

∑v
j=1 aijxj) =

ϕ(
∑v
j=1 aijwj) so ψ is constant on A~x. We have shown that A is IPR/S.

Now assume that S is cancellative. Then if l 6= j ∈ {1, 2, . . . , v}, then
xl = wlz 6= wjz = xj . Finally, assume that i, s ∈ {1, 2, . . . , u} and rows i and
s of A are distinct. If we had

∑v
j=1 aijxj =

∑v
j=1 asjxj , then we would have∑v

j=1 aijwj =
∑v
j=1 asjwj .

The proof of (b) is identical to the proof of (a) under the assumption that
S is cancellative except that Lemma 3.2(b) is invoked instead of Lemma 3.2(a).
Statement (c) is an immediate consequence of statement (b).

We note that we cannot guarantee either of the additional conclusions in
Theorem 3.3(a) without some additional assumptions. To see this let T be an
infinite set, let a ∈ T , and define x+y = a for all x, y ∈ T . Let S = T∪{0}, where

0 is an identity adjoined to T . Let A =

 1 0
0 1
1 1

, and define ϕ : T → {0, 1}

by ϕ(a) = 0 and ϕ(x) = 1 for x ∈ T \ {a}. If ~x ∈ (S \ {0})2, A~x = ~y, and the
entries of ~y are monochromatic, then x1 = x2 = y1 = y2 = y3 = a.

We remark that if S is an abelian group, cS = {0} and A is a first entries
matrix with entries from ω, all of whose first entries are relatively prime to c,
then A is IPR/S. This is because, by [3, Theorem 2.1], S is a direct sum of
p-groups, where each p divides c. Consequently, if (m, c) = 1, then mS = S, so
mS is central* and a modification of the proof of [10, Theorem 15.5] to allow
negative entries applies. We shall get a stronger result in Theorem 5.6, assuming
just that S is a cancellative commutative semigroup.

Notice that if S is a commutative semigroup, and c ∈ N such that cS 6= {0}
but cS is not central in S, then the 1× 1 matrix (c) is IPR/S (since one may
pick x ∈ S such that cx 6= 0) but not CIPR/S because S \ cS is a central set.

As is shown in [10, Theorem 15.10], if (S,+) is a commutative semigroup
with identity 0, c ∈ N, and cS = {0}, then the matrix 1 1

1 c
0 c

 is IPR/N, but does not satisfy even the weakest possible form

of image partition regularity over S (in which S is finitely colored and one asks
for ~x ∈ S2 \ {~0}).

We saw in Theorems 2.2 and 2.3 that the two most reasonable possible
definitions of centrally image partition regular are equivalent. If S = N or
S = Z, we know that IPR/S and CIPR/S are equivalent.

Question 3.4. Do there exist a commutative semigroup (S,+), u, v ∈ N, and
a u × v matrix A which is appropriate for S and is not IPR/S but has the
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property that whenever S \ {0} is finitely colored, there must exist ~x ∈ Sv \ {~0}
such that the entries of A~x are monochromatic?

We show now that (ω,+) does not provide an affirmative answer to Question
3.4. The proof is similar to the proof of Lemma 2.1.

Theorem 3.5. Let u, v ∈ N and let A be an admissible u×v matrix with integer
entries. Assume that whenever ω\{0} is finitely colored, there exists ~x ∈ ωv\{~0}
such that the entries of A~x are monochromatic. Then A is IPR/ω.

Proof. By [10, Theorem 5.7], we may pick p ∈ βω such that for all C ∈ p, there
exists ~x ∈ ωv \ {~0} such that A~x ∈ Cu. Let p = (p, p, . . . , p) ∈ (βω)u.

Then p ∈ c`Ã[ωv \ {~0}] = Ã[c`(ωv \ {~0})] = Ã[β(ωv) \ {~0}] so pick q ∈
β(ωv) \ {~0} such that Ã(q) = p.

For each F such that ∅ 6= F ⊆ {1, 2, . . . , v}, let BF =
{
x ∈ Sv \ {~0} :

F = {i ∈ {1, 2, . . . , v} : xi 6= 0}
}

. Pick F such that BF ∈ q. By reordering
the columns of A, we may presume we have some r ∈ {1, 2, . . . , v} such that
F = {1, 2, . . . , r}. Let D consist of the first r columns of A. We claim that D

is IPR/N. To see this, let C ∈ p. Pick E ∈ q such that Ã[E ] ⊆ C
u
. Pick

~x ∈ BF ∩ E. Let ~z ∈ ωr be defined by zi = xi for i ∈ {1, 2, . . . , r}. Since
~x ∈ BF , we have ~z ∈ (ω \ {0})r. And D~z = A~x ∈ Cu.

Since D is IPR/N we have by [10, Theorem 15.24(k)] that A is IPR/N and
therefore IPR/ω.

4. The A~x + B~y theorem

This section consists mostly of the proof of Theorem 4.4 and some of its
consequences.

Lemma 4.1. Let (S,+) be an infinite commutative cancellative semigroup with
identity 0, let G be its group of differences, and let M be a subsemigroup of
(N, ·). Let T =

⋂
m∈M c`βS(mS) and let V =

⋂
m∈M c`βG(mG). Then K(T ) =

T ∩K(V ).

Proof. By [10, Theorem 1.65] it suffices to show that T ∩K(V ) 6= ∅. For each
F ∈ Pf (G) and each m ∈M , we claim we can choose some tF,m ∈ mS such that
for every x ∈ F ∩mG, x+ tF,m ∈ mS. To see this, if F ∩mG = ∅, let tF,m = 0.
Otherwise, enumerate F ∩mG as x1, x2, . . . , xn and for each i ∈ {1, 2, . . . , n},
pick si and ui in S such that xi = m(si−ui). Let tF,m = m(u1 +u2 + . . .+un).

Let D = {(F,m) : F ∈ Pf (G) and m ∈ M} and direct D by agreeing that
(F,m) ≤ (H, r) if and only if F ⊆ H and m divides r. Let p be a limit point
in βS of the net 〈tF.m〉(F,m)∈D and let q ∈ K(V ). Then for every m ∈ M ,
mG ⊆ {x ∈ G : −x + mS ∈ p} so mS ∈ q + p and thus q + p ∈ T ∩K(V ) as
required.

Lemma 4.2. Let (X,+) be a compact Hausdorff right topological semigroup,
and let 〈Eα〉α∈A and 〈Jβ〉β∈B be decreasing nets of nonempty subsets of X
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contained in the algebraic center of X. Assume that, for every α ∈ A and every
x ∈ Eα, there exists α′ ∈ A such that x+Eα′ ⊆ Eα. Assume also that, for every
β ∈ B and every y ∈ Jβ, there exists β′ ∈ B such that y + Jβ′ ⊆ Jβ. Then,
if E =

⋂
α∈A c`(Eα) and I =

⋂
α∈A

⋂
β∈B c`(Eα + Jβ), E ∪ I is a compact

subsemigroup of X and I is an ideal of E ∪ I.

Proof. Note that the algebraic center of X is contained in the topological center
of X since λx = ρx for every x in the algebraic center. Since the nets are
decreasing and X is compact, we have that E 6= ∅ and I 6= ∅.

To see that I is a subsemigroup of X, let p, q ∈ I. To see that p + q ∈ I,
let U be an open neighborhood of p + q, let α ∈ A, and let β ∈ B. Pick a
neighborhood W of p such that W + q ⊆ U , pick x ∈ Eα and y ∈ Jβ such that
x+ y ∈W . Pick α′ ∈ A and β′ ∈ B such that x+Eα′ ⊆ Eα and y + Jβ′ ⊆ Jβ .
Pick a neighborhood V of q such that x+ y+V ⊆ U . Pick w ∈ Eα′ and z ∈ Jβ′
such that w + z ∈ V . Then x+ y + w + z = x+ w + y + z ∈ U ∩ (Eα + Jβ) as
required.

The proof that E is a subsemigroup of X is similar and slightly simpler since
one does not need to use the fact that Jβ is contained in the center of X.

We shall show that I + E ⊆ I and E + I ⊆ I. It will follow that E ∪ I is a
subsemigroup of X and that I is an ideal of E ∪ I.

Let p ∈ I and q ∈ E. To see that p+ q ∈ I, let U be an open neighborhood
of p + q and let α ∈ A and β ∈ B be given. Pick a neighborhood W of p such
that W + q ⊆ U . Pick x ∈ Eα and y ∈ Jβ such that x + y ∈ W . Pick α′ ∈ A
such that x + Eα′ ⊆ Eα. Pick a neighborhood V of q and pick z ∈ Eα′ ∩ V .
Then x+ y + z = x+ z + y ∈ Eα + Jβ ∩ U .

The proof that q + p ∈ I is similar.

Definition 4.3. Let S be an arbitrary semigroup, let p be an idempotent in
βS, and let P ∈ p. Then P ?(p) denotes {s ∈ P : −s+ P ∈ p}.

Given an idempotent p and P ∈ p, by [10, Lemma 4.14], P ?(p) ∈ p and
−s+ P ?(p) ∈ p for every s ∈ P ?(p).

Note that in the following theorem, one might have T = {0}, but in any event
T is a subsemigroup of βS. (If M is a subsemigroup of (N, ·), then T = {0} if and
only if there is some m ∈M such that mS = {0} because, if mS 6= {0} for each
m ∈M , then one has {mS \ {0} : m ∈M} has the finite intersection property.)
The proof of the following theorem uses an argument due to Furstenberg and
Katznelson in [5].

For some of our applications we will need to assume that T is infinite.
We remark that the following theorem extends the well-known fact that

every central subset of S contains an arbitrarily long arithmetic progression,
whose increment can be chosen in an arbitrary IP subset of S. This fact is the

simple special case of Theorem 4.4 in which A =


1
1
1
...
1

 and B =


0
1
2
...
k

.
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Theorem 4.4. Let (S,+) be an infinite commutative semigroup with identity
0, let u, v, n ∈ N, let A be a u × v matrix which is appropriate for S and let
B be a u × n matrix which is appropriate for S. Let M be a nonempty subset
of N and let T =

⋂
m∈M c`βS(mS). Assume that p is a minimal idempotent

of T and that for all P ∈ p there exists ~x ∈ Sv such that A~x ∈ Pu. Let
p = (p, p, . . . , p) ∈ (βS)u. Assume that one of the following conditions holds:

(1) the entries of B come from ω;

(2) p ∈ K(βS);

(3) S is a group; or

(4) M is a subsemigroup of (N, ·).

If S is cancellative and (2), (3), or (4) holds, let R be the group of differences
of S. If either S is cancellative but none of (2), (3), or (4) hold or S is not
cancellative, let R = S. Let V =

⋂
m∈M c`βR(mR), let q be an idempotent in

Ã−1[ {p} ], and let r be an idempotent in
⋂
m∈M c`β(Rn)(mR)n. Let U ∈ r. Then

for all C ∈ p and all Q ∈ q, there exist ~x ∈ Q and ~y ∈ U such that A~x ∈ Cu
and A~x+B~y ∈ Cu.

Proof. By Lemma 1.10, Ã−1[{ p }] is a compact subsemigroup of β(Sv) so it

contains an idempotent. Let C ∈ p and Q ∈ q be given. Since Ã(q) = p, we
may presume that A[Q] ⊆ Cu. Let Q? = Q?(q) and U? = U?(r).

For K ∈ Pf (Q?) and F ∈ Pf (M), let

E(K,F ) = {A~x : ~x ∈ Q? ∩ (
⋂
~s∈K(−~s+Q?)} ∩

⋂
m∈F (mS)u .

Given K ∈ Pf (Q?) and F ∈ Pf (M), since
⋂
m∈F×u

i=1mS is a neighborhood

of p and Ã(q) = p, we have that E(K,F ) 6= ∅.
For every D ∈ Pf (U?) and F ∈ Pf (M), let

J(D,F ) = {B~y : ~y ∈ U? ∩
⋂
~t∈D(−~t+ U∗) ∩

⋂
m∈F (mR)n} .

Each J(D,F ) is nonempty, because it is the image of the intersection of a
finite number of members of r. Note that each of these sets is contained in⋂
m∈F (mR)u.

Direct Pf (Q?) × Pf (M) by (K,F ) ≤ (K ′, F ′) if and only if K ⊆ K ′ and
F ⊆ F ′. Direct Pf (U∗) × Pf (M) by (D,F ) ≤ (D′, F ′) if and only if D ⊆ D′

and F ⊆ F ′. We shall show that the nets
〈
E(K,F )

〉
(K,F )∈Pf (Q?)×Pf (M)

and〈
J(D,F )

〉
(D,F )∈Pf (U∗)×Pf (M)

satisfy the hypotheses of Lemma 4.2 with X =

(βR)u. It is trivial that both nets are decreasing.
Let (K,F ) ∈ Pf (Q?) × Pf (M) and let ~y ∈ E(K,F ). Pick ~x ∈ Q? ∩⋂

~s∈K(−~s + Q?) such that ~y = A~x. Let K ′ = {~x} ∪ {~s + ~x : ~s ∈ K}. Then
K ′ ∈ Pf (Q?). We claim that ~y+E(K ′, F ) ⊆ E(K,F ). So let ~z ∈ E(K ′, F ) and
pick ~w ∈ Q? ∩ (

⋂
~t∈K′(−~t+Q?) such that ~z = A~w. Then ~y + ~z ∈

⋂
m∈F (mS)u,

~y + ~z = A(~x+ ~w), and ~x+ ~w ∈ Q? ∩
⋂
~s∈K(−~s+Q?).
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Now let (D,F ) ∈ Pf (U∗) × Pf (M) and let ~x ∈ J(D,F ). Pick ~w ∈ U∗ ∩⋂
t∈D(−~t+U∗)∩

⋂
m∈F (mR)n such that ~z = B~w. Let D′ = {~w}∪{~t+ ~w : ~t ∈ D}.

Then ~x+ J(D′, F ) ⊆ J(D,F ).
Now let E =

⋂
(K,F )∈Pf (Q?)×Pf (M) c`(βR)u

(
E(K,F )

)
and let

I =
(⋂

(K,F )∈Pf (Q?)×Pf (M)

⋂
(D,H)∈Pf (U∗)×Pf (M) c`(βR)u

(
E(K,F ) +J(D,H)

)
.

By Lemma 4.2, E ∪ I is a compact subsemigroup of (βR)u and I is an ideal of
E ∪ I. Observe that E and I are contained in V u.

We claim that p ∈ K(V u). By [10, Theorem 2.23], K(V u) = K(V )u,
K(Tu) = K(T )u, and K

(
(βR)u)

)
= K(βR)u. Assume first that either S is

cancellative but none of (2), (3), or (4) hold or S is not cancellative. Then
T = V so p ∈ K(V )u = K(V u). Now assume that S is cancellative and one
of (2), (3), or (4) holds. If (3) holds, then again T = V so p ∈ K(V u). If (4)
holds, then by Lemma 4.1, K(T ) ⊆ K(V ) so p ∈ K(T )u ⊆ K(V )u = K(V u).
Finally, assume that p ∈ K(βS). By Lemma 1.12, K(βS) ⊆ K(βR). Then
p ∈ T ∩ K(βS) so by [10, Theorem 1.65], K(T ) = T ∩ K(βS) and thus
p ∈ K(T )u =

(
T∩K(βS)

)u ⊆ (V ∩K(βR)
)u

= V u∩K(βR)u = V u∩K
(
(βR)u

)
.

By [10, Theorem 1.65], K(V u) = V u ∩K
(
(βR)u

)
so p ∈ K(V u) as claimed.

Now we claim that p ∈ E, so let K ∈ Pf (Q?), F ∈ Pf (M), and a neighbor-

hood U of p be given. Then U ∩×u
i=1

⋂
m∈F (mS) is a neighborhood of p = Ã(q)

so pick ~x ∈ Q? ∩
⋂
~s∈K(−~s+Q?) such that A~x ∈ U ∩×u

i=1

⋂
m∈F (mS). Then

A~x ∈ U ∩ E(K,F ).
Therefore p ∈ K(E ∪ I), by [10, Theorem 1.65], and hence p ∈ I. Since

(C )u is a neighborhood of p in (βR)u, (C )u meets E(K,F ) + J(D,F ) for
every K ∈ Pf (Q?), every F ∈ Pf (M) and every D ∈ Pf (U?). It follows that
there exist ~x ∈ Q and ~y ∈ U such that A~x ∈ Cu and A~x + B~y ∈ Cu, as
claimed.

Lemma 4.5. Let (S,+) be an infinite commutative semigroup with identity 0,
let u, v ∈ N, and let A be a u× v matrix which is appropriate for S. Let M be a
nonempty subset of N and let T =

⋂
m∈M c`βS(mS). Assume that T is infinite,

p is a minimal idempotent of T , and that for all P ∈ p there exists ~x ∈ Sv such
that A~x ∈ Pu. Assume that one of the following conditions holds:

(1) the entries of A come from ω;

(2) p ∈ K(βS);

(3) S is a group; or

(4) M is a subsemigroup of (N, ·).

Let p = (p, p, . . . , p) ∈ (βS)u and let q be a minimal idempotent in Ã−1[{ p }].
Then (S \ {0})v ∈ q. If S is cancellative, then, for every distinct i, j ∈
{1, 2, . . . , v}, {~x ∈ β(Sv) : xi 6= xj} ∈ q.
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Proof. By Lemma 1.13, p 6= 0. For each i ∈ {1, 2, . . . , v}, define a homomor-
phism πi : Sv → S by πi(~x) = xi and let π̃i : β(Sv) → βS be its continu-
ous extension, which is a homomorphism by [10, Corollary 4.22]. To see that
(S \ {0})v ∈ q it suffices to show that for each i ∈ {1, 2, . . . , v}, π̃i(q) 6= 0, since
then (S \ {0})v =

⋂v
i=1 π

−1
i [S \ {0}] ∈ q.

So let i ∈ {1, 2, . . . , v} and suppose that π̃i(q) = 0. Then by Lemma 1.14,

π̃i
[
Ã−1[{p}]

]
is a finite group with identity 0. Let Q = π−1i [{0}] and note that

Q ∈ q.
We claim that for each P ∈ p, there exists ~w ∈ Sv such that A~w ∈ Pu and

πi(~w) ∈ P . So let P ∈ p be given. Let B denote the v× 1 matrix whose entries
are those in the i th column of A. By Theorem 4.4 with r = p, pick ~x ∈ Q and
y ∈ P such that A~x + By ∈ Pu. Define ~w ∈ Sv by wi = y and wj = xj if
j ∈ {1, 2, . . . , v} \ {i}. Since ~x ∈ Q, xi = 0 so A~w = A~x+By ∈ Pu so our claim
is established.

For each P ∈ p, pick ~w(P ) ∈ Sv such that A~w(P ) ∈ Pu and πi
(
~w(P )

)
∈ P .

Direct p by reverse inclusion and let r be a limit point of the net 〈~w(P )〉P∈p in

β(Sv). Then Ã(r) = p and π(r) = p. This is a contradiction, because it implies

that p is an idempotent in the group π̃i
[
Ã−1[{p}]

]
which is not equal to the

identity of the group.
Now assume that S is cancellative and let G denote the group of differences

of S. Assume that there exist distinct i, j ∈ {1, 2, . . . , v} such that Q = {~x ∈
Sv : xi = xj} ∈ q. Define a homomorphism h : Sv → G by h(~x) = xi − xj and

let h̃ : β(Sv) → βG be its continuous extension. Since h̃(q) = 0, by Lemma

1.14, h̃
[
Ã−1[{p}]

]
is a finite group with identity 0.

We claim that for each P ∈ p, there exists ~w ∈ Sv such that A~w ∈ Pu and
h(~w) ∈ P . Once we have established this, we obtain a contradiction exactly as
before. So let P ∈ p be given. As before, let B denote the v × 1 matrix whose
entries are those in the i th column of A. By Theorem 4.4, pick ~x ∈ Q and
y ∈ P such that A~x + By ∈ Pu. Define ~w ∈ Sv by wi = xi + y and wt = xt
if t ∈ {1, 2, . . . , v} \ {i}. Then A~w = A~x + By ∈ Pu and h(~w) = y ∈ P as
required.

Corollary 4.6. Assume that the hypotheses of Theorem 4.4 hold and T is in-
finite. Then, for every C ∈ p, there exists ~x ∈ (S \ 0)v and ~y ∈ U such that
A~x ∈ Cu and A~x+B~y ∈ Cu. If S is cancellative, we can also choose ~x to have
distinct entries.

Proof. This follows immediately from Theorem 4.4 and Lemma 4.5.

Notice that to invoke Corollary 4.6, we need that U is a member of an
idempotent in

⋂
m∈M c`β(Rn)(mR)n). If p is minimal in βS, we see that we can

guarantee that the entries of ~x are nonzero for any IP subset U of Sn.

Corollary 4.7. Let (S,+) be an infinite commutative semigroup with identity 0,
let u, v ∈ N, let A be a u×v matrix which is appropriate for S, and assume that
p is a minimal idempotent in βS such that for all C ∈ p there exists ~x ∈ Sv such
that A~x ∈ Cu. Let n ∈ N and let B be a u× n matrix which is appropriate for
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S. Let U be an IP subset of Sn. Then for each C ∈ p, there exist ~x ∈ (S \{0})v
and ~y ∈ U such that A~x ∈ Cu and A~x+ B~y ∈ Cu. If S is cancellative, we can
also choose ~x to have distinct entries.

Proof. Let M = {1}. Then in Theorem 4.4, T = βS, so p is minimal in T . Pick
an idempotent r ∈ β(Sn) such that U ∈ r. Then r ∈

⋂
m∈M c`β(Rn)(mR)n) so

Corollary 4.6 applies.

Lemma 4.8. Let (S,+) be a commutative semigroup with identity 0. Let M be
a nonempty subset of N, let T =

⋂
m∈M c`βS(mS), and let p be an idempotent

in T . For each c ∈ M , there exists an idempotent q ∈ βS such that cq = p. If
M is a subsemigroup of (N, ·), we can choose such q ∈ T .

Proof. Let c ∈ M . Then cS ∈ p. For each P ∈ p, pick sP ∈ S such that
csP ∈ P . If r is a limit point of the net 〈sP 〉P∈p in βS, then cr = p. Since
{w ∈ βS : cw = p} is nonempty, it is a compact subsemigroup of βS and
therefore contains an idempotent.

Now assume that M is a subsemigroup of (N, ·). If M = {1}, then T = βS.
So assume that M is infinite. For each n ∈ N, let mn denote the product of
the first n elements of M . For each n ∈ N, we can choose rn ∈ βS for which
cmnrn = p. Let z be a limit point of the sequence 〈mnrn〉∞n=1 in βS. Then
z ∈ T and cz = p. It follows that {z ∈ T : cz = p} is a compact subsemigroup
of βS and therefore contains an idempotent.

In the proof of the following corollary we will use the fact that ifX is an IP set
in S, then Xv is an IP set in Sv. The easiest way to see this is to pick a sequence
〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ⊆ X and note that FS(〈(xn, xn, . . . , xn)〉∞n=1) ⊆
Xv.

Corollary 4.9. Let (S,+) be an infinite commutative semigroup with identity
0. Let M be a nonempty subset of (N, ·), let T =

⋂
m∈M c`βS(mS), and let p

be a minimal idempotent in T . Assume that T is infinite. Let u, v ∈ N and
let D be a u × v matrix which is appropriate for S. Assume that D is a first
entries matrix and every first entry of D is in M . If p ∈ K(βS) or if M is a
subsemigroup of (N, ·), then, for every C ∈ p, there exists ~x ∈ (S \ {0})v such
that D~x ∈ Cu.

Proof. We observe that Lemma 1.13 implies that p 6= 0.
We proceed by induction on u+v. We may presume that D has no repeated

rows. If v = 1, then D = (c) for some c ∈ M . Since cS ∈ p and p 6= 0, there
exists x ∈ S \ {0} such that cx ∈ C.

Now assume that v > 1 and the conclusion holds for smaller values of u+ v.
Case 1. There is no first entry of D in column v. Let A be the first v − 1

columns of D and let ~b be the last column. Let r = p and let U = S \ {0}
noting that r ∈ T ⊆

⋂
m∈M c`βR(mR), where R is the group of differences

of S if S is cancellative and R = S otherwise. By the induction hypothesis
we have that for all C ∈ p, there exists ~x ∈ Sv−1 such that A~x ∈ Cu. By
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Corollary 4.6, given C ∈ p, there exist ~x ∈ (S \ {0})v−1 and y ∈ S \ {0} such

that D

(
~x
y

)
= A~x+~by ∈ C.

Case 2. There is a first entry in column v. Note that since D is admissible,
we must have u > 1. By permuting the rows of D, we may assume that there
exist c ∈ M , a u − 1 entry column vector ~b, a v − 1 entry row vector ~0, and a
(u− 1)× (v − 1) first entries matrix A such that

D =

(
A ~b
~0 c

)
.

By the induction hypothesis we have that for all C ∈ p, there exists ~x ∈ Sv−1
such that A~x ∈ Cu−1. By Lemma 4.8, pick an idempotent r ∈ βS such that
cr = p, choosing r ∈ T in the case in which M is a subsemigroup of (N, ·). Let
C ∈ p be given. Since r 6= 0, we can choose a member U of r with U ⊆ S \ {0},
such that cU ⊆ C. If p is a minimal idempotent in βS, it follows from Corollary
4.7 that there exist ~x ∈ (S \ 0)v−1 and y ∈ U such that A~x + ~by ∈ Cu−1. If
M is a subsemigroup of (N, ·), the same conclusion follows from Corollary 4.6.

Hence, in either case, D

(
~x
y

)
∈ Cu.

Before continuing our list of corollaries to Theorem 4.4, we pause to observe
that the requirment that M is a subsemigroup of (N, ·) cannot be simply deleted
from Corollary 4.9.

Theorem 4.10. Let M = {2} and let D =

(
2 1
0 2

)
. Then D is a first

entries matrix with all first entries in M and there exists an infinite commutative
semigroup (S,+) with identity 0, a minimal idempotent p ∈ T = c`βS(2S), and
C ∈ p such that there is no ~x ∈ S2 with D~x ∈ C.

Proof. Let S be an isomorphic copy of (N, ·) converted to additive notation.
Then, in terms of (N, ·), we are letting X = {x2 : x ∈ N}, letting T = c`βNX,
and letting p be a minimal idempotent in (T, ·). Let B = {x4 : x ∈ N}. We

will show that X \ B ∈ p and there does not exist

(
x
y

)
∈ N2 such that(

x2y
y2

)
∈ (X \B)2.

To see that X \ B ∈ p, we will show that B is not piecewise syndetic in
X (and therefore not a member of a minimal idempotent in T ). We use the
combinatorial characterization of piecewise syndetic, stated immediately after
Definition 1.15. Let G ∈ Pf (X) be given and pick a prime p which is not a
factor of any member of G. Let F = {p2, p4} and suppose one has x ∈ X and
t and s in G such that tp2x ∈ B and sp4x ∈ B. This is impossible, since then
the number of factors of p in p2x and the number of factors of p in p4x are both
divisible by 4.

25



Now suppose one has x, y ∈ N such that

(
x2y
y2

)
∈ (X\B)2. Since x2y ∈ X,

we have y ∈ X. But then y2 ∈ B.

Central sets in any semigroup have much in common. Each is a member of
a minimal idempotent. Any minimal idempotent is the identity of a maximal
group contained in K(βS), and any two such groups are isomorphic. We observe
now that central sets can also be significantly different. Let S be the semigroup
of Theorem 1.20, so that both

⋂∞
c=1 cS and S \

⋃∞
c=2 cS are thick and therefore

central. If p is any minimal idempotent in
⋂∞
c=1 cS, then by Corollary 4.9 any

member of p contains images of any first entries matrix with entries from Z. For
any d ∈ N\{1}, (d) is a first entries matrix which has no images in S \

⋃∞
c=2 cS.

Corollary 4.11. Let (S,+) be an infinite commutative semigroup with identity
0. Let M be a subsemigroup of (N, ·). If mS is infinite for every m ∈ M , then
every first entries matrix which is appropriate for S and has all its first entries
in M is IPR/S.

Proof. Since {c`(mS)∩ S∗ : m ∈M} is a family of compact sets with the finite
intersection property, if T =

⋂
m∈M c`(mS), then T ∩ S∗ 6= ∅. It follows that

T is infinite, because a Gδ subset of S∗ cannot be finite by [10, Theorem 3.36].
Thus our claim follows from Corollary 4.9.

Corollary 4.12. Let (S,+) be an infinite commutative semigroup with identity
0. Then either

(a) every first entries matrix which is appropriate for S is IPR/S or

(b) there is a subsemigroup M of (N, ·) such that M has positive additive
density and every first entries matrix which is appropriate for S and has
all first entries in M , is CIPR/S.

Proof. If cS 6= {0} for every c ∈ N, then by Theorem 3.3(a), every matrix which
is IPR/N is IPR/S. So assume that cS = {0} for some c and pick the least
such c, noting that c > 1. Let M = {m ∈ N : m ≡ 1 (mod c)}. Then mS = S
for every m ∈ M . (Given m ∈ M pick n ∈ ω such that m = nc + 1. Then for
x ∈ S, mx = ncx + x = x.) Thus, if T =

⋂
m∈M c`βS(mS), we have T = βS

and so, if p is any minimal idempotent in βS, we have p ∈ T . So our claim
follows from Corollary 4.9.

In the event that there is some c ∈ N\{1} such that cS is piecewise syndetic,
we can identify a specific example of an infinite subsemigroup of (N, ·) with the
property that every first entries matrix which is appropriate for S and has all
its first entries in M is IPR/S.

Corollary 4.13. Let (S,+) be an infinite commutative semigroup with identity
0 and let M = {c ∈ N : cS is piecewise syndetic}. Every first entries matrix A
with all its first entries in M , which is appropriate for S, is IPR/S .
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Proof. If M = {1}, then T = βS and every minimal idempotent of βS is in
T . So every first entries matrix which is appropriate for S and has all its first
entries in M , is CIPR/S by Corollary 4.9.

Now assume that |M | > 1. Let m denote the product of the first entries of
A. By Theorem 1.19, for any minimal idempotent r in βS, p = mr is also a
minimal idempotent in βS. Since cS ∈ p for every first entry c of A, our claim
follows from Corollary 4.9.

We have an extension of Corollary 4.9 along the lines of [10, Theorem 15.5].

Corollary 4.14. Let (S,+) be an infinite commutative semigroup with identity
0. Let M be a nonempty subset of N, let T =

⋂
m∈M c`βS(mS), assume that T

is infinite, and let p be a minimal idempotent in T . Let u, v ∈ N and let A be a
u×v first entries matrix which is appropriate for S such that every first entry of
A is in M . If p ∈ K(βS) or M is a subsemigroup of (N, ·), then for all C ∈ p,
there exists a sequence 〈~xn〉∞n=1 in (S \ {0})v such that for each F ∈ Pf (N),
A~xF ∈ Cu, where ~xF =

∑
t∈F ~xt. If S is cancellative, the sequence 〈~xn〉∞n=1 can

be chosen so that the entries of each ~xF are distinct.

Proof. By Corollary 4.9, for every C ∈ p there exists ~x ∈ Sv such that A~x ∈ Cu.
Let p = (p, p, . . . , p) ∈ (βS)u and let q be a minimal idempotent in Ã−1[{ p }].
By Corollary 4.5, (S \ {0})v ∈ q and if S is cancellative, then, for every distinct
i, j ∈ {1, 2, . . . , v}, {~x ∈ β(Sv) : xi 6= xj} ∈ q. If S is cancellative, let Q =

(S \ {0})v ∩
⋂v−1
i=1

⋂v
j=i+1{~x ∈ β(Sv) : xi 6= xj}. Otherwise, let Q = (S \ {0})v.

By [10, Theorem 5.8], pick 〈~xn〉∞n=1 such that FS(〈~xn〉∞n=1) ⊆ Q.

5. Images with distinct entries

We saw in Theorem 3.3 that if S is cancellative, cS 6= {0} for every c ∈ N,
and A is a u × v matrix which is appropriate for S and is IPR/N, then A is
IPR/S in the strong sense that, given any finite coloring of S \{0}, there exists
~x ∈ (S \ {0})v such that A~x is monochromatic, xi 6= xj if i 6= j, and entries of
A~x corresponding to distinct rows of A are not equal. And we recall that all
first entries matrices are IPR/N. In this section we investigate when we can
get similar conclusions for all members of certain idempotents. In particular,
we shall see in Theorem 5.6 that we can get a similar result for a large class of
first entries matrices if S is a cancellative semigroup and cS = {0}.

We start by determining conditions under which one can get distinct entries
for all members of a given minimal idempotent when S is cancellative.

Lemma 5.1. Let (S,+) be an infinite commutative cancellative semigroup with
identity 0, let u, v ∈ N with u > 1, and let A be an admissible u × v matrix
with entries from Z. Assume that whenever S \ {0} is finitely colored, there
exists ~x ∈ Sv such that if ~y = A~x, then the entries of ~y are monochromatic
and yi 6= yj when 1 ≤ i < j ≤ u. Then whenever 1 ≤ i < j ≤ u, there exists
k ∈ {1, 2, . . . , v} such that (aik − ajk)S is infinite.
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Proof. Let G be the group of differences of S. Let G = {C ⊆ S \ {0} : there
exists ~x ∈ Sv such that if ~y = A~x, then ~y ∈ Cu and if 1 ≤ i < j ≤ u, then
yi 6= yj}. Then by assumption, whenever S \ {0} is finitely colored, there is a
monochromatic member of G so by [10, Theorem 5.7], pick p ∈ βS such that for
all C ∈ p, C \ {0} ∈ G.

Let 1 ≤ i < j ≤ u and suppose that for each k ∈ {1, 2, . . . , v}, (aik−ajk)S is
finite. For k ∈ {1, 2, . . . , v}, let Hk = (aik − ajk)S and let F =

∑v
k=1Hk. Note

that F is finite. Given a ∈ F \ {0}, we have that a + p 6= p by [10, Corollary
8.2] so pick Ba ∈ p \ (a+ p) and let Ca = Ba ∩

(
− a+ (G \Ba)

)
. Then Ca ∈ p

and there is no x ∈ Ca such that a+ x ∈ Ca.
Let C =

⋂
a∈F\{0} Ca. Then C ∈ p so pick ~x ∈ Sv such that if ~y = A~x, then

~y ∈ Cu and yi 6= yj . Let a = yi − yj . Then a =
∑v
k=1 aikxk −

∑v
k=1 ajkxk =∑v

k=1(aik − ajk)xk ∈
∑v
k=1Hk = F and a 6= 0. Then yj ∈ Ca and a + yj =

yi ∈ Ca, a contradiction.

Theorem 5.2. Let (S,+) be an infinite commutative cancellative semigroup
with identity 0, let v ∈ N\{1}, let 1 ≤ i < j ≤ v, and let E = {~x ∈ Sv : xi = xj}.
Then E is not piecewise syndetic in Sv.

Proof. Assume that E is piecewise syndetic in Sv. Pick q ∈ E ∩K
(
β(Sv)

)
and

letG be the group of differences of S. ThenGv is the group of differences of Sv so
by Lemma 1.12, q ∈ K

(
β(Gv)

)
. Define a surjective homomorphism h : Gv → G

by h(~x) = xi − xj and let h̃ : β(Gv) → βG be its continuous extension. By

[10, Exercise 3.4.1 and Corollary 4.22], h̃ is a surjective homomorphism. Since

q ∈ E, h̃(q) = 0 so by Lemma 1.14, h̃[β(Gv)] is finite, which is impossible.

Theorem 5.3. Let (S,+) be an infinite commutative cancellative semigroup
with identity 0, let u, v ∈ N with u > 1, and let A be an admissible u × v
matrix with entries from Z. Let M be a subsemigroup of (N, ·) for which T =⋂
m∈M c`βS(mS) is infinite. Let p be a minimal idempotent in T and assume

that for all C ∈ p, there exists ~x ∈ Sv such that A~x ∈ Cu. Assume also that, for
every m ∈ M and all distinct i, j ∈ {1, 2, . . . , u}, there exists k ∈ {1, 2, . . . , v}
such that (aik − ajk)mS is infinite. Then, for every C ∈ p, there exists ~x ∈
(S\{0})v, with distinct entries, such that the entries of A~x are distinct elements
of C.

Proof. Let p = (p, p, . . . , p) ∈ (βS)u and let q be a minimal idempotent in

Ã−1[{p}]. By Lemma 4.5, (S \ {0})v ∈ q and for each distinct i and j in
{1, 2, . . . , v}, {~x ∈ Sv : xi 6= xj} ∈ q. It thus suffices to show that for each
distinct i and j in {1, 2, . . . , u}, {~x ∈ Sv : (A~x)i 6= (A~x)j} ∈ q. For then,
given C ∈ p, there exists D ∈ q such that A[D] ⊆ Cu and D ⊆ (S \ {0})v ∩⋂v−1
i=1

⋂v
j=i+1{~x ∈ Sv : xi 6= xj} ∩

⋂u−1
i=1

⋂u
j=i+1{~x ∈ Sv : (A~x)i 6= (A~x)j}.

So let i and j be distinct elements of {1, 2, . . . , u}, let Q = {~x ∈ Sv :
(A~x)i = (A~x)j} and suppose that Q ∈ q. Let G be the group of differences of S,

let θ : Sv → G be defined by θ(~x) = (A~x)i − (A~x)j , and let θ̃ : β(Sv)→ βG be

the continuous extension of θ. Then θ̃(q) = 0 and by Lemma 1.14, θ̃
[
Ã−1[{p}]

]
28



is a finite group. We can choose k ∈ {1, 2, . . . , v} such that (aik − ajk)mS is
infinite for every m ∈ S. (If for each k ∈ {1, 2, . . . , v}, there were some mk ∈M
such that (aik − ajk)mkS is finite and m = m1 ·m2 · · ·mv, then we would have
(aik − ajk)mS is finite for each k.) Since the intersection of any finite number
of these sets is infinite,

⋂
m∈M c`βG

(
(aik − ajk)mS

)
∩ G∗ = (aik − ajk)T ∩ G∗

is a compact subsemigroup of βG, and so it contains an idempotent e. Since
{r ∈ T : (aik − ajk)r = e} is a compact subsemigroup of T , we can choose an
idempotent r ∈ T for which (aik − ajk)r = e.

Let B denote the u × 1 matrix equal to the kth column of A. By Theorem
4.4, for every C ∈ p and every U ∈ r, there exists ~xC,U ∈ Q and sC,U ∈ U ∩ S
such that A~xC,U + BsC,U ⊆ Cu. Let ~zC,U ∈ Sv denote the vector for which
~zC,U (k) = ~xC,U (k)+sC,U and ~zC,U (t) = ~xC,U (t) for t ∈ {1, 2, . . . , v}\{k}. Then
A~zC,U = A~xC,U +BsC,U . Observe that θ(~zC,U ) = (aik−ajk)sC,U . We give p×r
the natural directed set ordering by stating that (C,U) ≺ (C ′, U ′) if C ′ ⊆ C
and U ′ ⊆ U . Let q′ denote a limit point in β(Sv) of the net 〈~zC,U 〉(C,U)∈p×r.

Then Ã(q′) = p and θ̃(q′) = e. This is a contradiction, because it implies that

the group θ̃
[
Ã−1[{p}]

]
contains an idempotent e distinct from 0.

Theorem 5.4. Let (S,+) be an infinite commutative cancellative semigroup
with identity 0, let u, v ∈ N with u > 1, and let A be an admissible u× v matrix
with entries from Z. Let p be a minimal idempotent in βS and assume that for
all C ∈ p, there exists ~x ∈ Sv such that A~x ∈ Cu. The following statements are
equivalent.

(1) For all C ∈ p, there exists ~x ∈ (S\{0})v such that xi 6= xj if 1 ≤ i < j ≤ v
and if ~y = A~x, then ~y ∈ Cu and yi 6= yj if 1 ≤ i < j ≤ u.

(2) There exists r ∈ βS such that for all C ∈ r, there exists ~x ∈ Sv such that
A~x ∈ Cu and if ~y = A~x and 1 ≤ i < j ≤ u, then yi 6= yj.

(3) Whenever S\{0} is finitely colored, there exists ~x ∈ Sv such that if ~y = A~x,
then the entries of ~y are monochromatic and yi 6= yj when 1 ≤ i < j ≤ u.

(4) Whenever S \ {0} is finitely colored, there exists ~x ∈ (S \ {0})v such that
xi 6= xj if 1 ≤ i < j ≤ v and if ~y = A~x, then the entries of ~y are
monochromatic and yi 6= yj when 1 ≤ i < j ≤ u.

(5) Whenever 1 ≤ i < j ≤ u, there exists k ∈ {1, 2, . . . , v} such that
(aik − ajk)S is infinite.

Proof. It is trivial that (1) implies (2). If r is as in statement (2), then one can’t
have {0} ∈ r so if S \ {0} is finitely colored, then some color class is in r and
thus (2) implies (3). The fact that (3) implies (5) is Lemma 5.1. It is trivial
that (1) implies (4) and (4) implies (3). It remains to show that (5) implies (1).
But this follows from Theorem 5.3 with M = {1}.

Statements (2) through (5) of Theorem 5.4 do not mention the given idem-
potent p, however, our proof that (5) implies (1), and therefore (5) implies (4),
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strongly uses the fact that p is minimal in βS. We see that this assumption is
required.

Theorem 5.5. Let S1 =
⊕∞

n=1 Z2, S2 =
⊕∞

n=1 Z3, and S = S1 × S2. Let

A =

(
2 0
2 3

)
. There is an idempotent p ∈ βS such that for all C ∈ p, there

exists ~x ∈ S2 such that A~x ∈ C2, conclusion (5) of Theorem 5.4 holds, and
conclusion (4) does not.

Proof. Pick an idempotent p ∈ βS such that {(~0,~b ) : ~b ∈ S2} ∈ p. Let C ∈ p

and pick ~b ∈ S2 such that (~0,~b ) ∈ C. Let ~x =

(
(~0, 2~b )

(~0,~b )

)
. Then A~x =(

(~0,~b )

(~0,~b )

)
∈ C2.

Since {−3~s : ~s ∈ S} is infinite, conclusion (5) is satisfied. To see that

conclusion (4) is not satisfied, let C1 = {(~0,~b ) : ~b ∈ S2} and let C2 = S \

C1. Suppose we have ~x =

(
(~a,~b )

(~c, ~d )

)
∈ S2 such that the entries of A~x are

monochromatic and distinct. Then A~x =

(
(~0, 2~b )

(3~c, 2~b )

)
. Since the entries are

monochromatic, 3~c = ~0, so the entries are not distinct.

We conclude with our promised extension of parts of [10, Theorem 5.5].

Theorem 5.6. Let (S,+) be an infinite commutative cancellative semigroup
with identity 0 and assume that c ∈ N and cS = {0}. Let M = {m ∈ N : (c,m) =
1}. Let u, v ∈ N and let A be a u × v first entries matrix which is appropriate
for S and all of whose first entries are in M . Let T =

⋂
m∈M c`βS(mS). Then

T ∩ S∗ is a subsemigroup of βS and if p is a minimal idempotent in T , then
for every C ∈ p, there exists ~x ∈ (S \ {0})v such that A~x ∈ Cu and xi 6= xj
whenever i 6= j in {1, 2, . . . , v}.

Proof. Observe that S is a group, since every element of S has finite order. If
m ∈M , am+bc = 1 for some a, b ∈ Z. Given x ∈ S, x = (am+bc)x = m(ax)+0
and so mS = S. Consequently T = βS and p is a minimal idempotent in βS.
Therefore Corollary 4.6 applies.
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