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Abstract

Many of the classical results of Ramsey Theory are naturally stated in terms of
image partition regularity of matrices. Many characterizations are known of image
partition regularity over N and other subsemigroups of (R,+). We study several
notions of image partition regularity near zero for both finite and infinite matrices,
and establish relationships which must hold among these notions.
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1 Introduction

One of the earliest results of Ramsey Theory is Schur’s Theorem [17] which
says that whenever the set N of positive integers is partitioned into finitely
many classes (or finitely colored) there exist x and y such that x, y, and x+ y
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are contained in one cell of the partition (or are monochromatic). This theorem

can be viewed as saying that the matrix ( 1 1 −1 ) is kernel partition regular

over N.

Definition 1.1 Let S be a subsemigroup of (R,+), let u, v ∈ N, and let A be
a u× v matrix with entries from Q. Then A is kernel partition regular over S
(abbreviated KPR/S) if and only if, whenever S is finitely colored there exists
monochromatic ~x ∈ Sv such that A~x = 0.

The terminology is due to Walter Deuber and refers to the fact that the vector
~x is in the kernel of the linear transformation defined by ~y 7→ A~y.

Schur’s theorem may also be viewed as saying that the matrix
1 0

0 1

1 1


is image partition regular over N.

Definition 1.2 Let S be a subsemigroup of (R,+), let u, v ∈ N, and let A be
a u× v matrix with entries from Q. Then A is image partition regular over S
(abbreviated IPR/S) if and only if, whenever S \ {0} is finitely colored there
exists ~x ∈ Sv such that the entries of A~x are monochromatic.

Another of the earliest results of Ramsey Theory is van der Waerden’s The-
orem [19] which says that whenever N is finitely colored there must exist
arbitrarily long monochromatic arithmetic progressions. The length five ver-
sion of van der Waerden’s Theorem is clearly equivalent to the statement that
the matrix 

1 0

1 1

1 2

1 3

1 4


is image partition regular. On the other hand while one can write matrices
whose kernel partition regularity imply any of the instances of van der Waer-
den’s Theorem, it is impossible to write a kernel partition regular matrix such
that any element of the kernel has entries constituting a nontrivial length five
arithmetic progression (or any other length greater than two). See [7, Theorem
2.6].
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In 1933 R. Rado [15] characterized those finite matrices that are kernel par-
tition regular over N and later, in [16] those that are kernel partition regular
over other subsets of R. It was not until 1993 that characterizations of finite
matrices that are image partition regular over N were obtained in [8]. (See [7,
Theorem 4.8] for a list of 17 known equivalences to IPR/N.)

While there are several partial results, nothing near a characterization of either
kernel or image partition regularity of infinite matrices has been obtained.
(See [7, Section 6] for a summary of some of what is known about partition
regularity of infinite matrices.)

In [9], a paper primarily concerned with algebraic results in the Stone-Čech
compactification of various semigroups of (R,+) with the discrete topology, a
few results about image partition regularity near zero were obtained. In this
paper we are investigating this subject in greater detail.

Definition 1.3 Let S be a subsemigroup of (R,+) with 0 ∈ c`S, let u, v ∈ N,
and let A be a u × v matrix with entries from Q. Then A is image partition
regular over S near zero (abbreviated IPR/S0) if and only if, whenever S \{0}
is finitely colored and δ > 0, there exists ~x ∈ Sv such that the entries of A~x
are monochromatic and lie in the interval (−δ, δ).

In Section 2 we shall investigate those finite matrices which are IPR/S0 for
arbitrary dense subsemigroups of (R,+) and of

(
(0,∞),+

)
, and determine the

precise relationships among these notions for the semigroups Q, Q+, D, D+,
R, and R+, where S+ = {x ∈ S : s > 0} and D is the set of dyadic rationals.

Definitions 1.2 and 1.3 have obvious generalizations to ω × ω matrices with
finitely many nonzero entries in each row, where ω = N∪{0} is the first infinite
cardinal. There is also a new notion which makes sense only if the matrix is
infinite which we present in Definition 3.1. In Section 3 we investigate the
relationships among these notions for the same semigroups and almost succeed
in determining the precise relationships that hold among them.

Central sets in an arbitrary semigroup are known to have substantial combi-
natorial structure, and there is a natural extension of this notion to central
near zero which was introduced in [9]. Both of these notions involve the al-
gebraic structure of the Stone-Čech compactification of a discrete semigroup.
Since Sections 2 and 3 do not require any knowledge of this structure, we post-
pone a description of it until Section 4, where we will derive a new version of
the Central Sets Theorem near zero and get some combinatorial consequences
thereof.

In Section 5 we establish that Milliken-Taylor matrices (which we will define
there) are image partition regular near zero in the strong sense introduced in
Section 3.
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2 Finite Matrices

We show in this section that there are precisely two distinct notions of image
partition regularity of S near zero, depending on whether S is dense in (0,∞)
or in R.

Lemma 2.1 Let u, v ∈ N let A be a u × v matrix with entries from Q such
that A is IPR/N, and let S be a dense subsemigroup of

(
(0,∞),+

)
. Then A

is IPR/S0.

Proof. Let r ∈ N, let S =
⋃r
i=1Ci, and let δ > 0. By a standard compactness

argument (see [12, Section 5.5] or [6, Section 1.5]) pick k ∈ N such that when-
ever {1, 2, . . . , k} =

⋃r
i=1Di, there exist ~x ∈ {1, 2, . . . , k}v and i ∈ {1, 2, . . . , r}

such that A~x ∈ (Di)
u. Pick z ∈ S ∩ (0, δ

k
). For i ∈ {1, 2, . . . , r} let Di =

{t ∈ {1, 2, . . . , k} : tz ∈ Ci}. Pick i ∈ {1, 2, . . . , r} and ~x ∈ {1, 2, . . . , k}v such
that A~x ∈ (Di)

u and let ~y = z~x. Then A~y ∈
(
(Ci ∩ (0, δ)

)
u. 2

Lemma 2.2 Let u, v ∈ N, let A be a u × v matrix with entries from Q such
that A is IPR/Z, and let S be a dense subsemigroup of (R,+). Then A is
IPR/S0.

Proof. This is essentially identical to the previous proof. Given r ∈ N, pick
k ∈ N such that whenever {−k,−k + 1, . . . , k − 1, k} =

⋃r
i=1Di, there exist

~x ∈ {−k,−k+1, . . . , k−1, k}v and i ∈ {1, 2, . . . , r} such that A~x ∈ (Di)
u. 2

Theorem 2.3 Let u, v ∈ N and let A be a u× v matrix with entries from Q
and let S be a dense subsemigroup of

(
(0,∞),+

)
. The following statements

are equivalent.

(a) A is IPR/N.
(b) A is IPR/S0.
(c) A is IPR/S.
(d) A is IPR/R+.

Proof. That (a) implies (b) is Lemma 2.1. Trivially (b) implies (c) and (c)
implies (d). That (d) implies (a) follows from [13, Theorem 2.4(I)]. 2

Theorem 2.4 Let u, v ∈ N and let A be a u × v matrix with entries from
Q and let S be a dense subsemigroup of (R,+). The following statements are
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equivalent.

(a) A is IPR/Z.
(b) A is IPR/S0.
(c) A is IPR/S.
(d) A is IPR/R.

Proof. That (a) implies (b) is Lemma 2.2. Trivially (b) implies (c) and (c)
implies (d). That (d) implies (a) follows from [13, Theorem 2.4(II)]. 2

Lemma 2.5 Let A =

 3 3

1 2

 and for i ∈ {0, 1, 2, 3} let

Ci =
⋃∞
t=0[(

2
3
)4t+i+1, (2

3
)4t+i) .

Then there do not exist i ∈ {0, 1, 2, 3} and ~x ∈ (R+)2 such that A~x ∈ (Ci)
2.

Thus A is not IPR/R+
0 . On the other hand A is IPR/Z.

Proof. Suppose we have such i and ~x and pick t ∈ ω such that

(2
3
)4t+i+1 ≤ x1 + 2x2 < (2

3
)4t+i .

Then

(2
3
)4t+i = 3

2
(2
3
)4t+i+1 ≤ 3

2
x1+3x2 < 3x1+3x2 < 3x1+6x2 < 3(2

3
)4t+i < (2

3
)4t+i−3

so 3x1 + 3x2 /∈ Ci, a contradiction.

On the other hand

A

−1

2

 =

 3

3


so A is IPR/Z. 2

Theorem 2.6 Let u, v ∈ N and let A be a u× v matrix with entries from Q.
The seven statements in (I) below are equivalent and are strictly stronger than
the seven equivalent statements in (II).

(I)
(a) A is IPR/N.
(b) A is IPR/D+.
(c) A is IPR/Q+.
(d) A is IPR/R+.
(e) A is IPR/D+

0 .
(f) A is IPR/Q+

0 .
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(g) A is IPR/R+
0 .

(II)
(a) A is IPR/Z.
(b) A is IPR/D.
(c) A is IPR/Q.
(d) A is IPR/R.
(e) A is IPR/D0.
(f) A is IPR/Q0.
(g) A is IPR/R0.

Proof. The equivalences in (I) and (II) follow from Theorems 2.3 and 2.4.
To see that the statements in (I) are strictly stronger than those in (II), let

A =

 3 3

1 2

 .

By Lemma 2.5, A is not IPR/R+
0 and is IPR/Z. 2

3 Infinite Matrices

We shall see in this section that the situation with respect to infinite matrices
is substantially different from that with respect to finite matrices. Recall that
ω = {0, 1, 2, . . .} = N∪{0} is the first infinite ordinal (and also the first infinite
cardinal).

The notions defined in Definitions 1.2 and 1.3 both have obvious interpreta-
tions where u and v are both replaced by ω. In addition there is the following
notion which only makes sense for infinite matrices.

Definition 3.1 Let S be a subsemigroup of (R,+) with 0 ∈ c`S, and let A
be an ω × ω matrix with entries from Q and finitely many nonzero entries in
each row. Then A is image partition regular over S near zero in the strong
sense (abbreviated IPR/S0s) if and only if, whenever S \{0} is finitely colored
and δ > 0, there exists ~x ∈ Sω such that lim

n→∞
xn = 0 and the entries of A~x

are monochromatic and lie in the interval (−δ, δ).

Consider now the diagram of implications in Figure 1.

All of the implications in the diagram hold trivially. We shall show in the
remainder of the section that most of the missing implications do not hold in
general. If we had an example of a matrix which is IPR/N but not IPR/R0,
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Fig. 1. Diagram of Implications

we would know that the only implications that hold in general are those dia-
grammed and those that follow from them by transitivity.

Lemma 3.2 Let A be an ω × ω matrix having all possible rows with a single
1 and a single 2, and all other entries equal to 0. Then A is IPR/D+

0 and is
IPR/N, but is not IPR/R0s.

Proof. Since constant vectors produce constant solutions, we have immedi-
ately that A is IPR/D+

0 and is IPR/N. We show that A is not IPR/R0s.

For x ∈ (0, 1) choose I(x) ⊆ N such that x =
∑
t∈I(x) 2−t and if there is

a finite F ⊆ N such that x =
∑
t∈F 2−t, then I(x) = F . (That is, choose

the terminating binary expansion of x if it has one.) For x ∈ (0, 1), define
ϕ(x) = min I(x). Let

C0 = {x ∈ (−1, 1) \ {0} : ϕ(|x|) is even} and

C1 = {x ∈ (−1, 1) \ {0} : ϕ(|x|) is odd} ∪
(
R \ (−1, 1)

)
.

Suppose that we have i ∈ {0, 1} and a sequence 〈xn〉∞n=0 in R such that
lim
n→∞

xn = 0 and all entries of A~x are in Ci. If all but finitely many terms of

〈xn〉∞n=0 are negative, replace ~x by−~x. We can thus assume that infinitely many
terms of 〈xn〉∞n=0 are positive. Pick j such that 0 < xj < 1. Pick k > ϕ(xj)
such that k /∈ I(xj). (Such k exists by the second requirement in the definition
of I(x).) Pick l such that xl > 0 and ϕ(xl) > k + 1. When the sum xj + 2xl
is computed there is no carrying past position k. When the sum 2xj + xl is
computed there is no carrying past position k − 1. Thus ϕ(xj + 2xl) = ϕ(xj)
and ϕ(2xj + xl) = ϕ(xj)− 1. This contradiction completes the proof. 2
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Lemma 3.3 Let

A =



3 3 0 0 0 0 . . .

1 2 0 0 0 0 . . .

0 0 3 3 0 0 . . .

0 0 1 2 0 0 . . .

0 0 0 0 3 3 . . .

0 0 0 0 1 2 . . .
...

...
...

...
...

...
. . .



.

Then A is IPR/D0s but is not IPR/R+.

Proof. By Lemma 2.5, A is not IPR/R+. To see that A is IPR/D0s let
r ∈ N, let D \ {0} =

⋃r
i=1Ci, let δ > 0, and pick i ∈ {1, 2, . . . , r} such that

0 ∈ c`Ci∩3D, and pick a sequence 〈yn〉∞n=0 in Ci∩3D∩(−δ, δ) which converges
to 0. For n < ω let x2n = −1

3
yn and let x2n+1 = 2

3
yn. Since yn ∈ 3D, x2n and

x2n+1 are in D. Then

A~x =



y0

y0

y1

y1
...


.

2

We need some preliminary results in order to prove Lemma 3.6. We are grateful
to Fred Galvin for supplying us with the proof of the following theorem which
was stated without proof as [5, Theorem 9(3)]. According to Galvin this proof
is “a straightforward generalization of the Erdős-Rado proof of the partition
relation ω1 → (ω + 1)rk which is stated on [3, page 472, line 6].”

For a set X and a cardinal κ we let [X]κ = {A ⊆ X : |A| = κ}.

Theorem 3.4 (Galvin) Let (P,<) be a partially ordered set with the prop-
erty that whenever P is colored with countably many colors, there is a mono-
chromatic subset of order type ω. Let r ∈ N. If the set of length r chains in P
is finitely colored, there exists a chain in P of order type ω + 1 all of whose
length r subchains are monochromatic.

Proof. Notice that the r = 1 case follows immediately from the r = 2 case.
(If k ∈ N and γ : P → {1, 2, . . . , k}, define ψ taking the 2-element chains in P
to {1, 2, . . . , k} so that if x, y ∈ P and x < y, then ψ({x, y}) = γ(y). If X is a
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subset of P of order type ω+ 1 such that ψ is constant on the set of 2-element
chains, and z = minX, then X \ {z} is a subset of P of order type ω + 1 on
which γ is constant.) Thus we shall assume that r ≥ 2.

Let C be the set of r-element chains in P , let k ∈ N, and let ψ : C →
{1, 2, . . . , k}.

Call a subset X of P end-homogeneous if and only if X is a chain in P and
whenever y1, y2, . . . yr+1 ∈ X and y1 < y2 < . . . < yr+1, one has

ψ({y1, y2, . . . , yr−1, yr}) = ψ({y1, y2, . . . , yr−1, yr+1}) .

We claim that it suffices to show that there is an end-homogeneous subset
X of P such that the order type of X is ω + 1. So assume we have such X,
let u = maxX, and let Y = X \ {u}. Pick by Ramsey’s Theorem an infinite
subset Y ′ of Y and i ∈ {1, 2, . . . , k} such that for all B ∈ [Y ′]r, ψ(B) = i.
Then Y ′∪{u} has order type ω+1 and whenever B ∈ [Y ′∪{u}]r, ψ(B) = i. (If
u ∈ B, pick z ∈ Y ′ with z > maxB\{u}. Then ψ(B) = ψ

(
(B\{u})∪{z}

)
= i.)

So suppose that there is no end-homogeneous subset of P with order type
ω + 1. Fix a well ordering W of P and for nonempty A ⊆ P write minW (A)
for the smallest element of A with respect to this well ordering. Given u ∈ P
and X ⊆ P write X < u if and only if for all x ∈ X, x < u. Given u ∈ P and
X ⊆ P such that X ∪ {u} is end-homogeneous and X < u, let

S(X, u) = {y ∈ P : X < y < u and X ∪ {y, u} is end-homogeneous} .

Observe that for any u ∈ P , S(∅, u) = {y ∈ P : y < u}.

We claim that for each u ∈ P for which S(∅, u) 6= ∅, there exist n(u) < ω and
x1(u), x2(u), . . . , xn(u)(u) ∈ P such that

(1) x1(u) = minW
(
S(∅, u)

)
,

(2) for i ∈ {2, 3, . . . , n(u)}, xi(u) = minW
(
S({x1(u), x2(u), . . . , xi−1(u)}, u)

)
,

and
(3) S({x1(u), x2(u), . . . , xn(u)(u)}, u) = ∅.

To see this, note that otherwise one may inductively define a sequence 〈xn〉∞n=1

by x1 = minW
(
S(∅, u)

)
and for n ∈ N, xn+1 = minW

(
S({x1, x2, . . . , xn}, u)

)
.

Then {xn : n ∈ N} ∪ {u} is an end-homogeneous subset of P of order type
ω + 1.

Given u ∈ P such that S(∅, u) 6= ∅, let X(u) = {x1(u), x2(u), . . . , xn(u)(u)}.
Define an equivalence relation ∼ on P by u ∼ v if and only if either S(∅, u) =
S(∅, v) = ∅ or

(a) n(u) = n(v) and
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(b) whenever 1 ≤ i1 < i2 < . . . < ir−1 ≤ n(u),
ψ({xi1(u), xi2(u), . . . , xir−1(u), u}) = ψ({xi1(v), xi2(v), . . . , xir−1(v), v}).

There are only countably many equivalence classes mod ∼, so by the hypoth-
esis on P we may choose an increasing sequence 〈ui〉∞i=1 in P such that ui ∼ uj
for all i, j ∈ N. There do not exist two comparable elements of the equivalence
class determined by S(∅, u) = ∅, so we may pick n such that n = n(ui) for all
i ∈ N.

We show now by induction on j ∈ {1, 2, . . . , n} that there are some l(j) ∈ N
and zj ∈ P such that for all i ∈ N, if i ≥ l(j), then xj(ui) = zj. Assume first
that j = 1. Then for each i ∈ N, x1(ui) = minW

(
S(∅, ui)

)
and S(∅, ui) ⊆

S(∅, ui+1) so x1(ui+1) ≤W x1(ui). Since W is a well ordering, the sequence
〈x1(ui)〉∞i=1 is eventually constant as required.

Now assume that j ∈ {2, 3, . . . , n}, m ∈ N, and z1, z2, . . . , zj−1 ∈ P such that
for all i ≥ m and all t ∈ {1, 2, . . . , j − 1}, xt(ui) = zt. Then given i ∈ N with
i ≥ m,

S({x1(ui), x2(ui), . . . , xj−1(ui)}, ui) = S({z1, z2, . . . , zj−1}, ui)

⊆ S({z1, z2, . . . , zj−1}, ui+1) = S({x1(ui+1), x2(ui+1), . . . , xj−1(ui+1)}, ui+1)

so that xj(ui+1) ≤W xj(ui). (The inclusion uses the fact that ui ∼ ui+1.) Thus
the sequence 〈xj(ui)〉∞i=1 is eventually constant.

We therefore have some i such that X(ui) = X(ui+1). But then

ui ∈ S({x1(ui+1), x2(ui+1), . . . , xn(ui+1)(ui+1)}, ui+1) ,

a contradiction. 2

Galvin also provided the proof of the following corollary.

Corollary 3.5 Let S be an uncountable subset of R, let k ∈ N, and let
ϕ : [S]2 → {1, 2, . . . , k}. There exists an increasing sequence 〈yn〉n<ω+1 such
that ϕ is constant on

{
{yk, yl} : k < l < ω + 1

}
and yω = lim

n→∞
yn.

Proof. We first show that S satisfies the hypothesis of Theorem 3.4. That is
whenever S is colored with countably many colors, there is a monochromatic
subset of order type ω. Since whenever S is colored with countably many colors
there must exist an uncountable monochromatic subset, it suffices to show that
S contains a subset of order type ω. Trivially any nonempty subset which does
not have a largest element contains a subset of order type ω. So if S contains
no subset of order type ω, then every nonempty subset has a largest element.
But this means that −S is well ordered, while R trivially does not contain
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any uncountable well ordered subset. (One could pick a rational between any
element of such a subset and its successor.)

We may presume that S is bounded since it must contain an uncountable
bounded subset. Define ψ : [S]3 → {1, 2} as follows. Given x < y < z in
S, let ψ({x, y, z}) = 1 if ϕ({x, y}) = ϕ({x, z}) and y − x > z − y and let
ψ({x, y, z}) = 2 otherwise. Pick by Theorem 3.4 a set B ⊆ S of order type
ω + 1 such that ψ is constant on [B]3. We claim that the constant value is
1. So suppose instead it is 2. By Ramsey’s Theorem pick C ∈ [B]ω such that
ϕ is constant on [C]2. We can choose an increasing sequence 〈xn〉∞n=1 in C.
Given any n we have that ϕ({xn, xn+1}) = ϕ({xn, xn+2}) so it must be that
xn+1 − xn ≤ xn+2 − xn+1. Since S is bounded, this is impossible.

Consequently the constant value of ψ is 1. Let z = maxB. By the pigeon
hole principle, we may presume that ϕ is constant on

{
{x, z} : x ∈ B \ {z}

}
.

Therefore, ϕ is constant on [B]2. Again choose an increasing sequence 〈xn〉∞n=1

in B. Since {xn : n ∈ N} is bounded, there must exist arbitrarily small values
of xn+1 − xn, and thus z − xn+1 must be arbitrarily small since z − xn+1 <
xn+1 − xn. 2

Lemma 3.6 Let

A =



1 0 0 0 . . .

1 −1 0 0 . . .

0 1 0 0 . . .

0 1 −1 0 . . .

0 0 1 0 . . .

0 0 1 −1 . . .
...

...
...

...
. . .



.

Then A is IPR/R+
0s but A is not IPR/Q.

Proof. It is shown in the proof of [13, Theorem 2.6] that A is not IPR/Q.
To see that A is IPR/R+

0s, let k ∈ N, let δ > 0 and let τ : R+ → {1, 2, . . . , k}.
Note that for ~x ∈ Rω, the entries of A~x are

{xn : n < ω} ∪ {xn − xn+1 : n < ω} .

Define
ϕ : [R]2 → {1, 2, . . . , k}

by ϕ({x, y}) = τ(|x − y|). Pick by Corollary 3.5 an increasing sequence
〈yn〉n<ω+1 in (0, δ) such that ϕ is constant on

{
{yk, yl} : k < l < ω + 1

}
and

yω = lim
n→∞

yn.

11



For each n < ω, let xn = yω − yn. Then lim
n→∞

xn = 0 and τ is constant on the

entries of A~x. 2

Lemma 3.7 Let

A =



1 −1 0 0 0 . . .

1/3 0 −1 0 0 . . .

1/5 0 0 −1 0 . . .

1/7 0 0 0 −1 . . .
...

...
...

...
...

. . .


.

Then A is IPR/Q+
0s but is not IPR/D.

Proof. To see that A is not IPR/D we show that there is no ~x ∈ Dω such
that ~y = A~x ∈ Dω. Indeed, suppose one has such ~x and pick n ∈ N such that
x0/(2n+ 1) /∈ D. Then yn = x0/(2n+ 1)− xn+1 /∈ D.

To see that A is IPR/Q+
0s let r ∈ N, let δ > 0, let (0,∞) ∩ Q =

⋃r
i=1Ci,

pick i ∈ {1, 2, . . . , r} such that 0 ∈ c`Ci, and pick a sequence 〈yn〉∞n=0 in Ci
which converges to 0. We may also assume that for each n, yn < 1/(2n + 1)
and yn < δ. Let x0 = 1 and for n ∈ N, let xn = 1/(2n − 1) − yn−1. Then
A~x = ~y ∈ (Ci)

ω. 2

Lemma 3.8 Let

A =



1 0 0 0 . . .

1/2 −1 0 0 . . .

1/4 0 −1 0 . . .

1/8 0 0 −1 . . .
...

...
...

...
. . .


.

Then A is IPR/D+
0s but is not IPR/Z.

Proof. To see that A is IPR/D+
0s, let δ > 0 be given and let (0,∞) ∩ D =⋃r

i=1Ci. Pick i such that 0 ∈ c`Ci and choose a sequence 〈yn〉∞n=0 ∈ Ci such
that for each n ∈ N, yn < y0/2

n Let x0 = y0 and for n ∈ N, let xn = y0/2
n−yn.

Then A~x = ~y.

To see that A is not IPR/Z, suppose one has ~x ∈ Zω such that all entries of
A~x are in Z \ {0}. Pick n ∈ N such that x0/2

n /∈ Z. Then x0/2
n− xn /∈ Z. 2

12



Lemma 3.9 Let

A =



1 0 0 0 . . .

2 1 0 0 . . .

4 0 1 0 . . .

8 0 0 1 . . .
...

...
...

...
. . .


.

Then A is IPR/N but is not IPR/R+
0 .

Proof. To see that A is IPR/N, let N be finitely colored and pick a monochro-
matic sequence 〈yn〉∞n=0 such that for each n ∈ N, yn > 2ny0. Let x0 = y0 and
for each n ∈ N, let xn = yn − 2ny0. Then A~x = ~y.

Now suppose one has ~x ∈ (R+)ω such that ~y = A~x ∈
(
(0, 1)

)
ω. Then x0 = y0 >

0. Pick k ∈ N such that 2kx0 > 1. Then yk = 2kx0+xk > 1, a contradiction. 2

Now consider the table in Figure 2. In this table, the entry in row S and column
T is labeled as follows. If the fact that any matrix which is IPR/S is also IPR/T
follows from the implications in Figure 1, then a “+” is entered. An entry of
“n.k” means that an example of a matrix which is IPR/S but is not IPR/T is
given in Lemma n.k. (Only one lemma is cited when multiple lemmas provide
examples.) If we cannot determine whether every matrix which is IPR/S is
also IPR/T , a “?” is entered.

If we knew that there is a matrix which is IPR/N but is not IPR/R0 we would
know that none of the missing implications in Figure 1 are valid.

Question 3.10 Is there an ω×ω matrix with rational entries which is IPR/N
but is not IPR/R0.

13



D+
0s N D+

0 D0sQ+
0s Z D+ D0 Q+

0 Q0sR+
0s D Q+ Q0 R+

0 R0s Q R+ R0

D+
0s

N
D+

0

D0s

Q+
0s

Z
D+

D0

Q+
0

Q0s

R+
0s

D
Q+

Q0

R+
0

R0s

Q
R+

R0

+ 3.8 + + + 3.8 + + + + + + + + + + + + +

3.2 + 3.9 3.2 3.2 + + ? 3.9 3.2 3.2 + + ? 3.9 3.2 + + ?

3.2 3.8 + 3.2 3.2 3.8 + + + 3.2 3.2 + + + + 3.2 + + +

3.3 3.3 3.3 + 3.3 3.8 3.3 + 3.3 + 3.3 + 3.3 + 3.3 + + 3.3 +

3.7 3.7 3.7 3.7 + 3.7 3.7 3.7 + + + 3.7 + + + + + + +

2.5 2.5 2.5 3.2 2.5 + 2.5 ? 2.5 3.2 2.5 + 2.5 ? 2.5 3.2 + 2.5 ?

3.2 3.8 3.9 3.2 3.2 3.8 + ? 3.9 3.2 3.2 + + ? 3.9 3.2 + + ?

3.2 3.3 3.3 3.2 3.2 3.8 3.3 + 3.3 3.2 3.2 + 3.3 + 3.3 3.2 + 3.3 +

3.2 3.7 3.7 3.2 3.2 3.7 3.7 3.7 + 3.2 3.2 3.7 + + + 3.2 + + +

3.3 3.3 3.3 3.7 3.3 3.7 3.3 3.7 3.3 + 3.3 3.7 3.3 + 3.3 + + 3.3 +

3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 + 3.6 3.6 3.6 + + 3.6 + +

2.5 3.3 2.5 3.2 2.5 3.8 3.3 ? 2.5 3.2 2.5 + 3.3 ? 2.5 3.2 + 3.3 ?

3.2 3.7 3.7 3.2 3.2 3.7 3.7 3.7 3.9 3.2 3.2 3.7 + ? 3.9 3.2 + + ?

3.2 3.3 3.3 3.2 3.2 3.7 3.3 3.7 3.3 3.2 3.2 3.7 3.3 + 3.3 3.2 + 3.3 +

3.2 3.6 3.6 3.2 3.2 3.6 3.6 3.6 3.6 3.2 3.2 3.6 3.6 3.6 + 3.2 3.6 + +

3.3 3.3 3.3 3.6 3.3 3.6 3.3 3.6 3.3 3.6 3.3 3.6 3.3 3.6 3.3 + 3.6 3.3 +

2.5 3.3 2.5 3.2 2.5 3.7 3.3 3.7 2.5 3.2 2.5 3.7 3.3 ? 2.5 3.2 + 3.3 ?

3.2 3.6 3.6 3.2 3.2 3.6 3.6 3.6 3.6 3.2 3.2 3.6 3.6 3.6 3.9 3.2 3.6 + ?

3.2 3.3 3.3 3.2 3.2 3.6 3.3 3.6 3.3 3.2 3.2 3.6 3.3 3.6 3.3 3.2 3.6 3.3 +

Fig. 2. Table of Implications

14



Lemma 3.11 Let

A =



1 0 0 0 0 0 0 0 . . .

0 1 0 0 0 0 0 0 . . .

2 1 0 0 0 0 0 0 . . .

0 0 1 1 0 0 0 0 . . .

4 0 1 0 0 0 0 0 . . .

4 0 0 1 0 0 0 0 . . .

0 0 0 0 1 1 1 1 . . .

8 0 0 0 1 0 0 0 . . .

8 0 0 0 0 1 0 0 . . .

8 0 0 0 0 0 1 0 . . .

8 0 0 0 0 0 0 1 . . .
...

...
...

...
...

...
...

...
. . .



.

Then A is not IPR/R0.

Proof. Let C1 = (0,∞) and let C2 = (−∞, 0). Suppose one has i ∈ {1, 2}
and ~x ∈ Rω such that A~x ∈

(
Ci ∩ (−1, 1)

)
ω. We may assume without loss of

generality that i = 1. Then x0 > 0. Pick k ∈ N such that 2kx0 > 1. Then∑2k−1
t=2k−1 xt > 0 so pick some t ∈ {2k−1, 2k−1 + 1, . . . , 2k − 1} such that xt > 0.

Then 2kx0 + xt is an entry of A~x which is bigger than 1. 2

Question 3.12 Is the matrix A of Lemma 3.11 IPR/N?

Of course an affirmative answer to Question 3.12 would provide an affirmative
answer to Question 3.10.

4 Central Sets Near Zero

Central subsets of a semigroup are intimately related with structures that are
partition regular over that semigroup. In this section we will deal with sets
that are central near zero and show that similar relationships hold with respect
to partition regularity near zero. In order to do this, we need to discuss the
algebra of the Stone-Čech compactification of a discrete semigroup.

If S is a discrete space, we take the points of the Stone-Čech compactification
βS of S to be the ultrafilters on S, identifying the principal ultrafilters with
the points of S (and thus pretending that S ⊆ βS). Given a set A ⊆ S,
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A = {p ∈ βS : A ∈ p}. The sets {A : A ⊆ S} form a basis for the open sets of
S as well as a basis for the closed sets of S.

Given a discrete semigroup (S,+) the operation extends to βS making (βS,+)
a right topological semigroup (meaning that for each p ∈ βS, the function
ρp : βS → βS defined by ρp(q) = q + p is continuous) with S contained in its
topological center (meaning that for each x ∈ S, the function λx : βS → βS
defined by λx(q) = x + q is continuous). Given p, q ∈ βS and A ⊆ S, we
have that A ∈ p + q if and only if {x ∈ S : −x + A ∈ q} ∈ p, where
−x+ A = {y ∈ S : x+ y ∈ A}.

Note that, even if S is commutative, βS is not likely to be commutative. In
particular, in the cases with which we are concerned, namely dense subsemi-
groups of (R,+) or

(
(0,∞),+

)
, (βS,+) is not commutative.

A subset I of a semigroup (T,+) is a right ideal provided I 6= ∅ and I+T ⊆ I,
a left ideal provided I 6= ∅ and T + I ⊆ I, and a two sided ideal provided it
is both a left and right ideal. Any compact right topological semigroup (T,+)
has a smallest two sided ideal K(T ) which is the union of all minimal right
ideals and is the union of all minimal left ideals. If L is a minimal left ideal
and R is a minimal right ideal, then L∩R is a group. In particular K(T ) has
idempotents. An idempotent in T is minimal if and only if it is a member of
K(T ). See [12] for an introduction to the algebraic structure of βS, as well as
any unfamiliar algebraic statements encountered here.

Central sets were introduced by H. Furstenberg in [4] and were defined in
terms of topological dynamics. The following algebraic definition is simpler.

Definition 4.1 Let (S,+) be a discrete semigroup. A set C ⊆ S is central if
and only if there is an idempotent p ∈ C ∩K(βS).

Central sets have substantial combinatorial properties which are consequences
of the Central Sets Theorem. The original Central Sets Theorem [4, Proposi-
tion 8.21] applied to (N,+). See [12, Part III] for a more general version and
a presentation of many of these combinatorial properties.

We have been considering semigroups which are dense in (R,+) or
(
(0,∞),+

)
.

Here, of course, “dense” means with respect to the usual topology on R. When
passing to the Stone-Čech compactification of such a semigroup S, we deal
with Sd, which is the set S with the discrete topolgogy.

Definition 4.2 Let S be a dense subsemigroup of (R,+) or of
(
(0,∞),+

)
.

Then 0+(S) =
{
p ∈ βSd : (∀ε > 0)

(
(0, ε) ∩ S ∈ p

)}
. If S is a dense subsemi-

group of (R,+), then 0−(S) =
{
p ∈ βSd : (∀ε > 0)

(
(−ε, 0) ∩ S ∈ p

)}
.

It was shown in [9, Lemma 2.5] that 0+(S) is a subsemigroup of (βSd,+).
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And it was noted that 0+(S) ∩ K(βSd) = ∅, so one does not obtain any
information aboutK

(
0+(S)

)
based on knowledge ofK(βSd). But as a compact

right topological semigroup, K
(
0+(S)

)
does exist, and has idempotents.

Definition 4.3 Let S be a dense subsemigroup of (R,+) or of
(
(0,∞),+

)
.

A set C ⊆ S is central near zero if and only if there is an idempotent
p ∈ C ∩K

(
0+(S)

)
.

In [1] a new stronger version of the Central Sets Theorem for arbitrary semi-
groups was proved. In Theorem 4.6 we shall show that analogues of this theo-
rem hold for dense subsemigroups of

(
(0,∞),+

)
and for dense subsemigroups

of (R,+).

Definition 4.4 Let S be a dense subsemigroup of (R,+) or of
(
(0,∞),+

)
.

A set C ⊆ S is piecewise syndetic near zero if and only C ∩K
(
0+(S)

)
6= ∅.

Notice that any set which is central near zero is also piecewise syndetic near
zero. In [9] a mildly complicated elementary characterization of sets central
near zero was given.

Given a set X, we let Pf (X) be the set of finite nonempty subsets of X.

Lemma 4.5 Let S be a dense subsemigroup of
(
(0,∞),+

)
, let l ∈ N, and

let C ⊆ S be piecewise syndetic near zero. If there is a dense subsemigroup
T of (R,+) such that S = T ∩ (0,∞), then for each i ∈ {1, 2, . . . , l}, let
〈yi,n〉∞n=1 be a sequence in T ∪ {0} such that lim

n→∞
yi,n = 0. Otherwise, for each

i ∈ {1, 2, . . . , l}, let 〈yi,n〉∞n=1 be a sequence in S ∪ {0} such that lim
n→∞

yi,n = 0.

For each m ∈ N there exist a ∈ S ∩ (0, 1/m) and H ∈ Pf (N) such that
minH > m and for each i ∈ {1, 2, . . . , l}, a+

∑
t∈H yi,t ∈ C ∩ (0, 1/m).

Proof. Let Y =×l
i=10

+(S) and let Z =×l
i=1βSd. By [12, Theorem 2.22], Y

and Z are right topological semigroups, and if ~x ∈×l
i=1S, then λ~x : Z → Z

is continuous.

For k ∈ N let Ik = {(a +
∑
t∈H y1,t, a +

∑
t∈H y2,t, . . . , a +

∑
t∈H yl,t) : a ∈ S,

H ∈ Pf (N), minH > k, and (∀i ∈ {1, 2, . . . , l})
(
a+

∑
t∈H yi,t ∈ S∩ (0, 1/k)

)
}

and let Ek = Ik ∪ {(a, a, . . . , a) : a ∈ S ∩ (0, 1/k)}. Let E =
⋂∞
k=1 c`ZEk and

let I =
⋂∞
k=1 c`ZIk.

Since 0+(S) =
⋂∞
k=1

(
βSd ∩ (0, 1/k)

)
and each Ek ⊆ S ∩ (0, 1/k) we have that

E ⊆ Y . Trivially I ⊆ E. We claim that E is a subsemigroup of Y and I is an
ideal of E. To see that I 6= ∅, it suffices to let k ∈ N and show that Ik 6= ∅. So
let k ∈ N be given. Pick n > k such that for each i ∈ {1, 2, . . . , l}, |yi,n| < 1

3k
,

and pick a ∈ S ∩ ( 1
3k
, 2
3k

). Then (a+ y1,n, a+ y2,n, . . . , a+ yl,n) ∈ Ik.
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Now let ~p, ~q ∈ E. We show that ~p + ~q ∈ E and if either ~p ∈ I or ~q ∈ I,
then ~p + ~q ∈ I. Let U be an open neighborhood of ~p + ~q and let k ∈ N.
Since ρ~q is continuous, pick a neighborhood V of ~p such that V + ~q ⊆ U . Pick
~x ∈ E2k ∩ V with ~x ∈ I2k if ~p ∈ I. If ~x ∈ I2k, pick a ∈ S and H ∈ Pf (N) such
that minH > 2k and a+

∑
t∈H yi,t ∈ S ∩

(
0, 1/(2k)

)
for each i ∈ {1, 2, . . . , l}.

In this case, let j = maxH. If ~x /∈ I2k pick a ∈ S ∩
(
0, 1/(2k)

)
such that

~x = (a, a, . . . , a) and let j = 2k.

Since ~x + ~q ∈ U and λ~x is continuous, pick a neighborhood W of ~q such that
~x+W ⊆ U . Pick ~y ∈ Ej ∩W with ~y ∈ Ij if ~q ∈ I. Then ~x+ ~y ∈ U ∩ Ek and
if either ~p ∈ I or ~q ∈ I, then ~x+ ~y ∈ U ∩ Ik.

By [12, Theorem 2.23] K(Y ) =×l
i=1K

(
0+(S)

)
. Since C is piecewise syndetic

near zero, pick p ∈ K
(
0+(S)

)
∩ C. Then p = (p, p, . . . , p) ∈ K(Y ). We claim

that p ∈ E. To see this, let k ∈ N, let U be a neighborhood of p in Z, and for

i ∈ {1, 2, . . . , l} pick Ai ∈ p such that×l
i=1Ai ⊆ U . Pick a ∈ (0, 1/k)∩⋂li=1Ai.

Then (a, a, . . . , a) ∈ U ∩ Ek. Thus p ∈ E ∩ K(Y ) so by [12, Theorem 1.65],
K(E) = E ∩ K(Y ). Since I is an ideal of E, K(E) ⊆ I and consequently
p ∈ I.

Now let m ∈ N be given. Then p ∈ c`ZIm so×l
i=1C ∩ Im 6= ∅. 2

The original Central Sets Theorem [4, Proposition 8.21] dealt with finitely
many sequences at a time. The versions in [12] dealt with countably many
sequences at a time. The version in [1] dealt with all sequences in the semigroup
S. The following theorem deals with the set of all sequences whose terms go
to zero.

Theorem 4.6 Let S be a dense subsemigroup of
(
(0,∞),+

)
. If there is a

dense subsemigroup T of (R,+) such that S = T ∩ (0,∞), let T be the set
of sequences 〈yn〉∞n=1 in T ∪ {0} such that lim

n→∞
yn = 0. Otherwise let T be

the set of sequences 〈yn〉∞n=1 in S ∪ {0} such that lim
n→∞

yn = 0. Let C be a

subset of S which is central near zero. Then there exist α : Pf (T ) → S and
H : Pf (T )→ Pf (N) such that

(1) for each F ∈ Pf (T ), α(F ) ∈ (0, 1
|F |);

(2) if F,G ∈ Pf (T ) and F ( G, then maxH(F ) < minH(G); and
(3) if m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ( G2 ( . . . ( Gm, and for each

i ∈ {1, 2, . . . ,m}, 〈yi,t〉∞t=1 ∈ Gi, then
∑m
i=1

(
α(Gi) +

∑
t∈H(Gi) yi,t

)
∈ C.

Proof. Pick p = p+ p ∈ K
(
0+(S)

)
such that C ∈ p. Let

C? = {x ∈ S : −x+ C ∈ p} .

By [12, Lemma 4.14] C? ∈ p and whenever x ∈ C?, −x + C? ∈ p. We define
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α(F ) and H(F ) for F ∈ Pf (T ) by induction on |F | satisfying the following
induction hypotheses:

(1) α(F ) < 1
|F | .

(2) If ∅ 6= G ( F , then maxH(G) < minH(F ).
(3) If m ∈ N, ∅ 6= G1 ( G2 ( . . . ( Gm = F and 〈fi〉mi=1 ∈ ×m

i=1Gi, then∑m
i=1

(
α(Gi) +

∑
t∈H(Gi) fi(t)

)
∈ C?.

Assume first that F = {f}. (It is more convenient here to write a sequence
as a function.) Pick by Lemma 4.5, a ∈ S ∩ (0, 1) and L ∈ Pf (N) such that
a+
∑
t∈L f(t) ∈ C?. Let α(F ) = a andH(F ) = L. The hypotheses are satisfied,

the second vacuously.

Now assume that F ∈ Pf (T ), |F | > 1, and α(G) and H(G) have been defined
for all nonempty G ( F . Let K =

⋃{H(G) : ∅ 6= G ( F} and let m = maxK.
Let M =

{∑r
i=1

(
α(Gi) +

∑
t∈H(Gi) fi(t)

)
: ∅ 6= G1 ( G2 ( . . . ( Gr ( F and

〈fi〉ri=1 ∈×r
i=1Gi

}
. Then M is a finite subset of C?. Let

B = C? ∩ ⋂x∈M (−x+ C?) .

Then B ∈ p so in particular B is piecewise syndetic near zero. Pick by Lemma
4.5, a ∈ S ∩ (0, 1

|F |) and L ∈ Pf (N) such that minL > m and for each f ∈ F ,

a+
∑
t∈L f(t) ∈ B. Let α(F ) = a and let H(F ) = L.

Hypotheses (1) and (2) are satisfied directly. To verify hypothesis (3), let
m ∈ N and assume that ∅ 6= G1 ( G2 ( . . . ( Gm = F and 〈fi〉mi=1 ∈×m

i=1Gi.
If m = 1, then fm ∈ F and α(F ) +

∑
t∈H(F ) fm(t) ∈ B ⊆ C?. So assume that

m > 1 and let x =
∑m−1
i=1

(
α(Gi) +

∑
t∈H(Gi) fi(t)

)
. Then x ∈M so

α(F ) +
∑
t∈H(F ) fm(t) ∈ B ⊆ (−x+ C?)

and thus
∑m
i=1

(
α(Gi) +

∑
t∈H(Gi) fi(t)

)
∈ C? as required. 2

The following corollary resembles the original Central Sets Theorem.

Corollary 4.7 Let S be a dense subsemigroup of
(
(0,∞),+

)
. If there is a

dense subsemigroup T of (R,+) such that S = T ∩ (0,∞), let T be the set of
sequences 〈yn〉∞n=1 in T ∪{0} such that lim

n→∞
yn = 0. Otherwise let T be the set

of sequences 〈yn〉∞n=1 in S ∪ {0} such that lim
n→∞

yn = 0. Let C be a subset of S

which is central near zero and let F ∈ Pf (T ). There exist a sequence 〈an〉∞n=1

in S such that
∑∞
n=1 an converges and a sequence 〈Hn〉∞n=1 in Pf (N) such that

for each n ∈ N, maxHn < minHn+1 and for each L ∈ Pf (N) and each f ∈ F ,∑
n∈L

(
an +

∑
t∈Hn

f(t)
)
∈ C.

Proof. Choose a sequence 〈gn〉∞n=1 of distinct members of T \ F and for
each n ∈ N, let Gn = F ∪ {g1, g2, . . . , gn}. For n ∈ N, let an = α(Gn) and
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let Hn = H(Gn). By thinning the sequences, we may presume that
∑∞
n=1 an

converges. 2

We will show in Theorem 4.10 that for certain semigroups S, central sets
characterize image partition regularity of finite matrices. We shall follow the
custom of denoting the entries of a matrix by the lower case letter correspond-
ing to the upper case name of the matrix.

Definition 4.8 Let u, v ∈ N and let A be a u × v matrix with entries from
Q. Then A is a first entries matrix if and only if no row of A is ~0, and for each
j ∈ {1, 2, . . . , v} there exists c > 0 such that for each i ∈ {1, 2, . . . , u}, if the
first nonzero entry of row i of A is in column j, then ai,j = c. If c is the first
nonzero entry of a row of A, then c is a first entry of A.

In the following lemma, note that we are demanding of T that it be a subgroup
of (R,+), not just a dense subsemigroup.

Lemma 4.9 Let u, v ∈ N and let A be a u× v first entries matrix. Let S be a
dense subsemigroup of

(
(0,∞),+

)
. If there is a subgroup T of (R,+) such that

S = T ∩(0,∞), assume that the entries of A come from Z. Otherwise, assume
that the entries of A come from ω. Let C ⊆ S be central near zero. Assume
that for each first entry c of A, C∩cS is central near zero. Then there exist for
each j ∈ {1, 2, . . . , v} a sequence 〈xj,t〉∞t=1 in S such that

∑∞
t=1 xj,t converges

and for each F ∈ Pf (N), A ~xF ∈ Cu where

~xF =



∑
t∈F x1,t∑
t∈F x2,t

...∑
t∈F xv,t


.

Proof. We proceed by induction on v. Assume first that v = 1. We may
presume that A has no repeated rows, so there is some c ∈ N such that
A = (c). Pick a sequence 〈wn〉∞n=1 in S such that

∑∞
n=1wn converges. Pick

by Corollary 4.7 sequences 〈an〉∞n=1 in S such that
∑∞
n=1 an converges and

〈Hn〉∞n=1 in Pf (N) such that for each n ∈ N, maxHn < minHn+1 and for each
L ∈ Pf (N),

∑
n∈L

(
an+

∑
t∈Hn

wt
)
∈ C∩cS. For n ∈ N, let yn = an+

∑
t∈Hn

wt.
Let x1,n = yn/c for each n ∈ N.

Now let v ∈ N and assume the result holds for v. Let A be a u× (v+1) matrix
with entries from Z or ω as appropriate. We may assume that we have c ∈ N
and k ∈ {1, 2, . . . , u − 1} such that ai,1 = 0 if i ∈ {1, 2, . . . , k} and ai,1 = c if
i ∈ {k + 1, k + 2, . . . , u}.
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Let B be the k× v matrix defined by bi,j = ai,j+1 for i ∈ {1, 2, . . . , k} and j ∈
{1, 2, . . . , v}. Pick a sequence 〈xj,t〉∞t=1 for each j ∈ {1, 2, . . . , v} as guaranteed
by the induction hypothesis for the matrix B and C. For i ∈ {k+1, k+2, . . . , u}
and t ∈ N, let yi,t =

∑v+1
j=2 ai,jxj−1,t. If there is a subgroup T of (R,+) such

that S = T ∩ (0,∞), then each yi,t ∈ T and otherwise (since the entries of A
are in ω) each yi,t ∈ S ∪ {0}. In any event for each i ∈ {k + 1, k + 2, . . . , u},∑∞
t=1 yi,t converges. For each t ∈ N, let yu+1,t = 0

Pick by Corollary 4.7 a sequence 〈dn〉∞n=1 in S such that
∑∞
n=1 dn converges and

a sequence 〈Hn〉∞n=1 in Pf (N) such that for each n ∈ N, maxHn < minHn+1

and for each L ∈ Pf (N) and each i ∈ {k + 1, k + 2, . . . , u+ 1},∑
n∈L(dn +

∑
t∈Hn

yi,t) ∈ C ∩ cS .

For each n ∈ N, let z1,n = dn/c and for j ∈ {2, 3, . . . , v + 1} let zj,n =∑
t∈Hn

xj−1,t. Since dn = dn +
∑
t∈Hn

yu+1,t ∈ cS, we have that dn ∈ S.

One has immediately that for each j ∈ {1, 2, . . . , v + 1}, ∑∞n=1 zj,n converges.
Now let L ∈ Pf (N) and i ∈ {1, 2, . . . , u} be given. If i ≤ k, let K =

⋃
n∈L Hn.

Then
∑v+1
j=1 ai,j

∑
n∈L zj,n =

∑v
j=1 bi,j

∑
t∈K xj,t ∈ C. So assume that i > k.

Then
∑v+1
j=1 ai,j

∑
n∈L zj,n =

∑
n∈L(dn +

∑
t∈Hn

yi,t) ∈ C. 2

We now see that for certain semigroups, sets central near zero contain solutions
to all image partition regular matrices. A subset D of S is central* near zero if
and only if for every subset C of S which is central near zero, C ∩D is central
near zero. (Equivalently, D is a member of every idempotent in K

(
0+(S)

)
.)

Theorem 4.10 Let u, v ∈ N and let A be a u×v first entries matrix. Let S be
a dense subsemigroup of

(
(0,∞),+

)
. If there is a subgroup T of (R,+) such

that S = T ∩ (0,∞), assume that the entries of A come from Z. Otherwise,
assume that the entries of A come from ω. Assume that for every first entry c
of A, cS is central* near zero. Then A is IPR/S0 if and only if for every set
C which is central near zero there exists ~x ∈ Sv such that A~x ∈ Cu.

Proof. Sufficiency. Let r ∈ N and let S =
⋃r
i=1Ci. Pick an idempotent

p ∈ K
(
0+(S)

)
and pick i ∈ {1, 2, . . . , r} such that Ci ∈ p. Then for each

δ > 0, Ci ∩ (0, δ) is central near zero.

Necessity. We have by Theorem 2.3 that A is IPR/R+ so by Theorem 2.6, A
is IPR/N. By [10, Theorem 2.10], choose some m ∈ N and a u×m first entries
matrix B such that for each ~y ∈ Nm there exists ~x ∈ Nv such that A~x = B~y.
Let C be a subset of S which is central near zero. Pick by Lemma 4.9 some
~y ∈ Nm such that B~y ∈ Cu. Pick ~x ∈ Nv such that A~x = B~y. 2

Notice that if for some c ∈ N, cS is not central* near zero, then C = S \ cS is
central near zero and (c) is a first entries matrix all of whose images miss C
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so that requirement is needed in Theorem 4.10. We do not have an example
of a dense subgroup S of (R,+) for which some cS is not central* near zero.
But we do have the following.

Theorem 4.11 Let κ be an infinite cardinal with κ ≤ c. There is a dense
subsemigroup S of

(
(0,∞),+

)
such that |S| = κ and for every c ∈ N \ {1},

cS is not central near zero.

Proof. Choose a subset I of (0,∞) such that |I| = κ, I is linearly independent
over Q, and 0 ∈ c`I. Let

S = {∑t∈F mt · t : F ∈ Pf (I) and for each t ∈ F , mt ∈ N} .

Let c ∈ N\{1} and letB = {∑t∈F mt·t : F ∈ Pf (I) and for each t ∈ F ,mt ∈ N
and some mt ≡ 1 (mod c)}. Then B ∩ cS = ∅. We show that B is central*
near zero (and thus cS is not central near zero) by showing that B ∩ 0+(S) is
an ideal of 0+(S) and so K

(
0+(S)

)
⊆ B. To this end, let p ∈ 0+(S) ∩ B and

let q ∈ 0+(S). We show that B ∈ p+ q and B ∈ q + p. To see that B ∈ p+ q,
we show that B ⊆ {y ∈ S : −y + B ∈ q}. So let y ∈ B and pick F ∈ Pf (I)
and 〈mx〉x∈F in N such that y =

∑
x∈F mx · x and some mx ≡ 1 (mod c). Let

δ = minF . Then (0, δ) ∩ S ∈ q and (0, δ) ∩ S ⊆ −y +B.

To see that B ∈ q + p we show that S ⊆ {y ∈ S : −y + B ∈ p}. So let
y ∈ S and pick F ∈ Pf (I) and 〈mx〉x∈F in N such that y =

∑
x∈F mx · x. Let

δ = minF . Then (0, δ) ∩B ∈ p and (0, δ) ∩B ⊆ −y +B. 2

5 Milliken-Taylor Matrices

K. Milliken [14, Theorem 2.2] and A. Taylor [18, Lemma 2.2] independently
proved a theorem which implies that certain matrices, which we now introduce,
are image partition regular over N.

Definition 5.1 Let m ∈ ω, let ~a = 〈ai〉mi=0 be a sequence in Z \ {0}, and let
~x = 〈xn〉∞n=0 be a sequence in R. The Milliken-Taylor system determined by ~a
and ~x is defined by MT (~a, ~x) = {∑m

i=0 ai ·
∑
t∈Fi

xt : each Fi ∈ Pf (ω) and if
i < m, then maxFi < minFi+1}

Notice that if ~a has adjacent repeated entries and ~c is obtained from ~a by
deleting such repetitions, then for any infinite sequence ~x, one has MT (~a, ~x) ⊆
MT (~c, ~x), so it suffices to consider sequences ~c without adjacent repeated
entries.

Definition 5.2 Let ~a be a finite or infinite sequence in Z with only finitely
many nonzero entries. Then c(~a) is the sequence obtained from ~a by deleting
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all zeroes and then deleting all adjacent repeated entries. The sequence c(~a)
is the compressed form of ~a. If ~a = c(~a), then ~a is a compressed sequence.

For example, If ~a = 〈0, 1, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, . . .〉, then c(~a) = 〈1, 2〉.

Definition 5.3 Let ~a be a compressed sequence in Z\{0}. A Milliken-Taylor
matrix determined by ~a is an ω × ω matrix A such that the rows of A are all
possible rows with finitely many nonzero entries and compressed form equal
to ~a.

Notice that if A is a Milliken-Taylor matrix whose rows all have compressed
form ~a and ~x is an infinite sequence in R, then the set of entries of A~x is
precisely MT (~a, ~x).

When the partition regularity of Milliken-Taylor systems was first considered
in [2] the sequence ~a was required to have entries from N. Later it was shown
that as long as the last entry was positive, the sequence could have negative
entries as well.

Theorem 5.4 Let m ∈ ω, let ~a = 〈ai〉mi=0 be a compressed sequence in Z\{0},
and let A be a Milliken-Taylor matrix determined by ~a. If am > 0, then A is
IPR/N.

Proof. [11, Corollary 3.6]. 2

We show in this section that if T is any dense subgroup of (R,+), ~a = 〈ai〉mi=0

is a compressed sequence in Z \ {0} with a0 > 0, and A is a Milliken-Taylor
matrix determined by ~a, then A is IPR/T+

0s, where T+ = T ∩ (0,∞). Notice
that, unlike the result in Theorem 5.4, it is the first rather than the last entry
of ~a which is required to be positive. The reason for the difference is that
βN \N is a left ideal of βZ while 0+(T ) is a right ideal of 0+(T )∪ 0−(T ) as is
0−(T ) [8, Lemma 2.5].

Given c ∈ R \ {0} and p ∈ βRd \ {0}, the product c · p is defined in (βRd, ·).
One has A ⊆ R is a member of c · p if and only if c−1A = {x ∈ R : c · x ∈ A}
is a member of p.

Lemma 5.5 Let T be a dense subgroup of (R,+), let p ∈ 0+(T ), and let
c ∈ N. Then c · p ∈ 0+(T ) and (−c) · p ∈ 0−(T ).

Proof. The two proofs are similar. We do the second, which is the one that
uses the fact that T is a subgroup rather than just a subsemigroup. Let ε > 0.
We need to show that (−ε, 0)∩T ∈ (−c) · p. Now (0, ε/c)∩T ∈ p so it suffices
to show that (0, ε/c) ∩ T ⊆ (−c)−1

(
(−ε, 0) ∩ T

)
. So let x ∈ (0, ε/c) ∩ T . Then

(−c) · x ∈ (−ε, 0) and, since (T,+) is a group, (−c) · x ∈ T 2
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Definition 5.6 Let 〈wn〉∞n=0 be a sequence in R. A sum subsystem of 〈wn〉∞n=0

is a sequence 〈xn〉∞n=0 such that there exists a sequence 〈Hn〉∞n=0 in Pf (N) such
that for each n ∈ ω, maxHn < minHn+1 and xn =

∑
t∈Hn

wt.

Notice that if 〈wn〉∞n=0 is a sequence in R+ such that
∑∞
n=0wn converges and

〈xn〉∞n=0 is a sum subsystem of 〈wn〉∞n=0, then
∑∞
n=0 xn also converges.

The proof of the following theorem is similar to that of [11, Theorem 3.3].
Given a sequence 〈xn〉∞n=0 and k ∈ ω we let FS(〈xn〉∞n=k) = {∑n∈F xn :
F ∈ Pf (ω) and minF ≥ k}.

Theorem 5.7 Let T be a dense subgroup of (R,+), let ~a = 〈ai〉mi=0 be a com-
pressed sequence in Z\{0} with a0 > 0, and let A be a Milliken-Taylor matrix
determined by ~a, Then A is IPR/T+

0s. In fact, given any sequence 〈wn〉∞n=0

in T+ such that lim
n→∞

wn = 0, whenever r ∈ N, T+ =
⋃r
i=1Ci, and δ > 0,

there exist i ∈ {1, 2, . . . , r} and a sum subsystem 〈xn〉∞n=0 of 〈wn〉∞n=0 such that
MT (~a, ~x) ⊆ Ci ∩ (0, δ).

Proof. By passing to a subsequence, we may presume that
∑∞
n=0wn converges.

Pick by [12, Lemma 5.11] an idempotent p ∈ ⋂∞
k=0 c`βTdFS(〈wn〉∞n=k). Note

that since
∑∞
n=0wn converges, p ∈ 0+(T ). Let q = a0 · p+ a1 · p+ . . .+ am · p.

Then by Lemma 5.5 and the previously mentioned fact that 0+(T ) and 0−(T )
are both right ideals of 0+(T ) ∪ 0−(T ), we have that q ∈ 0+(T ). So it suffices
to show that whenever Q ∈ q, there is a sum subsystem 〈xn〉∞n=0 of 〈wn〉∞n=0

such that MT (~a, ~x) ⊆ Q.

Let Q ∈ q be given. Assume first that m = 0. Then (a0)
−1Q ∈ p so by

[12, Theorem 5.14] there is a sum subsystem 〈xn〉∞n=0 of 〈wn〉∞n=0 such that
FS(〈xn〉∞n=0) ⊆ (a0)

−1Q. Then MT (~a, ~x) ⊆ Q.

Now assume that m > 0. Define

P (∅) = {x ∈ T : −(a0 · x) +Q ∈ a1 · p+ a2 · p+ . . .+ am · p} .

We claim that P (∅) ∈ p. To see this let

D = {y ∈ T : −y +Q ∈ a1 · p+ a2 · p+ . . .+ am · p} .

Then D ∈ a0 ·p so (a0)
−1D ∈ p and (a0)

−1D ⊆ P (∅). Given x0 define P (x0) =
{y ∈ T : −(a0 · x0 + a1 · y) + Q ∈ a2 · p + a3 · p + . . . + am · p}. If x0 ∈ P (∅),
then −(a0 · x0) +Q ∈ a1 · p+ a2 · p+ . . .+ am · p and so

{y ∈ T : −(a1 · y) + (−(a0 · x0) +Q) ∈ a2 · p+ a3 · p+ . . .+ am · p} ∈ p

and thus P (x0) ∈ p.
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Given n ∈ {1, 2, . . . ,m − 1} and x0, x1, . . . , xn−1, let P (x0, x1, . . . , xn−1) =
{y ∈ T : −(a0 · x0 + . . . + an−1 · xn−1 + an · y) + Q ∈ an+1 · p + . . . + am · p}.
If x0 ∈ P (∅) and for each i ∈ {1, 2, . . . , n − 1}, xi ∈ P (x0, x1, . . . , xi−1),
then P (x0, x1, . . . , xn−1) ∈ p. Given x0, x1, . . . , xm−1, let P (x0, x1, . . . , xm−1) =
{y ∈ T : a0 ·x0+a1 ·x1+. . .+am−1 ·xm−1+am ·y ∈ Q}. If x0 ∈ P (∅) and for each
i ∈ {1, 2, . . . ,m− 1}, xi ∈ P (x0, x1, . . . , xi−1), then P (x0, x1, . . . , xm−1) ∈ p.

Given any B ∈ p, let B? = {x ∈ B : −x + B ∈ p}. Then B? ∈ p and by [12,
Lemma 4.14], for each x ∈ B?, −x+B? ∈ p.

Choose x0 ∈ P (∅)? ∩ FS(〈wn〉∞n=0) and choose H0 ∈ Pf (N) such that x0 =∑
t∈H0

wt. Let n ∈ ω and assume that we have chosen x0, x1, . . . , xn and
H0, H1, . . . , Hn such that

(1) if k ∈ {0, 1, . . . , n}, then Hk ∈ Pf (ω) and xk =
∑
t∈Hk

wt,
(2) if k ∈ {0, 1, . . . , n− 1}, then maxHk < minHk+1,
(3) if ∅ 6= F ⊆ {0, 1, . . . , n}, then

∑
t∈F xt ∈ P (∅)?, and

(4) if k ∈
{

1, 2, . . . ,min{m,n}
}

, F0, F1, . . . , Fk ∈ Pf ({0, 1, . . . , n}), and for each
j ∈ {0, 1, . . . , k − 1}, maxFj < minFj+1, then∑
t∈Fk

xt ∈ P (
∑
t∈F0

xt,
∑
t∈F1

xt . . . ,
∑
t∈Fk−1

xt)
?.

All hypotheses hold at n = 0, (2) and (4) vacuously.

Let v = maxHn. For r ∈ {0, 1, . . . , n}, let

Er =
{∑

t∈F xt : ∅ 6= F ⊆ {r, r + 1, . . . , n}
}
.

For k ∈ {0, 1, . . . ,m− 1} and r ∈ {0, 1, . . . , n}, let

Wk,r = { (
∑
t∈F0

xt, . . . ,
∑
t∈Fk

xt) : F0, F1, . . . , Fk ∈ Pf ({0, 1, . . . , r})

and for each i ∈ {0, 1, . . . , k − 1} , maxFi < minFi+1}

Note that Wk,r 6= ∅ if and only if k ≤ r.

If y ∈ E0, then y ∈ P (∅)?, so −y + P (∅)? ∈ p and P (y) ∈ p. If k ∈
{1, 2, . . . ,m − 1} and (y0, y1, . . . , yk) ∈ Wk,m, then yk ∈ P (y0, y1, . . . , yk−1)
so P (y0, y1, . . . , yk) ∈ p and thus P (y0, y1, . . . , yk)

? ∈ p. If r ∈ {0, 1, . . . , n−1},
k ∈

{
0, 1, . . . ,min{m − 1, r}

}
, (y0, y1, . . . , yk) ∈ Wk,r, and z ∈ Er+1, then

z ∈ P (y0, y1, . . . , yk)
? so −z + P (y0, y1, . . . , yk)

? ∈ p.

If n = 0, let x1 ∈ FS(〈wt〉∞t=v+1) ∩ P (∅)? ∩
(
− x0 + P (∅)?

)
∩ P (x0)

? and pick
H1 ∈ Pf (N) such that minH1 > v and x1 =

∑
t∈H1

wt. The hypotheses are
satisfied.
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Now assume that n ≥ 1 and pick

xn+1 ∈ FS(〈wt〉∞t=v+1) ∩ P (∅)? ∩ ⋂y∈E0

(
− y + P (∅)?

)
∩⋂min{m−1,n}

k=0

⋂
(y0,y1,...,yk)∈Wk,m

P (y0, y1, . . . , yk)
?

∩⋂n−1r=0

⋂min{m−1,r}
k=0

⋂
(y0,y1,...,yk)∈Wk,r

⋂
z∈Er+1

(−z + P (y0, y1, . . . , yk)
?) .

Pick Hn+1 ∈ Pf (N) such that minHn+1 > v and xn+1 =
∑
t∈Hn+1

wt.

Hypotheses (1) and (2) hold directly. For hypothesis (3) assume that ∅ 6=
F ⊆ {0, 1, . . . , n + 1} and n + 1 ∈ F . If F = {n + 1} we have directly that
xn+1 ∈ P (∅)?, so assume that {n + 1} ( F and let G = F \ {n + 1}. Let
y =

∑
t∈G xt. Then y ∈ E0 so xn+1 ∈ −y + P (∅)? and so

∑
t∈F xt ∈ P (∅)?.

To verify hypothesis (4), let k ∈
{

1, 2, . . . ,min{m,n + 1}
}

and assume that
F0, F1, . . . , Fk ∈ Pf ({0, 1, . . . , n + 1}) and for each j ∈ {0, 1, . . . , k − 1},
maxFj < minFj+1. We can assume that n+1 ∈ Fk. For l ∈ {0, 1, . . . , k−1} let
yl =

∑
t∈Fl

xt. Then k − 1 ≤ min{m − 1, n} and (y0, y1, . . . , yk−1) ∈ Wk−1,m.
If Fk = {n + 1}, then

∑
t∈Fk

xt = xn+1 ∈ P (y0, y1, . . . , yk−1)
?. So assume

that {n + 1} ( Fk and let F ′k = Fk \ {n + 1}. Let r = maxFk−1. Then
r < minF ′k so r ≤ n−1, k−1 ≤ min{m−1, r}, and (y0, y1, . . . , yk−1) ∈ Wk−1,r.
Let z =

∑
t∈F ′

k
xt. Then z ∈ Er+1 so xn+1 ∈ −z + P (y0, y1, . . . , yk−1)

? so∑
t∈Fk

xt ∈ P (
∑
t∈F0

xt,
∑
t∈F1

xt . . . ,
∑
t∈Fk−1

xt)
?. 2
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