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IP* Sets in Product Spaces

Vitaly Bergelson1

and

Neil Hindman1

Abstract. An IP* set in a semigroup (S, ·) is a set which meets every set of the
form FP (〈xn〉∞n=1) = {Πn∈F xn : F is a finite nonempty subset of N}, where the
products are taken in increasing order of indices. We show here, using the Stone-Čech
compactification of the product space S1×S2× . . .×S`, that if each Si is commutative,
then whenever C is an IP* set in S1 × S2 × . . . × S` and for each i ∈ {1, 2, . . . , `},
〈xi,n〉∞n=1 is a sequence in Si, C contains cartesian products of arbitrarily large finite
substructures of FP (〈x1,n〉∞n=1) × FP (〈x2,n〉∞n=1) × . . . × FP (〈x`,n〉∞n=1). (The notion
of “substructure” is made precise in Definition 2.4.) We show further that C need not
contain any product of infinite substructures and that the commutativity hypothesis
may not be omitted. Similar results apply to arbitrary finite products of semigroups.
By way of contrast, we show in Theorem 2.3 that a much stronger conclusion holds for
some cell of any finite partition of S1 × S2 × . . .× S` without even any commutativity
assumptions.

1. Introduction.

In a semigroup (S, ·), we write Πn∈F xn for the product written in increasing order

of indices. (Thus Πn∈{1,5,7} xn = x1 · x5 · x7.) We further write FP (〈xn〉∞n=1) =

{Πn∈F xn : F ∈ Pf (N)} where Pf (N) = {A : A is a finite nonempty subset of N} and N

is the set of positive integers. (Similarly, if the operation of the semigroup is denoted by

+, we write FS(〈xn〉∞n=1) = {Σn∈F xn : F ∈ Pf (N)}.) Loosely following Furstenberg

[5] we say that a set A ⊆ S is an IP set if and only if there is a sequence 〈xn〉∞n=1 in

S with FP (〈xn〉∞n=1) ⊆ A. A set C ⊆ S is then an IP* set if and only if C ∩ A 6= ∅

for every IP set A (equivalently if and only if C ∩ FP (〈xn〉∞n=1) 6= ∅ for every sequence

〈xn〉∞n=1 in S).
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Now IP* sets not only must meet every IP set; a much stronger statement is true.

This statement involves the notion of a product subsystem which we pause now to define.

1.1 Definition. Let (S, ·) be a semigroup and let 〈yn〉∞n=1 be a sequence in S. The

sequence 〈xn〉∞n=1 is a product subsystem of 〈yn〉∞n=1 if and only if there is a sequence

〈Hn〉∞n=1 in Pf (N) such that

(a) for each n ∈ N, max Hn < minHn+1 and

(b) for each n ∈ N, xn = Πt∈Hn
yt.

Note that if 〈xn〉∞n=1 is a product subsystem of 〈yn〉∞n=1, then FP (〈xn〉∞n=1) ⊆

FP (〈yn〉∞n=1). (If requirement (a) of the definition is replaced by the requirement that

Hn ∩ Hm = ∅ when n 6= m, this conclusion may fail if S is not commutative. For

example, if x1 = y1 · y3 and x2 = y2, then x1 · x2 need not be in FP (〈yn〉∞n=1).) In the

event the operation in S is denoted by +, we change products to sums and refer to a

sum subsystem.

The much stronger statement to which we referred is that given any IP* set C ⊆ S

and any sequence 〈yn〉∞n=1 in S, there is a product subsystem 〈xn〉∞n=1 of 〈yn〉∞n=1 such

that FP (〈xn〉∞n=1) ⊆ C. This statement will be proved as Corollary 1.7 below. (It is

well known, but we don’t have a convenient reference for it.)

It was shown in [2] that IP* sets may be large in unexpected ways. For example [2,

Theorem 2.6] an IP* set in (N,+) must contain an infinite sequence with all of its sums

(as expected) and its products as well. We investigate in this paper the extent to which

IP* sets in product semigroups must be large in terms of sequences in the coordinates.

One may ask for example, given semigroups S1 and S2, an IP* set C in S1 × S2, and

sequences 〈wn〉∞n=1 in S1 and 〈zn〉∞n=1 in S2, whether there must be product subsystems

〈xn〉∞n=1 of 〈wn〉∞n=1 and 〈zn〉∞n=1 of 〈zn〉∞n=1 with FP (〈xn〉∞n=1)× FP (〈yn〉∞n=1) ⊆ C.

We give a strong negative answer to this question in Section 2. One does find

however that if S1 and S2 are commutative semigroups, then any IP* set in S1 × S2

must contain the product of arbitrarily large finite substructures of 〈wn〉∞n=1 and 〈zn〉∞n=1

and a similar statement applies to any finite product of semigroups (Theorem 2.6).

We also see a surprising turning of the tables. One is accustomed to finding prop-
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erties that must hold for some cell of any finite partition and automatically expecting

at least such a conclusion for IP* sets. For example, as we have already mentioned,

while one cell of a partition of N must contain FS(〈xn〉∞n=1) for some sequence 〈xn〉∞n=1,

any IP* set must contain FS(〈xn〉∞n=1) ∪ FP (〈xn〉∞n=1). Similarly, we will see below

that given any discrete semigroup S and any idempotent p in βS, while trivially p must

belong to the closure of some cell of any partition of S, p must belong also to the closure

of every IP* set.

By contrast we will see in Theorems 2.2 and 2.7 that one can guarantee a much

stronger conclusion for one cell of any partition of the product of two semigroups than

can be guaranteed for IP* sets in the same product.

A special semigroup is of significant interest for these problems, namely the semi-

group (Pf (N),∪) because a version of Theorem 2.6 for this semigroup is sufficient to

imply the validity of Theorem 2.6 for all semigroups. We present this derivation in

Section 3.

Our proofs utilize the algebraic structure of the Stone-Čech compactification βS of

a discrete semigroup (S, ·). We take βS to be the set of all ultrafilters on S, identifying

the principal ultrafilters with the points of S. We denote also by · the operation on

βS making (βS, ·) a right topological semigroup with S contained in its topological

center. That is, for all p ∈ βS, the function ρp : βS −→ βS defined by ρp(q) = q · p

is continuous and for all x ∈ S, the function λx : βS −→ βS defined by λx(q) = x · q

is continuous. The reader is referred to [6] and [7] for an elementary introduction to

this operation, with the caution that there (βS, ·) is taken to be left rather than right

topological. (We have made the switch to conform to majority usage, at least among

our collaborators.) The basic fact characterizing the right continuous operation on βS

is, given p, q ∈ βS and A ⊆ S, A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p where

x−1A = {y ∈ S : x · y ∈ A}. In the event that the operation is denoted by +, the

characterization above becomes A ∈ p+ q if and only if {x ∈ S : −x+A ∈ q} ∈ p where

−x + A = {y ∈ S : x + y ∈ A}.

We will use only a few basic facts about (βS, ·) which we present here.
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1.2 Theorem. Any compact right topological semigroup has an idempotent.

Proof. [4, Corollary 2.10].

The proof of the following theorem is the Galvin-Glazer proof of the Finite Sum

Theorem, which was never published by them, though it has appeared in surveys. Those

places where it has appeared (to our knowledge) however use left continuity so that the

resulting products are in decreasing order of indices. To minimize confusion, we present

the proof here.

1.3 Theorem. Let (S, ·) be a semigroup, let p be an idempotent in βS, and let A ∈ p.

There is a sequence 〈xn〉∞n=1 in S such that FP (〈xn〉∞n=1) ⊆ A.

Proof. Let A1 = A and let B1 = {x ∈ S : x−1A1 ∈ p}. Since A1 ∈ p = p · p, B1 ∈ p.

Pick x1 ∈ B1 ∩ A1, let A2 = A1 ∩ (x1
−1A1), and note that A2 ∈ p. Inductively given

An ∈ p, let Bn = {x ∈ S : x−1An ∈ p}. Since An ∈ p = p ·p, Bn ∈ p. Pick xn ∈ Bn∩An

and let An+1 = An ∩ (xn
−1An).

To see for example why x2 · x4 · x5 · x7 ∈ A, note that x7 ∈ A7 ⊆ A6 ⊆ x5
−1A5

so that x5 · x7 ∈ A5 ⊆ x4
−1A4. Thus x4 · x5 · x7 ∈ A4 ⊆ A3 ⊆ x2

−1A2 so that

x2 · x4 · x5 · x7 ∈ A2 ⊆ A1 = A.

More formally, we show by induction on |F | that if F ∈ Pf (N) and m = minF

then Πn∈F xn ∈ Am. If |F | = 1, then Πn∈F xn = xm ∈ Am. Assume |F | > 1, let G =

F\{m}, and let k = minG. Note that since k > m, Ak ⊆ Am+1. Then by the induction

hypothesis, Πn∈G xn ∈ Ak ⊆ Am+1 ⊆ xm
−1Am so Πn∈F xn = xm ·Πn∈G xn ∈ Am.

1.4 Theorem. Let S be a semigroup and let 〈xn〉∞n=1 be a sequence in S. Then⋂∞
m=1 c`FP (〈xn〉∞n=m) is a subsemigroup of βS. In particular, there is an idempotent p

in βS such that for each m ∈ N, FP (〈xn〉∞n=m) ∈ p.

Proof. Let T =
⋂∞

m=1 c`FP (〈xn〉∞n=m). Then T is the intersection of a nested collection

of closed nonempty subsets of βS so T 6= ∅. To see that T is a semigroup, let p, q ∈ T be

given and let m ∈ N. To see that FP (〈xn〉∞n=m) ∈ p · q we show that FP (〈xn〉∞n=m) ⊆

{s ∈ S : s−1FP (〈xn〉∞n=m) ∈ q}. (Since FP (〈xn〉∞n=m) ∈ p, this will suffice.) To

this end, let s ∈ FP (〈xn〉∞n=m) be given and pick F ∈ Pf (N) with minF ≥ m such
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that s = Πn∈F xn. Let k = maxF + 1. Then FP (〈xn〉∞n=k) ∈ q so it suffices to

show that FP (〈xn〉∞n=k) ⊆ s−1FP (〈xn〉∞n=m). So, let t ∈ FP (〈xn〉∞n=k) be given and

pick G ∈ Pf (N) with minG ≥ k such that t = Πn∈G xt. Then maxF < minG so

st = Πn∈F∪G xn ∈ FP (〈xn〉∞n=m).

For the “in particular” conclusion note that by Theorem 1.2, T has an idempotent.

The following simple characterization of IP* sets also provides some explanation of

the origin of “IP”.

1.5 Theorem. Let (S, ·) be a semigroup and let C ⊆ S. Then C is an IP* set if and

only if for every idempotent p ∈ βS, C ∈ p.

Proof. Necessity. Let p ·p = p ∈ βS and suppose C /∈ p. Then S\C ∈ p so by Theorem

1.3 there is a sequence 〈xn〉∞n=1 with FP (〈xn〉∞n=1) ⊆ S\C, a contradiction.

Sufficiency. Let 〈xn〉∞n=1 be a sequence in S and pick by Theorem 1.4 an idempotent

p with FP (〈xn〉∞n=1) ∈ p. Then C ∩ FP (〈xn〉∞n=1) ∈ p so C ∩ FP (〈xn〉∞n=1) 6= ∅.

1.6 Theorem. Let (S, ·) be a semigroup, let 〈yn〉∞n=1 be a sequence in S, and let p be

an idempotent in
⋂∞

m=1 c`(FP (〈yn〉∞n=m)). If A ∈ p, then there is a product subsystem

〈xn〉∞n=1 of 〈yn〉∞n=1 with FP (〈xn〉∞n=1) ⊆ A.

Proof. Pick by Theorem 1.4 an idempotent p ∈ βS such that for each m ∈ N,

FP (〈xn〉∞n=m) ∈ p. (The rest of the proof is now a modification of the proof of Theorem

1.3.)

Let C1 = A, let B1 = {y ∈ S : y−1C1 ∈ p}, and pick y1 ∈ B1∩C1. Pick H1 ∈ Pf (N)

such that y1 = Πt∈H1 xt. Let k1 = maxH1+1 and let C2 = C1∩y1
−1C1∩FP (〈xt〉∞t=k1

).

Inductively, given n > 1 and kn−1 ∈ N and Cn ∈ p with Cn ⊆ FP (〈xt〉∞t=kn−1
),

let Bn = {y ∈ S : y−1Cn ∈ p}. Pick yn ∈ Bn ∩ Cn and pick Hn ∈ Pf (N) with

max Hn ≥ kn−1 such that yn = Πt∈Hn
xt. Let kn = maxHn + 1 and let Cn+1 =

Cn ∩ yn
−1Cn ∩ FP (〈xt〉∞t=kn

).

Then one immediately sees that 〈yn〉∞n=1 is a product subsystem of 〈xn〉∞n=1. Just

as in the proof of Theorem 1.3 one sees that FP (〈yn〉∞n=1) ⊆ A.
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The following corollary will be used in the proof of Theorem 2.9.

1.7 Corollary. Given any IP* set C ⊆ S and any sequence 〈yn〉∞n=1 in S, there is a

product subsystem 〈xn〉∞n=1 of 〈yn〉∞n=1 such that FP (〈xn〉∞n=1) ⊆ C.

Proof. Let T =
⋂∞

m=1 c`FP (〈yn〉∞n=m). By Theorem 1.4 T is a compact subsemigroup

of βS, so pick by Theorem 1.2 an idempotent p ∈ T . By Theorem 1.5 C ∈ p, so by

Theorem 1.6 there is a product subsystem 〈xn〉∞n=1 of 〈yn〉∞n=1 such that FP (〈xn〉∞n=1) ⊆

C.

1.8 Theorem. Let X be a set and let G ⊆ P(X). The following statements are equiv-

alent.

(a) For each r ∈ N, if X =
⋃r

i=1 Ai, there exist i ∈ {1, 2, . . . , r} and G ∈ G with

G ⊆ Ai.

(b) There is an ultrafilter p on X such that for each A ∈ p, there exists G ∈ G with

G ⊆ A.

Proof. [7, Theorem 6.7].

We write N for the set of positive integers and ω for the set of nonnegative integers.

Acknowledgement: The authors would like to thank Paul Milnes for some helpful

conversations.

2. IP* Sets in Products.

We show in this section that IP* sets in any finite product of commutative semi-

groups contain products of arbitrarily large finite subsystems of sequences in the coor-

dinates. We first modify the notion of product subsystems (Definition 1.1) to apply to

finite sequences. (Requirement (a) below is of course a triviality, but see the discussion

following Definition 1.1 for the fact that requirement (b) can be important.)

2.1 Definition. Let 〈yn〉∞n=1 be a sequence in a semigroup S and let k,m ∈ N. Then

〈xn〉mn=1 is a product subsystem of 〈yn〉∞n=k if and only if there exists a sequence 〈Hn〉mn=1

in Pf (N) such that
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(a) minH1 ≥ k,

(b) maxHn < minHn+1 for each n ∈ {1, 2, . . . ,m− 1}, and

(c) xn = Πt∈Hn
yt for each n ∈ {1, 2, . . . ,m}.

We establish, using an argument that we have used before [1], a purely Ramsey

Theoretic property in the product of arbitrary semigroups which is of interest in its own

right, independent of IP* sets. It is similar in flavor to the Milliken-Taylor Theorem [8,

9]. We first present the two dimensional version, partly because it is simpler but also to

present a stronger conclusion than will be needed here which will contrast sharply with

Theorem 2.7 below.

2.2 Theorem. Let S1 and S2 be semigroups and let 〈y1,n〉∞n=1 and 〈y2,n〉∞n=1 be se-

quences in S1 and S2 respectively. Let k, r ∈ N and let S1 × S2 =
⋃r

j=1 Cj. There

exist j ∈ {1, 2, . . . , r} and a product subsystem 〈x1,n〉∞n=1 of 〈y1,n〉∞n=k such that for each

m ∈ N there is a product subsystem 〈x2,n〉∞n=1 of 〈y2,n〉∞n=k such that

FP (〈x1,n〉mn=1)× FP (〈x2,n〉∞n=1) ⊆ Ci.

Proof. Given i ∈ {1, 2}, pick by Theorem 1.4 an idempotent

pi ∈
⋂∞

k=1 c`βSiFP (〈yi,n〉∞n=k).

For x ∈ S1 and j ∈ {1, 2, . . . , r}, define B2(x, j) = {y ∈ S2 : (x, y) ∈ Cj}, and for

j ∈ {1, 2, . . . , r}, let B1(j) = {x ∈ S1 : B2(x, j) ∈ p2}.

Now for each x ∈ S1, S2 =
⋃r

j=1 B2(x, j) so there exists j ∈ {1, 2, . . . , r} such

that B2(x, j) ∈ p2. Consequently, Si =
⋃r

j=1 B1(j) so pick j ∈ {1, 2, . . . , r} such that

B1(j) ∈ p1. Pick by Theorem 1.6 a product subsystem 〈x1,n〉∞n=1 of 〈y1,n〉∞n=k such that

FP (〈x1,n〉∞n=1) ⊆ B1(j). Let m ∈ N. Then FP (〈x1,n〉mn=1) ⊆ B1(j) so

⋂
{B2(a, j) : a ∈ FP (〈x1,n〉mn=1)} ∈ p2.

Pick by Theorem 1.6 a product subsystem 〈x2,n〉∞n=1 of 〈y2,n〉∞n=k such that

FP (〈x2,n〉∞n=1) ⊆
⋂
{B2(a, j) : a ∈ FP (〈x1,n〉mn=1)}.
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Then FP (〈x1,n〉mn=1)× FP (〈x2,n〉∞n=1) ⊆ Ci.

It is a consequence of Theorem 2.7 below that one cannot get a product of full

infinite subsystems, even if the cells of the partition {C1, C2, . . . , Cr} are required to

be symmetric. (Recall that a subset C of a cartesian product is symmetric provided

(a, b) ∈ C implies (b, a) ∈ C.)

At first glance it is not clear how to generalize the proof of Theorem 2.2 to higher

dimensions, because the two coordinates are treated so differently. It turns out that

intermediate coordinates are treated more like the first than the last. One can in fact

replace the last coordinate FP (〈x`,n〉mn=1) in the following lemma by FP (〈x`,n〉∞n=1).

2.3 Theorem. Let ` ∈ N and for each i ∈ {1, 2, . . . , `} let Si be a semigroup and let

〈yi,n〉∞n=1 be a sequence in Si. Let m, k, r ∈ N and let ×`
i=1Si =

⋃r
j=1 Cj. There exists

j ∈ {1, 2, . . . , r} and for each i ∈ {1, 2, . . . , `}, there exists a product subsystem 〈xi,n〉mn=1

of 〈yi,n〉∞n=k such that

×`
i=1FP (〈xi,n〉mn=1) ⊆ Cj .

Proof. Given i ∈ {1, 2, . . . , `}, pick by Theorem 1.4 an idempotent

pi ∈
⋂∞

k=1 c`βSi
FP (〈yi,n〉∞n=k).

For (x1, x2, . . . , x`−1) ∈×`−1
i=1Si and j ∈ {1, 2, . . . , r}, let

B`(x1, x2, . . . , x`−1, j) = {y ∈ S` : (x1, x2, . . . , x`−1, y) ∈ Cj} .

Now given t ∈ {2, 3, . . . , `−1}, assume that Bt+1(x1, x2, . . . , xt, j) has been defined

for each (x1, x2, . . . , xt) ∈×t
i=1Si and each j ∈ {1, 2, . . . , r}. Given (x1, x2, . . . , xt−1) ∈

×t−1
i=1Si and j ∈ {1, 2, . . . , r}, let

Bt(x1, x2, . . . , xt−1, j) = {y ∈ St : Bt+1(x1, x2, . . . , xt−1, y, j) ∈ pt+1} .

Finally, given that B2(x, j) has been defined for each x ∈ S1 and each j ∈ {1, 2, . . . , r},

let B1(j) = {x ∈ S1 : B2(x, j) ∈ p2}.

We show by downward induction on t that for each t ∈ {2, 3, . . . , `} and each

(x1, x2, . . . , xt−1) ∈ ×t−1
i=1Si, St =

⋃r
j=1 Bt(x1, x2, . . . , xt−1, j). This is trivially true
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for t = `. Assume t ∈ {2, 3, . . . , ` − 1} and the statement is true for t + 1. Let

(x1, x2, . . . , xt−1) ∈×t−1
i=1Si. Given y ∈ St, one has that

St+1 =
⋃r

j=1 Bt+1(x1, x2, . . . , xt−1, y, j)

so one may pick j ∈ {1, 2, . . . , r} such that Bt+1(x1, x2, . . . , xt−1, y, j) ∈ pt+1. Then

y ∈ Bt(x1, x2, . . . , xt−1, j).

Since for each x ∈ S1, S2 =
⋃r

j=1 B2(x, j), one sees similarly that S1 =
⋃r

j=1 B1(j).

Pick j ∈ {1, 2, . . . , r} such that B1(j) ∈ p1.

Pick by Theorem 1.6 a product subsystem 〈x1,n〉∞n=1 of 〈y1,n〉∞n=1 such that

FP (〈x1,n〉∞n=1) ⊆ B1(j). Let

D2 =
⋂
{B2(a, j) : a ∈ FP (〈x1,n〉mn=1)} .

Since FP (〈x1,n〉mn=1) is finite, we have D2 ∈ p2 so pick by Theorem 1.6 a product

subsystem 〈x2,n〉∞n=1 of 〈y2,n〉∞n=1 such that FP (〈x2,n〉∞n=1 ⊆ D2.

Let t ∈ {2, 3, . . . , `− 1} and assume 〈xt,n〉∞n=1 has been chosen. Let

Dt+1 =
⋂
{Bt+1(a1, a2, . . . , at, j) : (a1, a2, . . . , at) ∈×t

i=1FP (〈xi,n〉mn=1)} .

Then Dt+1 ∈ pt+1 so pick by Theorem 1.6 a product subsystem 〈xt+1,n〉∞n=1 of

〈yt+1,n〉∞n=1 such that FP (〈xt+1,n〉∞n=1 ⊆ Dt+1.

Then ×`
t=1FP (〈xt,n〉mn=1) ⊆ Cj , as required.

In contrast with Theorem 2.3, where the partition conclusion applied to products of

arbitrary semigroups, we now restrict ourselves to products of commutative semigroups.

We will see in Theorem 2.8 that without this restriction one is not guaranteed products

of any subsystems at all.

2.4 Definition. Let S be a semigroup, let 〈yn〉∞n=1 be a sequence in S, and let m ∈ N.

The sequence 〈xn〉mn=1 is a weak product subsystem of 〈yn〉∞n=1 if and only if there exists

a sequence 〈Hn〉mn=1 in Pf (N) such that Hn ∩Hk = ∅ when n 6= k in {1, 2, . . . ,m} and

xn = Πt∈Hn
yt for each n ∈ {1, 2, . . . ,m}.

Recall by way of contrast, that in a product subsystem one requires that maxHn <

minHn+1.
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2.5 Lemma. Let ` ∈ N and for each i ∈ {1, 2, . . . , `}, let Si be a commutative semigroup

and let 〈yi,n〉∞n=1 be a sequence in Si. Let

L ={p ∈ β(×`
i=1Si) : for each A ∈ p and each m, k ∈ N

there exist for each i ∈ {1, 2, . . . , `} a weak product subsystem

〈xi,n〉mn=1 of 〈yi,n〉∞n=k such that ×`
i=1FP (〈xi,n〉mn=1) ⊆ A} .

Then L is a compact subsemigroup of β(×`
i=1N).

Proof. Since any product subsystem is also a weak product subsystem, we have by

Theorems 2.3 and 1.8 that L 6= ∅. Since L is defined as the set of ultrafilters all of

whose members satisfy a given property, L is closed, hence compact. To see that L is a

semigroup, let p, q ∈ L, let A ∈ p·q and let m, k ∈ N. Then {~a ∈×`
i=1Si : ~a−1A ∈ q} ∈ p

(where, recall, ~a−1A = {~b : ~a ·~b ∈ A}) so choose for each i ∈ {1, 2, . . . , `} a weak product

subsystem 〈xi,n〉mn=1 of 〈yi,n〉∞n=k such that

×`
i=1FP (〈xi,n〉mn=1) ⊆ {~a ∈×`

i=1Si : ~a−1A ∈ q} .

Given i ∈ {1, 2, . . . , `} and n ∈ {1, 2, . . . ,m}, pick Hi,n ∈ Pf (N) with minHi,n ≥ k such

that xi,n = Πt∈Hi,nyi,t and if 1 ≤ n < s ≤ m, then Hi,n ∩Hi,s = ∅.

Let r = max(
⋃`

i=1

⋃m
n=1 Hi,n) + 1 and let

B =
⋂
{~a−1A : ~a ∈×`

i=1FP (〈xi,n〉mn=1)} .

Then B ∈ q so choose for each i ∈ {1, 2, . . . , `} a weak product subsystem 〈zi,n〉mn=1

of 〈yi,n〉∞n=r such that ×`
i=1FP (〈xi,n〉mn=1) ⊆ B. Given i ∈ {1, 2, . . . , `} and n ∈ {1, 2,

. . . , m}, pick Ki,n ∈ Pf (N) with min Ki,n ≥ r such that zi,n = Πt∈Ki,n
yi,t and if

1 ≤ n < s ≤ m, then Ki,n ∩Ki,s = ∅.

For i ∈ {1, 2, . . . , `} and n ∈ {1, 2, . . . ,m}, let Li,n = Hi,n∪Ki,n. Then Πt∈Li,n
yi,t =

Πt∈Hi,nyi,t ·Πt∈Ki,nyi,t = xi,t · zi,t and if 1 ≤ n < s ≤ m, then Li,n ∩Li,s = ∅. Thus for

each i ∈ {1, 2, . . . , `}, 〈xi,t · zi,t〉mn=1 is a weak product subsystem of 〈yi,n〉∞n=k.

Finally we claim that

×`
i=1FP (〈xi,n · zi,n〉mn=1) ⊆ A .
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To this end let ~c ∈ ×`
i=1FP (〈xi,n · zi,n〉mn=1) be given. For each i ∈ {1, 2, . . . , `},

pick Fi ⊆ {1, 2, . . . ,m} such that ci = Πt∈Fi
(xi,t · zi,t) and let ai = Πt∈Fi

xi,t and

bi = Πt∈Fi
zi,t. Then ~b ∈×`

i=1FP (〈zi,n〉mn=1) so ~b ∈ B. Since ~a ∈×`
i=1FP (〈xi,n〉mn=1)

one has that ~b ∈ ~a−1A so that ~a · ~b ∈ A. Since each Si is commutative, we have for

each i ∈ {1, 2, . . . , `} that Πt∈Fi(xi,t · zi,t) = (Πt∈Fixi,t) · (Πt∈Fizi,t) so that ~c = ~a ·~b as

required.

2.6 Theorem. Let ` ∈ N and for each i ∈ {1, 2, . . . , `}, let Si be a commutative semi-

group and let 〈yi,n〉∞n=1 be a sequence in Si. Let C be an IP* set in ×`
i=1Si and let

m ∈ N. Then for each i ∈ {1, 2, . . . , `} there is a weak product subsystem 〈xi,n〉mn=1 of

〈yi,n〉∞n=k such that ×`
i=1FP (〈xi,n〉mn=1) ⊆ C.

Proof. Let L be as in Lemma 2.5. Then L is a compact subsemigroup of ×`
i=1Si so

by Theorem 1.2 there is an idempotent p ∈ L. By Theorem 1.5, C ∈ p. Thus by the

definition of L for each i ∈ {1, 2, . . . , `} there is a weak product subsystem 〈xi,n〉mn=1 of

〈yi,n〉∞n=k such that ×`
i=1FP (〈xi,n〉mn=1) ⊆ C.

Three natural questions are raised by Theorem 2.6. (1) Can one obtain infinite weak

product subsystems (defined in the obvious fashion) such that×`
i=1FP (〈xi,n〉∞n=1) ⊆ C?

(2) Can one replace “weak product subsystems” with “product subsystems”? (3) Can

one omit the requirement that the semigroups Si be commutative? We answer all three

of these questions in the negative.

The first two questions are answered in Theorem 2.7 using the semigroup (N,+).

Since the operation is addition we refer to “sum subsystems” rather than “product

subsystems”.

2.7 Theorem. There is an IP* set C in N× N such that:

(a) There do not exist z ∈ N and a sequence 〈xn〉∞n=1 in N such that either

{z} × FS(〈xn〉∞n=1) ⊆ C or FS(〈xn〉∞n=1) × {z} ⊆ C. (In particular there do not exist

infinite weak sum subsystems 〈x1,n〉∞n=1 and 〈x2,n〉∞n=1 of 〈2n〉∞n=1 with FS(〈x1,n〉∞n=1)×

FS(〈x2,n〉∞n=1) ⊆ C).

(b) There do not exist sum subsystems 〈xn〉2n=1 and 〈yn〉2n=1 of 〈2n〉∞n=1 with
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{x1, x2} × {y1, y2} ⊆ C.

Proof. Let

C = (N× N)\{(Σn∈F 2n,Σn∈G 2n) : F,G ∈ P(ω)

and max F < minG or maxG < minF} .

To see that C is an IP* set in N × N, suppose instead that we have a sequence

〈(xn, yn)〉∞n=1 in N× N with

FS(〈(xn, yn)〉∞n=1) ⊆{(Σn∈F 2n,Σn∈G 2n) : F,G ∈ P(ω)

and max F < minG or maxG < minF} .

Pick F1 and G1 in P(ω) such that x1 = Σt∈F1 2t and y1 = Σt∈G1 2t. Let k = max(F1 ∪

G1). Choose H ∈ Pf (N) such that minH > 1, 2k+1|Σn∈H xn, and 2k+1|Σn∈H yn.

(Consider congruence classes mod 2k+1 to see that one can do this.) Pick F ′, G′ ∈ P(ω)

such that Σn∈H xn = Σn∈F ′ 2n and Σn∈H yn = Σn∈G′ 2n. Then k + 1 ≤ min(F ′ ∪G′),

so x1 + Σn∈H xn = Σn∈F1∪F ′ 2n and y1 + Σn∈H yn = Σn∈G1∪G′ 2n. Also

Σn∈{1}∪H(xn, yn) = (x1 + Σn∈H xn, y1 + Σn∈H yn)

∈ {(Σn∈F 2n,Σn∈G 2n) : F,G ∈ P(ω)

and max F < minG or maxG < minF} .

Thus k+1 ≤ max(F1∪F ′) < min(G1∪G′) ≤ k or k+1 ≤ max(G1∪G′) < min(F1∪F ′) ≤

k, a contradiction.

To establish (a), suppose that one has z ∈ N and a sequence 〈xn〉∞n=1 in N such

that either {z}×FS(〈xn〉∞n=1) ⊆ C or FS(〈xn〉∞n=1)×{z} ⊆ C and assume without loss

of generality that {z} × FS(〈xn〉∞n=1) ⊆ C. Pick F ∈ P(ω) such that z = Σt∈F 2t and

let k = maxF . Pick H ∈ Pf (N) such that 2k+1|Σn∈H xn. Pick G ∈ P(ω) such that

Σn∈H xn = Σt∈G 2t. Then maxF < minG so (z,Σn∈H xn) /∈ C.

To establish (b) suppose that one has sum subsystems 〈xn〉2n=1 and 〈yn〉2n=1 of

〈2n〉∞n=1 with {x1, x2} × {y1, y2} ⊆ C. Pick F1, G1, F2, G2 ∈ P(ω) such that x1 =

Σn∈F12
n, x2 = Σn∈F22

n, y1 = Σn∈G12
n, y2 = Σn ∈ G22n, max F1 < minF2, and

max G1 < minG2. Without loss of generality, maxF1 ≥ max G1. But then we have

max G1 ≤ max F1 < minF2 so (x2, y1) /∈ C, a contradiction.
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A striking contrast is provided by Theorems 2.2 and 2.7. It is easy to divide most

semigroups into two classes, neither of which is an IP* set. Consequently it is not too

surprising when one finds a property that must be satisfied by an IP* set in a semigroup

S (such as containing a sequence with all of its sums and products when S = N) which

need not be satisfied by any cell of a partition of S. In this case we have a property,

namely that of containing FS(〈x1,n〉mn=1)× FS(〈x2,n〉∞n=1) for some sum subsystems of

any given sequences, which must be satisfied by some cell of a partition of N × N, but

need not be satisfied by IP* sets in N× N.

The third question raised by Theorem 2.6 is answered with an example very similar

to that used in the proof of Theorem 2.7.

2.8 Theorem. Let S be the free semigroup on the alphabet {y1, y2, y3, . . .}. There is an

IP* set C in S × S such that there do not exist weak product subsystems 〈xn〉2n=1 and

〈wn〉2n=1 of 〈yn〉∞n=1 such that {x1, x2} × {w1, w2} ⊆ C.

Proof. Let

C = (S × S)\{(Πn∈F yn,Πn∈G yn) : F,G ∈ Pf (N)

and max F < minG or maxG < minF} .

To see that C is an IP* set, suppose one has a sequence 〈(xn, wn)〉∞n=1 with

FP (〈(xn, wn)〉∞n=1) ⊆{(Πn∈F yn,Πn∈G yn) : F,G ∈ Pf (N)

and max F < minG or maxG < minF} .

Given any i < j in N, pick Fi, Fj , Gi, Gj , Fi,j , Gi,j ∈ Pf (N) such that xi = Πn∈Fi
yn,

xj = Πn∈Fj
yn, wi = Πn∈Gi

yn, wj = Πn∈Gj
yn, xixj = Πn∈Fi,j

yn, and wiwj = Πn∈Fi
yn.

Since xixj = Πn∈Fi,j yn, we have that max Fi < minFj and Fi,j = Fi ∪Fj and similarly

max Gi < minGj and Gi,j = Gi∪Gj . Then we may pick j ∈ N such that max(F1∪G1) <

min(Fj ∪Gj). Then

(x1xj , w1wj) /∈{(Πn∈F yn,Πn∈G yn) : F,G ∈ Pf (N)

and max F < minG or maxG < minF} ,

a contradiction.
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Now suppose we have weak product subsystems 〈xn〉2n=1 and 〈wn〉2n=1 of

〈yn〉∞n=1 such that {x1, x2} × {w1, w2} ⊆ C. Pick F1, F2, G1, G2 ∈ Pf (N) such that

x1 = Πn∈F1yn, x2 = Πn∈F2yn, w1 = Πn∈G1yn, and w2 = Πn∈G2yn. Since x1x2 ∈

FP (〈yn〉∞n=1), we must have max F1 < minF2 and similarly maxG1 < minG2. With-

out loss of generality, max F1 ≥ max G1. But then we have max G1 ≤ max F1 < minF2

so (x2, w1) /∈ C, a contradiction.

We know that there are certain IP* sets, namely sets of returns in a dynamical

system, which satisfy stronger conclusions than arbitrary IP* sets. (See, for example,

[3].) It is possible to show that if C is such a dynamically defined IP* set and S

has an identity, one can choose infinite product subsystems 〈x1,n〉∞n=1 and 〈x2,n〉∞n=1 of

given 〈yi,n〉∞n=1 uniformly with FP (〈x1,n〉∞n=1)× FP (〈x2,n〉∞n=1) ⊆ C. That is, one has

〈Hn〉∞n=1 in Pf (N) such that for each n and each i ∈ {1, 2}, xi,n = Πt∈Hnyi,t.

We do not know if we can impose such uniformity on the weak product subsystems

guaranteed by Theorem 2.6. We do have the following simple result establishing a

certain amount of uniformity for arbitrary semigroups. It has an obvious generalization

to any finite dimension, but for the sake of simplicity, we restrict our attention to two

dimensions.

2.9 Theorem. Let S1 and S2 be semigroups and let C be an IP* set in S1 × S2. Let

`,m ∈ N and let
{
〈wi,n〉∞n=1 : i ∈ {1, 2, . . . , `}

}
be a set of sequences in S1 and let{

〈zj,n〉∞n=1 : j ∈ {1, 2, . . . ,m}
}

be a set of sequences in S2. Then there is a sequence

〈Hn〉∞n=1 in Pf (N) such that:

(a) for each n ∈ N, max Hn < minHn+1 and

(b) if for each n ∈ N, each i ∈ {1, 2, . . . , `} and each j ∈ {1, 2, . . . ,m}, xi,n =

Πt∈Hn
wi,t and yj,n = Πt∈Hn

zj,t, then for each i ∈ {1, 2, . . . , `} and each j ∈ {1, 2, . . . ,

m}, FP (〈(xi,n, yj,n)〉∞n=1) ⊆ C.

Proof. Enumerate {1, 2, . . . , `}×{1, 2, . . . ,m} as 〈
(
i(k), j(k)

)
〉`mk=1. Let for each n ∈ N,

a1,n = (wi(1),n, zj(1),n). Pick by Corollary 1.7 a sequence 〈H1,n〉∞n=1 such that if b1,n =

Πt∈H1,n
a1,n, then FP (〈b1,n〉∞n=1) ⊆ C. Let a2,n = (Πt∈H1,n

wi(2),t,Πt∈H1,n
zj(2),t)

Inductively, given ak,n = (Πt∈Hk−1,n
wi(k),t,Πt∈Hk−1,n

zj(k),t) pick by Corollary 1.7 a
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sequence 〈Fk,n〉∞n=1 in Pf (N) such that if bk,n = Πt∈Fk,n
ak,n, then FP (〈bk,n〉∞n=1) ⊆ C.

For each n let Hk,n =
⋃

t∈Fk,n
Hk−1,t and let (if k < `m)

ak+1,n = (Πt∈Hk,n
wi(k+1),t ,Πt∈Hk,n

zj(k+1),t).

The induction being complete, let Hn = H`m,n for each n. For each n ∈ N, each

i ∈ {1, 2, . . . , `} and each j ∈ {1, 2, . . . ,m}, let xi,n = Πt∈Hnwi,t and yj,n = Πt∈Hnzj,t.

Then, given i ∈ {1, 2, . . . , `} and j ∈ {1, 2, . . . ,m}, pick k ∈ N such that (i, j) =(
i(k), j(k)

)
. Then FP (〈(xi,n, yj,n)〉∞n=1 ⊆ FP (〈bk,n〉∞n=1) ⊆ C.

3. An Alternate Derivation of Finite Substructures.

We show here that a version of Theorem 2.6 for the semigroup (Pf (N),∪) suf-

fices to derive Theorem 2.6 in its entirety. Since the operation in this semigroup

is ∪ we write FU(〈Hn〉mn=1) = {
⋃

n∈F Hn : ∅ 6= F ⊆ {1, 2, . . . ,m}}. Similarly,

given a sequence 〈(H1,n,H2,n)〉∞n=1 in Pf (N)×Pf (N) we write FU(〈(F1,n, F2,n)〉mn=1) =

{(
⋃

n∈F H1,n,
⋃

n∈F H2,n) : ∅ 6= F ⊆ {1, 2, . . . ,m}}.

For the semigroup (Pf (N),∪), Theorem 2.6 is completely trivial because the only

IP* set in Pf (N) × Pf (N) is Pf (N) × Pf (N) itself. (This is because every element

of Pf (N) is an idempotent.) We need a weaker notion of IP* set in order to obtain

useful results. We will say that a sequence 〈Hi,n〉∞n=1 is a disjoint sequence provided

Hi,n ∩Hi,m = ∅ whenever n 6= m.

3.1 Definition. Let ` ∈ N. A set C ⊆ ×`
i=1Pf (N) is a weak IP* set if and only

if for any disjoint sequences 〈H1,n〉∞n=1, 〈H2,n〉∞n=1, . . . , 〈H`,n〉∞n=1 in Pf (N), one has

C ∩ FU(〈(H1,n,H2,n, . . . ,H`,n)〉∞n=1) 6= ∅.

We will also need to concern ourselves with a restricted subsemigroup of

β
(×`

i=1Pf (N)
)
.

3.2 Definition. Let ` ∈ N. Then I` = {p ∈ β
(×`

i=1Pf (N)
)

: for each n ∈ N,

{(H1,H2, . . . ,H`) : (
⋃`

i=1 Hi) ∩ {1, 2, . . . , n} = ∅} ∈ p}.

It is routine to show that I` is a subsemigroup of β
(×`

i=1Pf (N)
)
. We modify

Theorem 1.5.
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3.3 Theorem. Let ` ∈ N, let C ⊆ ×`
i=1Pf (N) be a weak IP* set, and let p be an

idempotent in I`. Then C ∈ p.

Proof. As in the proof of Theorem 1.6 one shows that given any A ∈ p there exist

disjoint sequences 〈H1,n〉∞n=1, 〈H2,n〉∞n=1, . . . , 〈H`,n〉∞n=1 in Pf (N), such that

FU(〈(H1,n,H2,n, . . . ,H`,n)〉∞n=1) ⊆ A .

Consequently, one cannot have ×`
i=1Pf (N)\C ∈ p.

One can define a strong IP set in ×`
i=1Pf (N) by requiring that this set contain

FU(〈(H1,n,H2,n, . . . ,H`,n)〉∞n=1 where each 〈Hi,n〉∞n=1 is a disjoint sequence. One can

then show in a fashion similar to the proof of Corollary 1.7 that any weak IP* set meets

any strong IP set along a strong IP set.

Next we modify Lemma 2.5.

3.4 Lemma. Let ` ∈ N and for each i ∈ {1, 2, . . . , `} and each n ∈ N, let Yi,n = {n}.

Let
M ={p ∈ I` : for each A ∈ p and each m, k ∈ N

there exist for each i ∈ {1, 2, . . . , `} a weak product subsystem

〈Hi,n〉mn=1 of 〈Yi,n〉∞n=k such that ×`
i=1FU(〈Hi,n〉mn=1) ⊆ A} .

Then M is a compact subsemigroup of β(×`
i=1N).

Proof. Let L be as in Lemma 2.5. Then M = L ∩ I`. Since both L and I` are

semigroups, it suffices to show that M∩L 6= ∅.

For each n ∈ N, let An = {(H1,H2, . . . ,H`) ∈ ×`
i=1Pf (N) : (

⋃`
i=1 Hi) ∩ {1, 2,

. . . , n} = ∅}. Let B = {C ⊆ ×`
i=1Pf (N) : for each m, k ∈ N and each choice of a

weak product subsystem 〈Hi,n〉mn=1 of 〈Yi,n〉∞n=k, ×`
i=1FU(〈Hi,n〉mn=1) ∩ C 6= ∅}. Now

if p ∈ β
(×`

i=1Pf (N)
)

and {Ak : k ∈ N} ∪ B ⊆ p, then p ∈ L ∩ I` (since, given any

A ∈ p, ×`
i=1Pf (N)\A /∈ B). Thus it suffices to show that {Ak : k ∈ N} ∪ B has the

finite intersection property.

To see this, suppose instead we have some k ∈ N and some C1, C2, . . . , Cr ∈ B

such that Ak ∩
⋂r

j=1 Ci = ∅. Then (×`
i=1Pf (N)\Ak) ∪

⋃r
j=1(×`

i=1Pf (N)\Cj) so by
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Theorem 2.3, some one of these sets contains ×`
i=1FU(〈Hi,n〉mn=1) for some choice of

weak product subsystems 〈Hi,n〉mn=1 of 〈Yi,n〉∞n=k, which is impossible.

3.5 Theorem. Let ` ∈ N, let C ⊆ ×`
i=1Pf (N) be a weak IP* set, and let m ∈

N. Then for each i ∈ {1, 2, . . . , `} there is a disjoint sequence 〈Hi,n〉mn=1 such that

×`
i=1FU(〈Hi,n〉mn=1) ⊆ C.

Proof. Let M be as in Lemma 3.4. Then M is a compact subsemigroup of I` so pick an

idempotent p ∈ M. By Theorem 3.3 C ∈ p so by the definition of M we have for each

i ∈ {1, 2, . . . , `} some disjoint sequence 〈Hi,n〉mn=1 such that ×`
i=1FU(〈Hi,n〉mn=1) ⊆ C.

Finally we show how Theorem 3.5 suffices to yield Theorem 2.6 for any semigroups.

(We reprint its formulation for the convenience of the reader.)

2.6 Theorem. Let ` ∈ N and for each i ∈ {1, 2, . . . , `}, let Si be a commutative semi-

group and let 〈yi,n〉∞n=1 be a sequence in Si. Let C be an IP* set in ×`
i=1Si and let

m ∈ N. Then for each i ∈ {1, 2, . . . , `} there is a weak product subsystem 〈xi,n〉mn=1 of

〈yi,n〉∞n=k such that ×`
i=1FP (〈xi,n〉mn=1) ⊆ C.

Proof. Let

D = {(H1,H2, . . . ,H`) ∈×`
i=1Pf (N) : (Πt∈H1 y1,t,Πt∈H2 y2,t, . . . ,Πt∈H`

y`,t) ∈ C} .

Then it is easy to see that D is a weak IP* set. So pick for each i ∈ {1, 2, . . . , `} a

disjoint sequence 〈Hi,n〉mn=1 as guaranteed by Theorem 3.5. For each n ∈ {1, 2, . . . ,m}

and each i ∈ {1, 2, . . . , `}, let xi,n = Πt∈Hi,n
yi,t. Then ×`

i=1FP (〈xi,n〉mn=1) ⊆ C.

References

[1] V. Bergelson and N. Hindman, Ultrafilters and multidimensional Ramsey theorems,

Combinatorica 9 (1989), 1-7.

[2] V. Bergelson and N. Hindman, IP∗-sets and central sets, Combinatorica 14 (1994),

269-277.

17



[3] V. Bergelson, N. Hindman, and B. Kra, Iterated spectra of numbers — elementary,

dynamical, and algebraic approaches, Trans. Amer. Math. Soc., to appear.

[4] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969.

[5] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory,

Princeton Univ. Press, Princeton, N.J., 1981.

[6] N. Hindman, Ultrafilters and combinatorial number theory, in Number Theory

Carbondale 1979, M. Nathanson ed., Lecture Notes in Math. 751 (1979), 119-

184.

[7] N. Hindman, Ultrafilters and Ramsey Theory – an update, in Set Theory and its
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