This paper was published in Annals of the New York Academy of Sciences 806
(1996), 28-41. To the best of my knowledge, this is the final version as it was submitted
to the publisher.-NH
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Abstract. An IP* set in a semigroup (5,-) is a set which meets every set of the
form FP((x,)72;) = {Il,er x,, : F is a finite nonempty subset of N}, where the
products are taken in increasing order of indices. We show here, using the Stone-Cech
compactification of the product space S7 x S5 x ... x Sy, that if each S; is commutative,
then whenever C' is an IP* set in S; x Sy x ... x Sy and for each i € {1,2,..., ¢},
(xin)o2, is a sequence in S;, C contains cartesian products of arbitrarily large finite
substructures of F'P((x1,,)0%;) X FP((x2n)02;) X ... X FP({x¢n)o2;). (The notion
of “substructure” is made precise in Definition 2.4.) We show further that C' need not
contain any product of infinite substructures and that the commutativity hypothesis
may not be omitted. Similar results apply to arbitrary finite products of semigroups.
By way of contrast, we show in Theorem 2.3 that a much stronger conclusion holds for
some cell of any finite partition of S7 x Sy x ... x Sy without even any commutativity
assumptions.

1. Introduction.

In a semigroup (S, -), we write Il,,cp z, for the product written in increasing order
of indices. (Thus Il,ef1577 Tn = 21 - T5 - x7.) We further write FP({z,)p2;) =
{IL,er @, : F € Pp(N)} where Py(N) = {A: A is a finite nonempty subset of N} and N
is the set of positive integers. (Similarly, if the operation of the semigroup is denoted by
+, we write FS((xn)021) = {Zner on : F € P¢(N)}.) Loosely following Furstenberg
[5] we say that a set A C S is an IP set if and only if there is a sequence (x,)52 ; in
S with FP({x,)$2 ) C A. A set C C S is then an IP* set if and only if C N A # ()
for every IP set A (equivalently if and only if C N FP({(x,) ) # 0 for every sequence

()52, in S).
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Now IP* sets not only must meet every IP set; a much stronger statement is true.

This statement involves the notion of a product subsystem which we pause now to define.

1.1 Definition. Let (S,-) be a semigroup and let (y,)2°; be a sequence in S. The
sequence (x,,)5 , is a product subsystem of (y,)$2 ; if and only if there is a sequence
(Hp)22, in P¢(N) such that

(a) for each n € N, max H,, < min H, 1 and

(b) for each n € N, x,, = Ilycq, ;.

Note that if (z,)52, is a product subsystem of (y,)5%,, then FP({x,)52 ) C
FP((yn)o2y). (If requirement (a) of the definition is replaced by the requirement that
H, N H,, = () when n # m, this conclusion may fail if S is not commutative. For
example, if 1 = y; - y3 and x9 = Yo, then x1 - 5 need not be in FP((y,)52;).) In the
event the operation in S is denoted by 4+, we change products to sums and refer to a
sum subsystem.

The much stronger statement to which we referred is that given any IP* set C C S
and any sequence (y,)o2; in S, there is a product subsystem (z,,)5% 1 of (y,)52; such
that FP({x,)>2,) C C. This statement will be proved as Corollary 1.7 below. (It is
well known, but we don’t have a convenient reference for it.)

It was shown in [2] that IP* sets may be large in unexpected ways. For example [2,
Theorem 2.6] an IP* set in (N, +) must contain an infinite sequence with all of its sums
(as expected) and its products as well. We investigate in this paper the extent to which
IP* sets in product semigroups must be large in terms of sequences in the coordinates.
One may ask for example, given semigroups S; and Sp, an IP* set C in S; x Sy, and
sequences (wy, )52 in S7 and (2,)5% 4 in Sa, whether there must be product subsystems
(Tn)pzy of (wn)pZy and (zn)72, of (z2n)72, with FP({zn)72,) X FP((yn)nZ1) € C.

We give a strong negative answer to this question in Section 2. One does find

however that if S; and Sy are commutative semigroups, then any IP* set in S x S

oo

must contain the product of arbitrarily large finite substructures of (w,,)° ; and (z,,)5%

and a similar statement applies to any finite product of semigroups (Theorem 2.6).

We also see a surprising turning of the tables. One is accustomed to finding prop-
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erties that must hold for some cell of any finite partition and automatically expecting

at least such a conclusion for IP* sets. For example, as we have already mentioned,

o0

while one cell of a partition of N must contain F'S({x,)>° ) for some sequence (z,,)7 ;,

any IP* set must contain F.S((x,,) ;) U FP((z,)5% ). Similarly, we will see below
that given any discrete semigroup S and any idempotent p in 55, while trivially p must
belong to the closure of some cell of any partition of S, p must belong also to the closure

of every IP* set.

By contrast we will see in Theorems 2.2 and 2.7 that one can guarantee a much
stronger conclusion for one cell of any partition of the product of two semigroups than

can be guaranteed for IP* sets in the same product.

A special semigroup is of significant interest for these problems, namely the semi-
group (P¢(N),U) because a version of Theorem 2.6 for this semigroup is sufficient to
imply the validity of Theorem 2.6 for all semigroups. We present this derivation in

Section 3.

Our proofs utilize the algebraic structure of the Stone-Cech compactification 8.5 of
a discrete semigroup (.5, -). We take 35 to be the set of all ultrafilters on S, identifying
the principal ultrafilters with the points of S. We denote also by - the operation on
BS making (4S5,-) a right topological semigroup with S contained in its topological
center. That is, for all p € S, the function p, : 35S — (S defined by p,(q) = q-p
is continuous and for all x € S, the function A\, : S — (S defined by A\.(q) = = - ¢
is continuous. The reader is referred to [6] and [7] for an elementary introduction to
this operation, with the caution that there (35,-) is taken to be left rather than right
topological. (We have made the switch to conform to majority usage, at least among
our collaborators.) The basic fact characterizing the right continuous operation on (3.5
is, given p,g € BSand AC S, Acp-qifandonlyif {x € S: 2714 € q} € p where
x!A={yeS:x-y € A}. In the event that the operation is denoted by +, the
characterization above becomes A € p+q if and only if {x € S: —x+ A € ¢} € p where
—x+A={yeS:z+yec A}

We will use only a few basic facts about (4S5, -) which we present here.
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1.2 Theorem. Any compact right topological semigroup has an idempotent.
Proof. [4, Corollary 2.10]. 0

The proof of the following theorem is the Galvin-Glazer proof of the Finite Sum
Theorem, which was never published by them, though it has appeared in surveys. Those
places where it has appeared (to our knowledge) however use left continuity so that the
resulting products are in decreasing order of indices. To minimize confusion, we present

the proof here.

1.3 Theorem. Let (S,-) be a semigroup, let p be an idempotent in 3S, and let A € p.

There is a sequence (xn,)o2 1 in S such that FP({(x,)22 ;) C A.

Proof. Let Ay = Aandlet By = {x € S:27 1A, € p}. Since A1 €Ep=p-p, B; € p.
Pick 71 € By N Ay, let Ay = A; N (z1714;), and note that As € p. Inductively given
A, eplet B, ={xe€S:271A, € p}. Since A, € p=p-p, B, € p. Pickz,, € B,NA,
and let A, 1 = A, N (2,71 4,).

To see for example why x5 - x4 - x5 - 7 € A, note that 7 € A; C Ag C x5 A5
so that o5 - 27 € As C x4 'A4. Thus x4 - 25 - 27 € Ay C A3 C 2571 Ay so that
To- X4 T5-T7 € Ay C A1 = A.

More formally, we show by induction on |F| that if F' € P¢(N) and m = min F’
then Il,,ep z, € Ap,. If |F| =1, then I,,ep z, = z, € Ayy. Assume |F| > 1, let G =
F\{m}, and let k¥ = min G. Note that since k > m, Ay C A,,+1. Then by the induction

hypothesis, ,cq Tn € A C Apmy1 C T YAy 50 per 2y = 24y - e on € Ay O

1.4 Theorem. Let S be a semigroup and let (x,)>°, be a sequence in S. Then

Noo_ LEP((xn)%,,) is a subsemigroup of BS. In particular, there is an idempotent p

n=m

in BS such that for each m € N, FP({x,)52,.) € p.

Proof. Let T =(,-_, clFP((x,)5%,,). Then T is the intersection of a nested collection
of closed nonempty subsets of 35 so T # (). To see that T is a semigroup, let p,q € T be
given and let m € N. To see that FP((x,)52,,) € p-q we show that FP((x,)>2,,) C

{s € S:sFP({x,),) € q}. (Since FP((z,)%,,) € p, this will suffice.) To

n=m n=m

this end, let s € FP((x,);2,,) be given and pick F' € P;(N) with min ' > m such
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that s = Il,ep z,. Let k = maxF + 1. Then FP((x,)2,) € ¢ so it suffices to
show that FP((z,)%,) C s 'FP((x,)52,,)- So, let t € FP({x,)%,) be given and
pick G € Pf(N) with minG > k such that ¢ = II,cq 2;. Then maxF < minG so
st =1Ilerug Tn € FP((20)7%,,)-

For the “in particular” conclusion note that by Theorem 1.2, T" has an idempotent.

O

The following simple characterization of IP* sets also provides some explanation of

the origin of “IP”.

1.5 Theorem. Let (S,-) be a semigroup and let C C S. Then C is an IP* set if and

only if for every idempotent p € 3S, C € p.

Proof. Necessity. Let p-p = p € 55 and suppose C ¢ p. Then S\C € p so by Theorem
1.3 there is a sequence (x,,)52; with FP((z,)52 ;) C S\C, a contradiction.

Sufficiency. Let (x,,)22; be a sequence in S and pick by Theorem 1.4 an idempotent

p with FP((2,)52 1) € p. Then C N FP({x,)52 ) € pso CNFP({x,)22 ) # 0. O

1.6 Theorem. Let (S,-) be a semigroup, let (yn)o>, be a sequence in S, and let p be

an idempotent in (\or_y cl(FP((yn)S2,,)). If A € p, then there is a product subsystem
(Tn)nzy of (yn)nzyr with FP((zn)p2,) € A.

Proof. Pick by Theorem 1.4 an idempotent p € (S such that for each m € N,
FP((x,)22,,) € p. (The rest of the proof is now a modification of the proof of Theorem
1.3.)

Let C; = A, let By = {y € S:y~'Cy € p}, and pick y; € Bi1NCy. Pick H; € P¢(N)
such that yy = Iyeq, @4 Let ki = max Hi+1and let Co = C1Nys 'CLNFP((x)52, ).

Inductively, given n > 1 and k,—1 € N and C,, € p with C,, € FP({z¢)f2, ),
let B, = {y € S:y'C, € p}. Pick y, € B, NC, and pick H, € P¢(N) with
max H,, > k,_; such that y,, = Il;cy, z¢. Let k, = maxH, + 1 and let C)4; =
Cr Nyn 'Cr NFP((z4)32, ).

Then one immediately sees that (y,,)°°; is a product subsystem of (z,,)>° ;. Just

n=

as in the proof of Theorem 1.3 one sees that FP({y,)s2,) C A. O
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The following corollary will be used in the proof of Theorem 2.9.

00
n=1

product subsystem (x,)°2 1 of (yn)o2y such that FP({x,)>>,) C C.

n=1 n=1

1.7 Corollary. Given any IP* set C C S and any sequence (yn) in S, there is a

Proof. Let T = ~_; ¢/FP((yn)>2,,). By Theorem 1.4 T is a compact subsemigroup
of 35, so pick by Theorem 1.2 an idempotent p € T. By Theorem 1.5 C' € p, so by
Theorem 1.6 there is a product subsystem (z,,)5% ; of (y,,)52 ; such that FP((z,)2 ) C

n=1

C. 0

1.8 Theorem. Let X be a set and let G C P(X). The following statements are equiv-
alent.

(a) For each r € N, if X = J;_, Ai, there exist i € {1,2,...,r} and G € G with
G C A;.

(b) There is an ultrafilter p on X such that for each A € p, there exists G € G with
G C A.

Proof. [7, Theorem 6.7]. 0
We write N for the set of positive integers and w for the set of nonnegative integers.

Acknowledgement: The authors would like to thank Paul Milnes for some helpful

conversations.
2. IP* Sets in Products.

We show in this section that IP* sets in any finite product of commutative semi-
groups contain products of arbitrarily large finite subsystems of sequences in the coor-
dinates. We first modify the notion of product subsystems (Definition 1.1) to apply to
finite sequences. (Requirement (a) below is of course a triviality, but see the discussion

following Definition 1.1 for the fact that requirement (b) can be important.)

2.1 Definition. Let (y,)5%; be a sequence in a semigroup S and let k,m € N. Then
(@) is a product subsystem of (y,)o2, if and only if there exists a sequence (H,)"

n=1
in Pr(N) such that



(a) min Hy > k,
(b) max H,, < min H,,41 for each n € {1,2,...,m — 1}, and

(¢) xp, = ey, ye for each n € {1,2,...,m}.

We establish, using an argument that we have used before [1], a purely Ramsey
Theoretic property in the product of arbitrary semigroups which is of interest in its own
right, independent of TP* sets. It is similar in flavor to the Milliken-Taylor Theorem [8,
9]. We first present the two dimensional version, partly because it is simpler but also to
present a stronger conclusion than will be needed here which will contrast sharply with

Theorem 2.7 below.

2.2 Theorem. Let S; and Sz be semigroups and let (Y1 )02, and (Y2 n)o>, be se-
quences in S1 and So respectively. Let k,r € N and let S; x Sy = U;Zl Cj. There
exist j € {1,2,...,r} and a product subsystem (x1,n)5%; of (Y1,n)0> . such that for each

m € N there is a product subsystem (x2,)521 of (Y2,n)0> . such that
FP((z1,n)p=1) X FP((22,n)nZ1) C Ci.
Proof. Given i € {1,2}, pick by Theorem 1.4 an idempotent

Pi € Npet s, FP((Yin) o)

For x € Sy and j € {1,2,...,r}, define By(z,j) = {y € Sz : (x,y) € C;}, and for
je{1,2,...,r}, let B1(j) ={x € Sy : Ba(z,7) € p2}.

Now for each z € S1, Sy = U§:1 By (x,j) so there exists j € {1,2,...,r} such
that Ba(x,j) € pa. Consequently, S; = U§:1 Bi(j) so pick j € {1,2,...,r} such that
B1(j) € p1. Pick by Theorem 1.6 a product subsystem (x; ,,)52; of (y1 )22, such that
FP((x10)22) C Bi(j). Let m € N. Then FP((x1,)n—;) C Bi(j) so

{Ba(a,j) s a € FP((z1,n)521)} € P2
Pick by Theorem 1.6 a product subsystem (xg )02 of (y2,,)°>, such that

FP((x2n)p=1) € (W B2(a,7) s a € FP((z1n)521)}-
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Then FP((:L‘Ln>m ) X FP(<11727TL>OO ) - Cz U

n=1 n=1

It is a consequence of Theorem 2.7 below that one cannot get a product of full
infinite subsystems, even if the cells of the partition {Cy,Cs,...,C,} are required to
be symmetric. (Recall that a subset C' of a cartesian product is symmetric provided
(a,b) € C implies (b,a) € C.)

At first glance it is not clear how to generalize the proof of Theorem 2.2 to higher
dimensions, because the two coordinates are treated so differently. It turns out that
intermediate coordinates are treated more like the first than the last. One can in fact

replace the last coordinate F'P((xg)_;) in the following lemma by F'P((z;,)5 ).

2.3 Theorem. Let ¢ € N and for each i € {1,2,...,0} let S; be a semigroup and let
(Yin)o2, be a sequence in S;. Let m,k,r € N and let szlSZ- =Uj_, Cj. There exists
Jj€e{L,2,...,r} and for eachi € {1,2,..., ¢}, there exists a product subsystem (z; ),
of (Yin)o2 . such that

Xt FP((win)y) € C -

n=1

Proof. Giveni e {1,2,...,¢}, pick by Theorem 1.4 an idempotent

pi € Moy clas, FP({Yin)o2y)-

For (z1,x9,...,2¢-1) € Xf;llSi and j € {1,2,...,r}, let
By(x1,22,...,x0-1,7) ={y € S¢ : (x1,22,...,20-1,y) € Cj} .

Now given t € {2,3,...,¢— 1}, assume that By;1(x1, 22, ...,2,j) has been defined
for each (1, x9,...,1¢) € X§:1Si and each j € {1,2,...,r}. Given (z1,22,...,2¢-1) €
Xf;iSi and j € {1,2,...,7}, let

Bi(x1,29,...,0-1,7) ={y € St : Biy1(z1,22,- -, X4-1,Y,J) € Pey1} -

Finally, given that Bs(z,j) has been defined for each z € S; and each j € {1,2,...,r},
let Bi(j) ={x € S1: Ba(z,j) € p2}.
We show by downward induction on ¢ that for each t € {2,3,...,¢} and each

—1 . .
(x1,22,...,@4_1) € X:lei, S; = U;Zl Bi(x1,22,...,24-1,7). This is trivially true
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for t = ¢. Assume t € {2,3,...,/ — 1} and the statement is true for ¢ + 1. Let

(x1,22,...,04_1) € XZ;;SI Given y € S, one has that

Sty1 = U§:1 Bt+1(9€1,$2; cee ,wt—l,yaj)

so one may pick j € {1,2,...,r} such that Byy1(x1,22,...,24-1,Y,j) € pt+1. Then
y € By(z1,29,...,24-1,])-

Since for each x € 51, So = U;_l Bs(x, j), one sees similarly that S, = U;Il Bi(j).
Pick j € {1,2,...,7} such that Bi(j) € ps1.

Pick by Theorem 1.6 a product subsystem (1,)52; of (y1..)ne; such that
FP((1,)32) € Bi(j). Let

Dy = ({B2(a,j) : a € FP((x1n)51)} -

Since F'P((x1n)m—,) is finite, we have Dy € ps so pick by Theorem 1.6 a product
subsystem (z2.,)0% of (y2 n)o2; such that FP((z2,)5e C Ds.
Let t € {2,3,...,¢ — 1} and assume (x¢ )02, has been chosen. Let

Dt+1 == ﬂ{Bt+1(a17a27-~-;at;j) : (a17a27"'a ) c Xz 1F’P(<xZ n>n 1)} .

Then Dyi1 € piy1 so pick by Theorem 1.6 a product subsystem (z;41,)52; of
<yt_|_1 n>n 1 such that FP((I’H_l n> C Dt+1
Then Xt VFP((zn)) C Cy, as required. 0

In contrast with Theorem 2.3, where the partition conclusion applied to products of
arbitrary semigroups, we now restrict ourselves to products of commutative semigroups.
We will see in Theorem 2.8 that without this restriction one is not guaranteed products

of any subsystems at all.

2.4 Definition. Let S be a semigroup, let (y,)72; be a sequence in S, and let m € N.
The sequence (x,,)n"_; is a weak product subsystem of (y,)>° ; if and only if there exists
a sequence (H,)" ; in Py(N) such that H, N Hy =0 when n # k in {1,2,...,m} and
pn = yem, y: for each n € {1,2,...,m}.

Recall by way of contrast, that in a product subsystem one requires that max H,, <

min H,41.



2.5 Lemma. Let ! € N and for eachi € {1,2,...,¢}, let S; be a commutative semigroup

and let (yin)o>, be a sequence in S;. Let

L={pe B(szlSi) : for each A € p and each m,k € N
there exist for each i € {1,2,...,¢} a weak product subsystem

(Tin)me1 Of (Yin)pep Such that >< 1 FP((xin)m_y) C A} .

Then L is a compact subsemigroup of (3( szlN).

Proof. Since any product subsystem is also a weak product subsystem, we have by
Theorems 2.3 and 1.8 that £ # (. Since L is defined as the set of ultrafilters all of
whose members satisfy a given property, L is closed, hence compact. To see that L is a
semigroup, let p,q € L, let A Ep gandlet m,k € N. Then {@ € ><Z SicatAeqlep
(where, recall, @ 1A = {b: @-b € A}) so choose for each i € {1,2,...,¢} a weak product

subsystem (z; )", of (y; )22, such that
X i FP((@in)ie,) C{a€ Xi,Sisa ' Aeq) .

Giveni € {1,2,...,¢} and n € {1,2,...,m}, pick H; ,, € P¢(N) with min H;,, > k such
that @; , = yem, ,yi and if 1 <n < s <m, then H;,, N H; s = 0.
Let r = max(U,_, U™, Hin) + 1 and let

B = m{a“ lA CLE Xz 1FP(<xln>n 1)}

Then B € ¢ so choose for each i € {1,2,...,¢} a weak product subsystem (z;,)n—q
of (Yin)o2, such that ><Z FP({zin)m—y) € B. Given i € {1,2,...,¢} and n € {1, 2,
.,m}, pick K;, € Py(N) with min K;,, > r such that z, = Ik, ¥ and if
1<n<s<m,then K; ,N K, s = 0.
Fori € {1,2,...,£}andn € {1,2,...,m},let L; , = H; ,UK; . Thenllicp, vi: =
Ween, vt ek, Yt = iy - 2ip and if 1 <n < s <m, then L;,, N L; s = (). Thus for
each i € {1,2,...,0}, (zis - zi¢)n—q is a weak product subsystem of (y; ,)>% ;.

Finally we claim that

X FP((@in - 2im)iy) C A

n=1
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To this end let ¢ € >< 1 FP((zin - zin)m—q) be given. For each i € {1,2,...,¢},
pick F; C {1,2,...,m} such that ¢; = ILiep, (¢ - 2i4) and let a; = yep,z;y and
bi = ep,zit. Then be szlFP«zi,n) 1) so b€ B. Since @ € XZ 1FP{zin)m—q)
one has that b € @ 1A so that @-b € A. Since each S; is commutative, we have for

each i € {1,2,... 0} that yep (it - 2it) = (ter,@it) - (Itep i) so that c=a- b as

required. U

2.6 Theorem. Let £ € N and for each i € {1,2,...,0}, let S; be a commutative semi-
group and let (y; n)o>; be a sequence in S;. Let C be an IP* set in szlSi and let
m € N. Then for each i € {1,2,...,0} there is a weak product subsystem (x; n)n—; of
(Yin)22, such that XZ 1 FP((xin)m—q) CC.

Proof. Let £ be as in Lemma 2.5. Then £ is a compact subsemigroup of szlSi SO
by Theorem 1.2 there is an idempotent p € £. By Theorem 1.5, C' € p. Thus by the
definition of £ for each ¢ € {1,2,...,¢} there is a weak product subsystem (z; )", of
(Yin)o2 . such that XZ 1 FP((xin)m-q) CC. 0

Three natural questions are raised by Theorem 2.6. (1) Can one obtain infinite weak
product subsystems (defined in the obvious fashion) such that >< A FP((zin)0e,) CC7

(2) Can one replace “

weak product subsystems” with “product subsystems”? (3) Can
one omit the requirement that the semigroups 5; be commutative? We answer all three
of these questions in the negative.

The first two questions are answered in Theorem 2.7 using the semigroup (N, +).

Since the operation is addition we refer to “sum subsystems” rather than “product

subsystems”.

2.7 Theorem. There is an IP* set C' in N x N such that:

(a) There do not exist z € N and a sequence (r,)0>, in N such that either
{2} x FS({(xn)221) C C or FS({xn)22) x {2z} C C. (In particular there do not exist
infinite weak sum subsystems (x1 n)oeq and (T2 n)oeq of (2™)5%L, with FS((x1n)0%;) X
FS((2,0)321) € C).

(b) There do not exist sum subsystems (zp)2_; and (y,)2_; of (2")°°, with

n=1
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{1'171'2} X {ylqu} g C

Proof. Let
C = (N X N)\{(ZnGF 2n’ ZnEG 2n) : F, G € P(w)

and max F' < minG or maxG < min F'} .

To see that C' is an IP* set in N x N, suppose instead that we have a sequence

<(~’Un,yn)>2°:1 in N x N with
FS({(%n,Yn))pe1) S{(Zner 2" Eneg 2") 1 F,G € P(w)
and max F' < min G or maxG < min F'} .

Pick F; and G; in P(w) such that 1 = Xycp, 28 and y; = Yieq, 2°. Let k = max(F; U
G1). Choose H € Ps(N) such that min H > 1, 2%, cy z,, and 28TY 3, cp yp.
(Consider congruence classes mod 281 to see that one can do this.) Pick I/, G’ € P(w)
such that X,cg xn = Xpep 2" and Xy Yn = Znegr 2. Then k+1 < min(F' UG,

SO 1 + Xner Tn = Lnermur 2" and y1 + Xner Yn = nec,uer 2™ Also
Ene{l}uH(CL"myn) = (21 + XneH Tn, Y1 + XneH Yn)
€E{(Xher 2", Xheq 2") : F,G € P(w)
and max F' < min G or maxG < min F'} .

Thus k+1 < max(F;UF’) < min(G1UG") < kor k+1 < max(G1UG’) < min(F;UF’) <
k, a contradiction.

To establish (a), suppose that one has z € N and a sequence (z,)52; in N such
that either {z} X F.S((x,,)22;) € C or FS({(x,)22;) x {2} C C and assume without loss
of generality that {z} x F.S({x,)%2 ;) C C. Pick F' € P(w) such that z = X;cpr 2¢ and
let K = max F. Pick H € P;(N) such that 2*"1|%, cy z,,. Pick G € P(w) such that
Yner Tn = Yieg 2b. Then max F < minG so (2, Xpeqy Tn) € C.

To establish (b) suppose that one has sum subsystems (z,)2_; and (y,)2_; of
(2m)o0  with {z1,29} x {y1,92} C C. Pick Fy,Gq, Fs,G2 € P(w) such that z; =
Yner 2", x2 = Yner2", Y1 = Yneg, 2", y2 = Xn € G22", max F; < min Fy, and
max G; < minGsy. Without loss of generality, max F; > max(G;. But then we have

max G < max F} < min Fy so (z2,y1) ¢ C, a contradiction. O
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A striking contrast is provided by Theorems 2.2 and 2.7. It is easy to divide most
semigroups into two classes, neither of which is an IP* set. Consequently it is not too
surprising when one finds a property that must be satisfied by an IP* set in a semigroup
S (such as containing a sequence with all of its sums and products when S = N) which
need not be satisfied by any cell of a partition of S. In this case we have a property,
namely that of containing F\S((x1 n)n—;) X FS((x2,,)52,) for some sum subsystems of
any given sequences, which must be satisfied by some cell of a partition of N x N, but
need not be satisfied by IP* sets in N x N.

The third question raised by Theorem 2.6 is answered with an example very similar

to that used in the proof of Theorem 2.7.

2.8 Theorem. Let S be the free semigroup on the alphabet {y1,vy2,ys,...}. There is an
IP* set C in S x S such that there do not exist weak product subsystems {(x,)2_; and
(wn)2_1 of (yn)2, such that {x1,x2} x {wy,we} C C.
Proof. Let
C=(SxS\{(Iper Yn,Mnec yn) : F,G € Ps(N)
and max F' < minG or maxG < min F'} .

To see that C' is an IP* set, suppose one has a sequence ((x,,wy))52; with

FP(<(xn7wn)>$zo:1) g{(HnEF ynaHnEG yn) : F7 G e Pf(N)
and max F' < min G or maxG < min F'} .
Given any ¢ < j in N, pick Fi,Fj,Gi,Gj,Fi’j,Gi’j S Pf(N) such that z; = HnGFiyn;
zj = Hper, Yn, Wi = Uneg,Yn, Wi = lneq,;Yn, Tixj = Uper, ;yn, and wyw; = pep, Yn-
Since z;x; = Myer, ;Yn, we have that max F; < min F; and F; ; = F; U F; and similarly
max G; < minG; and G; ; = G;UG;. Then we may pick j € N such that max(F1UG;) <
min(F; UG;). Then
(2125, w1w;) F{(Mner Yn,Mnec yn) : F, G € Py(N)

and max F' < minG or maxG < min F'} |

a contradiction.
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Now suppose we have weak product subsystems (z,)2_; and (w,)2_; of
(Yn)oq such that {x1,z2} x {wi,we} C C. Pick Fy, F»,G1,G2 € Ps(N) such that
1 = her Yn, 2 = per,yn, w1 = yheq,yn, and we = Il,cq,yn. Since x12o9 €
FP((yn)$21), we must have max F; < min F5 and similarly max G; < min Gy. With-
out loss of generality, max F; > max G;. But then we have max G; < max F} < min F;

so (x9,wy) ¢ C, a contradiction. O

We know that there are certain IP* sets, namely sets of returns in a dynamical
system, which satisfy stronger conclusions than arbitrary IP* sets. (See, for example,
[3].) It is possible to show that if C' is such a dynamically defined IP* set and S
has an identity, one can choose infinite product subsystems (z1.,)52; and (x2 )02, of
given (y; n)oeq uniformly with FP((z1,,)52,) X FP((x2n)r%,) C C. That is, one has
(H,) 1 in Ps(N) such that for each n and each i € {1,2}, z; , = e m, yi+-

We do not know if we can impose such uniformity on the weak product subsystems
guaranteed by Theorem 2.6. We do have the following simple result establishing a
certain amount of uniformity for arbitrary semigroups. It has an obvious generalization

to any finite dimension, but for the sake of simplicity, we restrict our attention to two

dimensions.

2.9 Theorem. Let S; and Sy be semigroups and let C' be an IP* set in S1 X Sy. Let
t,m € N and let {{w;n)2, i € {1,2,...,0}} be a set of sequences in S1 and let
{(zj7n>j’l°:1 7€ {1,2,... ,m}} be a set of sequences in So. Then there is a sequence
(Hp)o2y in P¢(N) such that:

(a) for each n € N, max H,, < min H,, ;1 and

(b) if for each n € N, each i € {1,2,...,4} and each j € {1,2,....,m}, z;, =
Wicm,w;t and yjn = icq, 2+, then for each i € {1,2,...,¢} and each j € {1,2,...,

m}7 FP(«:Ei,nayj,n))%O:l) g C.

Proof. Enumerate {1,2,...,¢} x {1,2,...,m} as ((i(k), j(k))){™;. Let for each n € N,
a1, = (Wi(1),n, Zj(1),n)- Pick by Corollary 1.7 a sequence (Hj ,)5>; such that if by, =
HicH, ,a1m, then FP((b1n)ney) € C. Let azn = (Ilien, ,, wic2) 1, Micn, . 2j(2),t)

Inductively, given ag,n = (Hscm,_, ,, Wik),t> HecH,_, . Zj(k),+) Pick by Corollary 1.7 a
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sequence (F n)pe; in Py(N) such that if by, = Iiep, , arn, then FP((byn)ne) C C.
For each n let Hy,,, = UteFk ~Hy—1, and let (if & < fm)

a1 = ien, , Wiger1),t > HeeH,  Zjk+1),t)-

The induction being complete, let H,, = Hyp, ,, for each n. For each n € N, each
ie€{1,2,...,¢} and each j € {1,2,...,m}, let z; ,, = Ilicq, w;+ and y; , = icm, 25+
Then, given i € {1,2,...,4} and j € {1,2,...,m}, pick k& € N such that (i,j) =
(i), j(K))- Then FP({(zs.0, 4301751 € FP((brn)ie) € C. 0

3. An Alternate Derivation of Finite Substructures.

We show here that a version of Theorem 2.6 for the semigroup (Py(N),U) suf-
fices to derive Theorem 2.6 in its entirety. Since the operation in this semigroup
is U we write FU((Hn)p=1) = {Upep Hn : 0 # F C {1,2,...,m}}. Similarly,
given a sequence ((Hi n, Hap))o2; in Pr(N) x Pr(N) we write FU (((F1n, Fon))me) =
{(Uner Hin Upep Hom) :0#F C{1,2,...,m}}.

For the semigroup (Pf(N),U), Theorem 2.6 is completely trivial because the only
IP* set in Py(N) x Pr(N) is P¢(N) x Ps(N) itself. (This is because every element

of P¢(N) is an idempotent.) We need a weaker notion of IP* set in order to obtain

is a disjoint sequence provided

useful results. We will say that a sequence (H; )52,

H; , N H; , = whenever n # m.

3.1 Definition. Let { € N. A set C C szlpf(N) is a weak IP* set if and only
if for any disjoint sequences (Hy n)ory, (Hopn)ol1, ..., (Hen)pey in Ps(N), one has
CNFU((Hyins Haoms - Hep))nzy) # 0.

We will also need to concern ourselves with a restricted subsemigroup of
5(Xf:17pf(N))'
3.2 Definition. Let ¢ € N. Then Z, = {p € ﬁ(szle(N)) : for each n € N,
{(Hy, Hy, ..., Hy) - (Us_y Hi) N {1,2,....n} = 0} € p}.

It is routine to show that Z, is a subsemigroup of ﬁ(Xf:ﬂ?f(N)). We modify
Theorem 1.5.
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3.3 Theorem. Let ¢ € N, let C C szle(N) be a weak IP* set, and let p be an
idempotent in Zy. Then C € p.

Proof. As in the proof of Theorem 1.6 one shows that given any A € p there exist
disjoint sequences (Hi )02, (Hon)oeqs -5 (Hepn)oey in Pr(N), such that

FU(((Hin,Hon,- -, Hon))pey) CTA.

Consequently, one cannot have Xf:ﬂ?f (N\C € p. O

One can define a strong IP set in Xf:ﬂ?f(N) by requiring that this set contain
FU(((Hin,Hon,---,Heopn))oeq where each (H; )02 is a disjoint sequence. One can
then show in a fashion similar to the proof of Corollary 1.7 that any weak IP* set meets
any strong IP set along a strong IP set.

Next we modify Lemma 2.5.

3.4 Lemma. Let ¢ € N and for each i € {1,2,...,¢} and each n € N, let Y;,, = {n}.

Let
M={peI;: foreach A€ p and each m,k € N

there exist for each i € {1,2,...,¢} a weak product subsystem
(Hin)piy of (Yin)nly such that Xy FU((Hin)iy) © A} -
Then M is a compact subsemigroup of [3( szlN).

Proof. Let £ be as in Lemma 2.5. Then M = £ NZ,. Since both £ and Z, are
semigroups, it suffices to show that M N L # (.

For each n € N, let A,, = {(H1,Ha,...,Hy) € Xf:ﬂ?f(N) : (Uf:1 H;)n{1,2,
...,n} =0} Let B ={C C Xf:ﬂ?f(N) : for each m,k € N and each choice of a
weak product subsystem (H; )", of (Y; )02, szlFU((Hm%m:l) NC # 0}. Now
if p € ﬁ(Xf:ﬂ?f(N)) and {Ay : k € N} UB C p, then p € L NZ, (since, given any
A€ p, Xf:ﬂ?f(N)\A ¢ B). Thus it suffices to show that {Ay : £ € N} U B has the
finite intersection property.

To see this, suppose instead we have some k£ € N and some Cy,C,,...,C,. € B

such that Ay N(Y,_, C; = B. Then (Xi_,Pr(N\Ax) UUI_, (X1, Pr(N)\C;) so by
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m

Theorem 2.3, some one of these sets contains szlFU(<Hi,n>n:1) for some choice of

weak product subsystems (H; )/, of (Y;,,)>° ., which is impossible. O

3.5 Theorem. Let ¢ € N, let C C Xf:ﬂ?f(N) be a weak IP* set, and let m €
N. Then for each i € {1,2,... 4} there is a disjoint sequence (H;,)n—, such that
xf:lFU(<Hi,n>;n:1) cC.

Proof. Let M be as in Lemma 3.4. Then M is a compact subsemigroup of Z, so pick an
idempotent p € M. By Theorem 3.3 C' € p so by the definition of M we have for each
i€{1,2,...,¢} some disjoint sequence (H; ), such that szlFU«Hi,n),T:l) CC.

U

Finally we show how Theorem 3.5 suffices to yield Theorem 2.6 for any semigroups.

(We reprint its formulation for the convenience of the reader.)

2.6 Theorem. Let £ € N and for each i € {1,2,...,0}, let S; be a commutative semi-
group and let (Yin)oe, be a sequence in S;. Let C be an IP* set in szlSi and let
m € N. Then for each i € {1,2,...,£} there is a weak product subsystem (x; n)m—q of
(Yin)o2 ) such that szlFP(<ﬂU¢,n>nm:1) ccC.

Proof. Let
¢
D ={(Hi,Hs,...,Hp) € X,_1Pr(N) : Iecnr, y1,6,Heca, v2.t5--- s Hicu, yer) € C}.

Then it is easy to see that D is a weak IP* set. So pick for each i € {1,2,...,¢} a
disjoint sequence (H; ,)n'_; as guaranteed by Theorem 3.5. For each n € {1,2,...,m}

and each i € {1,2,..., 0}, let x;, = yep, ,, yi. Then Xf:1FP(<$i,n>Zl:1) ccC. O
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