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Algebra in the Stone-Čech Compactification
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by
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Let me begin by expressing my sincere gratitude to the Japanese Association of
Mathematical Sciences for inviting me to present this lecture and for giving me the
JAMS International Prize for 2003 . I am deeply honored.

This lecture is not a survey, but simply a discussion of some topics that I find
interesting. For the most recent surveys of this subject area in which I have participated
see [10] and [12] and, for a wealth of detail, see the book [11].

1. Some history.

Please forgive me for starting with a rather lengthy recital of personal history.
(An advantage of a printed lecture is that it is easy for those in the audience who are
bored to press an individualized fast forward button.) I was raised as a topologist and
significant portions of my dissertation involved the remainder N∗ = βN\N of the Stone-
Čech compactification of the positive integers. In general, the points of the Stone-Čech
compactification of a discrete space D can be taken to be the ultrafilters on D, with
a point x of D identified with the principal ultrafilter {A ⊆ D : x ∈ A}. Because
ultrafilters are the points of βD we customarily denote them by lower case letters.

An ultrafilter on a set D is a subset of P(D) which is maximal with respect to the
finite intersection property – alternatively, it is a maximal filter on D. Ultrafilters can
also be viewed as {0, 1}-valued measures on P(D). Such a measure characterizes every
subset of D as either “large” or “small”. Given an ultrafilter p as we have defined it
and that same ultrafilter viewed as a measure µ and given a set A ⊆ D, the statements
A ∈ p and µ(A) = 1 are synonymous.

1The author acknowledges support received from the National Science Foundation (USA) via
grant DMS 0243586.
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Sometime around 1971, Fred Galvin asked Paul Erdős whether there were any
almost translation invariant ultrafilters on N. That is, did there exist an ultrafilter p

on N such that, whenever A ∈ p, {x ∈ N : −x + A ∈ p} ∈ p, where −x + A = {y ∈ N :
x + y ∈ A}? The terminology can best be understood by viewing the ultrafilter as a
measure. The measure µ is almost translation invariant if and only if, given any large
set A, the translation −x + A is µ-almost always large.

Soon thereafter Erdős encountered W. Wistar Comfort, an author of The Theory of
Ultrafilters [6], and asked him whether almost translation invariant ultrafilters existed.
Comfort, who had been my dissertation advisor, in turn relayed the question to me. I
originally put the question on the shelf. But, hearing that Erdős would be visiting the
Claremont Colleges (while I was employed at Cal State L.A.), I started thinking a little
about the problem so I would have something to talk to him about. When I did see
him I found out that the question originated with Galvin who was then at UCLA.

Unfortunately (or perhaps fortunately – I’ll explain that in a minute) somewhere
in the relays above, the definition of an almost translation invariant ultrafilter mutated
slightly. That is, it changed to “whenever A ∈ p, {x ∈ N : x + A ∈ p} ∈ p”. That
is, as opposed to the original question about the existence of downward almost trans-
lation invariant ultrafilters, the question became one of the existence of upward almost
translation invariant ultrafilters.

I was able to show quite easily that no such ultrafilter exists. (And this was the
reason for the “perhaps fortunately” remark above; if I had addressed the original, much
more difficult question, from the start, I might well have simply given up. As it was, by
the time I found out about the original question I was hooked.) To see that there is no
upward almost translation invariant ultrafilter, suppose that p is such an ultrafilter and
for i ∈ {1, 2} let Ai = {x ∈ N : the rightmost nonzero digit in the ternary expansion of
x is i}. Then one of these Ai’s is a member of p. So Ai∩{x ∈ N : x+Ai ∈ p} ∈ p. Also,
either there is some k ∈ ω = N∪{0} such that the set 3ki+3k+1ω of numbers whose least
significant digit is in position k is a member of p or for every k ∈ ω, {3li + 3l+1a : l > k

and a ∈ ω} is in p. In the first case pick x = 3ki+3k+1a ∈ Ai∩{x ∈ N : x+Ai ∈ p}, let
B = Ai∩(x+Ai). Then B ∈ p so B∩{y ∈ N : y+B ∈ p} ∈ p. So pick y = 3ki+3k+1b ∈
B∩{y ∈ N : y+B ∈ p} and pick z = 3ki+3k+1c ∈ B∩(y+B). Then z−y ∈ B ⊆ x+Ai

while z−y−x /∈ Ai. In the second case pick x = 3ki+3k+1a ∈ Ai∩{x ∈ N : x+Ai ∈ p}
and pick y = 3l + 3l+1b ∈ Ai ∩ (x + Ai) with l > k. Then y − x /∈ Ai.

I was quite excited with this proof, and phoned Galvin, who congratulated me and
informed me that I had answered the wrong question. Somewhat deflated, I asked him
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why he wanted to know about the existence of (downward) almost translation invariant
ultrafilters. He informed me that if such things existed, they would provide a simple
proof of a conjecture of Ronald Graham and Bruce Rothschild. This was that whenever
r ∈ N and N =

⋃r
i=1 Ai, there must exist some i ∈ {1, 2, . . . , r} and some sequence

〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ⊆ Ai, where FS(〈xn〉∞n=1) = {
∑

n∈F xn : F is a finite
nonempty subset of N}. Notice that FS(〈xn〉∞n=1) includes terms like x1 +x3 +x12, but
not x2 + x2.

Galvin’s simple proof ran as follows. Let p be an almost translation invariant
ultrafilter and let N =

⋃r
i=1 Ai. Then some Ai ∈ p. Let B1 = Ai and pick x1 ∈ B1

such that −x1 + B1 ∈ p. Let B2 = B1 ∩ (−x1 + B1). Inductively, given Bn, choose
xn ∈ Bn such that −xn + Bn ∈ p and let Bn+1 = Bn ∩ (−xn + Bn). One then easily
shows by induction on |F | that if k = minF , then

∑
n∈F xn ∈ Bk. Less formally,

let us see for example why x2 + x7 + x8 ∈ Ai. One has x8 ∈ B8 ⊆ (−x7 + B7) so
x7+x8 ∈ B7 ⊆ B6 ⊆ . . . ⊆ B3 ⊆ (−x2+B2) and therefore x2+x7+x8 ∈ B2 ⊆ B1 = Ai.

With some significant effort, I succeeded in showing that if one assumes the contin-
uum hypothesis, then the Graham-Rothschild conjecture implied the existence of almost
translation invariant ultrafilters. And, with a great deal more effort I established (with
an elementary but very complicated proof) that the Graham-Rothschild conjecture is
indeed valid. (I shall refer to that result henceforth as the Finite Sums Theorem.) If
the reader has a graduate student that she wants to punish, she should make him read
and understand that original proof in [9].

At any rate, the situation at the end of 1972 was that Galvin’s almost translation
invariant ultrafilters were figments of the continuum hypothesis. Galvin continued to
want to know if they really existed, that is, whether their existence could be established
in ZFC. In 1975 he encountered Steven Glazer and asked him whether such ultrafilters
could be shown to exist. Glazer immediately answered “yes”. Galvin tried to explain
that he must not understand the question, because the answer couldn’t be that easy. It
turned out that it was!

Glazer knew three things that were relevant. The first of these was that any com-
pact right topological semigroup has idempotents. This fact is due to Robert Ellis [7,
Corollary 2.10]. (A semigroup (S, ·) which is also a topological space is right topological
if and only if for every x ∈ S, the operation ρx : S → S defined by ρx(y) = y · x is
continuous.) The second relevant fact was that βN has a natural operation extending
addition on N which makes (βN,+) a right topological semigroup.

A fair number of mathematicians knew both of these facts. More generally, given
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any discrete semigroup (S, ·) the operation can be extended to the Stone-Čech compact-
ification βS so that (βS, ·) is a right topological semigroup with the additional property
that λx is continuous for each x ∈ S, where λx(y) = x · y. The third relevant fact was
that βN is naturally viewed as a space of ultrafilters, and that given p and q in βN and
A ⊆ N, A ∈ p + q if and only if {x ∈ N : −x + A ∈ q} ∈ p. Knowing these things,
the answer was indeed immediate. That is, an almost translation invariant ultrafilter is
exactly an idempotent.

Since the proof of the existence of idempotents in a compact right topological
semigroup is quite short, one thereby had a short proof of the Finite Sums Theorem.
When Galvin wrote to me with this proof in the fall of 1975, I was very excited. At that
time, I fell in love with the algebraic structure of the Stone-Čech compactification of a
discrete semigroup, and have spent the rest of my mathematical career investigating this
structure and its applications to Ramsey Theory – that part of combinatorics which finds
regular structures in one cell of a partition of some given set, the Finite Sums Theorem
being one such result.

In the remainder of this lecture, I shall discuss some of the applications of the
algebra of βS to Ramsey Theory. In Section 2 I will discuss results whose first (and
often only) proof was obtained using this algebraic structure as well as results whose
proofs are vastly simplified by use of this structure. In the third and final section I shall
discuss central sets. These are sets with very rich combinatorial structure that have not
gotten as wide attention as I believe they deserve.

Let me conclude this historical section with a more recent tale and some advice
that I have often given to young mathematicians. This is advice that has done wonders
for me over the years. That is to find someone who is smarter than you are and get
them to put your name on their papers.

Principal among such people is Dona Strauss, with whom I wrote [11] and have
collaborated on numerous other papers. While we were in the process of writing that
book, Dona came up with a new, and even shorter, proof of the Finite Sums Theorem.
Given an idempotent p ∈ βN and A ∈ p, she defined A? = {x ∈ A : −x + A ∈ p}. She
then wrote that, for any x ∈ A?, −x + A? ∈ p. I tried to explain to her that A? is
significantly smaller than A and all one knew was that −x + A ∈ p. It turned out that
she was right. (Given x ∈ A?, let B = −x+A. Then B? ∈ p and B? ⊆ −x+A?.) Using
this fact one proves the Finite Sums Theorem by taking an idempotent p and some
A ∈ p and inductively choosing 〈xn〉∞n=1 so that for each m ∈ N, FS(〈xn〉mn=1) ⊆ A?.
Given 〈xn〉mn=1, choose xm+1 ∈ A? ∩

⋂
{−y + A? : y ∈ FS(〈xn〉mn=1)}.
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2. Anything you can do, we can do better.

Shortly after learning of the Galvin-Glazer proof of the Finite Sums Theorem, I
obtained a new result quite easily. It was known to be an easy consequence of the
Finite Sums Theorem itself that if any semigroup (S, ·) is partitioned into finitely many
classes, then one of these classes contains FP (〈xn〉∞n=1) for some sequence 〈xn〉∞n=1,
where FP (〈xn〉∞n=1) = {

∏
n∈F xn : F is a finite nonempty subset of N} and the products

are taken in increasing order of indices. In particular, if r ∈ N and N =
⋃r

i=1 Ai, then
there exist i and j and sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 such that FS(〈xn〉∞n=1) ⊆ Ai

and FP (〈yn〉∞n=1) ⊆ Aj . But one did not know whether one could choose i = j.

It was easy to show that c`βN{p ∈ βN : p + p = p} is a subsemigroup of (βN, ·).
Since q ∈ c`βN{p ∈ βN : p + p = p} if and only if each A ∈ q contains FS(〈xn〉∞n=1)
for some sequence 〈xn〉∞n=1, one thus had a proof that one can indeed choose i = j.
(We know, however, that one cannot also choose 〈xn〉∞n=1 = 〈yn〉∞n=1.) It was more
than 15 years later that an elementary proof of this fact was found. This was done in
collaboration with Vitaly Bergelson [3], another of those mathematicians that I referred
to at the end of the first section. If the reader wants more details of results mentioned
here that were obtained before 1998, they can be located by way of the book [11].

Consider the Finite Sums Theorem (whose original proof was elementary and com-
binatorial in nature). From this theorem itself comes the following superficial strength-
ening. (This theorem can be stated more precisely using the notion of a tree. See for
example [11].) When we say that a set is “finitely colored” we mean that there is a
function from that set to a finite set.

Theorem. Let N be finitely colored. There is one color and a sequence 〈xn〉∞n=1 with
FS(〈xn〉∞n=1) contained in the specified color class. Moreover, having chosen 〈xn〉mn=1,
one has infinitely many choices for xm+1.

This is a trivial consequence of the Finite Sums Theorem, because if FS(〈xn〉∞n=1)
is monochrome, then xm could be replaced by any xk for k > m. However, the following
is a genuine strengthening which does not have any known elementary proofs.

Theorem. Let N be finitely colored. There is one color and a sequence 〈xn〉∞n=1 with
FS(〈xn〉∞n=1) contained in the specified color class. Moreover, having chosen 〈xn〉mn=1,
there is a set with positive upper density, any member of which can be chosen as xm+1.

This is an easy consequence of either of the algebraic proofs given in the first section.
The set ∆ = {p ∈ βN : every member of p has positive upper density} is a compact
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subsemigroup of βN (in fact a left ideal of βN). So there exist idempotents in ∆ and
starting with any such idempotent yields the result above.

Two old Ramsey Theoretic results are van der Waerden’s Theorem and the Hales-
Jewett Theorem. The first of these says that whenever N is partitioned into finitely
many cells, one cell contains arbitrarily long arithmetic progressions. To state the Hales-
Jewett Theorem, we need to introduce some terminology. Let A be a finite alphabet,
let S0 be the set of words over A, and let S1 be the set of words over A ∪ {v} in
which v occurs, where v is a “variable” not in A. Given a “variable word” w ∈ S1 and
given a ∈ A, w〈a〉 is the result of replacing each occurrence of v by A. For example, if
A = {a, b, c} and w = avabbcva then w〈b〉 = ababbcba. The Hales-Jewett theorem says
that if r ∈ N and S0 =

⋃r
i=1 Ci, then there exist i ∈ {1, 2, . . . , r} and w ∈ S1 such that

{w〈a〉 : a ∈ A} ⊆ Ci.

Hillel Furstenberg and Yitzhak Katznelson in the late 1980’s came up with a proof
of van der Waerden’s Theorem using the algebraic structure of an enveloping semigroup.
Bergelson noticed that their proof could be simplified by using the algebraic structure of
βN and the four of us published the proof in that context [2]. Andreas Blass noticed that
essentially the same proof established the Hales-Jewett Theorem, and he, Bergelson, and
I published several extensions of that theorem [1].

A much more recent development is the algebraic proof of the Graham-Rothschild
Parameter Sets Theorem. In order to discuss this result, I need to introduce some more
terminology.

Throughout the rest of this section A will denote a finite nonempty alphabet. We
choose a set V = {vn : n ∈ ω} (of variables) such that A ∩ V = ∅ and define W to be
the semigroup of words over the alphabet A ∪ V , with concatenation as the semigroup
operation. (Formally a word w is a function from an initial segment {0, 1, . . . , k− 1} of
ω to the alphabet and the length `(w) of w is k. We shall occasionally need to resort to
this formal meaning, so that if i ∈ {0, 1, . . . , `(w) − 1}, then w(i) denotes the (i + 1)st

letter of w.)

For each n ∈ N, we define Wn to be the set of words over the alphabet A ∪
{v0, v1, . . . , vn−1} and we define W0 to be the set of words over A. We note that each
Wn is a subsemigroup of W .

Let n ∈ N, let k ∈ ω with k ≤ n, and let ∅ 6= B ⊆ A. Then [B]
(
n
k

)
is the set of all

words w over the alphabet B ∪ {v0, v1, . . . , vk−1} of length n such that

(1) for each i ∈ {0, 1, . . . , k − 1}, if any, vi occurs in w and

(2) for each i ∈ {0, 1, . . . , k−2}, if any, the first occurrence of vi in w precedes the first
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occurrence of vi+1.

Let k ∈ N. Then the set of k-variable words is Sk =
⋃∞

n=k[A]
(
n
k

)
. Also S0 = W0.

Given w ∈ Sn and u ∈ W with `(u) = n, we define w〈u〉 to be the word with length
`(w) such that for i ∈ {0, 1, . . . , `(w)− 1}

w〈u〉(i) =
{

w(i) if w(i) ∈ A
u(j) if w(i) = vj .

That is, w〈u〉 is the result of substituting u(j) for each occurrence of vj in w.

The following theorem is commonly known as the Graham-Rothschild Theorem.

Theorem (Graham-Rothschild). Let m,n ∈ ω with m < n, and let Sm be finitely
colored. There exists w ∈ Sn such that

{
w〈u〉 : u ∈ [A]

(
n
m

)}
is monochrome.

To discuss our algebraic extension of the Graham-Rothschild Theorem, as well as
set the stage for our discussion of central sets in the next section, we need to introduce
the notion of minimal idempotents. In any semigroup with idempotents, there is a
partial ordering of the idempotents defined by p ≤ q if and only if p = pq = qp. In any
compact right topological semigroup T , there is a smallest two sided ideal K(T ). This
ideal has a rich structure which we will not discuss here. The important fact for us now
is that an idempotent is minimal with respect to the ordering ≤ defined above if and
only is it is a member of the smallest ideal.

Now, given n ∈ N and u ∈ [A]
(

n
n−1

)
, define hu : Sn → Sn−1 by hu(w) = w〈u〉.

Denote by h̃u the continuous extension of hu which takes βSn to βSn−1. The following
result was proved in [5].

Theorem. Let p be a minimal idempotent in βS0. There is a sequence 〈pn〉∞n=0 such
that

(1) p0 = p;

(2) for each n ∈ N, pn is a minimal idempotent of βSn;

(3) for each n ∈ N, pn ≤ pn−1;

(4) for each n ∈ N and each u ∈ [A]
(

n
n−1

)
, h̃u(pn) = pn−1.

The following extension of the Graham-Rothschild Theorem is an easy corollary.
(It is a not very well known fact that this extension is also a consequence of results in [4],
results that were also obtained by using algebra in the Stone-Čech compactification.)

Corollary. Assume that for each n ∈ ω, Sn has been finitely colored. Then, there exists
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a sequence 〈wn〉n<ω with each wn ∈ Sn such that for every m ∈ ω,

Sm ∩
{∏

n∈F wn〈un〉 : F ∈ Pf (ω) and for all n ∈ F , un ∈
⋃min F

i=0 [A]
(
n
i

)}
is monochrome. (That is, the color of

∏
n∈F wn〈un〉 is determined solely by the number

of variables in
∏

n∈F wn〈un〉.)

3. The centrality of central sets.

In [8] Furstenberg introduced the notion of central subsets of N. His definition was
in terms of the notions of uniform recurrence and proximality from topological dynamics.
He showed that whenever N is finitely colored, one color class must be central (so that
any results about central sets are automatically results about some color class of any
finite coloring). He then proved the following theorem.

Theorem (Central Sets Theorem for N). Let C be a central subset of N, let k ∈
N, and for each t ∈ {1, 2, . . . , k}, let 〈yt,n〉∞n=1 be a sequence in N. There exist a
sequence 〈an〉∞n=1 in N and a sequence 〈Hn〉∞n=1 of finite nonempty subsets of N such
that max Hn < minHn+1 for each n ∈ N and such that for each f : N → {1, 2, . . . , k}
FS(〈an +

∑
t∈Hn

yf(n),t〉∞n=1) ⊆ C.

This theorem may seem a bit obscure at first glance. But it has many significant
consequences. For example, any central subset of N contains arbitrarily long arithmetic
progressions (and so the Central Sets Theorem implies van der Waerden’s Theorem).
In fact, one can choose the increment out of the set of finite sums of any prespecified
sequence. (To see this, let 〈xn〉∞n=1 and k ∈ N be given. For t ∈ {1, 2, . . . , k} and n ∈ N,
let yt,n = txn. Pick 〈an〉∞n=1 and 〈Hn〉∞n=1 as guaranteed by the Central Sets Theorem.
Then {a1+

∑
n∈H1

y1,n, a1+
∑

n∈H1
y2,n, . . . , a1+

∑
n∈H1

yk,n} is a length k arithmetic
progression with increment

∑
n∈H1

xn.)

More generally, if m,n ∈ N and B is any m × n kernel partition regular matrix
(meaning that whenever N is finitely colored there is a monochrome ~x ∈ Nn such that
B~x = ~0), then for any central set C in N there will exist ~x ∈ Cn such that B~x = ~0.

Bergelson then had the idea that perhaps we could prove the same theorem for
members of minimal idempotents in βN. It turned out that he was correct. Moreover,
with the help of Benjamin Weiss we were able to show that a subset of N is central
if and only if it is a member of a minimal idempotent. Even though I had a hand in
this proof, I have not the foggiest notion of how the idea came to Bergelson. It is not
at all obvious that these notions would be the same. It is not even obvious that the
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notion of central as defined by Furstenberg is closed under passage to supersets, while
it is trivial that any superset of a member of a minimal idempotent is a member of that
same idempotent.

Moreover, the algebraic characterization makes sense in any semigroup. And a
nearly verbatim version of the Central Sets Theorem is valid in any commutative semi-
group. (The Central Sets Theorem for noncommutative semigroups is much more com-
plicated to state.)

In Section 2 we saw that either of the algebraic proofs given in the first section
showed that in constructing a sequence with monochrome finite sums, one could make
the choice of each term from a set with positive upper density. We have a more impres-
sive result in terms of central sets.

Theorem. Let N be finitely colored. There is one color and a sequence 〈xn〉∞n=1 with
FS(〈xn〉∞n=1) contained in the specified color class. Moreover, having chosen 〈xn〉mn=1,
one can choose xm+1 as any member of some specified central set.

This is also an easy consequence of either of the algebraic proofs we described in the
first section. Just start with a minimal idempotent. Neither of the extensions that we
have mentioned are consequences of the Finite Sums Theorem, because one can easily
prevent FS(〈xn〉∞n=1) from being central or having positive upper density. For example,
one can color the interval {2n, 2n + 1, . . . , 2n+1− 1} one color according to whether n is
even or odd. (Then if FS(〈xn〉∞n=1) is monochrome, the sequence 〈xn〉∞n=1 can choose at
most one member from any interval {2m, 2m+1, . . . , 2m+1−1} and thus will not contain
a length three arithmetic progression, so {xn : n ∈ N} certainly can not be central and
clearly does not have positive upper density.)

I believe that it is very unlikely that an elementary proof of the above theorem will
be obtained anytime soon, meaning within the lifetime of my children – either biological
or mathematical.

We know of only one naturally stated coloring theorem about N that is not satisfied
by every central subset of N. This is the fact that for any finite coloring, one color class
must have positive upper density. The set βN \ (N∪∆) of nonprincipal ultrafilters that
have a member with zero density is a left ideal of βN so contains a minimal idempotent.

Let me conclude by describing the only other Ramsey Theoretic result in any
semigroup that I know of for which central sets are not good enough. That is the
second simplest instance of the Graham-Rothschild Theorem. (The simplest instance is
the Hales-Jewett Theorem, and any central subset of S0 satisfies the conclusion of the
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Hales-Jewett Theorem. (The following is taken from [5].)

Theorem. There is a central subset M of S1 such that there is no w ∈ S2 with the
property that w〈u〉 ∈ M for every u ∈ [A]

(
2
1

)
.

Proof. Recall that we are assuming that A 6= ∅, so pick a ∈ A. For each k ∈ N, let
Lk = {w ∈ S1 : |{i : w(i) = v0}| ≥ |{i : w(i) = a}|+ k} and let L =

⋂∞
k=1 Lk. Trivially

L 6= ∅. Given any w ∈ S1, if m is the length of w then for each z ∈ Lm+k, one has
wz ∈ Lk. Consequently L is a left ideal of βS1. Pick a minimal idempotent p ∈ L. Let
M = L1. Then M ∈ p so M is central.

Now let w ∈ S2 and suppose that w〈u〉 ∈ M for every u ∈ [A]
(
2
1

)
. Let u1 = av0

and let u2 = v0a. Let
b = |{i : w(i) = a}| ,

c = |{i : w(i) = v0}| , and

d = |{i : w(i) = v1}| .
Then d = |{i : w〈u1〉(i) = v0}| ≥ |{i : w〈u1〉(i) = a}| + 1 = b + c + 1 and c = |{i :
w〈u2〉(i) = v0}| ≥ |{i : w〈u2〉(i) = a}| + 1 = b + d + 1 and so d ≥ 2b + d + 2, a
contradiction.

My explanation of the above phenomenon is that it is an indication of exactly how
strong the Graham-Rothschild Theorem is.
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