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ABSTRACT. We present an elementary introduction to the algebraic structure of the Stone-
Cech compactification 35 of a discrete semigroup S, and survey recent results about this
algebraic structure and its applications to the branch of combinatorial number theory known
as Ramsey Theory.

1. INTRODUCTION

Given a semigroup (S, -), if one views S as a discrete topological space, one may extend
the operation to the Stone-Cech compactification 35 of S in such a way as to make (8BS, ")
into a right topological semigroup with S contained in its topological center. That is, given
any p € (35, the function p, : 3S — (S defined by p,(q) = ¢ - p is continuous and, given
any z € S, the function A, : 3S — A4S defined by A;(¢) = z - ¢ is continuous. (The fact
that this can be done was implicitly established by Day [21] in 1957 using methods of Arens
[1]. The first explicit statement seems to have been given by Civin and Yood [19].)

As a compact right topological semigroup, (35S, -) enjoys a significant amount of known
structure. (See [16] for a detailed description of much that is known.) But many fascinating
questions remain. For example, starting with possibly the simplest, and certainly the most
familiar, infinite semigroup (N, +) it is a famous, and still unsolved, problem to determine
whether there is any infinte increasing chain of left ideals in (SN, +). (See [44].) Further,
until very recently, it was unknown whether (8N, +) contains any nontrivial finite subgroups.
(See below for the answer.)

My own introduction to this area came by way of its applications. In 1975 I had recently
published a very complicated combinatorial proof of the Finite Sum Theorem.

1.1 Theorem (Finite Sum Theorem). Let r € N and let N = J;_, A;. Then there
exist some i € {1,2,... ,r} and some sequence (z,)°> such that for every finite nonempty
subset F' of N, X, cp x,, € A;.

Then a letter arrived from Fred Galvin, presenting a proof of the Finite Sum Theorem
which he and Steven Glazer had devised which was very simple and elegant and used a
little of the algebraic structure of (N, +). (See Section 5 for a presentation of this proof
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as well as an even simpler proof of very recent origin.) Beginning with the Galvin-Glazer
proof of the Finite Sum Theorem, the algebraic structure of 4S has seen many significant
applications to the branch of combinatorial number theory known as Ramsey Theory.

I have written four previous surveys of these topics [35,36,37,38], the most recent of
which included only algebraic results. (The reader should be cautioned that in all of these
papers I took S to be left topological rather than right topological. T have changed sides
to conform to majority usage, at least among my collaborators.)

In this paper we will begin with an elementary construction of 4S and a derivation of its
algebraic structure, as well as an elementary introduction to the combinatorial applications
of this structure. The only background expected of the reader is that provided by the usual
first year graduate courses in topology and algebra.

We take S to be the set of ultrafilters on S. Section 2 consists of an introduction to
ultrafilters and an elementary construction of the Stone-Cech compactification of a discrete
space. In Section 3 we present several alternative characterizations of ultrafilters, based on
the delightful article [17]. In Section 4 we show how to extend the operation of S to A4S
making it a right topological semigroup and present some of the basic facts about compact
right topological semigroups. In Section 5 we present some of the easier applications of the
algebra of 3S to combinatorics.

We will then survey results on the algebraic structure of 5S and its dynamical and
combinatorial applications that have not been included in our earlier surveys.

Very recently, E. Zelenjuk [67] has answered what had been the outstanding unsolved
problem regarding the algebra of (8N, +), namely whether this semigroup contained any
nontrivial finite groups. Zelenjuk in fact established that if G is any countable abelian group
and G does not itself contain any nontrivial finite subgroups, then neither does SG. Since
PN C BZ, this result answers the question about SN as well. We believe that this result
is so significant that we present a proof of Zelenjuk’s Theorem in its entirety as Section 6.
In fact, we present a strengthening of Zelenjuk’s conclusion which was observed by Dona
Strauss. This strengthening allows one to omit the assumption of commutativity. (All
material necessary to follow this version of the proof will have been presented in the earlier
sections.)

For the rest of the paper we will follow the usual practice in survey articles, and cite
most of the results that we present without proof. Exceptions will include results whose
proofs are easily presented in their entirety as well as any results that are appearing here
for the first time.

In Sections 7 and 8 we present algebraic results about A4S that have been obtained
since the publication of [38]. The remaining sections include dynamical and combinatorial
applications (topics not covered in [38]) that have been obtained since the publication of
[37]. It is not always clear from the statements of the combinatorial results how they involve
A4S, but we do restrict ourselves to results in Ramsey Theory that involve 5.

Section 7 consists of results involving natural orderings of idempotents in 4S5 and Section
8 deals with results on ideals and cancellation in 3S. Section 9 presents results involving
connections with topology and topological dynamics. In Section 10 we present some Ramsey
Theoretic applications and results involving equations in fN. In Section 11 we deal with
several results about partition regularity of matrices. In Section 12 we discuss the powerful
notion of central sets.

Our set theoretic notation is more or less standard. We mention in particular that, given
a function f we write f[A] = {f(z): 2z € A}. Given a set X we write Py(X)={F : Fisa
finite nonempty subset of X }. We write N for the set of positive integers and w = N U {0}
for the set of nonnegative integers. (Also, w is the cardinal number of countable infinity.)
We will assume that all hypothesized topological spaces are Hausdorff.
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2. AN INTRODUCTION TO ULTRAFILTERS

2.1 Definition. Let D be a set. Then U is a filter on D if and only if
(a) U CP(D),
(b) 0 ¢u,
(c) DelU,
(d)if A,B €U, then AN B €U, and
(e)if AeU and AC BC D, then Beld.

Thus a filter on D is a nonempty set of nonempty subsets of D which is closed under
finite intersections and supersets. A clasic example of a filter is the set of neighborhoods of
a point in a topological space.

2.2 Definition. Let D be a set. An ultrafilter p on D is a maximal filter on D.

Even though an ultrafilter on D is a set of subsets of D, we usually denote ultrafilters
by lower case letters because they are the points of the Stone-Cech compactification of D.

Recall that a set A of sets has the finite intersection property if and only if whenever F
is a finite nonempty subset of A, (| F # 0.

2.3 Theorem. Let D be a set and let p C P(D). If p is maximal with respect to the finite
intersection property, then p is an ultrafilter on D.

Proof. Assume that p is maximal with respect to the finite intersection property among
subsets of P(D). Then conditions (a) and (b) of Definition 2.1 hold immediately. Since
p U {D} has the finite intersection property and p C p U {D}, one has p = pU {D}. That
is, D € p. Given A, B € p, pU {A N B} has the finite intersection property so AN B € p.
Given A and B with A € pand A C B C D, pU{B} has the finite intersection property so
B € p. Thus p is a filter.

Suppose now that p is not a maximal filter and pick a filter ¢ such that p C U. Pick
A€ U\p. Then p C pU{A} so pU {A} does not have the finite intersection property.
Since we have already seen that p is a filter, this says that there is some B € p such that
BN A=0. But since B, A € U, this is a contradiction. O

The following simple result is of fundamental importance.

2.4 Theorem. Let D be aset and let A be a subset of P(D) which has the finite intersection
property. Then there is an ultrafilter p on D such that A C p.

Proof. LetT' = {B C P(D) : A C B and B has the finite intersection property}. Then A € T
so I' # 0. Given a chain C in ' one has immediately that A C |JC. Given F € Ps(|JC)
there is some B € C with F C B so (|F # 0. Thus by Zorn’s Lemma we may pick a
maximal member p of T'. Trivially p is not only maximal in T, but in fact p is maximal with
respect to the finite intersection property. By Theorem 2.3, p is an ultrafilter on D. O

We observe that, given any ¢ € D, {A C D : z € A} is an ultrafilter on D.
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2.5 Definition. Let D be a set and let z € D. Then e(z) = {A C D : z € A} and e(z)
is the principal ultrafilter generated by x. An ultrafilter p on D is principal if and only if
p = e(z) for some z € D. It is nonprincipal if and only if it is not principal.

It is customary to identify a principal ultrafilter e(z) with the point z, and we will adopt
that practice ourselves very shortly (as we implicitly did in the introduction). However, we
will keep our virtue for a while and maintain the distinction between them.

2.6 Definition. Let D be a discrete topological space.

(a) D = {p: p is an ultrafilter on D}.

(b) Given AC D, A={pe D : A€ p}.

We caution the reader that A is not defined to be the closure of A in any topological
space. (It will turn out later, as a consequence of Lemma 2.10, that once we start pretending
that D C 3D we will have A = cfsp A.)

The proof of the following lemma is an easy exercise.

2.7 Lemma. Let D be a discrete space.
(a) For all ABC D, ANB=ANB.
(b) For all A/BC D, AUB = AUB.
(c) For all AC D, D\A = BD\A.
(d) D = 3D.
2.8 Lemma. Let D be a discrete space. Then {A : A C D} is a basis for (the open sets
of) a Hausdorff topology on D.
Proof. Let B={A: AC D}. By Lemma 2.7(a), B is a basis for a topology on D. To see

that this topology is Hausdorff, let p and ¢ be distinct members of D. Pick A € p\¢q. Then
D\A€cqg\psope Aandge D\Aand AND\A=0. O

~ From this point on we take 3D to be the topological space whose topology has the basis
{A: A C D}. Notice that by Lemma 2.7(c) one has that each A is clopen (= “open and
closed”) and that {A : A C D} is also a basis for the closed sets of D.

2.9 Lemma. Let D be a discrete space. Then e : D — (D is an embedding and e[D] is
an open subset of fD.

Proof. Trivially e is one-to-one and any function from a discrete space is continuous. Given
z e D, {z} ={e(x)} so {e(z)} is open. O
The following lemma is the basis for the assertion that we can pretend that A = cfgp A.

2.10 Lemma. Let D be a discrete space and let A C D. Then A = clgp e[A].

Proof. Since A = ﬁD\(m), A is closed. Given z € A, A € e(z) so ¢[A] C A and conse-
quently clgp e[A] C A. For the reverse inclusion, let p € A and let a basic neighborhood
B of p be given. Then AN B €pso ANB # 0. Pick x € AN B. Then e(z) € BNe[A] so
BnNe[A] # 0 as required. O

2.11 Lemma. Let D be a discrete space. Then 3D is compact.

Proof. Let B be a collection of closed subsets of fD with the finite intersection property.
Let A = {A C D : there exists B € B with B C A}. Then A has the finite intersection
property. Pick by Theorem 2.4 some p € D with A C p. To see that p € (B, let B € B
and suppose that p ¢ B. Since B is closed, pick a basic neighborhood A of p such that
ANB=10. Then B C fD\A = D\A so D\A € A, so D\A € p, a contradiction. O

The following Theorem says that 3D is the Stone-Cech compactification of D.
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2.12 Theorem. Let D be a discrete space. Then 8D is a compact Hausdorff space and
e is an embedding of D into fD. Further, given any compact Hausdorff space Y and any
function f: D — Y, there is a continuous function ¢ : 3D — Y such that goe = f.

Proof. The assertions in the second sentence follow from Lemmas 2.8, 2.9, and 2.11.

Let Y be a compact Hausdorff space and let f : D — Y. For each p € 3D let
A, = {ctly f[A] : A € p}. Then for each p € §D, A, has the finite intersection property so
has nonempty intersection so pick g(p) € [.A,. Then we have the following diagram.

/xﬁD
"
D L) Y
We need to show that the diagram commutes and that ¢ is continuous.

For the first assertion, let z € D. Then {z} € e(z) so g(e(z)) € by f[{z}] = cly [{f(z)}]
={f(z)} so goe = f as required.

To see that g is continuous, let p € #D and let U be a neighborhood of g(p) in Y. Since
Y is regular, pick a neighborhood V of g(p) with ¢fyV C U and let A = f=1[V]. We
claim that A € p so suppose instead that D\A € p. Then g(p) € cly f[D\A] and V is a
neighborhood of g(p) so V N f[D\A] # 0, contradicting the fact that A = f~1[V]. Thus A
is a neighborhood of p. We claim that g[A] C U, so let ¢ € A and suppose that g(q) ¢ U.
Then Y\ely V is a neighborhood of g(¢) and g(g) € ey f[A] so (Y\ely V)N f[A] # 0, again
contradicting the fact that A = f~1[V]. O

From this point on we adopt the customary identification of z € D with e(z). That is,
we rely on the context to tell us, when we refer to &, whether we mean the point of D or
the principal ultrafilter generated by that point. This seldom causes confusion, and when
it does in this paper we will mention it.

Having made this identification, we have that D C 8D and Theorem 2.12 now reads as
follows.

2.12 Theorem. Let D be a discrete space. Then 8D is a compact Hausdorff space and
D is a discrete subspace of fD. Further, given any compact Hausdorff space Y and any
function f : D — Y, there is a continuous function g : 3D — Y such that Ip = f.

The following notion will be useful in Section 6.

2.13 Definition. Let D be a discrete space and let ¢ be a filter on D. Then
e={pepD:pCp}.

2.14 Theorem. Let D be a discrete space and let ¢ be a filter on D. Then ¢ is closed.
In fact, given any subset B of 3D, if ¢ = (| B, then ¢ = ¢{(B.

Proof. If p € D\, then there is some A € ¢\p. Then m is a neighborhood of p which
misses ¢ and hence @ is closed.

Since trivially B C ¢ and @ is closed, we have that ¢/B C ». For the reverse inclusion,
let p € p and let A € p. Then D\ A ¢ ¢ so there is some ¢ € B such that D\A ¢ ¢. That
is,ge BNA. O

We introduce now the notion of p-lim which was first used by Frolik in [28]. The notion
is as versatile as the notion of nets, and has two significant advantages: (1) in a compact
space a p-lim always converges and (2) it provides a “uniform” way of taking limits, as
opposed to randomly choosing from among many possible limit points of a net.
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2.15 Definition. Let D be a set, let p be an ultrafilter on D, let (z;);ep be an indexed
family in a topological space X, and let y € X. Then p-lim,.p z, = p-lim(z,),ep = y if
and only if for every neighborhood U of y, {s € D : 2z, € U} € p.

2.16 Theorem. Let D be a set, let p be an ultrafilter on D, and let (z;);cp be an indexed
family in a topological space X.

(a) If X is a Hausdorff space and p-lim{z;)sep exists, then it is unique.

(b) If X is a compact space then p-lim{(z,)sep exists.

Proof. (a) This is an easy exercise.

(b) Suppose that p-lim({z,)s;cp does not exist and for each y € X, pick an open neigh-
borhood Uy of y such that {s € D : 2, € Uy} ¢ p. Then {U, : y € X} is an open cover of
X so pick finite ' C X such that X = {J,¢pUy. Then D = {J,cp{s € D : z, € Uy} s0
pick y € F such that {s € D :z, € U,} € p. This contradiction completes the proof. O

As we shall see in the next section, Theorems 2.16 and 2.17 provide a characterization
of ultrafilters.

2.17 Theorem. Let D be a set, let p be an ultrafilter on D, let X and Y be Hausdorff
topological spaces, let (zs)scp be an indexed family in X, and let f : X — Y. If f is
continuous and p-lim{z;)sep exists, then p-im(f(z;s))sep = f(p-im(zs)sep).

Proof. Let U be a neighborhood of f(p-lim{z,)scp) and pick a neighborhood V of
p-lim{z;)sep such that f[V] C U. Let A = {s € D : 2, € V}. Then A € p and
AC{seD: f(z;) eU}. O

The following fact will also be useful later.

2.18 Theorem. Let D be a discrete space, let X be a compact Hausdorff space, and
let {(z5)sep be an indexed family in X. The function f : fD — X defined by f(p) =
p-lim{z;)sep is continuous.

Proof. Notice that by Theorem 2.16, the equation f(p) = p-lim(z);cp does define a func-
tion. To see that this function is continuous, let p € 3D and let U be a neighborhood
of f(p). Let A= {s € D :xz; € U}. Then A € pso A is a neighborhood of p. And

fiAlcvu. O

3. ALTERNATE CHARACTERIZATIONS OF ULTRAFILTERS

The material in the section is adapted from the paper [17] by A. Blass.

We have defined an ultrafilter on a set D as a set of subsets of D. There are other ways
of viewing an ultrafilter. For example an ultrafilter is commonly viewed as a {0, 1}-valued
measure, so that it tells one which subsets of D are “large”. This notion is quite convenient
to keep in mind. For example, viewed this way one has that p-lim{(z;)s;ep = y if and only if
zs is p-almost always in every neighborhood of y. Another, less widely known, description
is as a quantifier.

We have seen that ultrafilters can be used to construct the Stone-Cech compactification
of a discrete space and to provide a uniform way of taking limits in a compact Hausdorff
space. It turns out that each of these facts can also be used to characterize ultrafilters.

In this section we define five notions and describe why they can be viewed as essentially
equivalent. The equivalence of four of these notions has been well known among the experts.
The notion of an ultrafilter as a quantifier is an invention of Blass. Throughout this section
we will take D to be a fixed infinite set.
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3.1 Definition. UF; = {p: p is an ultrafilter on D}.

Thus if D is viewed as a discrete space, UF; = #D. The notation is intended to represent
“ultrafilters—version 1”.

3.2 Definition. (a) A uniform operator on functions from D to compact spaces is an
operator @ which assigns to each indexed family (z;)sep in a compact Hausdorff space Y,
some point of Y such that, whenever Y and Z are compact Hausdorff spaces, (z;)s;ep s an
indexed family in Y, and f is a continuous function from Y to Z, one has f<0(<l‘s>sep)) =
O((f(s))sep)-

(b) UFy = {O : O is a uniform operator on functions from D to compact spaces}.

For the third characterization, we fix a Stone-Cech compactification (¢, Z) of the discrete
space D. That is

Z is a compact Hausdorff space and ¢ s an embedding of D into Z. PFurther, given any
compact Hausdorff space Y and any function f : D — Y, there is a continuous function
g:7Z —Y such thatgop = f.

Of course one could take (¢, Z) = (e, 3D), but the point is that any choice will do.

3.3 Definition. Fix a Stone-Cech compactification (¢, Z) of the discrete space D. UFg =
Z.

3.4 Definition. UF,; = {u : u is a finitely additive {0, 1}-valued measure on P(D) such
that pu(D) = 1}.

Our final version of “ultrafilter” is as a “quantifier over D”.

A quantifier U over D is an operation which applies to a formula v(s) with a free variable
s ranging over D and produces a new formula (Us)(7(s)) in which s is no longer free. It
is required that, given any interpretation of the free variables other than s in y(s) (if any),

(Vs € D)(7(s)) implies (Us)(y(s)).

3.5 Definition. (a) Let U be a quantifier over D. Then U respects propositional connectives
provided that whenever y(s) and (s) are statements about members s of D,

(1) =(Us)(x(s)) & (Us)(~v(s)) and

(2) Us)(v(s)) A (Us)(1(s)) & Us)(7(s) A(s)).

(b) UF5 = {U : U is a quantifier over D that respects propositional connectives}.

Note that, while we have defined “respects propositional connectives” only in terms of
the connectives = and A, it follows for example that

Us)(v(9)) v Us)(¥(s)) & Us)(v(s) V ¥(5)) -

To show that these notions are equivalent, we define how to get from one to another.

3.6 Definition. (a) Given p € UFy, 71(p) = p-lim.

(b) Given O € UF,, 15(0) = O({¢(8))sen)-

(c) Given z € UF3 and A C D, 13(2)(A) = 1 if and only if z € clp[A].

(d) Given p € UFy, 14(p) is the quantifier over D such that for every statement v(s)
about members s of D, (ra(p)z)(7(s)) if and only if u({s € D : y(s)}) = 1.

(e) Given U € UFs5, m5(U) = {AC D : (Us)(s € A)}.
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3.7 Lemma. (a) n : UF; — UFs.
(b) Ty UF2 — UF3
(C) T3 ! UF3 — UF4
(d) T4 UF4 — UF5
(6) Ts5 :UF5 — UF1

Proof. (a) Theorems 2.16 and 2.17.

(b) ¢ is a function from D to a compact space.

(c) Let z € Z = UF3 and let u = 73(z). Since p[D] is dense in Z, we have u(D) = 1.
Thus we need to show that p is finitely additive. Let A and B be disjoint subsets of D.
If u(A) = u(B) = 0, then z ¢ clp[A] U clp[B] = clp[AU B] so u(AU B) = 0. If say
u[A] = 1, then z € clp[A] C clp[AU B] so u(AU B) = 1 so it suffices to show that it is not
possible to have u(A) = u(B) = 1. Indeed let x4 be the characteriztic function of A and let
g : Z — {0,1} be the continuous function with go ¢ = y4. Then z € clp[A] C g~ [{1}]
so z ¢ cly[B].

(d) Let p € UF4 and let Y = 74(u). To see that U is a quantifier over D, let v(s) be given
and assume that (Vs € D)(y(s)). Then D = {s € D : y(s)}, so u({s € D : v(s)}) = 1,
o) (Us)('y(s)). To see that U respects propositional connectives, let v(s) and ¥(s) be
statements about elements s of D. Then

~(Us)(v(s))

to000
=
>
m
o
2 2

Also

{s €D :y(s) Av()}) = 1

}n{s€ D)) =1
{seD:y(s)=1 A u({s € D: v(a)}) = 1
(Us) (x(5)) A (Us)(4() -

(e) Let # € UF5 and let p = 75(U). Since U is a quantifier over D and (Vs € D)(s € D),
we have that (Us)(s € D) and hence that D € p. Since (Vs € D)(—s € @), we have
(Us)(—s € B) so, since U respects propositional connectives, =(Us)(s € §) so @ ¢ p. Let
A, B € p. Then (Us)(s € A)A(Us)(s € B) so (Us)(s € ANs € B)so (Us)(s € ANB). That
is AN B € p. To complete the proof that p is a filter, assume that A € pand A C B C D.
Then (Us)(s € A). Also, (Vs € D)(s € A= s € B) and hence (Us)(s € A = s € B). Since
U respects propositional connectives, one has (Us)(s € A) = (Us)(s € B). Since we know
(Us)(s € A), this says that (Us)(s € B) so B € p.

Finally to see that p is an ultrafilter, let A C D be given. Then (Vs € D)(s € AVs € D\ A)
so that (Us)(s € AV s € D\A) and hence, since U respects propositional connectives,
(Us)(s € A)V (Us)(s € D\A). Thus A € p or D\A € p as required. O

(Us)(v(s) A(z))

te00

3.8 Theorem. Fach of 1, T2, 73, T4, and s, is a bijection. In fact each of the following
statements hold.

(a) 15 0 T4 0 T3 0 T 0 71 Is the identity on UF}.

(b) 71 07507407307y is the identity on UFs.

(c) 90T 075074073 Is the identity on UFs.

(d) T30 07 075 074 is the identity on UF,.
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(e) T40 T30 72 0Ty 0715 Is the identity on UFs.

Proof. The fact that each of 7, ™, 73, 74, and 75 is a bijection follows immediately from
statements (a) through (e).

(a) Let p € UF; and let ¢ = 75(7a(73(m2(71(p))))). Let 2z = p-lim(p(s))sep = m2(71(p)),
let 4 = 13(2), and let & = 74(u), so that ¢ = 75(U).

Since p and ¢ are both maximal filters, to see that p = ¢, it suffices to show that
q Cp,solet A€ q. Then A € 75(U), so (Us)(s € A). Since U = 74(p), this says that
u({se€D:se A})=1,ie., u(A) = 1. Since u = 73(2), this says that z € clp[A] and hence
that p-lim{p(s))sep € clp[A]. Now A and D\ A are disjoint subsets of D and Z is a Stone-
Cech compactification of D so clyp[A] N ebp[D\A] = 0 so p-lim(p(s))sep € Z\clp[D\A], an
open subset of Z. Consequently, {s € D : ¢(s) € Z\clp[D\A]} € p. But then {s € D :
o(s) € p[A]} € p. That is, A € p as required.

We leave the proofs of statements (b), (¢), and (d) to the reader.

(e) Let U € UF5 and let V = 14 (73(m2(m1(75(U))))). Let p = 75(U), let z = p-lim{p(s))sep
= 79(71(p)), and let p = 73(2).

Suppose that & # V and choose a formula y(s) and an interpretation of the free variables
other than s (if any) in y(s) such that (¢/s)(y(s)) and —=(Vs)(y(s)). (This choice is without
loss of generality since v(s) may be replaced by =v(s).) With the same interpretation of the
free variables let A= {s € D :y(s)}. Then (Vs € D)(s € A < y(s)) so (Us)(s € A< 7(s))
and (Vs) (s €A 7(3)). Since U and V respect propositional connectives, one has then
that (Us)(s € A) < Us)(y(s)) and (Vs)(s € A) & (Vs)(y(s)). Consequently (Us)(s € A)
and =(Vs)(s € A).

Since (Us)(s € A) we have A € p and consequently z € clp[A]. Then p(A) = 1, that is
u({s € D:se A})=1. Thus (Vs)(s € A), a contradiction. O

4. EXTENDING THE OPERATION TO S

We show in this section that the operation - on S extends naturally to an operation on
3S making (85, ) into a compact right topological semigroup and we establish some of the
basic properties that 35S enjoys by virtue of that fact.

4.1 Definition. Let (S,-) be a semigroup. Define an operation - on 3S, extending the
operation - on S, in two stages as follows.

(a) Given g € #S\S and s € S,
s-q=g¢qlim.gs-1.
(b) Given p € 3S\S and ¢ € 35S,

prg=plimgs-q.

Recall that we have identified any point of S with the principal ultrafilter generated by
that point. Consequently, if s,q € S, then s - ¢ = ¢-lim;cg s -t. That is statement (a) of
Definition 4.1 holds for all ¢ € 3S and all s € S. Similarly, statement (b) of Definition 4.1
holds for all p,q € 8S.

The following fact will be useful in establishing the associativity of the operation - on
BS (and is worth knowing in any event). This theorem illustrates again the virtue of the
uniformity of the process of passing to limits using p-lim . Observe that the hypotheses
regarding the existence of limits can be dispensed with, by Theorem 2.16, if X is compact.



10 NEIL HINDMAN

4.2 Theorem. Let (S,-) be a semigroup, let X be a Hausdorff space, let (;)scs be an
indexed family in X, and let p,q € 8S. If all limits involved exist, then (p - q)-lim Ty, =

p-limyeg(g-lim;e s @51).

VES

Proof. Let z = (p-q)-lim,cg z, and for each s € S, let y, = ¢-lim,cs z5;. Suppose
that p-lim .5 ys # 2z and pick disjoint open neighborhoods U and V' of p-lim,.¢ ys and z
respectively. Let A={v e S:z, € V}andlet B={s €S :y, € U}. Then A € p-q
and B €p. Let C = {s € S:s-q€ A}. Since A is a neighborhood of p- lim,eg s-q,
C € p. Then BN C € pso pick s € BNC. Since s € B, qhmtes zse € U. Let

={t€eS: :xy €U} Then D € q. Since s € C, s-q € A so A is a neighborhood of
q—limtes s-t.Let E={t€S:s-t€ A}. Then DNE € g so pickt € DN E. Since t € D,
zss €U. Sincet € E, st € Asozs; €V and hence U NV # 0, a contradiction. O

4.3 Theorem. Let (S,-) be a discrete semigroup. Then with the operation as defined
by Definition 4.1, (8S,-) is a right topological semigroup. Further, for each s € S, A is
continuous.

Proof. As we have observed, given any p,q € (S one has that p-¢ = p-lim 5 s gq.
Consequently, by Theorem 2.18 one has that for each ¢ € 35, p, is continuous. Likewise,
since for all s € S and all ¢ € 35, s- ¢ = ¢-lim;c g s - £, one has that for each s € S, A is
continuous.

It thus remains only to show that the operation - on S is associative. To see this, let
p,q,7 € S. Then

p-(¢g-7) = plimeg((g-r)-lim wes sw)
p-lim ¢ g (q lim, ¢ g (r-lim, e s s(tv))) by Theorem 4.2

plim,¢ 5 (g-lim, ¢ g(r-limyes (st)v))
(p - q)-lim, ¢ g(r-limyes uv) by Theorem 4.2

= (p-q)-r. O

Given p and ¢ in 35S, we have that p - ¢ 1s an ultrafilter, so it will be desirable to have a
convenient characterization of its members. We have taken the notation [A], from [67].

4.4 Definition. . Let (S, ) be a discrete semigroup and let A C S.
(a) Foreachz € S,z 'A={ye Sz ye A}
(b) For each p € S, [A], ={z € S: 271 A € p}.

If S is a group, then z71A = {z~ !y : y € A}, but in general this need not be true. In
the first place, ~! need not make any sense. Even when S is contained in a group, this
equality may fail. For example if A is the set of odd positive integers, then in the semigroup

(N, ), 2714 = 0.

4.5 Lemma. Let (S,-) be a semigroup, let p,q € S, and let A C S.
(a) A€ p-qifand only if [A], € p.
(b) For each z € S, z7'[A], = [z~ 4],.
(c) [[A]q]p =[Alpq-

Proof. (a) Necessity. Assume that A € p-¢. Then A is a neighborhood of p,(p) so pick a
member B of p such that p,[B] C A. We claim that B C [A], so that [A], € p. To see this,
let z € B. Then A;(q) € A so pick a member C of ¢ such that A\;[C] C A. Then C C z71A.
Sufficiency. Assume that [A], € p and suppose that A ¢ p-¢q. Then S\A € p-¢ so, by the
necessity which has been established, [S\A], € p. Pick z € [4], N [S\A],. Then z7*A € ¢
and 27 1(S\A) € ¢ so pick y € z7'ANz~!(S\A). Then zy € AN (S\A), a contradiction.
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(b) First observe that for any = and z in S, (zz)"'4 = z~}(z7' A). Thus, given z,z € S

one has
zez”l[A], & wzeld]

& (zz)7lAeq
& 7 Hz~lA)eq
& ze[z7l4), .

(c) Using part (b), we have that for any z € S,

LS [[A]q]p & 7 'Ayep
& 274 ep
o zTlAep-gq
& ze[Alp, - O

Of fundamental importance for the combinatorial applications of 35 is the following fact

due to R. Ellis [25, Corollary 2.10].

4.6 Theorem. Let (T,-) be a compact Hausdorff right topological semigroup. Then T
contains an idempotent.

Proof. Let A= {ACT:A-ACA A+#0, and A is compact}. Notice that T' € A so
A # 0. Given any chain C in A, one has that (|C € A so, by Zorn’s Lemma, choose some
minimal A € A and pick some € A. (We will show that z2 = & so it will follow that in
fact A = {z}. However, one does not need to notice this fact.)

Let B = Az. Then BB = (Az)(Az) C AAAz C Az = B, zz € B, and B = p;[4] so
(being the continuous image of a compact space) B is compact. Thus B € A. Since BC A
and A is minimal, we have B = A.

Let C = {y € A : yz = z}. Since B = A, we have that z € Az so C # 0. Also
C =Anp;t{z}] so C is compact. And, given y,z € C, yz € A and yzz = yz = z. Thus
Ce€AsoC = A and hence z € C. That is, zze =2z. O

As a consequence of Theorem 4.6, idempotents exist in 35S for any semigroup S. Of
special importance for the combinatorial applications are minimal idempotents. There are
several natural interpretations of “minimal”. Three of these involve partial orders, and a
fourth the notion of minimal ideals. As we shall see, they are all equivalent.

4.7 Definition. Let (7,-) be any semigroup and let e and f be idempotents of 7T'.
(a) e <g f if and only if e=ef.
(b) e <g f if and only if e=fe.
(c) e < f if and only if e=fe=ef.

Notice that <j, <g, and < are transitive and reflexive relations on the set of all idem-
potents in 7. Observe also that < is antisymmetric.

4.8 Theorem. Let (T,-) be any semigroup and let e and f be idempotents of T. The
following statements are equivalent.

(a) The element e is minimal with respect to <.

(b) The element e is minimal with respect to <g.

(c) The element e is minimal with respect to <g.

Proof. (b) implies (a). Assume that e is minimal with respect to <gr and let f < e. Then
f=efsof<pesoe<gf. Thene= fe=f.

We show that (a) implies (b). (Then the equivalence of (a) and (c¢) follows by a left-right
switch.) Assume that e is minimal with respect to < and let f <p e. Let ¢ = fe. Then
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g9 = fefe = ffe = fe = g so g is an idempotent. Also, ¢ = fe = efe so eg = eefe =
efe=g =-efee = geso g <esog =e bythe minimality of e. That is, e = fe soe <g f
as required. O

The fourth characterization of minimality involves the notion of minimal left and right
ideals.

4.9 Definition. Let (T, -) be a semigroup and let H C T
(a) H is a left ideal of T if and only if H #@ and T-H C H.
(b) H is a right ideal of T if and only if H #0 and H - T C H.
(c) H is an ideal of T if and only if H is both a left ideal and a right ideal of T

4.10 Lemma. Let (T,-) be a compact right topological semigroup. Every left ideal of T
contains a minimal left ideal and minimal left ideals are closed.

Proof. Let L be a left ideal of T'. Let A = {H : H is a compact left ideal of T'and H C L}.
Then given z € L, Tz € A so A # (. Since the intersection of a chain in 4 is again in A,
Zorn’s Lemma yields the conclusion. O

It is also true, but not so easy to show, that every right ideal contains a minimal right
ideal. However, minimal right ideals in a compact right topological semigroup need not be
closed. See [16] for proofs of these facts.

The smallest ideal of a compact right topological semigroup, whose existence we establish
below, has an elaborate structure. For example, it is the union of pairwise isomorphic
groups. The reader is again referred to [16] for the structure theorem.

4.11 Definition. Let (7)) be a compact right topological semigroup. Then

K(T)={L : L is a minimal left ideal of T'} .

4.12 Theorem. Let (T,-) be a compact right topological semigroup. Then K(T) is an
ideal of T'. It is in fact the smallest two sided ideal of T'.

Proof. By Lemma 4.10, K(T') # 0 and as the union of left ideals, K(7') is trivially a left
ideal. Given any two sided ideal I of T" and any minimal left ideal L of T" one has that
LNI#0. (Forifa € L and b € I then ba € LNI.) Consequently L N1 is a left ideal which
is contained in L and hence LNI = L. That is, K(T') C I.

Thus, to complete the proof, it suffices to show that K(7T) is a right ideal of T'. To this
end, let a € K(T) and let b € T. Pick a minimal left ideal L of T' such that a € L. Then
ab € Lb, so it suffices to show that Lb is a minimal left ideal of T'. It is trivially a left ideal,
so suppose that H is a left ideal of T with H C Lb. Let A={x € L : zb € H}. Then A is
a left ideal of T which is contained in L so A =Lso H=Lb 0O

The fourth possible interpretation of a “minimal idempotent” is one which is a member
of a minimal left ideal. We see now that this is equivalent to the other notions.

4.13 Theorem. Let (T,-) be a compact right topological semigroup and let e be an idem-
potent in T. Then e is minimal with respect to any (and hence all) of the orders <g, <p,
or < if and only if e € K(S).

Proof. Necessity. Te is a left ideal of T' so pick by Lemma 4.10 a minimal left ideal L of T'
with L C Te. Then L is closed (by Lemma 4.10) so pick by Theorem 4.6 an idempotent
f € L. Then f € Te so pick some ¢ € T such that f = ge. Then fe = gee = ge = f so
f <r e. Since e is minimal with respect to <p, e <p fsoe=ef € L C K(T).
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Sufficiency. Pick a minimal left ideal L of T such that e € L. To see that e is minimal,
let f be an idempotent with f < e. Now Te is a left ideal of T' which is contained in L so
Te=1L. Since f <pe, feLsoTf=1L. Thus e € Tf so pick ¢ € T such that e = gf.
Then ef = gff = gf = e. Since also f <g e we have ef = f. Thus e = f as required. O

Since we know by Lemma 4.10 that minimal left ideals are closed, we have by Theorem
4.6 that minimal idempotents exist. We see now that much more is true.

4.14 Theorem. Let (T,-) be a compact right topological semigroup and let e be an idem-
potent in T'. There is a minimal idempotent f such that f < e.

Proof. As in the proof of the “necessity” of Theorem 4.13, pick a minimal left ideal L of T'
with I C Te and pick an idempotent f € L. As there, we see that f = fe. Now let r = ef.
Then r € L. Further rr = efef = eff = ef = r, so r is a minimal idempotent. Also,
er=ecef =ef=randre=cefe=ef=rsor<e 0O

We conclude this section with a result that will be needed in Section 6.

4.15 Theorem. Let (S,-) be a discrete cancellative semigroup. Then 3G\G is an ideal of
B8G.

Proof. Let p € BG\G and let ¢ € SG. Suppose first that p-¢g = a € G. Then {a} € p-¢q
so by Lemma 4.5(a), [{a}]; € p. Since p is nonprincipal, pick ¢ # y in [{a}], and pick
z €z {a} Ny~1{a}. Then zz = yz, a contradiction.

Now suppose that ¢ -p = a € G. Then {a} € ¢ -p so by Lemma 4.5(a), [{a}], € ¢.
Pick z € [{a}],. Then since p is nonprincipal, pick z # y in z7'{a}. Then zz = zy, a
contradiction. 0O

5. Easy COMBINATORIAL APPLICATIONS

We begin this section with the application which led us to the algebra of 35 in the first
place, namely the Galvin-Glazer proof of the Finite Sum Theorem. In fact, this proof is
more general, applying to any semigroup, whether commutative or not. So we need to
specify the order of our products. (We should point out that Corollary 5.3 can be derived
from Theorem 1.1 by means of the equivalent Finite Union Theorem.)

5.1 Definition. Let (S,:) be a semigroup, let (z,)°%; be a sequence in S and let F' €
P¢(N). Then II,cp z, denotes the product in increasing order of indices and

FP((zn)p21) = {llner 2o : F € Ps(N)} .

In the event the operation in S is denoted by +, we write
FS((zn)nZ1) = {Zner 2ot F € P(IN)} .

5.2 Theorem. Let (S,-) be a discrete semigroup, let p be an idempotent in 8S, and let
A € p. Then there is a sequence (zp)or; in S such that FP({z,)o2;) C A.

Proof. Notice that for each B € p we have that [B], € p by Lemma 4.5(a). Let B; = A
and choose z1 € By N[Bi],. Let By = Bi N z1~1By. Inductively, assume we have B, € p,
pick z, € B, N[B,], and let B,41 = B, Nz, "' B,.

To see, for example, that zozszs € A, we note that zg € Bg C x5 1By so xsxg € By C
By C B3 C (EQ_IBQ so that zozsz6 € By C B, = A.

More formally, one establishes by induction on |F|, that if F € P¢(N) and r = min F,
then H,cp ¢, € B,. If |F| = 1, then Il,¢r z, = 2, € B,. So assume that |F| = k > 1
and assume that the statement is true for k — 1. Let H = F\{r} and let s = min H. Then
HnEH z, € By - Br-l-l - Ir_lBr 50 HnEF Lpn = Ty - HnEH z, €B,. O
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5.3 Corollary. Let (S,-) be a semigroup, let r € N, and assume that S = U:Il A;. Then
there exist 1 € {1,2,...,r} and a sequence (z,)° ; in S such that FP({z,)5% ) C 4;.

Proof. By Theorem 4.6 pick an idempotent p € S, pick some ¢ € {1,2,... ,r} such that
A; € p and apply Theorem 5.2. O

The proof that has just been presented is so short and pretty that I have been in love
with it since first being introduced to it over 20 years ago. (Anyone with a very masochistic
bent is invited to try to wade through the original combinatorial proof [33].)

It was thus with considerable surprise that I learned from Dona Strauss in 1995 that
there is an even simpler version of the proof. In her simplification one is not forced to go
backwards through a product to determine that it is in the desired set. This simplified
proof depends on the following lemma. It is obvious that given z € B as defined below, one
has £~ ' A € p. But more is true.

5.4 Lemma. Let (S, ) be a discrete semigroup, let p be an idempotent in 35S, and let
A€p. Let B= ANJA],. Then for each z € B, z7'B € p.

Proof. Let z € B. Then 27 !4 € p = p-p so by Lemma 4.5(a), [z~ A], € p while by Lemma
45(b), [z71Al, = 27 '[A],. Thus z7'B=z"'ANnz"'[4], ep. O

Now let us examine the simplified proof of the Finite Product Theorem.

5.2 Theorem. Let (S,-) be a discrete semigroup, let p be an idempotent in 8S, and let
A € p. Then there is a sequence (z,)or, in S such that FP({z,)or;) C A.

Proof. Let B = AN[A], and choose z; € B. Inductively, let n € NN and assume we have
chosen (z;)7—; such that FP({z;)7_;) C B. Then by Lemma 5.4,

N{a'B:a€ FP((z),)} € p

so choose #,41 € BN({a~'B:a € FP({x:)’_,)}. Then FP((z,)i5)C B. O

We pause to note that a sort of converse to Theorem 5.2 is valid. (This is an old
observation of Fred Galvin’s).

5.5 Theorem. Let (S,-) be a discrete semigroup and let (z,)52, be a sequence in S. Then
there is some idempotent p € 3S such that FP({(z,)?>,) € p.

Proof. Let T = (o'_, FP({z,)3%,,) (where the meaning of FP((z,)%,,) should be ob-
vious). Then T is certainly compact and nonempty. We claim that 7 is a subsemigroup
of 3S. To see this, let p,q € T and let m € N. To see that FP((z,)22,,) € p - ¢, it
suffices by Lemma 4.5 to prove that [FFP((x,)n2,,)]; € p, for which it in turn suffices to
show that FP((zn)5r,,) C [FP((2n)nzm)]lq- Solet a € FP({(x,)5%,,) and pick F' € P;(N)
such that min 7 > m and a = ll,¢r z,. Let r = max F. Then FP({z,);2,,1) € ¢ and
FP((2n)3r41) € @™ FP((20)52 ).

Since T is a compact right topological semigroup, by Theorem 4.6, there is an idempotent

m7T. O

An old and easy application of Theorem 5.2 is the following theorem which was first
published in 1979 [34]. It was not until 1994 that an elementary (though still more difficult)
proof was obtained [12].

5.6 Theorem. Let N = |J;_, A;. There exist i € {1,2,... ,r} and sequences {z,)3.; and
<yn>$Lo:1 such that FS(('Z’TL)?LO:I) U FP((ZJTZ)?LOII) g AZ

Proof. Let T = {p € BN : for all A € p, there is some sequence {(z,)52; such that
FS({zn)52,) € A}. We claim that T is a compact subsemigroup of (AN, ), in fact a
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left ideal. To see that T is closed, let p € SN\I'. Then there is some A € p such that for any
sequence (z,)2%; in N, FS((2,)52,)\A # 0. Then A is a neighborhood of p which misses
r.

To see that T is a left ideal of (8N, ), let p € SN and let ¢ € T. Let A € p-q. Then
by Lemma 4.5, [A], € p so pick z € [4],. Then z7'A € ¢ so pick (z,)52, such that
FS((2,)52,) C z71A. Then FS({zz,)52,) C A.

By Theorem 4.6 pick some p € T such that p-p = p. Pick ¢ € {1,2,...,r} such that
A; € p. Since p € T, pick a sequence (z,)5%; such that F'S({z,)52,) C A;. Since p=p - p,
pick by Theorem 5. 2 some sequence (y,)o>; such that FP((y,)n>,) C 4;. O

6. ZELENJUK’S THEOREM

For some time, considerable effort has been invested in attempting to determine whether
the semigroup (AN, +) contains any nontrivial finite subgroups. See for example [3] for
some limited evidence that such groups need not exist.

We present in this section, with his kind permission, a version of E. G. Zelenjuk’s proof
that if G is a countable group and G has no nontrivial finite subgroups, then neither does
BG. (Zelenjuk’s original proof [67] included the assumption that G was abelian, but Dona
Strauss observed in a personal communication that this assumption was not needed.)

The proof presented here is significantly different in organization than that in [67]. How-
ever, most of the notation and all of the ideas are Zelenjuk’s (except for the observation of
Strauss mentioned above).

We will assume throughout this section that G is a countable group with identity e,
that we have a finite subgroup C of SG\G, and that ¢ = [ C, so that, by Theorem 2.14,
C=9v={pe€ pBG: ¢ C p}. We will further assume that for some o € N\{1}, C is
isomorphic to Z, and will write C' = {po,p1,... ,Pa—1} Where p; - pj = p;4; and the sum
i+j is computed in Z,. (We may do this because C' will in any event have such a subgroup.)
We will also sometimes denote the identity py of C' by e.

6.1 Definition. Let p € G and A C G. [¢] is the filter generated by {{J,¢; [4], : 4 € ¢}
Recall from Theorem 4.5 that given p,¢ € 3G and A C G, [A], € q if and only if A € ¢p

and that [[A]p]q = [A]gp-

6.2 Lemma. [p] = {q€ 3G : qp = ¢}.

Proof. Let q € BG. Notice first that

(a) (VA€ p)Fpep)(A, ca) = (Fpep)(VA e p)([4], €9)

Indeed, the sufficiency is trivial. To establish the necessity, suppose instead that for each
p € @ we have some A, € ¢ such that [4,], ¢ ¢ and let A =) Ap,. Then A € ¢ and
for all p € B, [A], C [4,],, so [A], ¢ ¢, a contradiction.

Second observe that

pEY

(b) (Frep)arep) e qp=9¢

Again the sufficiency is trivial, while the necessity follows from the fact that @ is a group.

Thus we have
(VA € ¢)(U,e5 [A]p € 9)
(VA€ p)EFpep)(4], €q)
(Fp e p)(VA € )([Al, € 9)
Eﬂp € SD)EVA € ¢)(A € qp)
q

€ [¢]

Ip €P)(qp €p)
?=9.

teoo0Q
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6.3 Lemma. Let A € ¢ and let W = [A],. Then for all q € [¢], W = [W],.

PEP
Proof. Let q € [p]. To see that W C [W],, let 2 € W and pick p € @ such that z € [4],.
By Lemma 6.2 ¢ = @ so pick some r € @ such that ¢r = p. Then = € [4],, = [[A]r]q Yo
7 ![A], € gso z7'W € q. That is, z € [W],.

To see that [W], C W, let 2 € [W],. Then 2~ 'W € ¢ and % is finite, so pick p € ¥ such
that z71[A4], € ¢. Then z € [[A]p]q = [A]sp C W because gp € . O

6.4 Lemma. Let A € ¢ and let W =, [A]p. Then
(a) for all a € W, there exists V € [¢] such that aV C W and
(b) for all a € G\W, there exists V € [p] such that (aV)NW = 0.

Proof. (a). Let a € W and suppose that for all V € [p], aV\W # 0. Then
{V\a W : V € [¢]} has the finite intersection property, so choose ¢ € 3G such that
{(V\a='W : V € [p]} C ¢, and note that ¢ € [p]. But then a=*W ¢ ¢ so a ¢ [W], and
hence, by Lemma 6.3, a ¢ W, a contradiction.

(b) Let a € G\W and suppose that for all V € [p], aV NW # 0. Then {V Na='W :
V € [¢]} has the finite intersection property, so choose ¢ € G such that {V Na W :V €

[¢]} C ¢, and note that g € [p]. But then a='W € ¢ so a € [W], and hence, by Lemma 6.3,
a € W, a contradiction. O

6.5 Lemma. There exists a choice of A, € p for each p € ¢ such that

(1)e € A,

(2) Apn Ay, =0 forp+#qingp,
and, letting X = (J,c; Ap and defining f : X — Zq by f[Ap,] = {i}, one has

(3) for all a € X there is some V € [¢] such that for all b € V, ab € X and f(ab) =
fla)+ £(0).

Proof. For each p € p, choose U, € p such that U, NU,; =0 when p # ¢, and let
A, = ﬂq€¢ [Upgly = ﬂqea{a €G:a U, €4q}.

Given p,q € B, Upq € pg so [Upglg € pso Ay € p. Also, given ¢ € 3, e € [Uglq, so (1)
holds.

To verify (2), suppose a € A, N A, where p and r are distinct members of @. Then
a € [Uple N [Uy]e so that a='U, Na=U, € e so U, N U, # 0, a contradiction.

To verify (3), let @ € X and pick p € ¥ such that a € A,. For each ¢ € , let
V, = A;Na"'4,, and let V = qu¢ Vy. We show first that for all b € V, ab € X and
f(ab) = f(a) + f(b). Solet b € V and pick ¢ € ¢ such that b € V,. Then b € a='4,,
so ab € A,y C X. Pick i,j € Zq such that p = p; and ¢ = p;. Then pg = p;y; so
flab) =i+ j = f(a)+ f(b).

Thus it remains only to show that V' € [¢]. We show first that

(1) forallg e, V, €¢q

So let ¢ € p. Since we know that A, € ¢ we need only show that a_lqu €q. Nowa € 4,
so for each » € 3, a € [Upgrler = [[qu,«],«]q s0 @™ [Upgr]r € ¢ Thus ¢ a ' [Uper]r € ¢.
But a™' Ay = a7 N, Wrorlr = Nreg @ Upgrlr 50 a™' Apy € q as required.

Next we show that

(ii) (VbeG)(Vrep)(be A, < b tA, €¢).
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To see this let b € G and r € p. Then

A, =

Il

D D B )
™

€l €l €l
S

SO

be A,

Now to see that V' € [g], let r € [¢]. We show that V € r. By Lemma 6.2 re € ¢ so
by (i) we have V,. € re so A,. € re and a=* A, Ereso {b€ G: b4, € ¢} €r and
{be G:b Y (a"tAp.) € €} € r. Thus, by (ii), A, € r and a='A,,. € r. That is, V,. € r
and thus, since V,. CV, Ver. O

6.6 Lemma. Let (W,)52, be any sequence in [¢]. There is a sequence (Uy,)S%, in [¢] such
that

(1) for alln € N, Upy1 C Uy,

(2) for alln € N, U, C W,,

(3) for all n € N and all a € U,\U,, 41 there is some k € N such that aUy, C Up\Up41,
and

(4) for all a € G\U, there is some k € N such that aU, N U; = .

Proof. Enumerate G as {a, : n € N} with a; = e. We will choose (U,)32; satisfying (1),
(2), (3), (4) and

(5) for each n € N there is some Dy, € ¢ such that U, = U5 [Dnly-

Pick D1 € ¢ such that (J ¢ [Di], € W1 and let Uy = U ¢ [D1];. Now, let n € IV and
assume that we have chosen Uy,Us, ... ,U, and Dy, Ds,..., Dy.

For each k € {1,2,... ,n}, if ax € Uy, let Zp = G. Otherwise, pick the first { € {1,2,...,
n} such that ay ¢ U;. If Il = 1, pick by Lemma 6.4(b) some Zj, € [¢] such that az Z;,NU; = §.
If I > 1, pick by Lemma 6.4(a) and (b) some Zp € [¢] such that apZy N U; =  and
arZy CUr-1.

Let Viog1 = Up N Wogr N ﬂ:zl Zy. Then V,41 € [¢] so pick D41 € ¢ such that
Ugep!Pnt1lg © Vayr and let Ungr = Uep[Dntales

We claim that the sequence (U, )22, is as required. Conclusions (1) and (2) are immedi-
ate. To verify (3) assume that a € U;\Ui4+1 and let n = max{k,!+1}. Let Z; be as chosen
for ay at stage n+ 1 in the induction. Then arUpy1 C arZr C Ui\Ui41.

Similarly, if a, ¢ Uy, then ayUp41 NUL C ap Zp, NU; = 0. O

The following lemma summarizes our preliminary information.

6.7 Lemma. Assume that for each a € G\{e}, ap # @. Then there exist a subset X of G,
a function f: X — Z,, a sequence (Uy,)52,, and a family A such that:
() {Un:n €N} C N pi = ¢,
(2) Foralln €N, Up41 CU, C X.
(3) For all i, j € Za, p; - p; = pi+;j (where the addition is in Z,).
(4) A is the algebra of subsets of X generated by {X N(z-U,):z € X and n € N}.
(5) For each A € A and each x € A there is some k € N such that z - U, C A.

(6) M=y Un = {e}.
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(7) For each x € X there is some n € N such that for every y € U,, zy € X and
flzy) = f(z) + f(y).
(8) For each i € Z,, f~1[{i}] € p:.

Proof. Let (A,)pep be as guaranteed by Lemma 6.5 and, as there, let X = Up€¢ Ap and
define f: X — Zy by f[Ap;] = {i}. For each a € X choose some V(a) € [¢] such that for
all b€V, abe X and f(ab) = f(a)+ f(b). For a € G\X, let V(a) = G.

Enumerate G as {a, : n € N} with a; = e. For each n > 1 we have by hypothesis that
4% # @ 50 a, ¢ [p] so the principal ultrafilter generated by a,, does not contain [¢]. That
is, there is some W € [¢] such that a, ¢ W and consequently G\{a,} € [¢].

Now let W; = V(e) and for n € N\{1}, let

Wi = V() N Np=a (G\{ar} NV (ar)) -

Then each W, € [¢].

Let (U,)>2 ; be as guaranteed by Lemma 6.6 for (17,)0° , and let .4 be the algebra of
subsets of X generated by {X N(z-U,) : z € X and n € N}. We verify that each of the
conclusions hold, conclusion (5) being the only one that requires any effort.

Conclusion (1) holds because each U, € [¢] C ¢. By Lemma 6.5, e € X and eV (e) C X
so U; € X and thus (2) holds. Statement (3) holds by assumption and A was defined to
satisfy statment (4). We know that e € m soe€ ()., U, and given n > 1, a, ¢ U, so
conclusion (6) holds. To verify conclusion (7), let z € X and pick n € N such that z = a,.
Then U, C W, C V(ay) so the conclusion holds by the choice of V(ay). For conclusion
(8), one has for each i € Zo that f=1[{i}] = Ap, € p;.

Finally, we verify conclusion (5). So let A € A and let z € A. Note that z € X. Choose
finite subsets L and M of X and functions n: L — N and m : M — N such that

zeXnN (nyGL yUn(y))\(UyeM yUm(y)) c4,

(where ﬂye@ YUn(y) = X).

Given any y € L\M, one has z € yUy(,). If z = y, let k(y) = r(y) = n(y). Otherwise,
ylz € Un(y)\1e} so pick r(y) > n(y) such that ylz e Ur(y)\Ur(y)41 and pick by Lemma
6.6 some k(y) such that y~'2Ukq,) C Upiy)\Ur(y)41-

Given any y € LN M, one has that z € (yUp(y)\(¥Unm(y)) so pick some

r(y) € {n(y),n(y) + 1,... ,m(y) — 1} such that y~ 'z € Ur)\Ur(y)41

and pick by Lemma 6.6 some k(y) such that y_lmUk(y) C Urp)\Ur(y)41-

Given any y € M\L, one has that = ¢ yUp,,). If = ¢ yU;, then pick by Lemma
6.6 some k(y) such that y_lek(y) NU; = 0. Otherwise pick r(y) € {1,2,... ,m(y) — 1}
such that y~'z € Ur(y)\Ur(y)+1 and pick by Lemma 6.6 some k(y) such that y_lek(y) C
Ur(y)\Ur(y)+1-

Pick | € N such that z = a¢; and let ¥ = max({k(y) : y € M UL} U{l}). Then
zU, CzlU; CzV(a) =2zV(z) C X.

Given y € L, y~'2Us C U,y C Upqy) 50 U C yUp(y).

Given y € M, (y~'2Ui) N Upyiy) C (¥~ '2Ux) NUr(y)41 = 0 50 2Ux NYyUpyy = 0. O

We are nearly ready to present Zelenjuk’s Theorem, so we temporarily drop our standing
assumptions about G, ¢, and so on, so that we can state the theorem.
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6.8 Definition. (a) B = P, 7.
(b) Forn e N, V,, = {s € B :foreach k € {1,2,... ,n}, s = 0}.
(¢) B= Mo, ctVy, where the closure is taken in #B and B has the discrete topology.
(d) F is the free semigroup on the letters 0 and 1 with identity e. Given s € F, {(s) is
the length of s.
(e) The function v : F — B is defined by

s; if i <f(s
7(5)2:{0 ifi>128.

(f) The function g : B — Z, is defined by g(s) = |{{ € N:s; # 0}| ( mod «).
(g) The function k : B — Z, is defined by k(s) = |[{i € N:s; # 0} ( mod o?).
(h) The function v : Zy2 — Zg is defined by v(i) = ¢ ( mod «).

(i) For m € wand ¢ € {0,1,...,m}, s is the member of F' consisting of ¢ 0’s followed
by m—1¢ 1’s.

(j) Given s and t in F', we define s+t to be the member of F with £(s+t) = max{£(s), £(t)}
and (s +1¢); =1 if and only if either s; = 1 or ¢; = 1.

For example, note that s5 = ¢, s3 = 111, s3 = 000, and s3 + s = 0110011. Given
any t € F', t has a unique representation in the form t = s"° + s7"* + ... + s"* where
0<ip<mg<ip<my<...<ip<my (except,if k =0, the requirement is 0 < 5 < my).
We will call this the canonical representation of t. When we write ¢ = s7°° + 7" +. .. + s *
we will assume that this is the canonical representation.

6.9 Definition. Given ¢t € F, if ¢ = s* for some i,m € w, then ¢ = ¢ and t* = t.

- - __ _.mg mi ME41 /1 _ .Mmo mi M * _ JMk41
Otherwise, if ¢ = s;° + 57" + ... + Sive1 then ¢ = s + s + ...+ s, * and t* = Sinnr -

6.10 Theorem. Let G be a countable group, let ¢ be a finite subgroup of BG\G and
assume that for all a € G\{e}, a¥ # @. Then @ is trivial.

Proof. Suppose that ¢ is not trivial. We may presume that @ is isomorphic to Z, for some
a € N\{1}. Choose a subset X of GG, a function f : X — Z,, a sequence (U,)52,, elements
P0,P1y--- ,Pa—1 € G*, and a family A as guaranteed by Lemma 6.7. Define

X = ﬂzozl CEUn

where the closure is taken in /G and G is discrete.

We observe that X is a subsemigroup of 3G. To see this, let p,q € X and let n € N. We
show that Uy C [Uy,],, and hence that U, € pg. We have that e € X by conclusions (2) and
(6) of Lemma 6.7, and consequently U,, € A. Thus, given € U; one has by conclusion (5)
of Lemma 6.7 some k € N such that z - Uy C U,, and hence z~'U,, € q.

Similarly Bisa subsemigroup of 3B.

Next we observe that if A € A and A # 0, then for each i € Z,, AN f~1[{i}] # 0.
To see this pick a € A. Then by conclusion (5) of Lemma 6.7, pick m € N such that
a-Up, C A. By conclusion (7) of Lemma 6.7 pick » € N such that for all y € U,, ay € X
and f(ay) = f(a) + f(y). Let j = i — f(a) (in Zy). By conclusion (8) of Lemma 6.7,
F7{s}] € p; and by conclusion (1), Uy, N U, € pj, so pick y € Up, N U, N f71[{j}]. Then
y€EUnsoay € Aand y €U, so flay) = f(a)+j =1i.

Enumerate X, placing e first. (When we refer to the first element of a subset of X, that
reference is with respect to this order.) We define inductively on £(s) for s € F, z(s) and
X (s) satisfying the following induction hypotheses for n € N.

0) If s € F and {(s) = n, then z(s) € X(s) and X(s) € A.
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1)Ifs€ F and ¢(s) = n — 1, then
(a) X(s70)NX(s™1) =0,
(b) X(sT0)UX(s™1) = X(s), and
(c) 2(s™0) = 2(s).
2) (a) X(sh) C U, and
(b) forall z € X(s?)andall j € {0,1,... ,n—1}, :L‘(S;”_l).z € X and f(a:(sg”_l).z) =
£(a(s771) + £(2).
3) If s € F and £(s) = n, then
(a) X(s) = z(s") - X(s*) and
(b) z(s) = z(s") - z(s*).
4) For all j € {0,1,...,n}, f(ac(sy)) = g(’y(s}?)).
5) Let @ = min(X\{z(s) : {(s) < n}). If t € F, {(t) = n—1, and a € X(¢), then
a€ X(t™1) and, if f(a) = g('y(t)) +1, then a =z(t"1).

We begin by letting z(¢) = e and X(e) = X.

Now let n = 1. Let @ = min(X\{e}). By conclusion (6) of Lemma 6.7, pick k such that
a ¢ U If f(a) =1, let z(1) = a. If f(a) # 1, then choose any z(1) € (X\U;) N f~[{1}].
(We have already observed that (X\Ug) N f=1[{1}] # 0.) Let z(0) = e, X(0) = Uy, and
X (1) = X\Ug. All induction hypotheses can be immediately checked.

Now let n € N and assume we have chosen z(s) and X(s) satisfying the induction
hypotheses for all s € F with {(s) <n

We first establish 3 observations.

Observation 1. Ift € F, the canonical representation of t ist = s;.° + 57" 4 ... + sk

k41
and my41 < n, then x(t) = x(s;.°) - z(s;*) - - - x(sZ:Jlrl)

This observation follows from repeated applications of induction hypothesis 3)(b).

Observation 2. Ift € F, the canonical representamon oftist= s+ s/t 4+ ... 455 T

k41
mp41 < n, and ¢ € X(t*), then z(t') - c € X(s;°).
We establish Observation 2 by induction on k. If £ = 0, we have
dt) e = a(sP) e
€ x(s)") X(si")
= X(SZUU + SZ”) by hypothesis 3)(a)
C X(szg) by hypothesis 1)(b).
Now assume the observation is valid for k and let ¢ = s77° + s + ... + S?Zijz. Let
r=s"t 484+ 5:'::“ Then r* = ¢* and
z(t)-c = a:(s?;”” + 5;’1” +...+ SZ:‘:I) -c
= z(s)°)- m(sx”) . ~x(52k_’:1) e by Observation 1
= z(s;°)- (CL’(Sml +sp2 4.+ SZ:Tl)) -¢ by Observation 1
= a(sf,°) - (2(r') - ¢)
€ z(s]°)- X(szi) by the induction hypothesis
C z(s)- X(szgﬂ) by hypothesis 1)(b)
= X(s?;o + st by hypothesis 3)(a)
c X(s?) by hypothesis 1)(b).
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Observation 3. Ift € F and £(t) < n then

() F(2(1)) = g(1(1)) and

(b) for all c € X(t*), f(z(t') -¢) = g( (t’)) + f(e).

If ¢ = s for some ¢ and m, conclusion (a) is hypothesis 4) and conclusion b) is trivial.
So assume the canonical representation of t is t = s7°° + 57" + ... + s; 5+ We establish

Observation 3 by induction on k. o
Assume first that k£ = 0. Note that, since z(s]}") € X(s{]') C X (st 1) we have by

mo+1
hypothesis 2)(b) that f(z(s{°) - (s )) f(z(s]) )) +f(a;(s:’;”1)). Thus
f®) = Sl +si)
= flz(sP°) - a(s)) by hypothesis 3)(b)
F(2(s7)) + f(2(s])) as noted above
= g(*y(szg“j)) + g(’y(szl)) by hypothesis 4)
= mog—ip+m;—i ( mod «
= 9((s5" +s17Y)
= g(v(t)

so conclusion (a) holds.
To establish conclusion (b), let ¢ € X(t*). Then c € X(s;") C X(s ﬁﬁﬁ)
flz(t")-¢) f(( (s m”)) + f(¢) by hypothesis 2)(b)
= ('y(smu)) + f(e) by hypothesis 4)
g(v(t)) + f(c) -

Now assume that k& > 0 and the observation is valid for k — 1. We verify conclusion (b)
first. By Observation 1

z(t) = z(s°)-x(s]) .. - x(s]F)

Let r =" + 52 +... + s; %' Then r* = t* and z(t') = z(s"°) - z(+'). By Observation

Tk41

2, z(r') - c€ X(si) C X( motl) g6
f(t)-c) = S )

= f(2(s7,°))

= flz(s"))

= g(y(si))
= (

) e) by hypothesis 2)(b)
’)) + f(¢) by the induction hypothesis

f(x(t)) = f(z(t’) -~z (t*) by Observation 1
= g(’y(t’)) + f(a:(t*)) by conclusion (b)
= g(y(t") +g(y(t*)) by hypothesis 4)

g(v(@)) -

The observations now being established, we proceed with the induction. By conclusion
(7) of Lemma 6.7(applied n + 1 times), pick k(1) € N such that, for each j € {0,1,... ,n}
and each z € Uy(1, 2(s7) -z € X and f(a(s}) - z) = f(2(s}7)) + f(2).
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Let a = min(X\{z(s) : s € F and {(s) < n}) and, by hypothesis 1), pick ¢t € F with
{(t) = n such that a € X(t). Since £(t) = n, pick jo € {0,1,... ,n} such that t* = s7 .

Now a € X(t) = «(t") - X(¢*) so pick ¢ € X(¢*) such that a = z(¢') - ¢. Notice that
¢ # z(t*) (for then one would have a = z(#') - z(t*) = z(t)). Choose by conclusion (6) of
Lemma 6.7, some k(2) € N such that z(¢*)~! - c ¢ Uk(2)-

We observed early in the proof that if A € A and A # 0, then for each i € Z,,
AN f7Y{i}] # 0. Using this fact, for each j € {0,1,... ,n} pick some

z(spH) e X(sT)NF [{n -+ 1}] .

If f(¢) = n—jo+ 1, then we demand that z( ;L‘H) = ¢, which we can do because ¢ €

X(t") = X(s3,)-
Notice that for each j € {0,1,...,n}, z(s ”+1) # z(s}) because f( (s7)) = (7(3?)) =

n — j. So pick k(3) € N such that for each j € {0,1,... n} :v(s?)_l x(s ;L’L ) & Ur(s)-

Pick by conclusion (5) of Lemma 6.7 and hypothesis 0), some k(4) € N such that for
each s € F' with £(s) = n, z(s) - Upa) € X(s).

Let &£ = max{k(1), k(2),k(3), k(4),n}.

Define x(sZi%) =e. For any s € F with £(s) = n+ 1 such that s is not of the form 5?“
for any j € {0,1,... ,n+ 1}, define z(s) = z(s’) - (s*).

Let X(sZi%) = Ug. For j € {0,1,...,n}, let X(s ""'1) = X(s})\(z(s}) - U). For any
s € F with {(s) = n + 1 such that s ¢ {s§*",s7*" ... s7T1} define X(s) = z(s') - X(s*).

We need to verify that each of hypotheses 0) — 5) holds.

To verify hypothesis 0), let s € F with {(s) =n+ 1. If s = 521%, then z(s) = e € U =
X(s)and Uy € A. If j € {0,1,... ,n} and s = 5;7“, then since k > k(3), z(s) ¢ z(s}) - U
so z(s) € X(s). Also X(s "+1) = X(s})\(z(s}) - Ux) € A. If 5 is not of the form 5?+1, then
2(s) = 2(s') - 2(s%) € 2(s") - X (%) = X ().

To complete the verification of hypothesis 0), assume that s is not of the form 5; toaf
s* = 321%, then X(s) = z(s') - X(s"T1) = 2(s') - Ux € A. So assume that s* = s”*! for

some j € {0,1,... ,n}. Let r = &’ —1—3? Then r* = s7 and r’ = s’. Consequently !
X(s) = a(s") - X(s]+)
= a(s') - (X(sP)\(2(57) - Ur))
= (x(s") - X(s7)\(z(s") - z(s}) - Up)
= X(r)\(z(r)-Uy)
€ A.

We verify hypothesis 1)(a) and 1)(b) together. Let s € F with £(s) = n. Assume first
that s = s7. Then s70 = s/T] and s71 = s7*1. Also X(sht]) = Up and Uy C X(s7)
because k > k(4). And X (s"*1) = X (s?)\(z(s?) - Ur) = X(s?)\U because z(s?) = e.

Next assume that s = s for some j € {0,1,... ,n—1}. Thens™1= 5}”‘1 and X(s}”‘l) =

X(sP\(z(s7) - Ug). Also (s70) = s} and (s70)" = 321% so X(s70) = z(s}) X(sﬁi%)
x( ) U and J;( ") -Ur C X( ) because k > k(4).

Now assume the rightmost letter of s is 0, but s # s? (in which case s* = s7). Then

(s70) = s" and (s70)* = spt] so X(s70) = z(s') - X(sp21) = z(s') - Up. Also Uy =
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X(sptl) C X(s7)so z(s') - U C a(s’)- X (s7) = X(s). Now (s71) = s’ and (s 1)* = spt!
so that
X(s71) = z(s) X(sp*)
2(s') - (X(s3)\Up)
= (z(s) - X(sM)\(z(s") - Uk)
= X(s\X(s70).

Finally assume the rightmost letter of s is 1, but s # s7 for any j € {0,1,...,n— 1}
Pick j € {1,2,... ,n—1} such that s* = s7. Then (s70)' =5, (s70)" = 321%, (s71) =
and (s71)* = sj . Thus X(s70) = z(s ) X(SZE) =z(s) - Ur C X(s) because k > k(4).
And

X(s71) = z(s) ~X(3”+1)
= z(s') - (X( N\(z(s7) - Ur))
= (a(5) 'X(SJ \(z(s) - z(s}) - Ug)

)
= X(s)\(z(s) - Ur)
= X(s)\X(s70).

To verify 1)(c), let s € F' with £(s) = n. If s = s}, then s70 = 321% and :n(sﬁﬂ) —e=
z(sl). For any other s, (s70)* = SZI% If the rightmost letter of s is 1, then (s70) = s

and z(s™0) = z(s) w(sZi%) = z(s). If the rightmost letter of s is 0, then (s70) = s’ so
z(s70) = z(s') - x(sZE) = z(s’) and z(s’) = 2(s) by induction because s = s'~00...0.
Hypothesis 2)(a) holds because k > n and hypothesis 2)(b) holds because k > k(1).

Hypothesis 3) holds by definition unless s = s”'H for some j € {0,1,... ,n+1}, in which

case s’ = ¢ and s* = s so that the conclusion is tr1v1al
To verify hypothesis 4), note that f(x(sZﬁ ) = fle) =0 = g('y(s:i%)) (We know

f(e) = 0 because of conclusion (7) of Lemma 6.7.) If j € {0,1,...,n}, then f(:c(s?“)) =
n—j+1=g(y(s;™).

To verify hypothesis 5), recall that we chose ¢ = min(X\{z(s) : s € F' and £(s) < n})
and picked ¢ € F' with () = n such that a € X(¢). We also picked ¢ € X (") = X(s})
such that a = z(¢') - c.

Since k > k(2) we have ¢ ¢ z(s}) - Uy so that ¢ € X(s "+1) and consequently a €
z(t') - X(S?O’Ll). Now, if t = s then t = ¢cand t71 = 5J+1 soa=c€ Xt 1.
f(a):g(’y(t))+1_n—]0+1, thenf( )=n—jo+ 1soz(t™ 1)—1‘(570+1):c—a

Now assume ¢ # s7 . Then (t71) = ¢’ and (t71)" = 5]""'1. Then a = z(¥') - ¢ €
z(t) -X(s?jl) = X(t"1). Assume f(a) = g(’y(t)) + 1. By Observation 3(b) we have that
fla)=g(v(t") + f(c) so f(e) = g(7(1)) + 1 —g(v(t)). Also

g(v(t)) = 9(+(t) + 9(+(t")) = g(+(t")) +n — jo

so f(¢) =n — jo+ 1. Consequently, z(s "+1) = ¢ so that a = z(t') - z(s?o"'l) =z(t71).

We have thus completed the construction of z(s) and X(s) satisfying hypotheses 0)
through 5).

Notice that, if s and ¢ are in F' and z(s) = (), then v(s) = y(¢). To see this, suppose
instead that y(s) # v(¢). Then we may assume without loss of generality that there are u,
v, and w in F such that s = v™17v and ¢t = v~ 0" w. Then z(s) € X(s) C X(uv™1) and
z(t) € X(t) € X(u™0) so z(s) # z(t), a contradiction.

By hypothesis 5), for each a € X there is some s € F' such that ¢ = z(s). Consequently,
we may define

s fa=z(s)e X
h:G_’Bbyh(“):{g() ifaEG(\))(.
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By Observation 3(a), we have that for each s € F, g(h(z(s))) = g(7(s)) = f(z(s)).

That is, g o h = f. Consequently g” o h’|6~ = f|ﬁ~ since these are continuous functions from

0BG to Zy which agree on X. Leth_hf-,f f|~,k'_lc|~,andg_g| Once we have

shown that h?[X] - B, we will know that joh = f.

To see that hP[X ] C B, let p € X. To see that RP(p) € B, let n € N. We show that
V., € h?(p). By conclusion (5) of Lemma 6.7, pick £ € N such that Uy C X(s?). Then
U € p. We claim that h[U] C V,,. So let a € Uy. If a = e, then h(a) =0 € V,, so assume
that a # e and pick ¢t € F such that a = 2(¢). Then 2(t) € X(¢) N X(s}) sot = sp~u for
some u € F. Thus y(t) € V,,. Since 7(t) = h(a) we have h(a) € V,, as desired.

Now we show that & is a homomorphism. Let p,q € X. To see that h(pq) = h( )+ B(q),
that is, that h”(pg) = hP(p)+h¥(q), it suffices to show that hfop, and Ph(q)O oh? agree on X
(and therefore agree at p). To see this, let @ € X. Then (h? 0p,)(a) = hP(aq) = (hPoX4)(q)
and (pps(q) © hP)(a) = h(a) + hP(q) = (An(a) © h#)(q) so it suffices to show that A” o A, and
Ah(a)© h? agree on some member of ¢q. Pick ¢ € F such that a = z(t) and let n = £(t). Now
Vsl € BP(q) so h™ [V, 41] € q. Let b € h~1[V,,41] and pick r € F such that b = z(r). Then
h(b) = 4(r) € V41. Thus, considering the canonical representations of ¢ and r we see that
¥(t +r) = v(t) + v(r) and, using Observation 1, z(¢ + r) = z(¢) - z(r). Consequently

(W o X)(b) =

(
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Since h is a homomorphism and trivially g is a homomorphism, we have that f~ is a
homomorphism. Define 7 : Zo, — X by 7(i) = p;. (We know each p; € X by conclusion
(1) of Lemma 6.7.) By conclusion (3) of Lemma 6.7, 7 is a homomorphism.

Thus we have established that the following diagram commutes and that each of the
listed functions is a homomorphism.

R\fyBN

Z<—Z

D

Now consider the homomorphism kohor. Since the sum in Z, of 1 with itself o times
is 0, the sum in Z,2 of (ko h o 7)(1) with itself o times is 0 so (lc oho 7)(1) = i for some
i€{0,1,... ,&— 1} and consequently (uokohor)( ) =0. But

[
e
—
3
=

by conclusion (8) of Lemma 6.7. This contradiction completes the proof. O
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As we have previously noted, in [67], Zelenjuk showed that in a countable commutative
group with no nontrivial finite subgroups, one has for each finite subgroup ¢ of 3G and each
a € G, ap # p and hence by Theorem 6.10, ¥ must be a singleton. Dona Strauss observed
in a personal communication that one does not need the commutativity assumption.

6.11 Lemma. Let G be a group with no nontrivial finite subgroups and let C' be a finite
subgroup of BG. Then for all a € G\{e}, aC # C.

Proof. Let H = {z € G : 2C = C}. Given z € H, one has that C = 27'C so z7! € H.
And, if z,y € H, then zyC' = zC = C. So H is a subgroup of G. We claim in fact
that H = {e}. So suppose instead that H # {e}. Then, since G has no nontrivial finite
subgroups, H must be infinite and consequently there must be some z # y in H such that
ze = ye, where ¢ is the identity of C. Let a = y~'z. Then a € G\{e} and ae = ¢.

Since a # e we have for each z € G that A\,(z) # z. Pick by [20, Lemma 9.1] sets Ag, A1,
and Ay which partition G such that A; N A,[4;] = 0 for each ¢ € {0,1,2}. Pick : € {0,1,2}
such that 4; € ¢. Then a-A; €ae =€ so A; N (a- A;) # 0, a contradiction. O

Shortly after the above lemma was obtained, John Pym noted the following result (in a
personal communication). It is somewhat stronger than Lemma 6.11 and its proof has the
virtue of being self contained.

6.12 Lemma. Let GG be a group, let C' be a finite subgroup of G, and let a € GG such that
a generates an infinite subgroup of G. Then aC # C.

Proof. Suppose instead that aC = C. Let X = {a” : n € Z} be the infinite subgroup of G
generated by a and let A be a set consisting of one element of each right coset Xg of X.
Then

(1) form#ninZ,a"ANa™A=10

(2) G =Upez a4 .

Thus we may define 7: G — Z by g € a9 A.

Let m = |C|+1 and define, for i € {0,1,... ,;m—1}, D, ={9 € G:1(9) =i ( mod m)}.
Then {Di 1€ {0,1,...,m— 1}} partitions 3G into m cells. Further, given any p € 3G,
if p € D;, the ap € D;41 (where the addition is in Z,,).

Choose any p € C. One thus has that p,ap,a’p,... ,a
C, a contradiction. O

m=1p are m distinct members of

6.13 Corollary. Let G be a countable group which has no nontrivial finite subgroups.
Then SG has no nontrivial finite subgroups.

Proof. Suppose that SG has a nontrivial finite subgroup @. Then @ is not contained in G.
By Theorem 4.15 we have that SG\G is an ideal of 3G so one has that ¢ C SG\G. Thus
by Theorem 6.10, it suffices to show that for each a € G\{e}, ap # . This follows from
Lemma 6.11 or Lemma 6.12. O

Note that the requirement that G have no nontrivial finite subgroups is needed in Corol-
lary 6.13 in the event that G is commutative if one wants to conclude that SG\G has
no nontrivial finite subgroups. Indeed, given any subgroup H of G and any idempotent
¢ € BG\G one has, since H is contained in the center of SG, that H - ¢ is a subgroup
of SG\G which is isomorphic to H. We do not know whether there can be a countable
noncommutative group GG which has a nontrivial finite subgroup, but 3G\G does not.



26 NEIL HINDMAN

7. IDEMPOTENTS AND ORDER

We have seen in Theorem 4.6 that idempotents in S exist, and in fact that there is a
minimal idempotent below any idempotent (Theorem 4.14). But for all we know, all idem-
potents of S may be minimal. In fact this is possible. For example, let S be an infinite
(discrete) left zero semigroup (that is zy = « for all z and y in S). Then 45 is also a left
zero semigroup. (Given p,q € S, pg = p-lim g g-limycg zy = plimyeg g-limyecg © =
p-lim,c ¢ # = p.) Consequently, K(3S) = 35, and all members of 3S are minimal idempo-
tents.

We shall see now some reasonable conditions which allow us to conclude first that non-
minimal idempotents exist and second that they are plentiful. The following notion is
borrowed from topological dynamics. The term piecewise syndetic originated in the context
of (N,+). In (N, +), a set A is piecewise syndetic if and only if there exist a fixed bound &
and arbitrarily long intervals in which the gaps of A are bounded by b.

7.1 Definition. Let S be a semigroup and let A C S. Then A is piecewise syndetic if and
only if there is some H € P;(S) such that for every F' € Pf(S) there is some z € S with
FozClUey t71A.

We should really call the notion defined above right piecewise syndetic. If we were taking
3S to be left topological we would have replaced “F -z C Utth_lA” in the definition of
piecewise syndetic by “z - F' C (J;c g At~ where At~ = {y € S:yt € A}.

7.2 Lemma. Let S be a semigroup and let A and B be subsets of S. If AU B is piecewise
syndetic, then either A or B is piecewise syndetic.

Proof. Pick H € P;(S) such that for every F' € P;(S) there is some z € S with
F .2 C U,y t7'(AUB). Suppose that neither A nor B is piecewise syndetic.

Since A is not piecewise syndetic and H € P;(S), pick F' € P¢(S) such that for every
2 €8, F-w\Uyey t7"A£D.

Since B is not piecewise syndetic and HF € P;(S), pick K € P;(S) such that for every
z€S, K -2\U,egp s'B#0.

Now FK € Ps(S) so pick some z € S such that FK -z C ey t~1(AU B). Pick
z € K such that zz ¢ J,cyp s7'B. Then F - zz\ U,y t7'A # 0 so pick y € F such that
yzz & Usen tTlA.

Now yz € FK so pick t € H such that yzz € t71(A U B). Since yzz ¢ t~1 A, we must
have that tyzz € B. But then, ty € HF so zz € UseHF s~ !B, a contradiction. O

7.3 Theorem. Let S be a discrete semigroup and let I = {p € 3S : for all A € p, A is
piecewise syndetic}. Then I is an ideal of 5S.

Proof. Let A = {A C S : S\A is not piecewise syndetic}. Since S is piecewise syndetic,
0 ¢ A and by Lemma 7.2, A is closed under finite intersections. Thus, by Theorem 2.4
there is some p € 35 such that A C p. Then p € I and consequently, I # 0.

Now let p € I and ¢ € 8S. We need to show that ¢gp € I and pq € I. To see that ¢p € I,
let A € gp so that, by Theorem 4.5, [A], € ¢ and hence [A4], # 0. Pick some a € [A],. Then
a~'A € p so pick some H € P4(S) such that for every F' € P;(S) there is some z € S with
FzClUen t=*(a"A). Then aH € P;(S) and for every F' € P;(S) there is some z € S
with F -2 C Uy, 1A

To see that pg € I, let A € pg so that [A], € p. Pick H € P;(S) such that for every
F € P;(S) there is some z € S with F'- 2 C (J,ey t7'[A];. We claim that for every
F € Pg(S) there is some € S with F'-z C (J,c t71A, so let F € P;(S) be given. Pick
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z € S such that F -z C|J,.y t7'[A4],. For each y € F pick t, € H such that ¢,yz € [4],,

that is, (¢,yz)"'4 € q. Pick z € ﬂyeF (tyyz)~'A. Then F - zz C Usien t~1A. O

In fact, the set I in Theorem 7.3 is the closure of the smallest ideal of 3S. (See Corollary
9.14.)

7.4 Theorem. Let S be a semigroup and assume there is a sequence (2,)5%, in S such
that FP((z,)5%,) is not piecewise syndetic. Then there exists a nonminimal idempotent

in AS.

Proof. By Theorem 5.5, there is an idempotent p € 45 with FP({z,)7>) € p. By Theorem
7.3, I is an ideal of 3S and hence K(3S) CI. Thus p ¢ K(3S). O

In particular, as a consequence of Theorem 7.4 we have that there are nonminimal idem-
potents in (BN, +). (For instance, it is easy to see that F'S({2?")°% ) is not piecewise
syndetic.) The following theorem and its corollaries, obtained in collaboration with D.
Strauss, show that in fact nonminimal idempotents in (SN, +) are plentiful. (Here c is the
cardinality of the continuum.)

7.5 Theorem. Let p be any nonminimal idempotent in (8N, +). Then there exist 2°
nonminimal idempotents each lying immediately below p with respect to the order <.

Proof. [47, Theorem 3.1]. O

7.6 Corollary. Let p be any nonminimal idempotent in (8N, +). Then there exists a
sequence (p, )52, of idempotents such that p; = p and for each n € N, pp41 < pn and pp41
is maximal among all idempotents less than p,.

Proof. [47, Corollary 3.2]. O
7.7 Corollary. Let K = K(fN,+). There are 2° idempotents in clK\K.
Proof. [47, Corollary 3.3]. O

Going up in the order < is much more difficult. For instance, while it seems obvious to
me that no minimal idempotent in (8N, +) can be maximal with respect to <, we cannot
prove that statement.

Theorem 7.5 was generalized by A. Maleki and D. Strauss.

7.8 Theorem. Let S be any discrete, countably infinite, commutative, and cancellative
semigroup. Let p be any nonminimal idempotent in 3S. Then there exist 2° nonminimal
idempotents each lying immediately below p with respect to the order <.

Proof. [55, Theorem 11]. O

Similarly, Maleki and Strauss obtained in the same more general setting results already
known to be true in (8N, +).

7.9 Theorem. Let S be any discrete, countably infinite, commutative, and cancellative
semigroup. Then S has 2° minimal left ideals and 2° minimal right ideals, each of which
has 2° idempotents.

Proof. [55, Theorm 9]. O

The order relation among idempotents reflects a stronger ordering among semi-principal
left ideals of (BN, +), as is shown by the following results of D. Strauss. We define N* =
BIN\N.
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7.10 Theorem. Let p € N*\K (SN, +). There are 2° left ideals of the formN*+q C N* +p
such that there is no r withIN* + ¢ C N* 4+ r C N* 4 p.

Proof. [63, Theorem 1.4]. O
7.11 Theorem. Let (p,)S>, be a sequence in N* such that for each n € N, N* + p, 11 C

=

IN* + p,. Then there is some q € N*\K (BN, +) such that N*+¢q C ()., N* +p, and N* +¢

is maximal with respect to this property.
Proof. [63, Theorem 1.5]. O

Given an idempotent in 35, it is known that p3Sp is a group if and only if p is minimal.
In the same paper, Strauss established that if p is not minimal in SN, then the center of
p+ SN+ p is as small as possible.

7.12 Theorem. Let p be a nonminimal idempotent in (GN,+). Then the center of
p+ AN+ pisp+7Z.

Proof. [63, Theorem 3.3]. O

It is well known that there are many idempotents in (SN, +) whose sums are again
idempotents. For example, if e and f are idempotents in the same minimal left ideal, then
e=e+ fand f = f + e and a similar statement applies to members of the same minimal
right ideal. It is not known whether two idempotents in K (SN, +) which do not belong to
the same minimal left ideal or the same minimal right ideal can have an idempotent sum.
The following result, however, was obtained in collaboration with J. Berglund.

7.13 Theorem. There is a set C' of 2° idempotents in K (3N, +) such that whenever p and
q are distinct members of C', neither p 4+ q nor q + p is an idempotent.

Proof. [15, Theorem 3.4]. O

From Theorem 7.13 we see that the idempotents do not form a subsemigroup of (8N, +),
although they do of course generate a semigroup. Recall that in the proof of Theorem
5.6, we defined the set T' = {p € AN : for all A € p, there is some sequence (z,)7>; such
that F'S((zp)or,) C A}. Tt turned out that T', which is defined additively, is a left ideal of
(AN, -). However, it turns out that I' is not even a subsemigroup of (6N, +). One reasonable
candidate for the smallest compact subsemigroup of (8N, +) containing the idempotents
would seem to be the intersection of all of the kernels of continuous homomorphisms from
(AN, 4) to compact topological groups. In collaboration with D. Strauss, we have seen that
this 1s dramatically not true.

7.14 Theorem. Let C' = {p € BN : whenever ¢ is a continuous homomorphism from
(AN, +4) to a compact topological group, p is in the kernel of p}. For each n € N\{1}, let
Sy, = {p € BN : for every A € p there is some sequence (z:)7—, such that FS({z:)}—,) C A}.
Then C and each S,, are compact subsemigroups of (SN, +) containing the idempotents
and

L.CS3C S .

Proof. [49, Lemma 2.3, Theorem 3.9, and Theorem 3.13]. O

8. IDEALS AND CANCELLATION

We saw in Theorem 7.3 that {p € 55 : for all A € p, A is piecewise syndetic} is an ideal
of 3S. Generalizing a notion of density introduced by Polya in [57], H. Umoh introduced
another notion of largeness and showed that it, too, determines an ideal.
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8.1 Theorem. Let S be any discrete, countably infinite, commutative, and cancellative
semigroup and enumerate S as {a, : n € N}. Given A C S, define M(A) = sup{a > 0: for
all a € S and alln € N, there exist z € aS and m > n such that |[ANz-{a1,as,... ,amn}| >
am}. Let A= {pe S : for all A€ p, M(A) > 0}. Then A is an ideal of 5S.

Proof. [65, Theorem 3.3]. O

Recall that we have promised to present in Corollary 9.14 the result that the ideal I of
Theorem 7.3 is in fact the closure of the smallest ideal of (8N, +), so that this closure is an
ideal.

A question arises as to whether the ideals K (SN, +) and its closure are prime (i.e., if
p+ ¢ is an element then either p or ¢ is) or semiprime (i.e., if p+ p is an element, then so is
p). The following result, obtained in collaboration with D. Strauss, does not answer either
question, but shows that the answers are the same.

8.2 Theorem. Let K = K(fSN,+). Then K is prime if and only if it is semiprime. Likewise
clK 1is prime if and only if it is semiprime.

Proof. [48, Theorem 6]. O

In a similar vein, it was shown (again in collaboration with D. Strauss) that it is consistent
with ZFC that there are idempotents which are themselves “prime”. That is, they can be
written as sums in only trivial ways. In fact, such idempotents can be found very close to
(that is sharing any fewer than ¢ members with) any given idempotent.

8.3 Theorem. Assume Martin’s Axiom, let p be an idempotent of (AN, +), and let A C p
such that | A| < c. Then there is an idempotent q such that A C q and whenever ¢ = r + s,
one has that r,s € q + 7Z.

Proof. [45, Theorems 4.7 and 5.5]. O

Cancellation in 3S has been extensively studied. (See the earlier survey [38].) Some new
results have been obtained by M. Filali. One should notice the differences in the hypotheses.
Weak p-points of SS\S (that is, points not in the closure of a countable subset of 3S\S)
are known to exist in ZFC [53], while it is consistent that p-points of #S\S (that is points
such that the intersection of any countable set of neighborhoods is again a neighborhood)
do not exist.

8.4 Theorem. Let S be a discrete infinite cancellative semigroup. The weak p-points of
BS\S that are in the closure of a countable subset of S are right cancellable in $S.

Proof. [26, Theorem 3]. O

8.5 Theorem. Let S be a discrete infinite cancellative semigroup. The p-points of 35\S
that are in the closure of a countable subset of S are left cancellable in 3S.

Proof. |27, Theorem 3]. O

9. CoNNEcTIONS WITH TOPOLOGICAL DYNAMICS

We have already defined the notion of “piecewise syndetic” (Definition 7.1).

9.1 Definition. Let S be a semigroup. A subset A of S is syndetic if and only if there is
some H € P;(S) such that S =J,c5 t7'A.

Again, the definition of “syndetic” depends on the choice of continuity for 3S. If we had
chosen to make 35S left topological, we would have required S = UteH At~1,

We extend the notion of “dynamical system”, which is often defined only in the case that
S is a group and X is a compact metric space. (We remind the reader that we are assuming
that all hypothesized topological spaces are Hausdorff.)
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9.2 Definition. A topological dynamical system is a pair (X, (Ts)ses) where
(1) X is a compact space,
(2) S is a semigroup,
(3) for each s € S, T is a continuous function from X to X, and
(4) for each s,t € S, Ts 0 Ty = Ts.

9.3 Definition. Given a topological dynamical system (X, (T;)ses), a point z of X is a
uniformly recurrent point of X if and only if for every neighborhood U of z, {s € S : Ts(z) €
U} is syndetic.

There is a standard notion of upper density for subsets of N. That is, given A C N,
- An{L2,...
d(A) = limsup [AN{L2,...

n—00 n

importance of the set {p € SN : for all A € p, d(4) > 0} was established. It and its
complement in N* are both left ideals of both (N, +) and of (AN, ), and hence N is the
center of each of these semigroups. M. Blumlinger has recently established a connection
between this set and the Lévy group of permutations (which is the group G defined in
Theorem 9.4). Given a permutation o of N we will let T, be the continuous extension of ¢

from SN to SN
9.4 Theorem. Let

. In early research, reported in my first survey [35], the

k 1,2,... ok
G = {0 : 0 is a permutation of N and lim Itk € {1,2, i} ol )>n}|:

n— 00 n

0}

and let A = {p € BN : for all A € p, d(A) > 0}. Then A = {p € N* : p is a uniformly

recurrent point for G}.
Proof. [18, Theorem 4]. O

It is well known that in any compact right topological semigroup, any two minimal
left ideals are homeomorphic to each other. (See [16].) A topological characterization of
minimal left ideals of SN that was discovered by B. Balcar and A. Blaszczyk is presented
in Corollary 9.7.

9.5 Definition. Let X be a compact space. The Gleason space of X is the Stone space of
the Boolean algebra of all regular open subsets of X.

9.6 Theorem. Let f: N — N be a one to one function which has at most finitely many
finite orbits. Every closed nonempty subset of SN\N which is minimal invariant with respect
to f? is homeomorphic to the Gleason space of {0,1}*.

Proof. [4, Theorem 2]. O

9.7 Corollary. All minimal left ideals of (N, +) are homeomorphic to the Gleason space
of {0,1}°.

Proof. [4, Corollary to Theorem 2]. O

Separate contrasts to Corollary 9.7 are given by the following two results, obtained in
collaboration with D. Strauss.

9.8 Theorem. Let S be a discrete, countably infinite, commutative, cancellative semi-
group. Then there are 2° homeomorphism classes of minimal right ideals of 3S.

Proof. [50, Theorem 1 and Theorem 5]. O
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9.9 Theorem. Let p and q be nonminimal idempotents in (SN, +). Then there is no
continuous homomorphism from N + p onto N + q.

Proof. [50, Theorem 2]. O

It is well known that in any compact right topological semigroup, maximal groups which
are contained in the same minimal right ideal are topologically and algebraically equivalent.
(See [16].) The following result, obtained in collaboration with D. Strauss, provides a
significant contrast.

9.10 Theorem. Let S be a commutative discrete semigroup and let L be a minimal left
ideal of S. If S is infinite, then the maximal subgroups of L lie in at least 2° homeomorphism
classes.

Proof. [50, Theorem 3]. O

Recall that, if (T,0) is a semigroup of continuous functions from a topological space X
to itself, then the enveloping semigroup of T is the closure of T in the product space of
all functions from X to X. The following theorem was obtained in collaboration with J.
Lawson and A. Lisan. (We do not know whether these statements hold in (SN, +).)

9.11 Theorem. Let S be discrete. The following statments are equivalent.
(a) Whenever ¢ and r are distinct points of 3S, there is some p € K(3S) such that
qp # rp-

(b) Whenever L is a minimal left ideal of 35, the enveloping semigroup of { A, IS €S}

is topologically isomorphic to 3S.
Proof. [39, Theorem 2.5]. O
We extend the notion of “piecewise syndetic” to apply to a family of subsets of S.

9.12 Definition. Let (S,:) be a semigroup and let A C P(S). Then A is collection-
wise precewise syndetic if and only if there exist functions G : Py(A) — Ps(S) and
z : Pp(A) x Pg(S) — S such that for all FF € P(S) and all F and H in Ps(A) with
F CH one has F - z(H,F) C LG_J(}_)t_l(ﬂf).

t€e

Note that a subset A is piecewise syndetic if and only if {A} is collectionwise piecewise
syndetic. An alternate characterisation is: A is collectionwise piecewise syndetic if and only

if there exists a function G : P;(A) — P;(S) such that
(v (GF) T (NF):y €S and F € Py(A)}

has the finite intersection property. (Here {y‘l(G(}"))_l(ﬂ Fy= U vy ¢t 'NF))
teG(F)

The following characterization of sets contained in members of K(3S) was obtained in
collaboration with A. Lisan.

9.13 Theorem. Let S be a semigroup and let A C P(S). There exists some p € K(4S)
such that A C p if and only if A is collectionwise piecewise syndetic.

Proof. [42, Theorem 2.1]. O
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9.14 Corollary. Let S be a semigroup. Then c/K(3S) = {p € 5S : for all A € p, A is
piecewise syndetic}.

Proof. Let I = {p € BS : for all A € p, A is piecewise syndetic}. Then we saw in Theorem
7.3 that I is an ideal of 55, and consequently K (3S) C I and, since [ is closed, ¢K (3S) C I.
To see that I C clK(3S), let p € I and let A € p. Then A is piecewise syndetic so {A} is
collectionwise piecewise syndetic so pick, by Theorem 9.13, some ¢ € AN K(8S). O

Theorem 9.13 also allows us to characterize the closure of K(3S) with respect to other
finer topologies on 35S.

9.15 Definition. Let X be a topological space and let k¥ be an infinite cardinal. The
k-topology on X 1is the topology with basis consisting of all intersections of at most &
members of the original topology on X.

It is known that there are members of /K (8N, +) which are not sums of two members
of N* and there are points of c£K (8N, +) at which right cancellation holds. By contrast,
we have the following, obtained in collaboration with A. Lisan.

9.16 Theorem. Let M be the closure of K (SN, +) in the w-topology on fN. Then M C
N* + N* and right cancellation fails at each point of M.

Proof. [42, Theorem 3.3 and Corollary 3.4]. O

We have not been able to show that the set M of Theorem 9.16 is in fact distinct from
K(BN,+), but would be very surprised if it is not.

Points at which joint continuity holds in SN are known to be rare. (See the earlier survey
[35].) Recent results of I. Protasov extend this knowledge considerably.

9.17 Theorem. Let G be a discrete countable abelian group with a finite Boolean sub-
group. If (p,q) € G x BG and - is jointly continuous at (p,q), then either p or ¢ is in
G.

Proof. [58, Theorem 4]. O

9.18 Theorem. Let GG be a discrete abelian group. If p € BG and - is jointly continuous
at (p,p), then p € G.

Proof. [58, Theorem 5]. O

A contrast to Theorems 9.17 and 9.18 is provided by the following result, obtained in
collaboration with J. Baker and J. Pym.

9.19 Theorem. The operation + on (N is jointly continuous with respect to the w-
topology on GN.

Proof. [2, Corollary 3]. O

A major result of D. Strauss (featured in the survey [38]) was the fact that N* does not
contain a topological and algebraic copy of SN [62]. In collaboration with D. Strauss, this
result has recently been extended to show that the only copies of N* in N* are the trivial
ones.

9.20 Theorem. If ¢ : N* — N* is a continuous one to one homomorphism then there is
some k € N such that for all p € N*, ¢(p) = k - p.

Proof. [46, Theorem 3.3]. O
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10. ARITHMETIC IN 3S AND RAMSEY THEORY

The relationship between equations in 4S5 and Ramsey Theory is illustrated by the proof
of the Finite Product Theorem (Theorem 5.2), wherein the existence of a solution to the
equation p - p = p, yields the existence of F'P({z,)5% ) contained in one cell of a partition.
In other cases, combinatorial constructions show that certain equations cannot be solved.
Such is the case with the following result of B. Balcar and P. Kalasek.

10.1 Theorem. There do not exist p,q € SN such that ¢+ p = p and 2¢ + p = p.
Proof. [5, the Proposition on page 527]. O

Notice that here, as before, by 2¢ one means the operation in (AN, -), rather than ¢ + g.
In [5], Balcar and Kalasek remark without proof that for any p € SN\N, p 4+ p # 2p. Since
N C Z, this fact is a consequence of the following more general result of I. Protasov.

In an arbitrary semigroup (S, +), one has the usual meaning of 2z = # + = and then can
define for p € 35, 2p = p-lim, ¢ 2. (This then agrees with the product 2p in (8N, +).)

10.2 Theorem. Let (G, +) be a discrete abelian group and let p € 3G\G. Then p+p # 2p.
Proof. [58, Theorem 3]. O

Soon after the original proof of the Finite Sum Theorem, P. Erdos asked whether it is
always possible, given a two cell partition of N, to find one cell and an infinite subset all of
whose “multilinear expressions...(where each variable occurs only once)” are in that cell. Tt
has been known for some time that this is not possible. In fact, one can partition N into two
cells in such a way that one cannot get a sequence (z,)52; with F'S({z,)2 )JUF P({zn)S>,)
contained in one cell. Indeed, there is a partition of N into seven cells so that there is no
sequence (z,)52; with all sums z,, + z,, and products z, - £, with n # m in the same cell.
(See the survey [36].)

However, recently G. Smith has shown that one can get sums of products which are taken
in a restricted fashion in one cell, but that this cell can be made to depend on the number
of terms in the sum.

10.3 Definition. Let (z;):2; be a sequence in N and let n € N. Then

SP,({(z4)21) = {Xp_iIer, x:: F1,Fy, ... Fy
are finite nonempty subsets of N and for each
ke{l,2,... ,n— 1} max Fy, < min Fgy1} .

Thus, for example, zoz4 + 26 + Z10212213 € SP3({24)521).
10.4 Theorem. Let r,n € N and let N = J;_, A;. Then there exist i and a sequence
(#4)2, such that SP,((z:)$2;) C A;.
Proof. [61, Theorem 2.4]. O
10.5 Theorem. Let mj,msy,...,m, be r distinct members of N. There is a partition

{A1,Aa,... A} of N such that whenever i,j € {1,2,...,7} and (2:)$2, Is a sequence in
N with SPp,({2:)52,) C Aj, one hasi=j.

Proof. [61, Theorem 3.17]. O

One may wonder what Theorems 10.4 and 10.5 have to do with arithmetic in SN. The-
orem 10.4 is proved by choosing some p = p-p in SN and picking some A; € p+p+ ...+ p,
where the sum is taken n times. Similarly, Theorem 10.5 shows that, for example, if p-p = p,
then p+p#p+p+p.
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Recently, in conversation with Erd6s, A. Hajnal asked whether for each triangle free
graph G with vertices in N, there must exist a sequence (2,)22; so that whenever F' and H
are distinct finite nonempty subsets of N, {E,¢r 2, Znen 2.} is not an edge of G. (That
is, FS((zn)p2;) is an independent set.)

The motivation for this question can be seen from the fact that it is somewhat stronger
than the two cell version of the Finite Sum Theorem (which is known to imply the full
Finite Sum Theorem). That is, given a partition {A;, As} of N, define a graph G by
EG) = {{:v, y}:z €Ay andy € Ag}. If one has a sequence (z,)52; so that whenever F’
and H are distinct finite nonempty subsets of N, {X,cp #n, Xnecn ©n} is not an edge of G,
then one must have F.S({z,)5%;) C A1 or FS({(zn)n2) C As.

T. Luczak, V. Radl, and T. Schoen [54, Theorem 3] have established a “semi-infinite”
partial affirmative answer to Hajnal’s question, while, in collaboration with W. Deuber, D.
Gunderson, and D. Strauss, the original question has been answered in the negative [23,
Theorem 2.3]. (The details of these results are not presented here because the proofs are
purely combinatorial and hence outside of the bounds that we have set for this paper.)

Fortunately, the negative answer to Hajnal’s question was somewhat slow in coming (since
otherwise we might well have lost interest) and the following affirmative infinite version was
obtained, using properties of an arbitrary idempotent in (8N, +). (Given m € N, a K,, is
a complete graph on n vertices.)

10.6 Theorem. Let p+ p = p € SN and let G be a graph with vertex set contained in N.
Assume there is some m € N\{1,2} such that G contains no K,, and let B € p. There is a
sequence (m;)$2, with F'S((m;){2,) C B such that whenever F, H € P;(N) with FNH = 0,

{Xier mi, Niey mi} ¢ E(G) .

Proof. [23, Theorem 3.17]. O

Of course, except in the most trivial of instances, the semigroup (35S, -) is not commuta-
tive. However, if the semigroup S is not commutative, combinatorial results obtained from
4S5 tend to be quite complicated, or else quite restricted in their validity. We see now some
examples of this phenomenon in results obtained in collaboration with V. Bergelson.

Consider for example van der Waerden’s Theorem. In case (S,-) is a commutative
semigroup, this has a simple formulation (which is, for example, a corollary of Theo-
rem 10.7 below). That is, given any sequence (d,)°>; in S, given ¢,r € N, and given
that S = (J;_, 4i, there exist a € S, 7 € {1,2,...,r}, and d € FP((d,)52,) such that

{a,ad,ad?, ...  ad’} C A;. The general version is not so nice.

10.7 Theorem. Let (S,-) be a semigroup, let {,r € N, let (d,)>, be a sequence in S,
and let S = [J;_, A;. There exist i € {1,2,...,r}, n € N, aj,as,... ,ap41 € S, and
m(l) <m(2) <...<m(n) in N with

{aras - ant1, a1dm(1ya2dm(a) - dimn)antt,

aldgn(l)GQd?n(Z) s dfn(n)an.'_l, e ,aldﬁ%(l)agd%(z) s df),l(n)an+1} g Az .

Proof. [10, Corollary 3.1]. O

Notice that, in Theorem 10.7, the “increment” d has been separated by the a;’s. When
one attempts to bring the increment back together one gets some very restricted results.
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10.8 Theorem. Let (S,-) be a semigroup, let r € N, let (y,)o>, be a sequence in S,
and let S = |J;_, A;. Then there exist i € {1,2,... 7}, and d € FP({y,)22,) such that
{a,da,ad} C A;. If S is a group, then there exist i € {1,2,...,r}, and d € FP((yn)3>;)
such that {da,ad,dad} C A;.

Proof. [11, Corollaries 3.3 and 3.6]. O

The conclusions of Theorem 10.8 are very weak, but as shown in the following theorem,
they are as good as one can get in this generality.

10.9 Theorem. Let GG be the free group on the generators (y,)o>,. There exist r € N and
sets A1, As, ..., A, such that G = |J;_, A; and there do not exist i € {1,2,...,r}, a € G
and d € FP({yn)or,) satisfying any of the following statements:

(a) {a,ad,ad?} C A;.

(b) {a,da,d?a} C A;.

(c) {a,ad,dad} C A;.

(d) {a,da,dad} C A;.

(e) {a,d,ad,da} C A;.

(f) {d,da, ad,dad} C A;.

Proof. [11, Theorem 4.8]. O

We conclude this section with a result from [6], a paper produced in collaboration with
V. Bergelson and A. Blass. The results of this paper were produced using idempotents that
are algebraically related to each other in the Stone-Cech compactification of certain free
semigroups. Most of the results involve the introduction of too much terminology to present
here. The result that we do present is a generalization of a result of H. Furstenberg and
Y. Katznelson [30, Theorem 3.1]. Even here, we must refer the reader to [6] for the precise
definition of d-dimensional subspaces and strong infinite dimensional subspaces.

10.10 Theorem. Let W be the free semigroup on a finite set of generators, let d € N, and
let the collection of all d-dimensional subspaces be partitioned into finitely many pieces.
There exists a strong infinite dimensional subspace of W all of whose d-dimensional sub-
spaces lie in the same piece of the partition.

Proof. [6, Theorem 7.1]. O

11. PARTITION REGULARITY OF MATRICES

In this section we deal with results related to two notions of partition regularity of
matrices. These are “kernel partition regularity” and “image partition regularity”. We
discuss kernel partition regularity first in a rather general setting.

11.1 Definition. Let R be a commutative ring, let u,v € N, let C' be a u X v matrix with
entries from R, let M be a module over R, and let B C M. Then C is kernel partition
regular over B if and only if whevever B is partitioned into finitely many classes, some one
of these classes contains z1,xs,... , 2, with

1 0

T2 0
cl . =

Ty 0

It is an old and famous result of R. Rado’s [60] characterizing those matrices with rational
entries that are kernel partition regular over N. These are precisely the matrices which
satisfy the “columns condition” over (). We present a general definition of the columns
condition that agrees with Rado’s in the case R = Q.
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11.2 Definition. Let R be a commutative ring, let u, v € N, and let C' be a u X v matrix
with entries from R. Then C satisfies the columns condition over R if and only if the
columns ¢3,¢3,...,¢, of C' can be ordered so that there exist m € N and ki, ks, ..., kn
with 1 < k) < ks <...<kmn =vand dy,ds,...,d, € R\{0} such that

(1) dr -3, =0,

(2)if m > 1 and ¢t € {2,3,...,m}, then there exist a1, a24,...,a5,_,+ in R with
Fior - ool
D Ef;kt_l-uci =0, and

(3) if m > 1, then for each n € N, R - dy - I[2,d;" is infinite.

Results obtained in collaboration with V. Bergelson, W. Deuber, and H. Lefmann have
extended Rado’s Theorem in two directions.

11.3 Theorem. Let F' be a finite field, let u,v € N, and let C' be a u x v matrix with
entries from F'. The following statements are equivalent.

(a) For each r € N there is some m € N such that whenever n > m, V is an n-dimensional
vector space over F', and V\{0} is partitioned into r cells, there must exist z1,xs,... 2,
contained in one of these classes with

1 0

T2 0
cl . =

Ty 0

(b) C satisfies the columns condition over F.
Proof. [7, Theorem 3.4]. O

Notice that statement (a) in Theorem 11.3 is not quite the same as saying that C'is kernel
partition regular over V\{0} because the number of cells of the partition is restricted.

11.4 Theorem. Let R be a commutative ring, let u,v € N, and let C' be a u X v matrix
with entries from R. If C' satisfies the columns condition over R, then C' is kernel partition

regular over R\{0}.
Proof. [8, Theorem 2.4]. O

The applications that we present involving image partition regularity all deal with ma-
trices with rational entries and with partitions of N, so we only discuss the notion in this
generality.

11.5 Definition. Let u,v € N and let A be a u x v matrix with entries from (. Then A is
image partition regular over N if and only if whenever r € N and N = J;_, E;, there exist
i€ {l,2,...,r} and ¥ € N such that AZ € E;".

Notice that many of the classical theorems in Ramsey Theory are naturally stated in
terms of the image partition regularity of certain matrices. For example, van der Waerden’s
Theorem says that given any ¢,r € N, whenever N = [ J;_, E;, there exist i € {1,2,... ,r}
and a,d € N such that {a,a +d,a+2d,... ,a+ ¢d} C E;, that is,

a 2+1
(3)este.

10
11
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In other words, van der Waerden’s Theorem is the assertion that for each £ € N, the matrix

10
11
1 2
1 ¢

is image partition regular.
A particular class of matrices has long been known to be image partition regular.

11.6 Definition. Let u,v € N and let A be a u x v matrix with entries from Q. Then A
satisfies the first entries condition if and only if no row of A is 6, the first (leftmost) nonzero
entry of each row is positive, and whenever two rows have their first nonzero entry in the
same column, that entry is the same on both rows.

In [22] W. Deuber showed that matrices satisfying the first entries condition are image
partition regular. In fact he showed a much stronger statement which enabled him to prove
a conjecture of Rado. That is he showed that, given two matrices A and B which satisfy
the first entries condition and given r € N, there is some matrix C' which satisfies the first
entries condition and whenever # € NY (where v is the number of columns of C') and the
entries of C'Z are divided into r classes, there will be one of these classes E and vectors g
and 2 (of the appropriate size) such that all entries of Ay and all entries of BZ are in E.
(See [32] for a more detailed discussion of these results.)

In collaboration with H. Lefmann, Deuber’s Theorem has been extended as follows.

11.7 Theorem. Let (A,)5; enumerate the matrices that satisfy the first entries condition
and for each n, let v(n) be the number of columns of A,. Let V = X o7 NV and for
feV, let (&) = {Xper tn : F € Py(N) and for each n € N, t,, is an entry of A,Z(n)}.
Given any ¥ € V and any r € N, if §(Z) = |J;_, E;, then there exist i € {1,2,... ,r} and
¥ € V such that 8(3) C E;.

Proof. [41, Theorem 2.7]. O

Given that many of the classical results of Ramsey Theory are naturally stated in terms
of the image partition regularity of matrices and given that the problem of characterizing
kernel partition regularity of matrices was solved by Rado in 1933 [60] it is surprising that
the problem of characterizing image partition regularity of matrices has only recently been
solved. The following theorem was obtained in collaboration with I. Leader.

11.8 Theorem. Let u,v € N and let A be a u x v matrix with entries from Q. The
following statements are equivalent.

(a) The matrix A is image partition regular.

(b) Let é1,¢3, ... ,¢y be the columns of A. Then there exist positive rationalsty,ts,... |1,
such that the matrix

-1 0 ... 0
0o -1 ... 0
ti€1 196y ... tyuCy : .
0 0 -1

satisfies the columns condition over ().
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(c) For each f € w’\{0} there exists a positive rational b such that the matrix (b?‘r)
is image partition regular.

(d) There exist m € N and a u X m matrix B which satisfies the first entries condition
such that for each i € N™ there is some ¥ € NV such that AZ = By.

Proof. [40, Theorem 3.1]. O

Notice that the condition given by statement (b) of Theorem 11.8 is effectively com-
putable, so a finite computation suffices to determine whether a matrix is image partition
regular. Notice also that statement (c) of Theorem 11.8 tells us that an image partition
regular matrix can be expanded almost at will and remain image partition regular.

The situation with respect to image partition regularity of infinite matrices is consid-
erably more complicated. Given that, as usual, one is asking questions about N, it is
reasonable to require that an infinite matrix have only finitely many nonzero entries in each
row. With this restriction it is a natural problem to determine which w x w matrices are
image partition regular. (Where the obvious modification to Definition 11.5 is made.)

For example, the Finite Sum Theorem tells us that the matrix

—_O RO RO
==l =)
—m = O OO
[l =i Mo el Ne)

is image partition regular.

A natural conjecture is that any w X w matrix with rational entries and only finitely
many nonzero entries on each row which satisfies the first entries condition should be image
partition regular. Results obtained in collaboration with W. Deuber, 1. Leader, and H.
Lefmann produce a large class of infinite image partition regular matrices and also show
that the above conjecture is wrong. These results ivolve the notion of a Milliken-Taylor
system, named after the Milliken-Taylor Theorem [56, 64] which has a similar flavor.

11.9 Definition. Let @ = (aj,as,...a;) be a finite sequence in N and let (z,)32; be a
sequence in N. Then MT(@,(z,)%%;) = {Z¥_ 1a;: - (Zner, o) : F1, Fa, ..., Fy are finite
nonempty subsets of N and for ¢t € {1,2,... k& — 1}, max F} < min Fy;,}.

Observe that any Milliken-Taylor system MT(d, (z,)5%,) is generated by a matrix. For
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example, if

1200 0
0120 0
102 0 0
1120 0
12 20 0
001 20
010 20
01120 1
012 2 0 R
A=110 0 2 0 and = | o,
101 2 0
102 2 0
110 2 0
1112 0
112 2 0
120 2 0
12 2 2 0

then MT((1,2),(x,)5% ) is the set of entries of AZ.

We define an equivalence relation a2 on the set of finite sequences in N.

11.10 Definition. Let S be the set of finite sequences in N and let ¢ : S — S be
the function which deletes any consecutive repeated terms. (So ¢((1,3,3,1,1,2,2,2)) =
(1,3,1,2).) Given @ and b in S, @ = b if and only if there is a positive rational « such that

a - (@) = e(b).

Statement (a) in the following theorem tells us that the matrices associated with individ-
ual Milliken-Taylor systems are image partition regular, while statement (b) easily allows
us to construct matrices with rational entries and only finitely many nonzero entries on
each row which satisfy the first entries condition but are not image partition regular.

11.11 Theorem. Let @ and b be finite sequences in N.
(a) If @ ~ b, then whenever r € N and N = |JI_, A;, there exist i € {1,2,...,r} and

-

sequences (2,)or; and (y,)o>, in N such that MT(d, (z,)ox,) UMT(b, (y.)0r,) C A;.
(b) If @ % l;, then there exist sets A; and As such that N = A; U Ay and for any
sequence (z,)o>; in N and any i € {1,2}, if MT(d,(z,)2>,) C Ai, then i = 1 while if

MT(b,(zn)o>,) C A;, then i = 2.
Proof. [24, Theorems 3.2 and 3.14]. O

The relationship to arithmetic in SN in Theorem 11.11 is similar to that in Theorems
10.4 and 10.5. For example, if @ = (1,2, 1, 3), to establish conclusion (a) of Theorem 11.11,
one picks p = p+ p € BN and picks A4; € p+ 2p + p + 3p, while conclusion (b) of Theorem
11.11 tells us for example that if p=p+p € SN and ¢ = ¢ + q € SN, then p+ 2p # ¢ + 3¢
(because (1,2) % (1,3)).

12. CENTRAL SETS

The notion of a “central” subset of N was introduced by H. Furstenberg in [29, Chap-
ter 8] based on dynamical systems. The definition depends on the notions of “syndetic”
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(Definition 9.1), “uniform recurrence” (Definition 9.3) and “proximality”. Furstenberg de-
fined proximality in the context of a metric dynamical system as follows. (Recall that a
topological dynamical system was defined in Definition 9.2.)

12.1 Definition. Let (X, (T;)s;cs) be a topological dynamical system where (X, d) is a
metric space and let z,y € X. Then z and y are prozimal if and only if there is a sequence
(sk)72; in S such that klim d(Tsk(a:),Tsk(y)) =0.

Furstenberg then stated that a subset A C N is central if and only if there exist a
topological dynamical system (X, (T, )nen), where (X, d) is a metric space, a point & of X
a uniformly recurrent point y of X such that z and y are proximal, and a neighborhood U
of y such that A= {neN:T,(z) € U}.

Based on the fact that we could prove what we have come to call the Central Sets Theorem
(Theorem 12.11 below) about elements of minimal idempotents while the same theorem
had been proved in (N, +) by Furstenberg for his version of central sets, V. Bergelson and
I defined the notion of central in an arbitrary discrete semigroup as follows.

12.2 Definition. Let S be a semigroup and let A C S. Then A is central if and only if
there is some idempotent p € K(3S) such that A € p.

With the assistance of B. Weiss, Bergelson and I then showed [9, Corollary 6.12] that if
S is a countable semigroup, then A C S is central (as we defined the notion) if and only if
A satisfies Furstenberg’s definition of central, where N is replaced by S.

Recently, S. Hong-ting and Y. Hong-wei showed that with an appropriate extension of
Furstenberg’s definition, the two notions agree in general. Key to this extension was devising
an appropriate generalization of “proximal” to an arbitrary topological dynamical system.

12.3 Definition. Let (X, (7Ts)ses) be a topological dynamical system and let z,y € X.
Then z and y are prozimal if and only if there is some p € 3S\S such that p-lim, 4 Ts(z) =

p-limges Ts(y)-

We need to check that Definitions 12.1 and 12.3 agree in the event that X is a metric
space.

12.4 Lemma. Let (X, (T;)ses) be a topological dynamical system where (X, d) is a metric
space and let z,y € X. The following statements are equivalent.
(a) There is some p € 3S\S such that p-lim,c g T,(x) = p-lim,c 5 T (y).
(b) There is a sequence (s}, in S such that klin;o d(Ts, (2), Ty, (y)) =

yLsy

0.

Proof. Necessity. Let a = p-lim g T;(z) and for each k € IN, let
Up={2€ X :d(z,a) < 1/k} .

Then each Uy is a neighborhood of a@ so {s € S : Ts(z) € U} € pand {s € S : Ts(y) €
Ui} €p,sopick sp e {s€ S :Ts(z) eUptN{s €S :Ts(y) € Ur}.

Sufficiency. We may presume that for each k£ € I, d(Tsk(a:),Tsk (y)) < 1/k. We may
also presume that {s; : k£ € N} is infinite. Choose p € BS\S such that {{s; : & > n} :
n € N} C p. Let a = p-lim,cg Ts(x) (which exists because X is compact). To see that
a = plim,cg T;(y), let U be a neighborhood of a and pick n € N such that {z € X :
d(z,a) < 1/n} CU. Then {s; : k > 2n} €p and {s € S : d(T;(z),a) < 1/(2n)} € p and
{sg:k>2n}N{s€ S:d(Ts(z),a) < 1/(2n)} C{s€ S :Ts(y) eU}. O
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12.5 Theorem. Let S be a semigroup and let A C S. Then A is central if and only
if there exist a topological dynamical system (X,(Ts)secs), a point & of X, a uniformly
recurrent point y of X such that x and y are proximal, and a neighborhood U of y such
that A={neN:T,(z)eU}.

Proof. [52, Theorem 2.4]. O

Notice that as a consequence of Theorem 12.5 one has the nonobvious conclusion that
the dynamical notion of “central” is closed under passage to supersets.
We now introduce some additional terminology due to Furstenberg [29].

12.6 Definition. Let S be a semigroup and let A C S.
( ) A is an IP set if and only if there is some sequence (z,)0%; in S such that
(

FP((zn)pZy) € A
(b) A is an IP* set if and only if for every IP set B, AN B # .
(c) A is a central® set if and only if for every central set B, AN B # 0.

Notice that, by Theorems 5.2 and 5.5, A is an IP set if and only if A is a member of some
idempotent in 3S. Thus A is an IP* set if and only if A is a member of every idempotent
in 3S. (If p = pp and A ¢ p, then S\A € p and hence S\A is an IP set. Likewise, if A is
a member of every idempotent and B is a member of some idempotent, then AN B # §.)
Similarly, A is a central* set if and only if 4 is a member of every minimal idempotent.

In (N, +) central sets are very rich combinatorially. In particular, if A is a central subset
of N and C is a u x v kernel partition regular matrix with entries in @, then there must
exist some # € A? such that CZ = 0. Equivalently, if D is a u x v image partition regular
matrix with entries in @, there must exist some § € NV such that Dy € A%. (See [9, Section
5].)

However, this property of central sets does not extend to all semigroups. In fact, it
does not even extend to (N, -). To see this, consider the matrix (2 —2 1). This matrix
trivially satisfies the columns condition. But according to [9, Theorem 5.3], {z? : z € N} is
not central in (I, -) and any solution to the equation z?y~2z = 1 must have z = (y/z)?.

In collaboration with W. Woan it was determined for a wide class of semigroups (a
class that includes all abelian groups) precisely when central sets hold the same “central”
combinatorial position that they hold in (N,+). In order to be able to use the customary
matrix notation, we assume the operation is written additively in the statement of the next
theorem.

12.7 Theorem. Assume that (S,+) is a commutative subsemigroup of a group and that
for all a, b, and = in S and all d € N, if x = da — db, then ¢ € dS. Then the following
statements are equivalent.
(a) Whenever u,v € N, C'is a ux v matrix with integer entries which satisfies the columns
condition over (), and A is a central subset of S, there exists & € AY such that CZ = 0.
(b) For each d € N, dS is a central* set.

Proof. [51, Theorem 2.6]. O

We were also able to show that in (N, -) central sets remain relatively rich combinatorially.

In the statement of Theorem 12.8, the expression ¢ = T is the obvious multiplicative

1 -1 2
0 3 _2), then the

expression that € = I means that 125" '23? = 1 and 2,325~ = 1.

translation of the expression C#¥ = 0. For example, if C' = (
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12.8 Theorem. Let u,v € N and let C' be a u X v matrix with entries from Z. Then the
following statements are equivalent.

(a) Whenever A is a multiplicatively central subset of N, there exists £ € AY such that
= T
v = 1.

(b) C satisfies the columns condition over Z with each d; = 1 in Definition 11.2.

Proof. [51, Theorem 3.10]. O

We have already seen some interesting interactions among the operations in the algebraic
system (AN, +,-). (See for example Theorem 5.6.) In collaboration with V. Bergelson, it
was shown that additively central sets in N need not have any multiplicative structure,
while multiplicatively central sets must have some, but not too much, additive structure.

12.9 Theorem. (a) There is an additively central set in N which does not contain any
{z,y,zy}.

(b) Given any multiplicatively central subset A of N, for each m € N there is a sequence
(zn)™ | such that FS({z,) ;) C A.

(c) There is a multiplicatively central set in N which does not contain any FS({z,)5%,).

Proof. [13, Theorems 3.4, 3.5, and 3.6]. O

We have already introduced the notions of IP, IP* central, and central* sets. By their
very definitions, examples of IP sets in (N, +4) are easy to come by; given any sequence
(2n)52, in N any set containing F'S({z,)5%) is an IP set. And it is easy to see that for
any m € N, mN is an IP* set, and hence a central* set, and hence a central set. (Given
any sequence (z,)52, in N, choose a set F' € Py (IN) such that |F| = m and for all n, k € F,
zn = ¢, ( mod m). Then ¥,cp z, € mN.) In collaboration with V. Bergelson and B.
Kra, the following method of generating many explicit examples was obtained.

Sets of the form {|na + ] : n € N}, where o and 7 are real numbers and | | is the
greatest integer function, have been extensively studied and have some very interesting
properties. See the introduction to [14] for a discussion of the history of these sets.

12.10 Theorem. Let a > 0 and let 0 < v < 1 with v > 0 if « is irrational. Define
¢g:N— N by g(n) = |na++v]|. Let ACN.

(a) If A is an IP* set in (N, +4), then so is g[A].

(b) If A is a central® set in (N, +), then so is g[A].

(c) If A is a central set in (N,+), then so is g[A].

(d) If A is an IP set in (N, +), then so is g[A].

Proof. [14, Theorem 6.1]. O

Notice that one may iterate applications of g, with or without changes in the parameters
« and 7, to obtain many examples of the kinds of sets mentioned.

We have already pointed out that central sets have a rich combinatorial structure. Most
of this structure can be derived from the Central Sets Theorem, which we state here for a
commutative semigroup. (There is a noncommutative version as well, but it is considerably
more complicated to state-see [10, Theorem 2.8].)

12.11 Theorem. Central Sets Theorem. Let S be a commutative semigroup and let
® be the set of all functions f : N — N for which f(n) < n for all n € N. Let A be a central
subset of S, and for each £ € N, let (yen)22, be a sequence in S. There exist a sequence
(an)22, in S and a sequence (Hp)52, in Ps(N) such that max H, < min H,41 for each
n € N and such that for each f € ®, FP({an ~t€1;[I Yi(n)t)ne1) C A.

Proof. See [43, Theorem 2.8] for a proof of the Central Sets Theorem in this form. O
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Recall that an IP set is defined in terms of finite products and characterized (via Theo-
rems 5.2 and 5.5) by the property of belonging to some idempotent. Given that the known
combinatorial conclusions about central sets are derivable from Theorem 12.11, it was thus a
natural question as to whether this theorem in fact characterizes central sets. This question
was recently answered in the negative in collaboration with A. Maleki and D. Strauss.

12.12 Theorem. There is a subset A of N which satisfies the conclusion of the Central
Sets Theorem in (N, +) but is not a central set.

Proof. [43, Theorem 4.4]. O

In the process of solving this problem, we did arrive at a combinatorial property which
does characterize central sets. We conclude this paper with a presentation of this combina-
torial characterization of central sets.

The characterization uses the notion of a “tree”. In the definition we think of members
of w as ordinals, so that 0 = ) and for n € N, n = {0,1,... ,n — 1}.

12.13 Definition. T is a tree in A if and only if 7" is a set of functions and for each f € T,
domain(f) € w and range(f) C A and if domain(f) = n > 0, then fj,_; € T T'is a tree if
and only if for some A, T is a tree in A.

The last requirement in the definition is not essential. We include the requirement in
the definition for aesthetic reasons — it is not nice for branches at some late level to appear
from nowhere.

12.14 Definition. (a) Let f be a function with domain(f) = n € w and let z be given.
Then f~z = fU{(n,z)}.

(b) Given atree T'and f €T, By ={z: fTz € T}.

(c) Let S be asemigroup and let A C.S. Then T'is a FP-tree in A if and only if T'is a tree
in A and for all f €T, By = {Il;cr g(t) : g € T and f C g and § # F C dom(g)\dom(f)}.

The combinatorial characterization of central sets uses the notion of “collectionwise piece-
wise syndetic” (Definition 9.12).

12.15 Theorem. Let S be an infinite semigroup and let A C S. Statements (1) and (2)
are equivalent and are implied by statement (3). If S is countable, then all three statements
are equivalent.
(1) A is central.
(2) There is a FP-tree T' in A such that {By : f € T'} is collectionwise piecewise syndetic.
(3) There is a decreasing sequence (Cy, )32, of subsets of A such that
(a) for each n € N and each z € C,,, there exists m € N with C,, C z7'C,, and
(b) {Cy, : n € N} is collectionwise piecewise syndetic.

Proof. [43, Theorem 3.8]. O
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