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Abstract. We investigate when the set of finite products of distinct terms of a sequence
〈xn〉∞n=1 in a semigroup (S, ·) is large in any of several standard notions of largeness.
These include piecewise syndetic, central , syndetic, central* , and IP*. In the case of a
“nice” sequence in (S, ·) = (N, +) one has that FS(〈xn〉∞n=1) has any or all of the first

three properties if and only if {xn+1 −
∑n

t=1
xt : n ∈ N} is bounded from above.

1. Introduction

Given a discrete semigroup (S, ·), the operation can be extended to the Stone-Čech
compactification βS of S so that (βS, ·) is a right topological semigroup with S contained
in its topological center. (That is, given any p ∈ βS, the function ρp : βS → βS defined
by ρp(q) = q · p is continuous and, given any x ∈ S, the function λx : βS → βS defined
by λx(q) = x · q is continuous.) Many powerful applications of this structure to Ramsey
Theory have been obtained, beginning with the proof in 1975 by Fred Galvin and Steven
Glazer of the Finite Sums Theorem. This theorem, which had been conjectured by Ron
Graham and Bruce Rothschild [7], deals with the additive structure of the set N of
positive integers. Given a sequence 〈xn〉∞n=1 in N, FS(〈xn〉∞n=1) = {

∑
n∈F xn : F ∈

Pf (N)}, where for any set X, Pf (X) is the set of finite nonempty subsets of X.

1.1 Theorem (Finite Sums Theorem). Let r ∈ N and let N =
⋃r

i=1 Ai. There exist
i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ⊆ Ai.

The Galvin-Glazer proof of the Finite Sums Theorem used the fact, due to Robert
Ellis [5, Corollary 2.10], that any compact right topological semigroup contains an
idempotent. The Finite Sums Theorem follows immediately from the following more
general fact about sequences in an arbitrary semigroup (S, ·). When the operation is
written multiplicatively, we write FP (〈xn〉∞n=1) = {

∏
n∈F xn : F ∈ Pf (N)} where the

products are taken in increasing order of indices.
1 This author acknowledges support received from the National Science Foundation via Grant

DMS-0554803.
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1.2 Theorem (Galvin). Let (S, ·) be a semigroup and let A ⊆ S. There exists an
idempotent p of βS with p ∈ c`A if and only if there is a sequence 〈xn〉∞n=1 in S with
FP (〈xn〉∞n=1) ⊆ A.

Proof. [8, Theorem 5.12].

Theorem 1.1 is an immediate consequence of Theorem 1.2 because, if p ∈ βS, r ∈ N,
and S =

⋃r
i=1 Ai, then there is some i with p ∈ c`Ai.

As a consequence of Theorem 1.2, sets which contain FP (〈xn〉∞n=1) are interesting
objects. The terminology in the following definition is due to Hillel Furstenberg [6], who
viewed an IP-set as an “infinite dimensional parallelepiped”.

1.3 Definition. Let (S, ·) be a semigroup. A set A ⊆ S is an IP-set if and only if there
is some sequence 〈xn〉∞n=1 with FP (〈xn〉∞n=1) ⊆ A.

Idempotents in βS are behind another very important notion of largeness, namely
central sets. These sets are guaranteed to have substantial combinatorial structure. For
example, a central subset of N must contain solutions to any partition regular system of
homogenous linear equations with rational coefficients. See [8, Part III] for much more
of the structure that must be present in central sets.

A subset J of a semigroup (T, ·) is a left ideal if and only if J 6= ∅ and T · J ⊆ J ,
a right ideal if and only if J 6= ∅ and J · T ⊆ J , and a two sided ideal if and only if
it is a left ideal and a right ideal. Any compact right topological semigroup (T, ·) has
a smallest two sided ideal denoted K(T ) and K(T ) =

⋃
{L : L is a minimal left ideal

of T} =
⋃
{R : R is a minimal right ideal of T}. Given a minimal left ideal L and a

minimal right ideal R, L ∩ R is a group. An idempotent p in T is minimal if and only
if p ∈ K(T ). Notice that if p ∈ K(T ), then Tp is a minimal left ideal of T and pT is a
minimal right ideal. (See [4, Chapter 1] or [8, Chapter 2].)

1.4 Definition. Let (S, ·) be a semigroup. A set A ⊆ S is a central set if and only if
there is an idempotent p ∈ K(βS) ∩ c`A.

Thus a subset of S is central if and only if it is a member of a minimal idempotent.

Central sets were originally defined by Furstenberg [6] in terms of notions from
topological dynamics. See [8, Section 19.3] for a derivation of the equivalence of the
original definition and the one given above and see the notes to that chapter for the
history of this derivation.

We introduce now a stronger notion.

2



1.5 Definition. Let (S, ·) be a semigroup. A set A ⊆ S is a strongly central set if and
only if for every minimal left ideal L of βS, there is an idempotent p ∈ L ∩ c`A.

The problem that originally caught our attention was the question of when in (N,+)
was FS(〈xn〉∞n=1) sufficiently large that its closure met the smallest ideal of βN? And
when was it even larger, that is when did the closure contain an idempotent in the
smallest ideal? It turns out that for sufficiently civilized sequences the answers to those
two questions are the same. We shall present these answers in Section 4.

We say that a sequence 〈xn〉∞n=1 in a semigroup (S, ·) satisfies uniqueness of finite
products provided that whenever F,G ∈ Pf (N) and

∏
t∈F xt =

∏
t∈G xt, one must have

F = G. (If the operation is denoted by +, we call this property uniqueness of finite
sums.)

We remark that there is a simple characterization of the abelian groups (G, ·) with
identity 1 for which FS(〈xn〉∞n=1) is as large as possible. Such a group G contains
a sequence 〈xn〉∞n=1 satisfying uniqueness of finite products such that FS(〈xn〉∞n=1) =
G \ {1} if and only if G has no elements of odd finite order [10, Corollary 4.8].

We shall also be interested in the following notions. Given A ⊆ S and x ∈ S we
write x−1A = {y ∈ S : xy ∈ A}.

1.6 Definition. Let (S, ·) be a semigroup and let A ⊆ S.

(a) The set A is thick if and only if for all F ∈ Pf (S) there exists x ∈ S such that
Fx ⊆ A.

(b) The set A is syndetic if and only if there exists G ∈ Pf (S) such that S =⋃
t∈G t−1A.

(c) The set A is piecewise syndetic if and only if there exists G ∈ Pf (S) such that⋃
t∈G t−1A is thick.

(d) The set A is central* if and only if whenever B is a central subset of S, A∩B 6= ∅.
(e) The set A is IP* if and only if whenever B is an IP-set in S, A ∩B 6= ∅.

Notice that in (N,+) a set A is thick precisely when it contains arbitrarily long
blocks, syndetic precisely when there is a bound on the gaps of A, and piecewise syndetic
precisely when there is a bound b and arbitrarily long blocks of N in which A has no
gaps longer than b.

All of these notions have simple algebraic characterizations in terms of βS.

1.7 Lemma. Let S be a semigroup and let A ⊆ S.

(a) The set A is syndetic if and only if for every left ideal L of βS, L ∩ c`A 6= ∅.
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(b) The set A is thick if and only if there is some left ideal L of βS with L ⊆ c`A.

(c) The set A is piecewise syndetic if and only if K(βS) ∩ c`A 6= ∅.
(d) The set A is IP* if and only if c`A contains all of the idempotents of βS.

(e) The set A is central* if and only if c`A contains all of the idempotents of K(βS).

Proof. [2, Lemma 1.9].

As a consequence of Lemma 1.7 one sees easily that the following pattern of im-
plications holds. Consult the table on page 24 of [2] to see that in (N,+) none of the
missing implications is valid, except for the ones involving strongly central . The example
given there which is central but neither thick nor syndetic is obviously also not strongly
central. We will give an example of a subset of N which is strongly central but neither
central* nor thick at the conclusion of this section.

IP*
↓

central*
↓

strongly
central thick

↙ ↓ ↙
syndetic central
↓ ↙ ↘

piecewise syndetic IP

We shall show in this paper that under many circumstances, if an IP-set possesses
one of these stronger properties, it must possess others as well. For example, we shall
show in Section 2 that for any left cancellative semigroup S, an IP-set which is piecewise
syndetic must in fact be central.

For most of our other results we restrict our attention to “nice” sequences. (To
quote John Kelley [11, page 112] we are following the “time-honored custom of re-
ferring to a problem we cannot handle as abnormal, irregular, improper, degenerate,
inadmissible, and otherwise undesirable.”)

Section 2 will deal with arbitrary semigroups. In Section 3 we will show that nice
sequences are relatively easy to come by. We shall restrict our attention in Section 4
to (N,+). Many of the results in this paper are based on results in the first author’s
dissertation [1].

4



The time has come to worry about what the points of βS are. We take these points
to be the ultrafilters on S. We identify the principal ultrafilters with the points of S,
and thus pretend that S ⊆ βS. Given a subset A of S, A = {p ∈ βS : A ∈ p}. While it
is true that A = c`A (so that p ∈ c`A if and only if A ∈ p), the more important fact is
that {A : A ⊆ S} is a basis for the open sets of βS. Given p, q ∈ βS and A ⊆ S, A ∈ p ·q
if and only if {x ∈ S : x−1A ∈ q} ∈ p. (If the operation is written +, we write that
A ∈ p+ q if and only if {x ∈ S : −x+A ∈ q} ∈ p, where −x+A = {y ∈ S : x+y ∈ A}.)
See [8] for any unfamiliar information about βS or its algebraic structure.

We shall frequently use the fact that if p is an idempotent in βS, then for all q ∈
p·βS, p·q = q. (To see this, pick r ∈ βS such that q = p·r. Then p·q = p·p·r = p·r = q.)
Likewise, if q ∈ βS · p, then q · p = q.

Given x ∈ N, we define supp(x) ∈ Pf (ω), where ω = N∪{0}, in terms of the binary
expansion of x, by x =

∑
t∈supp(x) 2t.

1.8 Theorem. Let A = {x ∈ N : min supp(x) is odd}. Then A is strongly central but
is neither central* nor thick.

Proof. Let H =
⋂∞

n=1 2nN. By [8, Lemma 6.8] H is a compact subsemigroup of (βN,+)
which contains all of the idempotents of (βN,+). We claim that A ∩H is a right ideal
of H. To see this, let p ∈ A ∩H and let q ∈ H. We need to show that A ∈ p + q, which
we do by showing that A ⊆ {x ∈ N : −x + A ∈ q}. Given x ∈ A, let k = min supp(x).
Then 2k+1N ∈ q and 2k+1N ⊆ −x + A. In an identical fashion one sees that N \A ∩H
is a right ideal of H.

Now let L be a minimal left ideal of (βN,+). Then L ∩ H is a left ideal of H
and so L ∩ A and L ∩ N \A each contain groups, and therefore distinct idempotents.
Consequently A is strongly central but not central*. Since A is contained in the set of
even integers, it is not thick.

2. Arbitrary Semigroups

In this section we establish some relationships that must hold between the various
notions of size for an IP-set in an arbitrary semigroup. We begin with the most general
of these, Theorem 2.2, wherein we only require that our specified sequence consist of
left cancelable elements.

2.1 Lemma. Let (S, ·) be a semigroup and assume that 〈xn〉∞n=1 is a sequence of left
cancelable elements of S and that K(βS) 6= βS. If L is a minimal left ideal of βS, and
L ∩ FP (〈xn〉∞n=1) 6= ∅, then there is an idempotent in L ∩

⋂∞
m=1 FP (〈xn〉∞n=m).
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Proof. Since K(βS) 6= βS, no element of K(βS) is left cancelable. Indeed, pick
q ∈ βS \K(βS) and let p ∈ K(βS). Then R = p ·βS is a minimal right ideal of βS and
p ·R = R so there is some r ∈ R ⊆ K(βS) such that p ·q = p ·r and so one cannot cancel
p on the left. We shall use the fact [8, Lemma 8.1] that any left cancelable element of
S is also left cancelable in βS.

Let L be a minimal left ideal of βS and assume that we have some q ∈ L ∩
FP (〈xn〉∞n=1). By [8, Lemma 5.11],

⋂∞
m=1 FP (〈xn〉∞n=m) is a subsemigroup of βS so

it suffices to show that for each m ∈ N, L ∩ FP (〈xn〉∞n=m) 6= ∅. (Minimal left ideals
are closed, and so we then conclude that L ∩

⋂∞
m=1 FP (〈xn〉∞n=m) 6= ∅ and so L ∩⋂∞

m=1 FP (〈xn〉∞n=m) is a compact right topological semigroup so has an idempotent.)
To this end, let m ∈ N with m > 1. Then

FP (〈xn〉∞n=1) = FP (〈xn〉∞n=m) ∪ FP (〈xn〉m−1
n=1 ) ∪⋃

{t · FP (〈xn〉∞n=m) : t ∈ FP (〈xn〉m−1
n=1 )} .

So we must have one of

(i) FP (〈xn〉∞n=m) ∈ q,

(ii) FP (〈xn〉m−1
n=1 ) ∈ q, or

(iii) t · FP (〈xn〉∞n=m) ∈ q for some t ∈ FP (〈xn〉m−1
n=1 ).

If FP (〈xn〉∞n=m) ∈ q, then q ∈ L ∩ FP (〈xn〉∞n=m).

Suppose now that one has FP (〈xn〉m−1
n=1 ) ∈ q. Then q =

∏
n∈F xn for some F with

∅ 6= F ⊆ {1, 2, . . . ,m − 1}. (Recall that we are identifying the principal ultrafilters
with the points of S.) But then q, being the product of left cancelable elements, is left
cancelable, and q ∈ L ⊆ K(βS), while there are no left cancelable elements of K(βS),
a contradiction.

Finally, assume that we have t ∈ FP (〈xn〉m−1
n=1 ) such that t·FP (〈xn〉∞n=m) ∈ q. Since

t ∈ S, λt is continuous so t · FP (〈xn〉∞n=m) = t ·FP (〈xn〉∞n=m) so pick r ∈ FP (〈xn〉∞n=m)
such that q = t · r. Pick an idempotent p ∈ L. Then q · p = q so t · r · p = t · r. Now t is
left cancelable and therefore r · p = r. Since p ∈ L, r ∈ L so r ∈ L ∩ FP (〈xn〉∞n=m).

2.2 Theorem. Let (S, ·) be a semigroup and assume that 〈xn〉∞n=1 is a sequence of left
cancelable elements of S. Then the following statements are equivalent.

(a) FP (〈xn〉∞n=1) is piecewise syndetic.

(b) For all m ∈ N, FP (〈xn〉∞n=m) is central. In fact, there exists an idempotent in
K(βS) ∩

⋂∞
m=1 FP (〈xn〉∞n=m).

Proof. That (b) implies (a) is trivial.
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To see that (a) implies (b) assume first that K(βS) = βS. By [8, Lemma 5.11]
there is an idempotent p of βS such that for all m ∈ N, FP (〈xn〉∞n=m) ∈ p. Since
p ∈ K(βS), we have that for all m ∈ N, FP (〈xn〉∞n=m) is central.

Now assume that K(βS) 6= βS. Since FP (〈xn〉∞n=1) is piecewise syndetic and
K(βS) =

⋃
{L : L is a minimal left ideal of βS}, pick a minimal left ideal L of βS such

that L ∩ FP (〈xn〉∞n=1) 6= ∅. Lemma 2.1 applies.

We shall show in Theorem 2.4 that if a sequence 〈xn〉∞n=1 of left cancelable ele-
ments satisfies uniqueness of finite products and FP (〈xn〉∞n=1) is piecewise syndetic, the
sequence cannot be substantially thinned without losing piecewise syndeticity.

Recall that a right zero semigroup R is a semigroup such that xy = y for all
x, y ∈ R.

2.3 Lemma. Let (S, ·) be a semigroup. If there exists a sequence 〈xn〉∞n=1 of left can-
celable elements of S which satisfies uniqueness of finite products, then K(βS) 6= βS.

Proof. Suppose that 〈xn〉∞n=1 is a sequence of left cancelable elements which satisfies
uniqueness of finite products and K(βS) = βS. Recall that by [8, Lemma 8.1], any
left cancelable element of S is also left cancelable in βS, so βS has left cancelable
elements. By [9, Theorem 5] there exist a finite group G and a right zero semigroup
R such that S is isomorphic to G × R, so we shall assume that S = G × R. For each
n, let xn = (an, bn). Pick n 6= s such that an = as and pick r ∈ N \ {n, s}. Then
xn · xr = (an · ar, br) = (as · ar, br) = xs · xr. This contradicts the assumption that the
sequence 〈xn〉∞n=1 satisfies uniqueness of finite products.

2.4 Theorem. Let (S, ·) be a semigroup, let 〈xn〉∞n=1 be a sequence of left cancelable ele-
ments of S which satisfies uniqueness of finite products, and let 〈yn〉∞n=1 be a subsequence
of 〈xn〉∞n=1. The following statements are equivalent.

(a) FP (〈yn〉∞n=1) is piecewise syndetic.

(b) FP (〈xn〉∞n=1) is piecewise syndetic and
{
m ∈ N : xm /∈ {yn : n ∈ N}

}
is finite.

Proof. (a) ⇒ (b). Trivially FP (〈xn〉∞n=1) is piecewise syndetic. Suppose that M ={
m ∈ N : xm /∈ {yn : n ∈ N}

}
is infinite and pick q ∈ {xn : n ∈ N} \ {yn : n ∈ N} \ S.

Now K(βS) ∩ FP (〈yn〉∞n=1) 6= ∅ so pick a minimal left ideal L of βS such that L ∩
FP (〈yn〉∞n=1) 6= ∅. By Lemma 2.3 K(βS) 6= βS so by Lemma 2.1 pick an idempotent
p ∈ L ∩

⋂∞
m=1 FP (〈yn〉∞n=m). Then p ∈ K(βS) ∩

⋂∞
m=1 FP (〈xn〉∞n=m). So by [8,

Theorem 1.65], p ∈ K
( ⋂∞

m=1 FP (〈xn〉∞n=m)
)
. Also given m ∈ N, {xn : n ≥ m} ∈ q so
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q ∈
⋂∞

m=1 FP (〈xn〉∞n=m). By [8, Theorem 2.10] there is some r ∈
⋂∞

m=1 FP (〈xn〉∞n=m)
such that p = rqp.

Now FP (〈yn〉∞n=1) ∈ p so pick B ∈ r such that Bqp ⊆ FP (〈yn〉∞n=1) and pick
z ∈ B∩FP (〈xn〉∞n=1). Pick F ∈ Pf (N) such that z =

∏
n∈F xn and let l = maxF . Pick

C ∈ q such that zCp ⊆ FP (〈yn〉∞n=1). Then {xk : k ∈ M and k > l} ∈ q so pick k ∈ M

with k > l such that zxkp ∈ FP (〈yn〉∞n=1). Now FP (〈xn〉∞n=k+1) ∈ p so pick G ∈ Pf (N)
with minG > k such that zxk

∏
n∈G xn ∈ FP (〈yn〉∞n=1). Pick H ∈ Pf (N\M) such that

zxk

∏
n∈G xn =

∏
n∈H xn. Then

∏
n∈F∪{k}∪G xn =

∏
n∈H xn so F ∪ {k} ∪ G = H.

This is a contradiction since k ∈ M .

(b) ⇒ (a). Pick a minimal left ideal L of βS such that L ∩ FP (〈xn〉∞n=1) 6= ∅ and
pick m ∈ N such that FP (〈xn〉∞n=m) ⊆ FP (〈yn〉∞n=1). By Lemma 2.3 K(βS) 6= βS so
by Lemma 2.1 L ∩ FP (〈xn〉∞n=m) 6= ∅ so L ∩ FP (〈yn〉∞n=1) 6= ∅.

For the remainder of our results, we need to assume that we are dealing with
“nice” sequences. These sequences satisfy uniqueness of finite products and another
technical condition. We shall see in the next section that there are many examples of
nice sequences.

2.5 Definition. Let (S, ·) be a semigroup, let I be the set of left identities of S, and
let 〈xn〉∞n=1 be a sequence in S. Then 〈xn〉∞n=1 is nice if and only if

(a) 〈xn〉∞n=1 satisfies uniqueness of finite products and

(b) for all s ∈ S \ (FP (〈xn〉∞n=1) ∪ I), there is some k ∈ N such that
FP (〈xn〉∞n=1) ∩ s · FP (〈xn〉∞n=k) = ∅.

It will occasionally be useful to note that FP (〈xn〉∞n=1) ∩ s · FP (〈xn〉∞n=k) = ∅ if
and only if s−1FP (〈xn〉∞n=1) ∩ FP (〈xn〉∞n=k) = ∅.

2.6 Lemma. Let (S, ·) be a semigroup and let 〈xn〉∞n=1 be a nice sequence in S. Any
subsequence of 〈xn〉∞n=1 is also nice.

Proof. Let 〈yn〉∞n=1 be a subsequence of 〈xn〉∞n=1 and pick an increasing f : N → N
such that for each n, yn = xf(n). Let I be the set of left identities of S. Let s ∈
S\(FP (〈yn〉∞n=1)∪I). If s /∈ FP (〈xn〉∞n=1), we may pick k as guaranteed by the definition
of nice. Then FP (〈yn〉∞n=1)∩s ·FP (〈yn〉∞n=k) ⊆ FP (〈xn〉∞n=1)∩s ·FP (〈xn〉∞n=k) = ∅. So
assume that s =

∏
n∈F xn for some F ∈ Pf (N). Let k = maxF +1 and suppose that we

have some z ∈ s−1FP (〈yn〉∞n=1) ∩ FP (〈yn〉∞n=k). Pick G ∈ Pf (N) with minG ≥ k such
that z =

∏
n∈G yn =

∏
n∈f [G] xn. Then min f [G] ≥ k > max F , so sz =

∏
n∈F∪f [G] xn.

Also, sz ∈ FP (〈yn〉∞n=1) so pick H ∈ Pf (N) such that sz =
∏

n∈H yn =
∏

n∈f [H] xn.
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Then by the uniqueness of finite products, we have that f [H] = F ∪f [G]. In particular,
F ⊆ f [H] and so s ∈ FP (〈yn〉∞n=1), a contradiction.

We have need of the following algebraic lemma.

2.7 Lemma. Let (S, ·) be a semigroup, let k ∈ N, and let 〈xn〉∞n=1 be a nice sequence
in S. If I is the set of left identities of S, p ∈

⋂∞
m=1 FP (〈xn〉∞n=m), q ∈ βS \ I, and

q · p ∈ FP (〈xn〉∞n=k), then q ∈ FP (〈xn〉∞n=k).

Proof. We need to show that FP (〈xn〉∞n=k) ∈ q. We have that I /∈ q and that
{s ∈ S : s−1FP (〈xn〉∞n=k) ∈ p} ∈ q so it suffices to show that

{s ∈ S \ I : s−1FP (〈xn〉∞n=k) ∈ p} ⊆ FP (〈xn〉∞n=k) .

So let s ∈ S \ I such that s−1FP (〈xn〉∞n=k) ∈ p and suppose that s /∈ FP (〈xn〉∞n=k).
Since 〈xn〉∞n=k is a subsequence of 〈xn〉∞n=1, we may pick by Lemma 2.6 some r ≥ k

such that s−1FP (〈xn〉∞n=k) ∩ FP (〈xn〉∞n=r) = ∅. But this is a contradiction because
FP (〈xn〉∞n=r) ∈ p.

The following algebraic result is of some interest in its own right, and has as an
immediate consequence that for IP-sets generated by nice sequences of left cancelable
elements, piecewise syndetic implies strongly central.

2.8 Theorem. Let (S, ·) be a semigroup and let 〈xn〉∞n=1 be a nice sequence of left
cancelable elements of S. If FP (〈xn〉∞n=1) is piecewise syndetic, then there is a minimal
right ideal R of βS such that every idempotent of R is in

⋂∞
m=1 FP (〈xn〉∞n=m).

Proof. Pick by Theorem 2.2 some idempotent p ∈ K(βS) ∩
⋂∞

m=1 FP (〈xn〉∞n=m). Let
R = p · βS. Then R is a minimal right ideal of βS. Let q be an idempotent in R. Let
I be the set of left identities of S. We claim that q ∈ βS \ I. Indeed, suppose q ∈ I.
Given any s ∈ S, ρs is constantly equal to s on I and thus qs = s. Since q ∈ K(βS),
we then have that S ⊆ K(βS). Pick e ∈ I. Then λe agrees with the identity function
on S and thus on βS so that e is a left identity of βS. Thus K(βS) = βS. But this
contradicts Lemma 2.3.

We have that p ∈ R = q · βS so p = q · p. By Lemma 2.7, q ∈
⋂∞

m=1 FP (〈xn〉∞n=m).

2.9 Corollary. Let (S, ·) be a semigroup and let 〈xn〉∞n=1 be a nice sequence of left
cancelable elements of S. If FP (〈xn〉∞n=1) is piecewise syndetic, then for each m ∈ N,
FP (〈xn〉∞n=m) is strongly central.
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Proof. Let m ∈ N. We need to show that for every minimal left ideal L of βS, there is
an idempotent in L ∩ FP (〈xn〉∞n=m). So let L be a minimal left ideal of βS. Pick R as
guaranteed by Theorem 2.8. Then L∩R is a group so there is an idempotent q ∈ L∩R.
By Theorem 2.8, q ∈ FP (〈xn〉∞n=m).

We summarize what we have shown so far.

2.10 Theorem. Let (S, ·) be a semigroup and let 〈xn〉∞n=1 be a nice sequence of left
cancelable elements of S. The following statements are equivalent.

(a) FP (〈xn〉∞n=1) is piecewise syndetic.

(b) For all m ∈ N, FP (〈xn〉∞n=m) is piecewise syndetic.

(c) FP (〈xn〉∞n=1) is strongly central.

(d) For all m ∈ N, FP (〈xn〉∞n=m) is strongly central.

(e) FP (〈xn〉∞n=1) is syndetic.

(f) For all m ∈ N, FP (〈xn〉∞n=m) is syndetic.

(g) FP (〈xn〉∞n=1) is central.

(h) For all m ∈ N, FP (〈xn〉∞n=m) is central.

Proof. That (a) ⇒ (d) is Corollary 2.9. The rest of the required implications are
trivial.

Now we see that for IP-sets generated by nice sequences, if S has no left identities,
then the notions of central* and IP* are equivalent. We shall see in Theorem 4.4 that
there is a nice sequence 〈dn〉∞n=1 in (N,+) such that FS(〈dn〉∞n=1) is syndetic (and thus
central) but not central*.

2.11 Theorem. Let (S, ·) be a semigroup, let I be the set of left identities of S, and let
〈xn〉∞n=1 be a nice sequence of left cancelable elements of S. If FP (〈xn〉∞n=1) is central*,
then for every idempotent q ∈ βS \ I, q ∈ FP (〈xn〉∞n=1).

Proof. By Lemma 2.3, K(βS) 6= βS. Since each left ideal of βS contains an idempotent
in K(βS), we have by Lemma 2.1, that if L is a left ideal of βS, then there is an
idempotent in L ∩

⋂∞
m=1 FP (〈xn〉∞n=m). Now let q be an idempotent in βS \ I. Pick

a minimal left ideal L of βS such that L ⊆ βS · q and pick an idempotent p ∈ L ∩⋂∞
m=1 FP (〈xn〉∞n=m). Since p ∈ βS · q, we have that p = p · q. Therefore q · p · q · p =

q ·p ·p = q ·p. Then q ·p is an idempotent in L ⊆ K(βS). Therefore q ·p ∈ FP (〈xn〉∞n=1).
By Lemma 2.7 we have that q ∈ FP (〈xn〉∞n=1).
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2.12 Theorem. There is a nice sequence 〈xn〉∞n=1 in (Z,+) such that FS(〈xn〉∞n=1) is
central* but not IP*.

Proof. For each n ∈ N, let xn = (−2)n. Then 〈xn〉∞n=1 satisfies uniqueness of finite
sums, and FS(〈xn〉∞n=1) = 2Z \ {0}. If s ∈ S \ (FS(〈xn〉∞n=1) ∪ {0}), then s is odd so
FS(〈xn〉∞n=1) ∩

(
s + FS(〈xn〉∞n=1)

)
= ∅.

We now turn our attention to thickness. We see that for nice sequences 〈xn〉∞n=1,
FP (〈xn〉∞n=1) is essentially never thick.

2.13 Theorem. Let (S, ·) be a semigroup, let I be the set of left identities for S, and
let 〈xn〉∞n=1 be a nice sequence of left cancellable elements of S. If FP (〈xn〉∞n=1) is thick,
then S \ I = FP (〈xn〉∞n=1).

Proof. If a left identity is in FP (〈xn〉∞n=1) then 〈xn〉∞n=1 cannot satisfy uniqueness of
finite products, so FP (〈xn〉∞n=1) ⊆ S \ I. To verify the other inclusion, pick a minimal
left ideal L of βS such that L ⊆ FP (〈xn〉∞n=1). By Lemma 2.3 we have that K(βS) 6= βS

so by Lemma 2.1 there is an idempotent p ∈ L ∩
⋂∞

m=1 FP (〈xn〉∞n=m).

Suppose that FP (〈xn〉∞n=1) 6= S \ I and pick s ∈ S \ (FP (〈xn〉∞n=1) ∪ I). Pick
k ∈ N such that s−1FP (〈xn〉∞n=1) ∩ FP (〈xn〉∞n=k) = ∅. Now s · p ∈ L ⊆ FP (〈xn〉∞n=1)
so s−1FP (〈xn〉∞n=1) ∈ p and FP (〈xn〉∞n=k) ∈ p, a contradiction.

The next result shows that niceness is needed for the conclusion of Theorem 2.13.

2.14 Theorem. There is a sequence 〈xn〉∞n=1 in (N, ·) which satisfies uniqueness of
finite products such that FP (〈xn〉∞n=1) is thick but not syndetic.

Proof. Let 〈xn〉∞n=1 enumerate {22t

: t ∈ ω} ∪ {(2p)2
t

: p is an odd prime and t ∈ ω}.
Then FP (〈xn〉∞n=1) is the set of positive integers x such that the number of factors of 2 in
x is at least half of the length of the prime factorization of x. Given any F ∈ Pf (N\{1}),
let k be the maximum of the lengths of the prime factorizations of members of F . Then
F · 2k ⊆ FP (〈xn〉∞n=1). So FP (〈xn〉∞n=1) is thick.

To see that FP (〈xn〉∞n=1) is not syndetic, suppose one has G ∈ Pf (N) such that N ⊆⋃
t∈G t−1FP (〈xn〉∞n=1). Let k be the maximum of the lengths of the prime factorizations

of members of G. Then 3k+1 /∈
⋃

t∈G t−1FP (〈xn〉∞n=1).

3. Producing Nice Sequences

In this section we show that nice sequences are reasonably plentiful. We shall see as an
immediate consequence of Theorem 3.2 that in (N,+), any sequence 〈xn〉∞n=1 which has
the property that xn+1 >

∑n
t=1 xt for all n is nice.
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3.1 Lemma. Let (S, ·) be a semigroup and let 〈xn〉∞n=1 be a sequence of right cance-
lable elements of S. Let ϕ : (S, ·) → (N,+) be a homomorphism such that for all
n,

∑n
t=1 ϕ(xt) < ϕ(xn+1). If s ∈ S, k ∈ N, H,G ∈ Pf (N), ϕ(s) ≤

∑k−1
t=1 ϕ(xt),

k ≤ minH, and s ·
∏

t∈H xt =
∏

t∈G xt, then H ⊆ G and s =
∏

t∈G\H xt.

Proof. We proceed by induction on |H|. Assume first that H = {l} where l ≥ k.
Then

∑
t∈G ϕ(xt) = ϕ(s) + ϕ(xl) ≤

∑l
t=1 ϕ(xt) so maxG ≤ l. If we had max G < l,

then we would have
∑

t∈G ϕ(xt) ≤
∑l−1

t=1 ϕ(xt) < ϕ(xl) < ϕ(s)+ϕ(xl), a contradiction.
Thus maxG = l. Since

∏
t∈G xt = s · xl and xl is right cancelable, we have that

s =
∏

t∈G\{l} xt.

Now assume that |H| > 1 and the lemma is valid for smaller sets. Let v = maxH

and let F = H\{v}. Then
∑

t∈G ϕ(xt) = ϕ(s)+
∑

t∈H ϕ(xt) ≤
∑v

t=1 ϕ(xt) so maxG ≤
v. If maxG < v, then

∑
t∈G ϕ(xt) < ϕ(xv) < ϕ(s) +

∑
t∈H ϕ(xt), a contradiction. So

v = max G. Since xv is right cancelable, we have that s ·
∏

t∈F xt =
∏

t∈G\{v} xt and
so the induction hypothesis applies.

3.2 Theorem. Let (S, ·) be a semigroup and let ϕ : (S, ·) → (N,+) be a homomorphism.
Let 〈xn〉∞n=1 be a sequence in S with the property that for each m ∈ N,

∑m
t=1 ϕ(xt) <

ϕ(xm+1). If either ϕ is injective or xm is right cancelable for each m ∈ N, then 〈xn〉∞n=1

is a nice sequence.

Proof. It is routine to establish that if 〈yn〉∞n=1 is a sequence in N with the property
that for each m ∈ N, ym+1 >

∑m
t=1 yt, then 〈yn〉∞n=1 satisfies uniqueness of finite sums.

Consequently, we have directly that 〈xn〉∞n=1 satisfies uniqueness of finite products in S.

Let s ∈ S \ FP (〈xn〉∞n=1) and pick k ∈ N such that ϕ(s) <
∑k−1

t=1 ϕ(xt). Suppose
that we have some y ∈ s−1FP (〈xn〉∞n=1)∩FP (〈xn〉∞n=k). Pick H ∈ Pf (N) with minH ≥
k such that y =

∏
t∈H xt and pick G ∈ Pf (N) such that s · y =

∏
t∈G xt. If each xt is

right cancelable we have directly from Lemma 3.1 that s =
∏

t∈G\H xt. So assume that
ϕ is injective. Then since ϕ(s) +

∑
t∈H ϕ(xt) =

∑
t∈G ϕ(xt) we have by Lemma 3.1

that ϕ(s) =
∑

t∈G\H ϕ(xt). Since ϕ is injective, s =
∏

t∈G\H xt. Thus in either case,
we have a contradiction.

If the semigroup (S, ·) is commutative, we may unambiguously write
∏

F for the
product of the elements of the finite nonempty subset F of S. In this case, given B ⊆ S,
FP (B) = {

∏
F : F ∈ Pf (B)}. The following lemma, whose routine proof we omit,

says that in a commutative semigroup, niceness of a sequence depends only on its range
(and the obvious fact that any nice sequence in any semigroup is injective).
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3.3 Lemma. Let (S, ·) be a commutative semigroup and let 〈xn〉∞n=1 be a sequence in
S. If S has an identity e, let I = {e} and otherwise let I = ∅. Then 〈xn〉∞n=1 is nice if
and only if A = {xn : n ∈ N} has the following properties.

(a) For all F,G ∈ Pf (A), if
∏

F =
∏

G, then F = G.

(b) For all s ∈ S \ (FP (A) ∪ I) there exists G ∈ Pf (A) such that
s−1FP (A) ∩ FP (A \G) = ∅.

We consider now the very noncommutative free semigroups on finite or countably
infinite semigroups. (The free semigroup S on the alphabet A is the set of words over
A with concatenation as the operation. We identify A with the length 1 words.)

3.4 Theorem. Let A be a nonempty countable alphabet, let ∅ 6= B ⊆ A, let S be the
free semigroup on the alphabet A, and let T = B ∪

⋃
b∈B bS = {w ∈ S : the leftmost

letter of w is in B}. There is a nice sequence 〈xn〉∞n=1 in S such that FP (〈xn〉∞n=1) = T .
For each k ∈ N, FP (〈xn〉∞n=k) is syndetic.

Proof. Let ϕ : A → N be a finite-to-one function. Extend ϕ to all of S by ϕ(w) =∑n
i=1 ϕ(ai) whenever w = a1a2 · · · an with each ai ∈ A. Notice that if w is a proper

subword of u, then ϕ(w) < ϕ(u). Notice also that if k ∈ N, then {w ∈ S : ϕ(w) ≤ k} is
finite. Let γ : N → T be an enumeration of T subject to the restriction that if i < j,
then ϕ

(
γ(i)

)
≤ ϕ

(
γ(j)

)
.

Define 〈xn〉∞n=1 inductively as follows. Let x1 = γ(1). Having chosen x1, x2, . . . ,

xn−1, let j = min{i ∈ N : γ(i) /∈ FP (〈xt〉n−1
t=1 )} and let xn = γ(j). Notice that if xn =

γ(j) and xn+1 = γ(k), then j < k so that ϕ(xn) ≤ ϕ(xn+1). Trivially FP (〈xn〉∞n=1) = T .

We next claim that if m ∈ N, F ∈ Pf (N), and xm =
∏

n∈F xn, then F = {m}.
If |F | = 1, this is immediate, so suppose that |F | > 1. Then for each n ∈ F , xn

is a proper subword of xm and consequently ϕ(xn) < ϕ(xm) so that n < m. Thus
xm ∈ FP (〈xn〉m−1

n=1 ), a contradiction.

We now verify that 〈xn〉∞n=1 satisfies uniqueness of finite products. Suppose instead
that we have F 6= G in Pf (N) such that

∏
n∈F xn =

∏
n∈G xn. We may choose such

F and G with |F | + |G| as small as possible. As we have observed above, |F | > 1 and
|G| > 1. Let m = maxF and let s = maxG. Given w ∈ S, let l(w) denote the length
of w. We may assume that l(xm) ≤ l(xs). If we had l(xm) = l(xs) we would have
xm = xs and consequently

∏
n∈F\{m} xn =

∏
n∈G\{s} xn, contradicting the choice of

F and G. Thus we have that l(xm) < l(xs). Let r be the smallest member of F such
that, if H = {n ∈ F : n ≥ r}, then

∑
n∈H l(xn) < l(xs). Let k = maxF \ H. Then

l(xs) ≤
∑

n∈H∪{k} l(xn). But if we had l(xs) =
∑

n∈H∪{k} l(xn), we would have xs =
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∏
n∈H∪{k} xn, which we have seen is impossible. Therefore l(xs) <

∑
n∈H∪{k} l(xn).

Let v = l(xs) −
∑

n∈H l(xn). Then v < l(xk). Let w be the word consisting of the
leftmost v letters of xs, (which is the same as the rightmost v letters of xk). Since the
leftmost letter of w is the leftmost letter of xs, w ∈ T . Now w is a proper subword of
xk, so ϕ(w) < ϕ(xk) ≤ ϕ(xr). Thus w ∈ FP (〈xn〉r−1

n=1) so pick L ⊆ {1, 2, . . . , r − 1}
such that w =

∏
n∈L xn. Then xs = w ·

∏
n∈H xn =

∏
n∈L∪H xn, which we have seen

is impossible.

To see that 〈xn〉∞n=1 is nice, let s ∈ S \T . Then the leftmost letter of s is not in B,
so T ∩ sT = ∅.

Pick any b ∈ B. Then S = b−1T , so FP (〈xn〉∞n=1) is syndetic. By Theorem 2.10,
for all k ∈ N, FP (〈xn〉∞n=k) is syndetic.

We show now that under appropriate hypotheses, the existence of nice sequences
is preserved under countable direct sums.

3.5 Theorem. Let S1 and S2 be semigroups with two sided identities e1 and e2 and
assume that for each i ∈ {1, 2}, each x ∈ Si has at most finitely many right inverses.
For i ∈ {1, 2} let 〈yi,n〉∞n=1 be a nice sequence in Si. Let f : {1, 2}×N 1-1−→onto N such that for
all (i, n) ∈ {1, 2} × N, f(i, n) < f(i, n + 1). Define a sequence 〈zn〉∞n=1 in S = S1 × S2

by, for i ∈ {1, 2} and n ∈ N,

(zf(i,n))j =
{

ej if j 6= i
yi,n if j = i .

Then FP (〈zn〉∞n=1) =
(
(FP (〈y1,n〉∞n=1)∪{e1})×(FP (〈y1,n〉∞n=1)∪{e1})

)
\{(e1, e2)}. The

sequence 〈zn〉∞n=1 is nice. Also, FP (〈zn〉∞n=1) is syndetic if and only if FP (〈y1,n〉∞n=1)
is syndetic and FP (〈y2,n〉∞n=1) is syndetic.

Proof. This is not, at least not obviously, a corollary of Theorem 3.6 below. But the
proof is essentially the same and simpler, so we leave the details as an exercise.

Recall that, if for each i ∈ N, Si is a semigroup with an identified element ei

(typically a left or right or two sided identity), then the direct sum S =
⊕∞

i=1 Si =
{x ∈×∞

i=1 : {i ∈ N : xi 6= ei} is finite}.

3.6 Theorem. For each i ∈ N let Si be a semigroup with a two sided identity ei such
that each x ∈ Si has at most finitely many right inverses and let 〈yi,n〉∞n=1 be a nice
sequence in Si. Let f : N×N 1-1−→onto N such that for all (i, n) ∈ N×N, f(i, n) < f(i, n + 1).
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Define a sequence 〈zn〉∞n=1 in S =
⊕∞

i=1 Si by, for i, n ∈ N,

(zf(i,n))j =
{

ej if j 6= i
yi,n if j = i .

Then FP (〈zn〉∞n=1) =
( ⊕∞

i=1(FP (〈yi,n〉∞n=1) ∪ {ei})
)
\ {e}. The sequence 〈zn〉∞n=1 is

nice. Also, FP (〈zn〉∞n=1) is syndetic if and only if each FP (〈yi,n〉∞n=1) is syndetic and{
i ∈ N : FP (〈yi,n〉∞n=1) 6= Si \ {ei}

}
is finite.

Proof. To see that FP (〈zn〉∞n=1) ⊆
( ⊕∞

i=1(FP (〈yi,n〉∞n=1)∪{ei})
)
\{e}, let F ∈ Pf (N)

and let x =
∏

m∈F zm. For each i ∈ N, let Hi = {n ∈ N : f(i, n) ∈ F}. Then, for each
i ∈ N, xi =

∏
n∈Hi

yi,n, where we define
∏

n∈∅ yi,n = ei. Then {i ∈ N : xi 6= ei} is
finite and nonempty. To see that

( ⊕∞
i=1(FP (〈yi,n〉∞n=1) ∪ {ei})

)
\ {e} ⊆ FP (〈zn〉∞n=1),

let x ∈
( ⊕∞

i=1(FP (〈yi,n〉∞n=1) ∪ {ei})
)
\ {e} and let M = {i ∈ N : xi 6= ei} For each

i ∈ M , pick Hi ∈ Pf (N) such that xi =
∏

n∈Hi
yi,n and let F = f [

⋃
i∈M ({i} × Hi)].

Then x =
∏

m∈F zm.

To verify uniqueness of finite products, let F,G ∈ Pf (N) and assume that
∏

m∈F zm

=
∏

m∈G zm. For each i ∈ N, let Hi = {n ∈ N : f(i, n) ∈ F} and Ki = {n ∈ N :
f(i, n) ∈ G}. Notice that for each i ∈ N, ei /∈ FP (〈yi,n〉∞i=1). (If, say, ei =

∏
n∈L yi,n

and k = maxL, then
∏

n∈L∪{k+1} yi,n = yi,k+1.) Thus
∏

n∈Hi
yi,n = ei if and only if

Hi = ∅. Thus, by the uniqueness of finite products in FP (〈yi,n〉∞i=1), we have that for
each i, Hi = Ki, and thus F = G.

To complete the verification that 〈zn〉∞n=1 is nice, let s ∈ S \ (FP (〈zn〉∞n=1) ∪ {e})
and pick i ∈ N such that si /∈ FP (〈yi,n〉∞i=1)∪{ei}. Since si has only finitely many right
inverses we may pick r ∈ N such that for all w ∈ FP (〈yi,n〉∞n=r), siw 6= ei. Pick k ≥ r

such that si
−1FP (〈yi,n〉∞n=1) ∩ FP (〈yi,n〉∞n=k) = ∅. Let m = f(i, n). We claim that

s−1FP (〈zn〉∞n=1)∩FP (〈zn〉∞n=m) = ∅. Suppose instead we have w ∈ s−1FP (〈zn〉∞n=1)∩
FP (〈zn〉∞n=m). Pick F ∈ Pf (N) such that minF ≥ m and w =

∏
n∈F zn. Let H =

{n ∈ N : f(i, n) ∈ F}. Then wi =
∏

n∈H yi,n. Since sw ∈ FP (〈zn〉∞n=1) pick G ∈ Pf (N)
such that sw =

∏
n∈G zn. Let K = {n ∈ N : f(i, n) ∈ G}. Then siwi =

∏
n∈K yi,n.

If H = ∅, then wi = ei so si = siwi =
∏

n∈K yi,n so si ∈ FP (〈yi,n〉∞n=1) ∪ {ei}, a
contradiction. Thus H 6= ∅ and so minH ≥ k ≥ r so siwi 6= ei so K 6= ∅ and thus
wi ∈ si

−1FP (〈yi,n〉∞n=1) ∩ FP (〈yi,n〉∞n=k), a contradiction.

Now assume that FP (〈zn〉∞n=1) is syndetic and pick G ∈ Pf (S) such that S =⋃
t∈G t−1FP (〈zn〉∞n=1). To see that each FP (〈yi,n〉∞n=1) is syndetic, let i ∈ N and

pick x ∈ FP (〈yi,n〉∞n=1). Let Gi = πi[G] ∪ {xw : w ∈ πi[G]}. We claim that Si =
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⋃
t∈Gi

t−1FP (〈yi,n〉∞n=1). Let s ∈ Si and define u ∈ S by

uj =
{

ej if j 6= i
s if j = i .

Pick g ∈ G such that gu ∈ FP (〈zn〉∞n=1). Then gis ∈ FP (〈yi,n〉∞n=1) ∪ {ei}. If gis = ei,
then xgis = x ∈ FP (〈yi,n〉∞n=1).

Now let M =
{
i ∈ N : FP (〈yi,n〉∞n=1) 6= Si \ {ei}

}
and suppose that M is infinite.

Pick i ∈ M such that for all g ∈ G, gi = ei and pick s ∈ (Si \ {ei}) \ FP (〈yi,n〉∞n=1).
Define u ∈ S by

uj =
{

ej if j 6= i
s if j = i .

Then for all g ∈ G, giui = s /∈ FP (〈yi,n〉∞n=1) ∪ {ei} so gu /∈ FP (〈zn〉∞n=1), a contradic-
tion.

Finally assume that each FP (〈yi,n〉∞n=1) is syndetic and

M =
{
i ∈ N : FP (〈yi,n〉∞n=1) 6= Si \ {ei}

}
is finite. If M = ∅, let G = {e, z1}. Then z1e ∈ FP (〈zn〉∞n=1) and for s ∈ S \ {e},
es ∈ FP (〈zn〉∞n=1). So assume that M 6= ∅. For each i ∈ M , pick Gi ∈ Pf (Si) such that
Si =

⋃
t∈Gi

t−1FP (〈yi,n〉∞n=1). Let

G = {x ∈ S : for all i ∈ M , xi ∈ Gi and for all i ∈ N \M , xi = ei} .

To see that S =
⋃

t∈G t−1FP (〈zn〉∞n=1), let v ∈ S. For i ∈ M , pick ti ∈ Gi such that
tivi ∈ FP (〈yi,n〉∞n=1). Define u ∈ S by

ui =
{

ti if i ∈ M
ei if i /∈ M .

Then uivi ∈ FP (〈yi,n〉∞n=1) ∪ {ei} for each i, and if i ∈ M , uivI 6= ei.

We note that it is reasonably simple to build semigroups Si as required by Theorems
3.5 and 3.6.

3.7 Theorem. Let S be a semigroup with no left identities, let 〈yn〉∞n=1 be a nice se-
quence in S, and adjoin a two sided identity {e} to S. Then 〈yn〉∞n=1 is nice in S ∪ {e}
and FP (〈yi,n〉∞n=1) is syndetic in S ∪ {e} if and only if it is syndetic in S.

Proof. That 〈yn〉∞n=1 is nice in S ∪ {e} is trivial. If S =
⋃

t∈G t−1FP (〈yn〉∞n=1), then
S ∪ {e} =

⋃
t∈G∪{y1} t−1FP (〈yn〉∞n=1).

Notice that the requirement in Theorem 3.7 that S have no left identities is needed
because if f is a left identity of S, it is not a left identity of S ∪ {e}. (Of course, if S
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already had a two sided identity, there was no reason to “build” a new semigroup to
use in Theorem 3.5 or Theorem 3.6.)

The following fact is easy to check.

3.8 Theorem. For each n ∈ ω let yn = (−2)n. Then 〈yn〉∞n=1 is a nice sequence in
(Z,+) and FS(〈yn〉∞n=1) = Z \ {0}.

3.9 Corollary. Let S =
⊕∞

i=1 Z. Then there is a nice sequence 〈zn〉∞n=1 in S with
FS(〈zn〉∞n=1) = S \ {0}.

Proof. Theorems 3.6 and 3.8.

We write Q+ = {x ∈ Q : x > 0}.

3.10 Corollary. There is a nice sequence 〈xn〉∞n=1 in (Q+, ·) such that FP (〈xn〉∞n=1) =
Q+ \ {1}.

Proof. Let 〈pi〉∞i=1 enumerate the primes and define f :
⊕∞

i=1 Z → Q by f(x) =∏∞
i=1 pi

xi . Then f is an isomorphism so Corollary 3.9 applies.

It is a consequence of [10, Theorem 2.3] that there is no nice sequence 〈xn〉∞n=1 in
(Q+,+) such that Q+ = FS(〈xn〉∞n=1).

3.11 Question. Is there a nice sequence 〈xn〉∞n=1 in (Q+,+) such that FS(〈xn〉∞n=1) is
syndetic?

3.12 Theorem. There is a countably infinite group (S, +) which has no sequence
〈xn〉∞n=1 satisfying uniqueness of finite sums with FS(〈xn〉∞n=1) piecewise syndetic.

Proof. Let S =
⊕∞

i=1 Z3. Suppose we have a sequence 〈xn〉∞n=1 in S satisfying unique-
ness of finite sums with FS(〈xn〉∞n=1) piecewise syndetic. By Theorem 2.2 FS(〈xn〉∞n=1)
is central so by [8, Theorem 15.5∗] there exist a and d in S \ {0} such that {a, a +
d, a + 2d} ⊆ FS(〈xn〉∞n=1). Pick F , G, and H in Pf (N) such that a =

∑
n∈F xn,

a+d =
∑

n∈G xn, and a+2d =
∑

n∈H xn. For i ∈ {1, 2, 3} let Ki = {n ∈ F ∪G∪H : n

is in exactly i of the sets F , G, and H}. Then 0 = a+(a+d)+ (a+2d) =
∑

n∈K1
xn +∑

n∈K2
2xn +

∑
n∈K1

3xn =
∑

n∈K1
xn −

∑
n∈K2

xn so
∑

n∈K1
xn =

∑
n∈K2

xn. By
the uniqueness of finite sums, K1 = K2 so, since K1 and K2 are disjoint, K1 = K2 = ∅
and thus F = G = H. This is a contradiction because d 6= 0.

∗See the errata at http://members.aol.com/nhindman/pdf/errata.pdf for a correction to
the first line of the proof of this theorem.
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4. The Semigroup (N,+)

In this section we address the special case of the semigroup (N,+). The first result
requires no special assumptions about the sequence 〈xn〉∞n=1, except that terms be listed
in their natural order.

4.1 Theorem. Let 〈xn〉∞n=1 be a nondecreasing sequence in N. Then FS(〈xn〉∞n=1) is
syndetic if and only if the sequence 〈xn+1 −

∑n
t=1 xt〉∞n=1 is bounded from above.

Proof. Necessity. Let b be a bound on the gaps of FS(〈xn〉∞n=1) and suppose we have
n such that xn+1 −

∑n
t=1 xt > b. Pick F ∈ Pf (N) such that

∑n
t=1 xt <

∑
t∈F xt ≤∑n

t=1 xt + b and let r = maxF . If r ≥ n+1, then
∑

t∈F xt ≥ xr ≥ xn+1 >
∑n

t=1 xt + b,
a contradiction. If r ≤ n, then

∑
t∈F xt ≤

∑n
t=1 xt, a contradiction.

Sufficiency. Pick b ∈ N such that x1 ≤ b and for all n ∈ N, xn+1 −
∑n

t=1 xt ≤ b.
Let a ∈ N. We shall show that {a + 1, a + 2, . . . , a + b} ∩ FS(〈xn〉∞n=1) 6= ∅.

Define ϕ : N onto−→FS(〈xn〉∞n=1) by ϕ(
∑

t∈F 2t−1) =
∑

t∈F xt. Pick the first m ∈ N
such that ϕ(m) > a. If m = 1, then ϕ(m) = x1 ≤ b < a + b, so assume that m > 1.
Let F = 1 + supp(m) (so that m =

∑
t∈F 2t−1). If 1 ∈ F , then m− 1 =

∑
t∈F\{1} 2t−1

so
∑

t∈F\{1} xt = ϕ(m − 1) ≤ a < ϕ(m) =
∑

t∈F\{1} xt + x1 ≤ a + b. So assume that
1 /∈ F and let s = minF . Let G = (F \{s})∪{1, 2, . . . , s−1}. Then m−1 =

∑
t∈G 2t−1

so
∑

t∈G xt = ϕ(m− 1) ≤ a < ϕ(m) =
∑

t∈G xt + xs −
∑s−1

t=1 xt ≤ a + b.

4.2 Corollary. Let 〈xn〉∞n=1 be a nice sequence in N written in increasing order. The
following statements are equivalent.

(a) FS(〈xn〉∞n=1) is piecewise syndetic.

(b) For all m ∈ N, FS(〈xn〉∞n=m) is piecewise syndetic.

(c) FS(〈xn〉∞n=1) is strongly central.

(d) For all m ∈ N, FS(〈xn〉∞n=m) is strongly central.

(e) FS〈xn〉∞n=1) is syndetic.

(f) For all m ∈ N, FS(〈xn〉∞n=m) is syndetic.

(g) FS(〈xn〉∞n=1) is central.

(h) For all m ∈ N, FS(〈xn〉∞n=m) is central.

(i) The sequence 〈xn+1 −
∑n

t=1 xt〉∞n=1 is bounded from above.

Proof. Theorems 2.10 and 4.1.

In [3, Example 7.9] Vitaly Bergelson and Randall McCutcheon produced an example
of a syndetic IP-set in N (defined by a nice sequence) which is not IP*. In view of
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Theorem 2.11 this set is also not central*, since the set of left identities of (N,+) is
empty. We extend this example in Theorem 4.4. (The example produced by Bergelson
and McCutcheon is the sequence of Lemma 4.3 determined by r = 2.)

Recall that the Banach density of a set A ⊆ N is defined by

d∗(A) = sup{α ∈ R : for all n ∈ N there exist m ≥ n and x ∈ N

such that
|A ∩ {x + 1, x + 2, . . . , x + m}|

m
≥ α} .

By [8, Theorems 20.5 and 20.6], ∆∗ = {p ∈ βN : for all A ∈ p , d∗(A) > 0} is a two
sided ideal of βN and consequently K(βN) ⊆ ∆∗. So whenever A is a central subset of
N, one must have that d∗(A) > 0. Consequently, if A is an IP-set which is not central*,
one must have that d∗(N \ A) > 0. We shall see, however, that one can get such sets
with Banach density as small as we please.

4.3 Lemma. Let r ∈ N \ {1} and define for n ∈ ω

drn =
2rn+r−1 + 2r−1 − 1

2r − 1
and for n ∈ ω and j ∈ {1, 2, . . . , r − 1}

drn+j =
2rn+r+j−1 − 2j−1

2r − 1
.

(1) For n ∈ N, drn = 2drn−1 + 1, and for n ∈ ω, drn+1 = 2drn − 1.

(2) For n ∈ ω and j ∈ {2, 3, . . . , r − 1}, drn+j = 2drn+j−1.

(3) For n ∈ N, drn =
∑rn−1

t=1 dt + 2.

(4) For k ∈ N, if k 6≡ −1 (mod r), then dk+1 =
∑k

t=1 dt + 1.

(5) If a and b are successive members of N\FS(〈dn〉∞n=1) with a < b, then b−a = dr =
2r−1 + 1 or b− a = dr+1 = 2r + 1.

Proof. The verification of conclusions (1) through (4) is a routine exercise. We verify
conclusion (5). Notice that by conclusions (3) and (4), we have for all F,G ∈ Pf (N)
that

∑
t∈F dt <

∑
t∈G dt if and only if

∑
t∈F 2t <

∑
t∈G 2t. (This observation should

help in the computation of b.)

By conclusions (3) and (4), all elements of N \ FS(〈dn〉∞n=1) are of the form∑
t∈F dt +

∑rn−1
t=1 dt + 1

for some n ∈ N and some finite F ⊆ N such that either F = ∅ or minF ≥ rn + 1.
(We are using the convention that

∑
t∈∅ dt = 0.) So pick such n and F such that

a =
∑

t∈F dt +
∑rn−1

t=1 dt + 1.
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Assume first that n > 1. Then b =
∑

t∈F dt + drn +
∑r−1

t=1 dt + 1 and so b − a =
drn −

∑rn−1
t=1 dt +

∑r−1
t=1 dt = 2 + dr − 2 = dr.

Next assume that n = 1 and either F = ∅ or minF > r + 1. Then b =
∑

t∈F dt +
dr+1 +

∑r−1
t=1 dt + 1 so b− a = dr+1.

Now assume that n = 1 and minF = r + 1 and pick l ≥ r + 1 such that F =
G∪{r +1, r +2, . . . , l} where either G = ∅ or minG ≥ l +2. Note that in this case, a =∑

t∈G dt +
∑l

t=r+1 dt +
∑r−1

t=1 dt +1. If l ≡ −1 (mod r), then b =
∑

t∈G dt +
∑l

t=1 dt +1
and b−a = dr. So assume that l 6≡ −1 (mod r). Then b =

∑
t∈G dt +dl+1 +

∑r−1
t=1 dt +1

so b− a = dl+1 −
∑l

t=r+1 dt = dl+1 −
∑l

t=1 dt +
∑r

t=1 dt = 1 +
∑r

t=1 dt = dr+1.

Notice that for the sequence 〈dn〉∞n=1 produced in the following theorem, even
though in many respects N\FS(〈dn〉∞n=1) is quite small, it is a central set and therefore
contains all of the structure guaranteed to any central set.

4.4 Theorem. Let ε > 0. There is a nice sequence 〈dn〉∞n=1 in N such that FS(〈dn〉∞n=1)
is syndetic (and therefore central) but is not IP* (and therefore not central*) Also,
FS(〈dn〉∞n=1) has no gaps of length greater than 1 and d∗

(
N \ FS(〈dn〉∞n=1)

)
< ε. Fur-

thermore, there is a sequence 〈xn〉∞n=1 in N such that FS(〈xn〉∞n=1) ∩ FS(〈dn〉∞n=1) = ∅
and for each F ∈ Pf (N), if m = maxF , then 2xm +

∑
k∈F\{m} xk /∈ FS(〈dn〉∞n=1).

Proof. Pick r ∈ N such that
1

2r−1 + 1
< ε and let 〈dn〉∞n=1 be as defined in Lemma

4.3. We then have by conclusions (3) and (4) of Lemma 4.3 that 〈dn〉∞n=1 is a nice
sequence and FS(〈dn〉∞n=1) has no gaps longer than 1. By conclusion (5), we have that
d∗

(
N \ FS(〈dn〉∞n=1)

)
< ε.

To complete the proof we construct a sequence 〈xn〉∞n=1 satisfying the last sentence
of the theorem. (The fact that FS(〈xn〉∞n=1)∩FS(〈dn〉∞n=1) = ∅ says that FS(〈dn〉∞n=1)
is not IP* and then Theorem 2.11 tells us that FS(〈dn〉∞n=1) is not central*.)

Observe that by conclusion (1) of Lemma 4.3, for H ∈ Pf (N)

(∗) if |H| = s, then 2 ·
∑

t∈H drt−1 + s =
∑

t∈H(drt − 1) + s =
∑

t∈H drt .

We inductively define the sequence 〈xn〉∞n=1 and an auxiliary sequence 〈Hn〉∞n=1 in
Pf (N). Let x0 = 0. Let H1 = {2, 3, . . . , dr} and let x1 =

∑
t∈H1

drt−1 +
∑r−1

t=1 dt + 1.
Given k ∈ N and xk, let

Hk+1 = {dr+1+x0+x1+. . .+xk−1, dr+2+x0+x1+. . .+xk−1, . . . , dr+x0+x1+. . .+xk}

and note that |Hk+1| = xk. Let xk+1 =
∑

t∈Hk+1
drt−1 + xk. Notice that for any

k ∈ N, any t ∈ Hk, and any s ∈ Hk+1, rt < rs − 1. Notice also that for any k,
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xk =
∑k

l=1

∑
t∈Hl

drt−1 +
∑r−1

t=1 dt + 1.

We now show that FS(〈xn〉∞n=1) ∩ FS(〈dn〉∞n=1) = ∅ and for each F ∈ Pf (N), if
m = maxF , then 2xm +

∑
k∈F\{m} xk /∈ FS(〈dn〉∞n=1). We do this by showing that

each member of FS(〈xn〉∞n=1) and each sum of the form 2xm +
∑

k∈F\{m} xk can also
be written as

∑
t∈L dt +

∑r−1
t=1 dt + 1 for some L ∈ Pf (N) with min L ≥ r + 1. This

will suffice because
∑

t∈L dt + dr is the immediate successor of
∑

t∈L dt +
∑r−1

t=1 dt in
FS(〈dn〉∞n=1) and

∑
t∈L dt + dr =

∑
t∈L dt +

∑r−1
t=1 dt + 2.

Notice that ∑
t∈H1

drt−1 + x1 =
∑

t∈H1
2drt−1 +

∑r−1
t=1 dt + 1

=
∑

t∈H1
drt

by (∗) since |H1| = dr − 1 =
∑r−1

t=1 dt + 1, and for k > 1,∑
t∈Hk

drt−1 + xk =
∑

t∈Hk
drt−1 +

∑
t∈Hk

drt−1 + xk−1

=
∑

t∈Hk
drt (by (∗), since |Hk| = xk−1).

Using these facts, one easily establishes by induction on |F | that for F ∈ Pf (N), if
m = maxF , then∑

k∈F xk =
∑

t∈Hm
drt−1 +

∑
k∈F\{m}

∑
t∈Hk

drt +∑
k∈{1,2,...,m}\F

∑
t∈Hk

drt−1 +
∑r−1

t=1 dt + 1 .

and

2xm +
∑

k∈F\{m} xk =
∑

t∈Hm
drt +

∑
k∈F\{m}

∑
t∈Hk

drt +∑
k∈{1,2,...,m}\F

∑
t∈Hk

drt−1 +
∑r−1

t=1 dt + 1 .

We know from Theorem 3.2 that any sequence 〈xn〉∞n=1 in N with the property
that for all n, xn+1 >

∑n
t=1 xt is nice. We see in the next two theorems that if

〈xn+1−
∑n

t=1 xt〉∞n=1 is bounded from below (which of course must hold if for sufficiently
large n, xn+1 >

∑n
t=1 xt), then such sequences nearly account for all nice sequences.

4.5 Theorem. If 〈xn〉∞n=1 is an increasing sequence in N which satisfies uniqueness of
finite sums and there is some m ∈ N such that for all n ≥ m, xn+1 >

∑n
t=1 xt, then

〈xn〉∞n=1 is nice.

Proof. Let s ∈ N \ FS(〈xn〉∞n=1) and pick l ∈ N such that l ≥ m and xl > s. Suppose
that

(
− s + FS(〈xn〉∞n=1)

)
∩ FS(〈xn〉∞n=l+1) 6= ∅. Pick F ∈ Pf ({n ∈ N : n > l})

with maxF = r as small as possible such that s +
∑

t∈F xt ∈ FS(〈xn〉∞n=1) and pick
G ∈ Pf (N) such that s +

∑
t∈F xt =

∑
t∈G xt.
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If r > max G, then
∑

t∈G xt ≤
∑r−1

t=1 xt < xr < s +
∑

t∈F xt, a contradiction. If
r < max G, then s +

∑
t∈F xt < xl +

∑
t∈F xt ≤

∑r
t=1 xt < xr+1 ≤

∑
t∈G xt, again a

contradiction. Thus r = maxG. Then F = {r} since otherwise, by subtracting xr from
both sides one has a contradiction to the choice of F . So s =

∑
t∈G\{r} xt as required.

4.6 Theorem. If 〈xn〉∞n=1 is a nice sequence in N written in increasing order and
〈xn+1−

∑n
t=1 xt〉∞n=1 is bounded from below, then there is some m ∈ N such that for all

n ≥ m, xn+1 >
∑n

t=1 xt.

Proof. Suppose instead that infinitely often xn+1 <
∑n

t=1 xt. Using the fact that
〈xn+1 −

∑n
t=1 xt〉∞n=1 is bounded from below, choose s such that infinitely often s =∑n

t=1 xt − xn+1. Pick n ∈ N such that xn+1 > s and s =
∑n

t=1 xt − xn+1. Then
s /∈ FS(〈xn〉∞n=1). (If we had s =

∑
t∈F xt, then we would have max F < n + 1

and
∑

t∈F∪{n+1} xt = s+xn+1 =
∑n

t=1 xt, contradicting the fact that 〈xn〉∞n=1 satisfies
uniqueness of finite sums.) So pick k ∈ N such that

(
−s+FS(〈xn〉∞n=1)

)
∩FS(〈xn〉∞n=k) =

∅. Pick n > k such that s =
∑n

t=1 xt − xn+1. Then xn+1 ∈
(
− s + FS(〈xn〉∞n=1)

)
∩

FS(〈xn〉∞n=k), a contradiction.

We would have liked that all nice sequences have the property that eventually
xn+1 >

∑n
t=1 xt. This is not the case as we shall see now.

4.7 Theorem. There is a nice sequence in N written in increasing order such that
〈xn+1 −

∑n
t=1 xt〉∞n=1 is not bounded from below.

Proof. For t ∈ ω, let
x3t+1 = 12t · 2

x3t+2 = 12t · 4 and

x3t+3 = 12t · 5 .

Then FS(〈xn〉∞n=1) consists of all those positive integers which, when written in base 12,
use only the digits 0, 2, 4, 5, 6, 7, 9, and 11. By the uniqueness of base 12 expansions,
FS(〈xn〉∞n=1) satisfies uniqueness of finite sums.

Now let s ∈ N \ FS(〈xn〉∞n=1). Then somewhere the base 12 expansion of s uses a
1, 3, 8, or 10. Pick t such that 12t > s. If y ∈ FS(〈xn〉∞n=3t+1), then s + y uses that
digit in the same position that s does.

Finally, given t ∈ ω,
∑3t+2

i=1 xi − x3t+3 ≥ 12t · 6− 12t · 5 = 12t.

We strongly suspect that the answer to the following question is “no”.
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4.8 Question. Is there a nice sequence in N (written in increasing order) such that
〈xn+1 −

∑n
t=1 xt〉∞n=1 is not bounded from below and FS(〈xn〉∞n=1) is syndetic?

In view of the results of this section, it is natural to ask for a description of sequences
for which 〈xn+1−

∑n
t=1 xt〉∞n=1 is bounded. Given any sequence 〈dn〉∞n=1 in N for which

〈dn+1 −
∑n

t=1 xt〉∞n=1 is bounded and any α ∈ N, one may let xn = dn + 2n · α, and
obtain a sequence 〈xn〉∞n=1 with 〈xn+1 −

∑n
t=1 xt〉∞n=1 bounded. If one asks that xn be

reasonably approximated by 2n · α, one finds out that there is a unique choice.

4.9 Theorem. Let 〈xn〉∞n=1 be a sequence in R and assume that 〈xn+1 −
∑n

t=1 xt〉∞n=1

is bounded. There exists a unique α ∈ R such that, if for each n, dn = xn − 2nα, then
the sequence 〈dn〉∞n=1 is bounded. If for all n ∈ N, |xn+1 −

∑n
t=1 xt| ≤ b, then for all

n ≥ 2, |dn| ≤ b. (So 〈dn〉∞n=1 is bounded by max{b, |d1|}.) Further, for this sequence,
〈dn+1 −

∑n
t=1 dt〉∞n=1 is bounded.

Proof. If 〈dn〉∞n=1 is bounded, then α = limn→∞
xn

2n so uniqueness is trivial, as is the
assertion that 〈dn+1 −

∑n
t=1 dt〉∞n=1 is bounded.

For each n ∈ N, let cn = xn+1 −
∑n

t=1 xt. Let α = 1
4

(
x2 − c1

2 +
∑∞

t=2
ct

2t

)
. Notice

that for n ≥ 2, dn+1 − 2dn = xn+1 − 2xn = cn − cn−1. Using this fact, one easily
establishes by induction that for each n ≥ 2, dn = cn−1

2 −
∑∞

t=n
ct

2t−n+2 so |dn| ≤ b.
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