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Abstract. We introduce the notions of layered semigroups and partial semigroups,
and prove some Ramsey type partition results about them. These results generalize
previous results of Gowers [5, Theorem 1], of Furstenberg [3, Proposition 8.21], and of
Bergelson, Blass, and Hindman [1, Theorem 4.1]. We give some applications of these
results (see e.g., Theorem 1.1), and present examples suggesting that our results are
rather optimal.

1. Introduction

Ramsey Theory studies the existence of large homogeneous structures. For exam-
ple, Ramsey’s Theorem itself [10] (or see [6, Theorem 1.5]) says that whenever k ∈ N
and the set [N]k of k element subsets of N is partitioned into finitely many classes (or
finitely colored) there must exist an infinite set X ⊆ N such that [X]k is contained in
one class (or is monochrome). (Throughout, we take N to be the set of positive integers,
while the first infinite ordinal ω = N ∪ {0}.) Another typical example of a Ramseyan
principle says that for every finite coloring of the set N of all natural numbers there is
an infinite A ⊆ N such that the set of all finite sums of elements of A without repe-
titions is monochrome (see [6, Theorem 3.16] or [9, Corollary 5.17]). In this paper we
study a specific form of Ramsey theory. Our Ramseyan spaces will consist of finitely
many layers, and besides the associative operation on the space they will be equipped
with a set of homomorphisms sending higher layers to lower ones. A typical result will
say that, under certain conditions, for every partition of the space into finitely many
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colors there is an infinite sequence included in the top layer such that the ‘subspace’ it
generates has a monochromatic intersection with each layer.

Let us now describe a simple corollary to one of our results. For a finite alphabet
Σ let W (Σ) denote the free semigroup (with identity e) on the alphabet Σ. That is,
W (Σ) is the set of all words (including the empty word) with letters from Σ and the
operation is concatenation.

Note that every endomorphism f of W (Σ) is uniquely determined by its restriction
to Σ. If Σ = {a, b, c} and x, y, z ∈ {a, b, c, e}, then let fxyz be the endomorphism of
W ({a, b, c}) uniquely determined by f(a) = x, f(b) = y, and f(c) = z. Given a set X,
Pf (X) is the set of finite nonempty subsets of X. By

∏
n∈F xn we mean the product

in increasing order of indices.

1.1 Theorem. For every r ∈ N and every partition W ({a, b, c}) =
⋃r

j=1 Cj there exist
an infinite 〈xn〉∞n=1 in W ({a, b, c}) \W ({a, b}) and γ: {a, b, c} → {1, 2, . . . , r} such that
if σ ∈ {feab, faeb, faab} and F = {fabc, fabb, faba, fabe, σ} ∪

{
fxyz|x, y, z ∈ {a, e}

}
, then

we have

{
∏

n∈F gn(xn) : F ∈ Pf (N) , and for each n ∈ F , gn ∈ F}
∩

(
W ({a, b, c}) \W ({a, b})

)
⊆ Cγ(a)

{
∏

n∈F gn(xn) : F ∈ Pf (N) , and for each n ∈ F , gn ∈ F}
∩

(
W ({a, b}) \W ({a})

)
⊆ Cγ(b)

{
∏

n∈F gn(xn) : F ∈ Pf (N) , and for each n ∈ F , gn ∈ F}
∩

(
W ({a}) \ {e})

)
⊆ Cγ(c)

Proof. This is Corollary 3.14.

Note that Theorem 1.1 is saying that the set generated by 〈xn〉∞n=1 and F is at
most three-chromatic, i.e., it has a nonempty intersection only with Cγ(a), Cγ(b) and
Cγ(c). This number clearly cannot improved to two, as long as we require that 〈xn〉∞n=1

is included in W ({a, b, c}) \W ({a, b}).
We do not know whether any or all of the three choices for F in Theorem 1.1 above

is a maximal set of functions of the form fxyz for which the conclusion of this theorem
holds. However, if one colors W ({a, b, c}) \ W ({a, b}) by six colors according to the
order of the first occurrences of a, b, and c and colors W ({a, b}) \W ({a}) by two colors
according to whether a or b occurs first, one can (rather laboriously) prove that F ∪
{fxyz} does not satisfy the conclusion of Theorem 1.1 unless fxyz ∈ F∪{feab, faeb, faab}.

In [5], W. T. Gowers proved (as a tool for attacking a problem in the theory of
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Banach spaces) a remarkable Ramsey Theoretic result which serves as the inspiration
for this paper. While it was not stated this way by Gowers, his theorem can be naturally
stated in terms of the notion of a “partial semigroup” introduced in [1].

1.2 Definition. A partial semigroup is a pair (S, ∗), where S is a nonempty set and ∗
maps a subset D of S × S to S so that for all x, y, z ∈ S,

(a) if (x, y) ∈ D and (x∗y, z) ∈ D, then (y, z) ∈ D, (x, y ∗z) ∈ D, and (x∗y)∗z =
x ∗ (y ∗ z) and

(b) if (y, z) ∈ D and (x, y ∗z) ∈ D, then (x, y) ∈ D, (x∗y, z) ∈ D, and (x∗y)∗z =
x ∗ (y ∗ z).

If (S, ∗) is a partial semigroup and (x, y) ∈ domain(∗), we say that “x∗y is defined”.
The requirements of Definition 1.2(a) and (b), can then be more succinctly stated as
“(x ∗ y) ∗ z = x ∗ (y ∗ z) in the sense that, whenever either side is defined, so is the
other and they are equal.” We shall develop some machinery for dealing with partial
semigroups in Section 2.

Let k ∈ N, the set of positive integers, and let

Y = {f : f : N → {0, 1, . . . , k} and {x ∈ N : f(x) 6= 0} is finite} .

Given f ∈ Y , let supp(f) = {x ∈ N : f(x) 6= 0} and for f, g ∈ Y , define f + g

pointwise, but only when supp(f) ∩ supp(g) = ∅. Then (Y,+) is a partial semigroup.
Let Yk = {f ∈ Y : max(f [N]) = k}. Define σ : Y → Y by

σ(f)(x) =
{

f(x)− 1 if f(x) > 0
0 if f(x) = 0 .

Notice that σ is a partial semigroup homomorphism in the sense that σ(f + g) =
σ(f) + σ(g) whenever f + g is defined. (If we did not have the disjointness of support
requirement, this need not be true.)

We can now state Gowers’ result.

1.3 Theorem. Let k, Y , Yk and σ be as defined above, let r ∈ N, and let Y =
⋃r

i=1 Ci.
Then there exist i ∈ {1, 2, . . . , r} and a sequence 〈fn〉∞n=1 in Yk such that supp(fn) ∩
supp(fm) = ∅ for all distinct m and n in N and

{
∑

n∈F σt(n)(fn) : F ∈ Pf (N) , t : F → {0, 1, . . . , k − 1} , and t−1[{0}] 6= ∅} ⊆ Ci .

Proof. [5, Theorem 1].

Notice that the requirement that t−1[{0}] 6= ∅ is clearly needed, since otherwise,
one could have C1 = {f ∈ Y : k ∈ f [N]} and C2 = Y \C1.
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Notice also that this result already generalizes several other Ramsey Theoretic
results, including the Finite Unions Theorem (see [6, Theorem 3.16] or [9, Corollary
5.17]), which is trivially equivalent to the k = 1 instance of Theorem 1.3.

Theorem 1.3 translates into a statement about Lipshitz functions on the positive
part of the unit sphere of the classical Banach space c0: Every such function is ‘approx-
imately constant’ on some infinite-dimensional slice of the unit sphere. The correspond-
ing statement about Lipshitz functions on the whole unit sphere of c0 is also proved in
[5], but it does not correspond to a Ramsey-type result.

Another result naturally stated in terms of partial semigroups is Theorem 4.1 of
[1]. In this case, one can again let k ∈ N (now assuming that k > 1) and work with
the same set Y defined above. The operation ⊕ is defined pointwise, but in this case
f⊕g is defined only when max supp(f) < min supp(g). For t ∈ {1, 2, . . . , k−1}, define
µt : Y → Y by

µt(f)(x) =
{

t if f(x) = k
f(x) if f(x) 6= k .

One may think of k as a “variable”, so that µt(f) is obtained by “substituting” t for
occurrences of the variable k. Let F =

{
µt : t ∈ {1, 2, . . . , k − 1}

}
. We denote the

identity function (on an appropriate set) by ι.

1.4 Theorem. Let k, Y , Yk and F be as defined above, let r ∈ N, and let Y =
⋃r

i=1 Ci.
Then there exist γ(1) and γ(2) in {1, 2, . . . , r} and a sequence 〈fn〉∞n=1 in Yk such that

(a) max supp(fn) < min supp(fn+1) for each n ∈ N,

(b) {
⊕

n∈F τn(fn) : F ∈ Pf (N) and τn ∈ F for each n ∈ F} ⊆ Cγ(1),

(c) {
⊕

n∈F τn(fn) : F ∈ Pf (N) , τn ∈ F ∪ {ι} for each n ∈ F , and some
τn = ι} ⊆ Cγ(2).

Proof. [1, Theorem 4.1].

In Section 3 we shall present Theorem 3.13 which is a common generalization of
Theorems 1.3 and 1.4, in terms of what we call a “layered partial semigroup”.

In Section 4 we give examples showing that Theorem 3.13 cannot be strengthened
in certain directions. We also give two variants of this result, one of which (Theorem
4.5) is the optimal result in the case of a semigroup with only two nontrivial layers.

A notion that has become quite important in Ramsey Theory is that of “central
sets”. This concept was introduced by Furstenberg [3] and defined in terms of notions of
topological dynamics. Central sets have a nice characterization in terms of the algebraic
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structure of βS, the Stone-Čech compactification of the semigroup S. We shall present
this characterization below, after introducing the necessary background information.

Let (S, ·) be an infinite discrete semigroup. We take the points of βS to be the
ultrafilters on S, the principal ultrafilters being identified with the points of S. By this
identification, we pretend that S ⊆ βS. In a similar fashion, if S ⊆ T , we pretend that
βS ⊆ βT by identifying the ultrafilter p on S with the ultrafilter {A ⊆ T : A ∩ S ∈ p}
on T . Given a set A ⊆ S, A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a basis for the
open sets (as well as a basis for the closed sets) of βS.

There is a natural extension of the operation · of S to βS making βS a compact
right topological semigroup with S contained in its topological center. This says that
for each p ∈ βS the function ρp : βS → βS, defined by ρp(q) = q · p, is continuous and
for each x ∈ S, the function λx : βS → βS, defined by λx(q) = x · q is continuous. See
[9] for an elementary introduction to the semigroup βS as well as for any unfamiliar
algebraic terminology enountered here. (We shall frequently cite [9] for basic results
that we need. This is not to be construed as a claim of originality for those results.
Original sources can usually be found by consulting the chapter notes in [9].)

Any compact Hausdorff right topological semigroup (T, ·) has a smallest two sided
ideal K(T ) which is the union of all of the minimal left ideals of T , each of which is
closed [9, Theorem 2.8 and Corollary 2.6], and any compact right topological semigroup
contains idempotents [9, Theorem 2.5]. Since the minimal left ideals are themselves
compact right topological semigroups, this says in particular that there are idempotents
in the smallest ideal. There is a partial ordering of the idempotents of T determined by
p ≤ q if and only if p = p · q = q · p. An idempotent p is minimal with respect to this
order if and only if p ∈ K(T ) [9, Theorem 1.59]. Such an idempotent is called simply
“minimal.”

1.5 Definition. Let (S, ·) be an infinite discrete semigroup and let A ⊆ S. Then A is
central if and only if there is some minimal idempotent p in βS such that A ∈ p. Also,
A is central* if and only if A ∩B 6= ∅ whenever B is a central subset of S.

See [9, Theorem 19.27] for a proof of the equivalence of the definition above with
the original dynamical definition.

The following theorem is the “Central Sets Theorem” for commutative semigroups.
(We shall actually be concerned with a generalization of the Central Sets Theorem for
arbitrary semigroups, but it is more complicated to state.) Given a sequence 〈xn〉∞n=1 in
a semigroup (S, ·), we write FP (〈xn〉∞n=1) = {

∏
n∈F xn : F ∈ Pf (N)}, the set of finite
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products from 〈xn〉∞n=1. Recall that, if (S, ·) is not commutative, we specify that the
product

∏
n∈F xn is taken in increasing order of indices.

1.6 Theorem. Let (S, ·) be a commutative semigroup, let A be a central subset of S, and
for each l ∈ N, let 〈yl,n〉∞n=1 be a sequence in S. There exist a sequence 〈an〉∞n=1 in S and
a sequence 〈Hn〉∞n=1 in Pf (N) such that max Hn < minHn+1 for each n ∈ N and such
that for every f : N → N satisfying f(n) ≤ n for each n, FP (〈an ·

∏
t∈Hn

yf(n),t〉∞n=1) ⊆
A.

Proof. [9, Theorem 14.11]. (Or see [3, Proposition 8.21] where the original Central
Sets Theorem for the semigroup (N,+) was proved.)

In Section 5 we shall prove an extension of the Central Sets Theorem, valid for
layered partial semigroups. Some of the results of Section 3 will in fact be corollaries
of this extension. However, we feel justified in beginning with simpler versions of the
more general construction.

In Section 6 we state several open problems and give remarks puting the subject
of the present paper in a somewhat broader context.

2. Partial Semigroups

In this section we present some basic results about an arbitrary partial semigroup and an
associated subspace of its Stone-Čech compactification. Some of this material overlaps
that in [8].

We saw in the introduction two examples of partial semigroups. Another natural
example is the set FP (〈xn〉∞n=1) where 〈xn〉∞n=1 is a sequence in a semigroup. In this
case, FP (〈xn〉∞n=1) is not likely to be closed under the restriction of the operation of the
entire semigroup. However, if one only defines (

∏
n∈F xn) · (

∏
n∈G xn) when F ∩G = ∅

(if the original semigroup is commutative) or when maxF < minG (otherwise), then
one does have a well behaved partial semigroup.

2.1 Definition. Let (S, ·) be a partial semigroup.

(a) For x ∈ S, ϕ(x) = ϕS(x) = {y ∈ S : x · y is defined}.
(b) The semigroup S is adequate if and only if for every F ∈ Pf (S),⋂

x∈F
ϕ(x) 6= ∅.

(c) δS =
⋂

x∈S c`βS

(
ϕ(x)

)
.

All of the partial semigroups that we have mentioned have been adequate. Notice
that the assertion that S is adequate is exactly the assertion that δS 6= ∅. An important
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fact is that, for an adequate partial semigroup S, δS is in a natural way a compact right
topological semigroup. This fact is part of the next theorem.

Note that the operation of a partial semigroup S is defined precisely on⋃
x∈S

(
{x} × ϕ(x)

)
.

2.2 Theorem. Let (S, ·) be an adequate partial semigroup. Let

D =
( ⋃

x∈S ({x} × ϕ(x)
)
∪ (βS × δS) .

Then the operation · can be extended uniquely to D so that

(a) for each x ∈ S, the function λx : ϕ(x) → βS, defined by λx(q) = x · q, is
continuous, and

(b) for each p ∈ δS, the function ρp : βS → βS, defined by ρp(q) = q · p is
continuous.

Proof. For each x ∈ S, define lx : ϕ(x) → S by lx(y) = x · y. Then lx has a unique
continuous extension l̃x : ϕ(x) → βS. For q ∈ βS, define x · q = l̃x(q) whenever x · q has
not already been defined. Then λx is continuous.

Now, for each p ∈ δS, x · p is defined for all x ∈ S. Define rp(x) = x · p and let
r̃p : βS → βS be the unique continuous extension of rp. For q ∈ βS, define q · p = r̃p(q)
whenever q · p has not already been defined.

The points of δS are ultrafilters, so we are interested in describing the members of
p · q in terms of the members of p and q.

2.3 Definition. Let S be a partial semigroup, let x ∈ S, and let A ⊆ S. Then
x−1A = {y ∈ ϕ(x) : x · y ∈ A}.

Notice that there is no suggestion, even in the event that S has an identity, that
any or all elements of S have inverses. Also, if the operation in S is denoted by +, then
we write −x + A for {y ∈ ϕ(x) : x + y ∈ A}.

2.4 Lemma. Let S be an adequate partial semigroup.

(a) Let x ∈ S, let q ∈ ϕ(x), and let A ⊆ S. Then A ∈ x ·q if and only if x−1A ∈ q.

(b) Let p ∈ βS, let q ∈ δS, and let A ⊆ S. Then A ∈ p · q if and only if
{x ∈ S : x−1A ∈ q} ∈ p.

Proof. (a) Necessity. Pick B ∈ q such that λx

[
B ∩ ϕ(x)

]
⊆ A. Then ϕ(x)∩B ⊆ x−1A.

Sufficiency. Suppose that A /∈ x · q. Then S\A ∈ x · q so that, by the already
established necessity, x−1(S\A) ∈ q while x−1A ∩ x−1(S\A) = ∅, a contradiction.
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(b) Necessity. Pick B ∈ p such that ρq

[
B

]
⊆ A. Then by (a),

B ⊆ {x ∈ S : x−1A ∈ q}.
Sufficiency. Suppose that A /∈ p · q. Then S\A ∈ p · q so that, by the already

established necessity, {x ∈ S : x−1(S\A) ∈ q} ∈ p while {x ∈ S : x−1(S\A) ∈ q} ∩
{x ∈ S : x−1A ∈ q} = ∅, a contradiction.

2.5 Lemma. Let S be an adequate partial semigroup, let p ∈ βS, q ∈ δS, and a ∈ S.
Then ϕ(a) ∈ p · q if and only if ϕ(a) ∈ p.

Proof. Necessity. Assume that ϕ(a) ∈ p · q so that {b ∈ S : b−1ϕ(a) ∈ q} ∈ p. We
show that {b ∈ S : b−1ϕ(a) ∈ q} ⊆ ϕ(a). So let b−1ϕ(a) ∈ q. Pick c ∈ b−1ϕ(a). Then
c ∈ ϕ(b) and b · c ∈ ϕ(a) so a · (b · c) is defined and thus a · (b · c) = (a · b) · c and in
particular b ∈ ϕ(a).

Sufficiency. Assume that ϕ(a) ∈ p. We claim that ϕ(a) ⊆ {b ∈ S : b−1ϕ(a) ∈ q} so
that ϕ(a) ∈ p · q. Let b ∈ ϕ(a). Since q ∈ δS, ϕ(a · b) ∈ q. Therefore it suffices to show
that ϕ(a · b) ⊆ b−1ϕ(a). Let c ∈ ϕ(a · b). Then (a · b) · c = a · (b · c) so c ∈ ϕ(b) and
b · c ∈ ϕ(a). That is, c ∈ b−1ϕ(a) as required.

2.6 Theorem. Let S be an adequate partial semigroup. Then with the restriction of
the operation given in Theorem 2.2, δS is a compact right topological semigroup.

Proof. We have by Lemma 2.5 that if p, q ∈ δS, then p · q ∈ δS. Since δS is a closed
subset of βS we have that δS is compact. By Theorem 2.2, we have that ρq is continuous
for each q ∈ δS. It thus suffices to show that the operation is associative on δS.

To this end, let p, q, r ∈ δS. Suppose that p · (q · r) 6= (p · q) · r and pick

A ∈ p · (q · r)\(p · q) · r. Let B = {a ∈ S : a−1(S\A) ∈ r} .

Then B ∈ p · q so {b ∈ S : b−1B ∈ q} ∈ p. Also, {b ∈ S : b−1A ∈ q · r} ∈ p so pick
b ∈ S such that b−1B ∈ q and b−1A ∈ q · r. Then {c ∈ S : c−1(b−1A) ∈ r} ∈ q so pick
c ∈ b−1B such that c−1(b−1A) ∈ r. Then c ∈ ϕ(b) and b · c ∈ B so (b · c)−1(S\A) ∈ r.
Pick a ∈ c−1(b−1A)∩ (b · c)−1(S\A). Then a ∈ ϕ(c) and c · a ∈ b−1A so c · a ∈ ϕ(b) and
b · (c · a) ∈ A. On the other hand, a ∈ ϕ(b · c) and (b · c) · a ∈ S\A, a contradiction.

The fact that δS is a compact right topological semigroup provides a natural context
for the notion of “central” in an adequate partial semigroup.

2.7 Definition. Let S be an adequate partial semigroup and let A ⊆ S. Then A is
central if and only if there is some minimal idempotent p ∈ δS such that A ∈ p. Also
A is central* if and only if A ∩B 6= ∅ whenever B is a central subset of S.
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Notice that A is central* if and only if A is a member of every minimal idempotent
in δS.

We shall be concerned extensively with more than one partial semigroup at a time.

2.8 Definition. Let S and T be partial semigroups and let f : S → T . Then f is a
partial semigroup homomorphism if and only if whenever x ∈ S and y ∈ ϕS(x), one has
that f(y) ∈ ϕT

(
f(x)

)
and f(x · y) = f(x) · f(y).

It would be natural to define an “adequate partial subsemigroup” S of an adequate
semigroup T to be a subset which is an adequate partial semigroup under the inherited
operation. We see now that this is not enough to guarantee that δS ⊆ δT .

2.9 Lemma. Let T be an adequate partial semigroup and let S be a subset of T which
is an adequate partial semigroup under the inherited operation. Then δS ⊆ δT if and
only if for all y ∈ T there exists H ∈ Pf (S) such that

⋂
x∈H

ϕS(x) ⊆ ϕT (y).

Proof. The sufficiency is immediate. For the necessity, let y ∈ T and suppose that for
all H ∈ Pf (S),

⋂
x∈H

ϕS(x)\ϕT (y) 6= ∅. Then

{
⋂

x∈H
ϕS(x)\ϕT (y) : H ∈ Pf (S)}

has the finite intersection property so pick p ∈ βS such that

{
⋂

x∈H
ϕ

S(x)\ϕT (y) : H ∈ Pf (S)} ⊆ p .

Then p ∈ δS\δT , a contradiction.

We shall see in Theorem 2.12 that the condition of Lemma 2.9 does not have to
hold.

2.10 Definition. Let T be a partial semigroup. Then S is an adequate partial sub-
semigroup of T if and only if S ⊆ T , S is an adequate partial semigroup under
the inherited operation, and for all F ∈ Pf (T ) there exists H ∈ Pf (S) such that⋂

x∈H
ϕ

S(x) ⊆
⋂

x∈F
ϕ

T (x).

2.11 Remark. Notice that:

(1) By Lemma 2.9 if S is an adequate partial subsemigroup of T , then δS ⊆ δT .

(2) If T is a partial semigroup which has an adequate partial subsemigroup, then
necessarily T is an adequate partial semigroup.

(3) If S is a subset of T which is a partial semigroup under the inherited operation,
then every adequate partial subsemigroup of T included in S is an adequate partial
subsemigroup of S.
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Notice that “is an adequate partial subsemigroup of” is a transitive relation. How-
ever, the following result establishes that the notion is not as well behaved as one might
like.

2.12 Theorem. There exist an adequate partial semigroup T and adequate partial sub-
semigroups R and S of T such that R ∩ S is an adequate partial semigroup with the
inherited operation, but R ∩ S is not an adequate partial subsemigroup of T .

Proof. Let T = Pf (ω + ω), where ω + ω is the ordinal sum. For α, β ∈ T , define
α ∗ β = α ∪ β exactly when maxα < minβ. It is easy to see that T is an adequate
partial semigroup.

Let A = ω ∪ {ω + 2n : n ∈ ω} and B = ω ∪ {ω + 2n + 1 : n ∈ ω}. Let R = Pf (A)
and let S = Pf (B). It is routine to verify that both R and S are adequate partial
subsemigroups of T . Now R ∩ S = Pf (ω). To see that R ∩ S is not an adequate
partial subsemigroup of T , let F =

{
{ω}

}
. Then there is no H ∈ Pf (R ∩ S) such that⋂

α∈H
ϕR∩S(α) ⊆

⋂
α∈F

ϕT (α) (which is {α ∈ T : minα > ω}).

Theorem 2.12 shows in particular that one may have adequate partial semigroups
S and T such that S ⊆ T (and S has the inherited operation) but δS\δT 6= ∅. If
q ∈ δS\δT and p ∈ βS\S, then p · q is defined in βS, but is not defined in βT . This
fact raises the possibility of some ambiguity concerning what is meant by p · q. The
following result shows that, if it is defined, p · q can mean only one thing.

2.13 Lemma. Let T be an adequate partial semigroup and let R and S be subsets
of T which are both adequate partial semigroups under the inherited operation. Let
p, q ∈ β(R ∩ S). If p · q is defined in S and p · q is defined in R, then it is the same
object under both definitions.

Proof. Let A ⊆ R ∩ S and assume that A ∈ p · q as that object is defined in R.
We show that A ∈ p · q as that object is defined in S. Assume first that p ∈ R ∩ S

so that (because p · q is defined), ϕR(p) ∈ q and ϕS(p) ∈ q. Then by Lemma 2.4(a)
{y ∈ ϕ

R(p) : p · y ∈ A} ∈ q and {y ∈ ϕ
R(p) : p · y ∈ A}∩ϕ

S(p) ⊆ {y ∈ ϕ
S(p) : p · y ∈ A}

and hence {y ∈ ϕS(p) : p · y ∈ A} ∈ q.

Now assume that p ∈ β(R ∩ S)\(R ∩ S) and hence (because p · q is defined),
q ∈ (δR ∩ δS). Then by Lemma 2.4(b) {x ∈ R : {y ∈ ϕR(x) : x · y ∈ A} ∈ q} ∈ p. Also
S ∈ p. We claim that

{x ∈ R : {y ∈ ϕR(x) : x · y ∈ A} ∈ q} ∩ S ⊆ {x ∈ S : {y ∈ ϕS(x) : x · y ∈ A} ∈ q}
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so that {x ∈ S : {y ∈ ϕS(x) : x · y ∈ A} ∈ q} ∈ p as required. To this end, let x ∈ S ∩R

such that {y ∈ ϕR(x) : x · y ∈ A} ∈ q. Since also ϕS(x) ∈ q and

{y ∈ ϕR(x) : x · y ∈ A} ∩ ϕS(x) ⊆ {y ∈ ϕS(x) : x · y ∈ A}

we have that {y ∈ ϕ
S(x) : x · y ∈ A} ∈ q as required.

We now establish conditions guaranteeing that the continuous extension of a partial
semigroup homomorphism is a homomorphism.

2.14 Lemma. Let S and T be adequate partial semigroups, let f : S → T be a partial
semigroup homomorphism, and let f̃ : βS → βT be the continuous extension of f . If
p ∈ βS, q ∈ δS, and f̃(q) ∈ δT , then f̃(p · q) = f̃(p) · f̃(q). If f [S] is an adequate partial
subsemigroup of T , then f̃ [δS] ⊆ δT and f̃|δS is a (semigroup) homomorphism.

Proof. Assume first that p ∈ βS, q ∈ δS, and f̃(q) ∈ δT and suppose that f̃(p · q) 6=
f̃(p) · f̃(q). Pick disjoint open neighborhoods U and V of f̃(p · q) and f̃(p) · f̃(q)
respectively. Pick A ∈ p such that f̃ ◦ ρq

[
A

]
⊆ U and ρ

f̃(q)
◦ f̃

[
A

]
⊆ V and pick

x ∈ A. Then f̃(x · q) ∈ U and f(x) · f̃(q) ∈ V . Since λf(x)

(
f̃(q)

)
∈ V , pick B ∈ f̃(q)

such that λf(x)[B ∩ ϕT

(
f(x)

)
] ⊆ V . Pick C ∈ q such that f̃ ◦ λx[C ∩ ϕS(x) ] ⊆ U and

f̃ [C ] ⊆ B ∩ ϕT

(
f(x)

)
. Pick y ∈ C ∩ ϕS(x). Then f(x · y) ∈ U and f(x) · f(y) ∈ V , a

contradiction.

Now assume that f [S] is an adequate partial subsemigroup of T . Let p ∈ δS and
let x ∈ T . Suppose that ϕT (x) /∈ f̃(p). Pick A ∈ p such that f̃

[
A

]
∩ϕT (x) = ∅ and pick

F ∈ Pf (f [S]) such that
⋂

y∈F
ϕ

f [S](y) ⊆ ϕT (x). Let G ∈ Pf (S) be such that f [G] = F ,
and pick b ∈ A ∩

⋂
a∈G

ϕ
S(a). Then f(b) ∈ f [A] ∩

⋂
y∈F

ϕ
f [S](y) ⊆ f [A] ∩ ϕ

T (x), a
contradiction.

We now extend the notions of “right ideal”, “left ideal”, and “ideal” to partial
semigroups.

2.15 Definition. Let S be a partial semigroup.

(a) A subset I of S is a left ideal of S if and only if x · y ∈ I whenever x ∈ S and
y ∈ I ∩ ϕ(x).

(b) A subset I of S is a right ideal of S if and only if x · y ∈ I whenever x ∈ I and
y ∈ ϕ(x).

(c) A subset I of S is an ideal of S if and only if I is both a left ideal and a right
ideal of S.

11



2.16 Lemma. Let T be a partial semigroup, let S be an adequate partial subsemigroup
of T and assume that S is an ideal of T . Then δS is an ideal of δT . In particular,
K(δS) = K(δT ).

Proof. By Lemma 2.9, δS ⊆ δT . Let p ∈ δS and q ∈ δT . To see that q · p ∈ δS,
let x ∈ S. We need to show that ϕS(x) ∈ q · p. Since q ∈ δT , ϕT (x) ∈ q. We
claim that ϕ

T (x) ⊆ {y ∈ T : y−1ϕ
S(x) ∈ p}. (Here y−1ϕ

S(x) is interpreted in T , so
y−1ϕ

S(x) = {z ∈ ϕ
T (y) : y · z ∈ ϕ

S(x)}.) So let y ∈ ϕ
T (x) and pick H ∈ Pf (S) such

that
⋂

z∈H
ϕ

S(z) ⊆ ϕT (x · y). We claim that
⋂

z∈H
ϕS(z) ⊆ y−1ϕS(x), and thus that

y−1ϕS(x) ∈ p as required. So let w ∈
⋂

z∈H
ϕS(z). Then w ∈ ϕT (x · y). So (x · y) · w

is defined in T and so x · (y · w) is defined in T . In particular, y · w ∈ ϕT (x). Since
w ∈ S, and S is an ideal of T , y · w ∈ ϕT (x) ∩ S = ϕS(x). Also, w ∈ ϕT (y). Thus,
w ∈ y−1ϕS(x).

To see that p ·q ∈ δS, let x ∈ S. We need to show that ϕS(x) ∈ p ·q. We claim that
ϕS(x) ⊆ {y ∈ T : y−1ϕS(x) ∈ q}. (Again y−1ϕS(x) is interpreted in T .) Let y ∈ ϕS(x).
We claim that ϕ

T (x · y) ⊆ y−1ϕS(x), so that y−1 · ϕS(x) ∈ q. Let z ∈ ϕT (x · y). Then
(x · y) · z is defined in T and so x · (y · z) is defined in T . Also since S is an ideal of T ,
y · z ∈ S, so y · z ∈ ϕS(x).

Finally, since δS is an ideal of δT , we have that K(δT ) ⊆ δS and in particular
K(δT ) ∩ δS 6= ∅. Consequently by [9, Theorem 1.65], K(δS) = K(δT ) ∩ δS = K(δT ).

We conclude this section with three technical lemmas that are of interest in terms
of our descriptions of “layered partial semigroups” in the next section.

2.17 Lemma. Let T and S be adequate partial semigroups, let σ : T → S, and let
σ̃ : βT → βS be the continuous extension of σ. Then δS ⊆ σ̃[δT ] if and only if for
every F ∈ Pf (T ) there exists H ∈ Pf (S) such that

⋂
x∈H

ϕS(x) ⊆ σ
[⋂

x∈F
ϕT (x)

]
.

Proof. Necessity. Let F ∈ Pf (T ) and let B =
⋂

x∈F
ϕT (x). Suppose that for all H ∈

Pf (S),
⋂

x∈H
ϕS(x)\σ[B] 6= ∅. Then {ϕS(x)\σ[B] : x ∈ S} has the finite intersection

property so pick p ∈ βS such that {ϕS(x)\σ[B] : x ∈ S} ⊆ p. Then p ∈ δS so pick
q ∈ δT such that σ̃(q) = p. Now B ∈ q so σ[B] ∈ p, a contradiction.

Sufficiency. Let p ∈ δS. It suffices to show that {σ−1[A] : A ∈ p}∪{ϕT (x) : x ∈ T}
has the finite intersection property. (For then, picking q ∈ βT such that {σ−1[A] : A ∈
p}∪{ϕT (x) : x ∈ T} ⊆ q we have that q ∈ δT and σ̃(q) = p.) Let A ∈ p and F ∈ Pf (T ).
Pick H ∈ Pf (S) such that

⋂
x∈H

ϕS(x) ⊆ σ
[⋂

x∈F
ϕT (x)

]
. Pick y ∈ A ∩

⋂
x∈H

ϕS(x)
and pick z ∈

⋂
x∈F

ϕT (x) such that y = σ(z). Then z ∈
⋂

x∈F
ϕT (x) ∩ σ−1[A].
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2.18 Lemma. Let T and S be adequate partial semigroups, let σ : T → S be a partial
semigroup homomorphism such that σ[T ] = S, and let σ̃ : βT → βS be the continuous
extension of σ. The following are equivalent.

(a) δS ⊆ σ̃[δT ].

(b) δS = σ̃[δT ].

(c) For every F ∈ Pf (T ) there exists H ∈ Pf (S) such that⋂
x∈H

ϕ
S(x) ⊆ σ

[⋂
x∈F

ϕT (x)
]

.

Proof. Statements (a) and (c) are equivalent by Lemma 2.17, and trivially (b) implies
(a). That (a) implies (b) follows from Lemma 2.14.

2.19 Lemma. Let T and S be adequate partial semigroups, let σ : T → S, and let
σ̃ : βT → βS be the continuous extension of σ. Then {p ∈ K(δS) : p · p = p} ⊆ σ̃[δT ] if
and only if for every F ∈ Pf (T ), σ

[⋂
x∈F

ϕT (x)
]

is central* in S.

Proof. Sufficiency. Let p ∈ K(δS) such that p · p = p. Then for every F ∈ Pf (T ),
σ

[⋂
x∈F

ϕT (x)
]
∈ p. Thus {ϕT (x) : x ∈ T}∪{σ−1[A] : A ∈ p} has the finite intersection

property and so we may pick q ∈ βS such that

{ϕT (x) : x ∈ T} ∪ {σ−1[A] : A ∈ p} ⊆ q .

Since {ϕT (x) : x ∈ T} ⊆ q, q ∈ δT . Since {σ−1[A] : A ∈ p} ⊆ q, σ̃(q) = p.

Necessity. Let F ∈ Pf (T ). To see that σ
[⋂

x∈F
ϕT (x)

]
is central* in S, let

p = p · p ∈ K(δS). Pick q ∈ δT such that σ̃(q) = p. Then
⋂

x∈F
ϕT (x) ∈ q so

σ
[⋂

x∈F
ϕT (x)

]
∈ p.

3. Layered Partial Semigroups

In this section, we introduce our main objects of study and prove a common general-
ization of Theorems 1.3 and 1.4. Notice that any semigroup is also a partial semigroup
and if S is a semigroup, then δS = βS.

3.1 Definition. The set S is a layered partial semigroup (with k layers) if and only if
there exist k ∈ N\{1} and S0, S1, . . . , Sk, such that

(1) {S0, S1, . . . , Sk} is a partition of S;

(2) S0 = {e} where e is a two sided identity for S with ϕ
S(e) = S and e ∈⋂

x∈S
ϕS(x);

(3) for n ∈ {1, 2, . . . , k},
⋃n

i=0 Si is an adequate partial semigroup; and
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(4) for n ∈ {1, 2, . . . , k}, Sn is an adequate partial subsemigroup of S and an ideal
of

⋃n
i=0 Si.

Notice that if S is a layered partial semigroup, then by requirement (3) of the
definition, S =

⋃k
i=0 Si is an adequate partial semigroup.

If S is a layered partial semigroup which is in fact a semigroup, we shall say that
S is a layered semigroup.

We shall not be concerned with layered partial semigroups by themselves, but rather
in conjunction with certain functions acting on all or part of these semigroups.

3.2 Definition. Let S be a layered partial semigroup with k layers, let S0, S1, . . . , Sk

be as in Definition 3.1, and let n ∈ {2, 3, . . . , k}. A function σ is a shift on
⋃n

i=0 Si if
and only if

(1) σ is a partial semigroup homomorphism from
⋃n

i=0 Si to
⋃n−1

i=0 Si;

(2) σ[Sn] is an adequate partial subsemigroup of Sn−1; and

(3) for every F ∈ Pf (Sn), σ
[⋂

x∈F
ϕ

Sn
(x)

]
is central* in Sn−1.

It is not in general easy to tell whether a given subset of a partial semigroup is
central*. In practice it is often convenient to establish that for every F ∈ Pf (Sn) there
exists H ∈ Pf (Sn−1) such that

⋂
x∈H

ϕ
Sn−1(x) ⊆ σ

[⋂
x∈F

ϕ
Sn

(x)
]
. Then, by Lemma

2.17, δSn−1 ⊆ σ̃[δSn] and in particular {p ∈ K(δSn−1) : p · p = p} ⊆ σ̃[δSn] so that by
Lemma 2.19, σ

[⋂
x∈F

ϕ
Sn

(x)
]

is central* in Sn−1 for every F ∈ Pf (S).

Notice that requirement (2) of Definition 3.2 holds automatically in the event that
σ[Sn] = Sn−1. Notice also that, in the event that S is a semigroup, requirement (2) is
equivalent to the assertion that σ[Sn] ⊆ Sn−1 and requirement (3) is equivalent to the
assertion that σ[Sn] is central* in Sn−1.

3.3 Definition. Let S be a layered partial semigroup with k layers and let S0, S1, . . . , Sk

be as in Definition 3.1. Then 〈Fn〉kn=2 is a layered action on S if and only if for every
n ∈ {2, 3, . . . , k}, Fn is a nonempty finite set of partial semigroup homomorphisms from⋃n

i=0 Si to
⋃n−1

i=0 Si such that

(1) for each f ∈ Fn, either

(a) the restriction of f to
⋃n−1

i=0 Si is the identity or

(b) f is a shift on
⋃n

i=0 Si and either

(i) n > 2 and the restriction of f to
⋃n−1

i=0 Si is a member of Fn−1 or

(ii) f [
⋃n−1

i=0 Si] = {e}; and

(2) for all but at most one member of Fn, condition (1)(a) holds.
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The following simple lemma will be useful later.

3.4 Lemma. Let S be a layered partial semigroup with k layers, let S0, S1, . . . , Sk be as
in Definition 3.1, and let 〈Fn〉kn=2 be a layered action on S. For n ∈ {1, 2, . . . , k}, let
Tn =

⋃n
i=0 Si. If n ∈ {2, 3, . . . , k} and f ∈ Fn, then there is some v ∈ {2, 3, . . . , n} such

that for all s ∈ {v, v + 1, . . . , n} f|Ts
∈ Fs, and either f|Tv−1 = ιTv−1 or f [Tv−1] = {e}.

Proof. This is a routine induction (in the usual upwards direction) on n.

We pause to note that we already have examples of layered partial semigroups.

3.5 Lemma. Let k ∈ N and let Y , +, and σ be as defined before Theorem 1.3. For
each n ∈ {2, 3, . . . , k}, let Fn = {σ|∪n

i=0Si
}. Then Y is a layered partial semigroup with

k layers and 〈F i〉ki=2 is a layered action on Y .

Proof. For n ∈ {0, 1, . . . , k}, let Sn = {f ∈ Y : max(f [N]) = n}. Requirements (1)
through (3) of Definition 3.1 are easily verified. Requirement (4) holds because, given
any n ∈ {1, 2, . . . , k} and any f ∈ Y \{0} there exists g ∈ Sn such that supp(g) =
supp(f) and therefore ϕ

Sn
(g) = ϕ

Y (f).

To complete the proof, we need to show that for each n ∈ {2, 3, . . . , k}, σ|∪n
i=0Si

is a
shift on

⋃n
i=0 Si, since then condition (1)(b)(ii) of Definition 3.3 holds for n = 2, while

condition (1)(b)(i) holds for n > 2.

Requirement (1) of Definition 3.2 is immediate and requirement (2) holds be-
cause σ[Sn] = Sn−1 for each n ∈ {1, 2, . . . , k}. To verify requirement (3), let n ∈
{2, 3, . . . , k} and let F ∈ Pf (Sn). We show that there exists H ∈ Pf (Sn−1) such that⋂

x∈H
ϕ

Sn−1(x) ⊆ σ
[⋂

x∈F
ϕ

Sn
(x)

]
, which suffices, as we remarked, by Lemmas 2.17

and 2.19. For each f ∈ F , define hf ∈ Sn−1 by

hf (t) =
{

n− 1 if f(t) 6= 0
0 if f(t) = 0

and let H = {hf : f ∈ F}. Now let g ∈
⋂

x∈H
ϕSn−1(x). Define r ∈ Sn by

r(t) =
{

g(t) + 1 if g(t) 6= 0
0 if g(t) = 0 .

Then, r ∈
⋂

x∈F
ϕSn

(x) since for each f ∈ F , supp(hf ) = supp(f). And σ(r) = g.

3.6 Lemma. Let k ∈ N\{1} and let Y , ⊕, and F2 = F be as defined before Theorem
1.4. Then Y is a layered partial semigroup with 2 layers and 〈F i〉2i=2 is a layered action
on Y .
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Proof. Let S0 = { 0 }, let S1 = {f ∈ Y : 0 < max(f [N]) < k}, let S2 = {f ∈ Y :
max(f [N]) = k}, and let F2 = F . It is easy to verify that condition (1)(a) of Definition
3.3 applies to each f ∈ F2.

Lemmas 3.5 and 3.6 raise the natural question of whether we can have a layered
partial semigroup S and a layered action 〈Fn〉kn=2 on S for which conditions (1)(a) and
(1)(b) each apply to members of Fn. We see in fact that a very familiar semigroup (not
just partial semigroup) satisfies these requirements.

3.7 Lemma. Let k ∈ N\{1} and let S be the free semigroup on k letters with identity e.
Then S is a layered semigroup with k layers. Further for any m ∈ N, there is a layered
action 〈Fn〉kn=2 on S such that for each n, |Fn| ≥ m and condition (1)(b) of Definition
3.3 applies to one member of Fn.

Proof. Let the k letters be a1, a2, . . . , ak. Let S0 = {e}, and for n ∈ {1, 2, . . . , k}, let
Sn = {w ∈ S : max{t : at occurs in w} = n}.

Recall that a homomorphism on a free semigroup is completely determined by its
values at the letters. Define a homomorphism σ : S → S by σ(a1) = e and σ(an) = an−1

for n ∈ {2, 3, . . . , k}. Let m ∈ N be given and for each n ∈ {2, 3, . . . , k}, choose a finite
Fn ⊆

⋃n−1
i=0 Si such that |Fn| ≥ m. For each n ∈ {2, 3, . . . , k} and each w ∈ Fn, define

a homomorphism fn,w :
⋃n

i=0 Si →
⋃n−1

i=0 Si by

fn,w(at) =
{

w if t = n
at if t < n

and let Fn = {fn,w : w ∈ Fn} ∪ {σ|∪n
i=0Si

}. All requirements can be easily verified.

The following is our major algebraic tool. The proof combines ideas from the proofs
of [5, Theorem 1] and [1, Theorem 4.1].

3.8 Theorem. Let S be a layered partial semigroup and let k and S0, S1, . . . , Sk be as in
Definition 3.1. Let 〈Fn〉kn=2 be a layered action on S. Let p be any minimal idempotent
in δS1. For n ∈ {2, 3, . . . , k} and f ∈ Fn, let f̃ : β(

⋃n
i=0 Si) → β(

⋃n−1
i=0 Si) be the

continuous extension of f . Then for each i ∈ {1, 2, . . . , k}, there is an idempotent pi,
minimal in δSi, such that

(1) p1 = p;

(2) if i ∈ {2, 3, . . . , k} and f ∈ F i, then f̃(pi) = pi−1 and

(3) if i, j ∈ {1, 2, . . . , k} and i ≤ j, then pj ≤ pi.

Proof. For each n ∈ {1, 2, . . . , k}, let Tn =
⋃n

i=0 Si.
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Now let n ∈ {2, 3, . . . , k} and assume that we have chosen p0, p1, . . . , pn−1 as re-
quired. We claim that it suffices to produce an idempotent pn minimal in δSn such
that pn ≤ pn−1 and for σ ∈ Fn satisfying condition (1)(b) of Definition 3.3, if any,
σ̃(pn) = pn−1.

Assume that we have done this. Then conclusions (1) and (3) hold directly. Let
f ∈ Fn such that f satisfies condition (1)(a) of Definition 3.3. Since f [Tn−1] = Tn−1,
f is surjective so by Lemma 2.14, f̃|δTn

: δTn → δTn−1 is a homomorphism. Therefore,
f̃(pn) ≤ f̃(pn−1). Since f equals the identity on Tn−1, f̃(pn−1) = pn−1. Therefore,
f̃(pn) ≤ pn−1. By Lemma 2.16 and Remark 2.11(3), pn−1 ∈ K(δTn−1) and so pn−1 is
minimal in δTn−1 and so f̃(pn) = pn−1, and conclusion (2) holds.

Notice that, by Remark 2.11(1) and Remark 2.11(3), δSn−1 ⊆ δTn and δSn ⊆ δTn.
Notice also that if σ is a shift on Tn, then by Lemma 2.14, σ̃|δSn

is a homomorphism
for each n ∈ {2, 3, . . . , k}.

If all f ∈ Fn satisfy condition (1)(a) of Definition 3.3, we simply note that pn−1 ∈
δSn−1 ⊆ δTn. Thus we may pick by [9, Theorem 1.60] an idempotent pn ∈ K(δTn) such
that pn ≤ pn−1. By Lemma 2.16, K(δSn) = K(δTn) and so pn is minimal in δSn.

So we assume that σ ∈ Fn satisfies condition (1)(b) of Definition 3.3. Let M =
{q ∈ δSn : σ̃(q) = pn−1}. By requirement (3) of Definition 3.2 and Lemma 2.19, we
have that pn−1 ∈ σ̃[δSn] so that M 6= ∅. Trivially M is a compact subsemigroup of δSn

(since σ̃ is a homomorphism on δSn). Now pn−1 ∈ δSn−1 ⊆ δTn and M ⊆ δSn ⊆ δTn

so M · pn−1 is a compact subset of δTn. Since δSn is an ideal of δTn by Lemma 2.16
and Remark 2.11(3), we have M · pn−1 ⊆ δSn.

We claim that M · pn−1 ⊆ M . To see this, let q ∈ M . We have just seen that
q · pn−1 ∈ δSn. Now either n > 2 and σ|Tn−1 ∈ Fn−1 or σ[Tn−1] = {e}. In the first
case σ̃(pn−1) = pn−2 by the induction hypothesis and so σ̃(pn−1) ∈ δSn−2 ⊆ Tn−1. In
the second case σ̃(pn−1) = e ∈ Tn−1. Thus in either case we have by Lemma 2.14 that
σ̃(q · pn−1) = σ̃(q) · σ̃(pn−1) = pn−1 · σ̃(pn−1) = pn−1.

Since M · pn−1 ⊆ M we have that M · pn−1 · M · pn−1 ⊆ M · pn−1. That is,
M · pn−1 is a subsemigroup of δSn. Pick an idempotent q minimal in M · pn−1. Then
q = r · pn−1 for some r ∈ M so that q · pn−1 = r · pn−1 · pn−1 = r · pn−1 = q. Also
q ∈ M · pn−1 ⊆ M . Let pn = pn−1 · q and note that pn · pn−1 = pn−1 · pn = pn. Also
note that pn · pn = pn · pn−1 · q = pn · q = pn−1 · q · q = pn−1 · q = pn. Thus pn is an
idempotent with pn ≤ pn−1.

We claim first that pn ∈ M (so, since pn = pn · pn−1, pn ∈ M · pn−1). We have
that pn ∈ δSn because δSn is an ideal of δTn and q ∈ δSn. Also q ∈ δSn ⊆ δTn and
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σ̃(q) ∈ δSn−1 ⊆ δTn−1 so by Lemma 2.14, σ̃(pn) = σ̃(pn−1 · q) = σ̃(pn−1) · σ̃(q) =
σ̃(pn−1) · pn−1 = pn−1, using again the fact that either σ̃(pn−1) = pn−2 or σ̃(pn−1) = e.
It remains only to show that pn is minimal in δSn which we shall do in three steps.

Next we claim that pn is minimal in M ·pn−1. Indeed, pn = pn−1 · q = pn−1 · q · q =
pn · q ∈ (M · pn−1) ·K(M · pn−1) ⊆ K(M · pn−1).

Now we show that pn is minimal in M . So let s be an idempotent in M with
s ≤ pn. Then s = s · pn = s · pn · pn−1 ∈ M · pn−1 and so s = pn. (We used here the
fact noted earlier that M is a semigroup.)

Finally we show that pn is minimal in δSn. So let s be an idempotent in δSn with
s ≤ pn. We need to show that s ∈ M . To see that σ̃(s) = pn−1 it suffices to show that
σ̃(s) ≤ pn−1 since σ̃(s) is an idempotent in δSn−1. Now σ̃(s) · pn−1 = σ̃(s) · σ̃(pn) =
σ̃(s · pn) = σ̃(s) and pn−1 · σ̃(s) = σ̃(pn) · σ̃(s) = σ̃(pn · s) = σ̃(s). Thus σ̃(s) ≤ pn−1 as
required.

We now introduce some notation that will be used to describe the structures which
we can guarantee to lie in one cell of a partition of a layered partial semigroup. The
notation does not reflect its dependence on the choice of semigroup or the choice of
layered action.

3.9 Definition. Let S be a layered partial semigroup with k layers, let S0, S1, . . . , Sk

be as in Definition 3.1, and let 〈Fn〉kn=2 be a layered action on S. Let Gk = {ιS}. For
l ∈ {1, 2, . . . , k − 1}, given that Gl+1 has been defined, let Gl = {f ◦ g : g ∈ Gl+1 and
f ∈ F l+1}.

The following lemma will be needed in Section 6.

3.10 Lemma. Let S be a layered partial semigroup with k layers, let S0, S1, . . . , Sk be
as in Definition 3.1, and let 〈Fn〉kn=2 be a layered action on S. For l ∈ {1, 2, . . . , k} let
Gl be as in Definition 3.9. Let l,m ∈ {1, 2, . . . , k}, let f ∈ Gl, and let g ∈ Gm. Then
there is some t ∈ {1, 2, . . . , k}, with t ≤ min{l,m}, such that f ◦ g ∈ Gt ∪ {e}, where e

is the function constantly equal to e.

Proof. For n ∈ {1, 2, . . . , k}, let Tn =
⋃n

i=0 Si. We proceed by downward induction on
l. If l = k, then f ◦ g = g ∈ Gm, so assume that l < k and the lemma is valid for l + 1
and m. Pick r ∈ Gl+1 and h ∈ F l+1 such that f = h ◦ r. Pick t ∈ {1, 2, . . . , k}, with
t ≤ min{l + 1,m}, such that r ◦ g ∈ Gt ∪ {e}.

If r◦g = e, then f ◦g = h◦r◦g = e because h is a partial semigroup homomorphism.
So assume that r◦g ∈ Gt. Now h ∈ F l+1 so pick by Lemma 3.4 some v ∈ {2, 3, . . . , l+1}
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such that for all s ∈ {v, v + 1, . . . , l + 1} h|Ts
∈ Fs, and either h|Tv−1 = ιTv−1 or

h[Tv−1] = {e}.
We have that t ≤ l + 1. Assume first that t ≥ v. Then h|Tt

∈ F t and r ◦ g ∈ Gt so
f ◦ g = h ◦ r ◦ g ∈ Gt−1 and t− 1 ≤ min{l, m}.

Thus we may assume that t < v. Then r ◦ g[S] ⊆ Tt ⊆ Tv−1 and either h|Tv−1 =
ιTv−1 or h[Tv−1] = {e}. If h|Tv−1 = ιTv−1 , then h ◦ r ◦ g = r ◦ g ∈ Gt and t ≤ v − 1 ≤ l

so that t ≤ min{l,m}. If h[Tv−1] = {e}, then h ◦ r ◦ g = e.

Notice that Lemma 3.10 says in particular that {e}∪
⋃k

l=1 Gl is a semigroup under
composition.

3.11 Lemma. Let S be a layered partial semigroup with k layers and let S0, S1, . . . , Sk

be as in Definition 3.1. For n ∈ {1, 2, . . . , k}, let Tn =
⋃n

i=0 Si. For each n ∈ {2, 3,

. . . , k}, let Fn be a finite set of partial semigroup homomorphisms from Tn into Tn−1.
Let Gk = {ιS} and for l ∈ {1, 2, . . . , k − 1}, let Gl = {f ◦ g : g ∈ Gl+1 and f ∈ F l+1}.
For n ∈ {1, 2, . . . , k} let pn be an idempotent in δSn such that, if n ≥ 2, then pn ≤ pn−1

and f̃(pn) = pn−1 for every f ∈ Fn.

(a) For each l ∈ {1, 2, . . . , k}, Gl is a finite set of partial semigroup homomor-
phisms from S into Tl.

(b) For each l ∈ {1, 2, . . . , k} and each h ∈ Gl, h̃(pk) = pl, where h̃ : βS → βTl is
the continuous extension of h.

(c) For i ∈ {1, 2, . . . , k}, let Ai ∈ pi. Given any i, j ∈ {1, 2, . . . , k} and any g ∈ Gj,
{w ∈ Sk : g(w)−1Amax{i,j} ∈ pi} ∈ pk.

Proof. The first two conclusions are immediate. To verify conclusion (c), let i, j ∈ {1, 2,

. . . , k}.
Assume first that j ≤ i, in which case pi ≤ pj . In particular, pi = pj ·pi. Since Ai ∈

pi, we have that {w ∈ S : w−1Ai ∈ pi} ∈ pj . Since pj = g̃(pk) by conclusion (b), g̃(pk) ∈
{w ∈ S : w−1Ai ∈ pi}, so there exists B ∈ pk such that g̃[B ] ⊆ {w ∈ S : w−1Ai ∈ pi}.
Then B ⊆ {w ∈ Sk : g(w)−1Ai ∈ pi} and so {w ∈ Sk : g(w)−1Ai ∈ pi} ∈ pk as required.

Now assume that i < j, so that pj ≤ pi and in particular, pj = pj ·pi. Since Aj ∈ pj ,
we have that {w ∈ S : w−1Aj ∈ pi} ∈ pj = g̃(pk) and thus {w ∈ Sk : g(w)−1Aj ∈ pi} ∈
pk as required.

3.12 Lemma. Let S be a layered partial semigroup with k layers and let S0, S1, . . . , Sk

be as in Definition 3.1. For n ∈ {1, 2, . . . , k}, let Tn =
⋃n

i=0 Si. For each n ∈ {2, 3,

. . . , k}, let Fn be a finite set of partial semigroup homomorphisms from Tn into Tn−1.
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Let Gk = {ιS} and for l ∈ {1, 2, . . . , k − 1}, let Gl = {f ◦ g : g ∈ Gl+1 and f ∈ F l+1}.
For n ∈ {1, 2, . . . , k} let pn be an idempotent in δSn such that, if n ≥ 2, then pn ≤ pn−1

and f̃(pn) = pn−1 for every f ∈ Fn. Let r ∈ N and assume that S =
⋃r

i=1 Ci. For each
l ∈ {1, 2, . . . , k}, pick γ(l) ∈ {1, 2, . . . , r} such that Cγ(l) ∩ Sl ∈ pl. For each l ∈ {1, 2,

. . . , k} let 〈Bl,m〉∞m=1 be a sequence of elements of pl. Then there exists a sequence
〈wn〉∞n=1 in Sk such that

∏
n∈F gn(wn) is defined for each F ∈ Pf (N) and each choice

of gn ∈
⋃k

i=1 Gi, and for each l ∈ {1, 2, . . . , k} and each m ∈ N,

{
∏

n∈F gn(wn) : F ∈ Pf (N) , gn ∈
⋃l

i=1 Gi for each n ∈ F ,minF ≥ m ,
and there exists n ∈ F such that gn ∈ Gl} ⊆ Cγ(l) ∩Bl,m .

Proof. For i ∈ {1, 2, . . . , k}, let Ai,1 = Cγ(i) ∩ Bi,1 and note that Ai,1 ∈ pi. We
inductively construct a sequence 〈wn〉∞n=1 in Sk and, for each i ∈ {1, 2, . . . , k}, a sequence
〈Ai,n〉∞n=1 in pi such that

(1) for j ∈ {1, 2, . . . , k}, n ∈ N, and g ∈ Gj , g(wn) ∈ Aj,n;

(2) for i, j ∈ {1, 2, . . . , k}, n ∈ N, and g ∈ Gj , g(wn)−1Amax{i,j},n ∈ pi; and

(3) for i ∈ {1, 2, . . . , k} and n ∈ N,

Ai,n+1 = Bi,n+1∩Ai,n∩
(⋂i

j=1

⋂
g∈Gj

g(wn)−1Ai,n

)
∩

(⋂k
j=i

⋂
g∈Gj

g(wn)−1Aj,n

)
.

So let n ∈ N and assume that we have Ai,n ∈ pi for each i ∈ {1, 2, . . . , k}. By
Lemma 3.11(c), for any i, j ∈ {1, 2, . . . , k} and any g ∈ Gj ,

{w ∈ Sk : g(w)−1Amax{i,j},n ∈ pi} ∈ pk .

Also, by Lemma 3.11(b), for any j ∈ {1, 2, . . . , k} and any g ∈ Gj , g̃(pk) = pj and so
g−1[Aj,n] ∈ pk. Thus we may pick

wn ∈
(⋂k

i=1

⋂k
j=1

⋂
g∈Gj

{w ∈ Sk : g(w)−1Amax{i,j},n ∈ pi}
)
∩

(⋂k
j=1

⋂
g∈Gj

g−1[Aj,n]
)

.

Hypotheses (1) and (2) are satisfied directly. For i ∈ {1, 2, . . . , k}, let Ai,n+1 be as
required by hypothesis (3). By hypothesis (2), Ai,n+1 ∈ pi.

The construction being complete, we show by induction on |F | that if F ∈ Pf (N),
g : F →

⋃k
t=1 Gt, a = min F , and l = max{t : g[F ] ∩ Gt 6= ∅}, then

∏
n∈F g(n)(wn) ∈

Al,a. Since Al,a ⊆ Al,1 = Cγ(l) and Al,a ⊆ Bl,m for all m ∈ {1, 2, . . . , a}, this will suffice.

If F = {a}, we have by hypothesis (1) that g(a)(wa) ∈ Al,a as required. So assume
that |F | > 1 and the assertion is true for all smaller sets. Let G = F\{a}, let b = minG,
and let m = max{t : g[G] ∩ Gt 6= ∅}. By assumption

∏
n∈G g(n)(wn) ∈ Am,b. Pick

j ∈ {1, 2, . . . , k} such that g(a) ∈ Gj , and note that l = max{m, j}.
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Assume first that l = m (so that m ≥ j). Then∏
n∈G g(n)(wn) ∈ Am,a+1 ⊆

(
g(a)(wa)

)−1
Am,a

and thus
∏

n∈F g(n)(wn) ∈ Am,a = Al,a.

Now assume that l = j (so that m ≤ j). Then∏
n∈G g(n)(wn) ∈ Am,a+1 ⊆

(
g(a)(wa)

)−1
Aj,a

and thus
∏

n∈F g(n)(wn) ∈ Aj,a = Al,a.

The following is the main result of this section.

3.13 Theorem. Let S be a layered partial semigroup with k layers, let S0, S1, . . . , Sk be
as in Definition 3.1, and let 〈Fn〉kn=2 be a layered action on S. Let G1,G2, . . . ,Gk be as
in Definition 3.9. Let r ∈ N and assume that S =

⋃r
i=1 Ci. Then there exists γ : {1, 2,

. . . , k} → {1, 2, . . . , r} and a sequence 〈wn〉∞n=1 in Sk such that
∏

n∈F gn(wn) is defined
for each F ∈ Pf (N) and each choice of gn ∈

⋃k
i=1 Gk and for each l ∈ {1, 2, . . . , k},

{
∏

n∈F gn(wn) : F ∈ Pf (N) , gn ∈
⋃l

i=1 Gi for each n ∈ F ,
and there exists n ∈ F such that gn ∈ Gl} ⊆ Cγ(l) .

Further, for each i ∈ {1, 2, . . . , k}, Cγ(i) ∩ Si is central in Si and γ(1) can be any
i ∈ {1, 2, . . . , r} such that Ci ∩ S1 is central in S1.

Proof. Pick γ(1) ∈ {1, 2, . . . , r} such that Cγ(1) ∩ S1 is central in S1 and pick an
idempotent p minimal in δS1 such that Cγ(1) ∈ p. For i ∈ {1, 2, . . . , k} pick pi as
guaranteed by Theorem 3.8. The result now follows from Lemma 3.12.

We illustrate an application by proving Theorem 1.1 from the introduction.

3.14 Corollary. For every r ∈ N and every partition W ({a, b, c}) =
⋃r

j=1 Cj there
exist an infinite 〈xn〉∞n=1 in W ({a, b, c}) \W ({a, b}) and γ: {a, b, c} → {1, 2, . . . , r} such
that if σ ∈ {feab, faeb, faab} and F = {fabc, fabb, faba, fabe, σ} ∪

{
fxyz|x, y, z ∈ {a, e}

}
,

then we have

{
∏

n∈F gn(xn) : F ∈ Pf (N) , and for each n ∈ F , gn ∈ F}
∩

(
W ({a, b, c}) \W ({a, b})

)
⊆ Cγ(a)

{
∏

n∈F gn(xn) : F ∈ Pf (N) , and for each n ∈ F , gn ∈ F}
∩

(
W ({a, b}) \W ({a})

)
⊆ Cγ(b)

{
∏

n∈F gn(xn) : F ∈ Pf (N) , and for each n ∈ F , gn ∈ F}
∩

(
W ({a}) \ {e})

)
⊆ Cγ(c)
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Proof. Let S = W ({a, b, c}), S0 = {e}, S1 = W ({a})\{e}, S2 = W ({a, b}) \ W ({a}),
and S3 = S\W ({a, b}). Then S is a layered semigroup. Let F2 = {faae|W ({a,b}),

faee|W ({a,b}), feab|W ({a,b})} and let F3 = {fabb, faba, fabe, σ}.
We claim that 〈Fn〉3n=2 is a layered action on S. Trivially faae|W ({a}) and

faee|W ({a}) are equal to the identity on W ({a}) and fabb|W ({a,b}), faba|W ({a,b}), and
fabe|W ({a,b}) are equal to the identity on W ({a, b}). Also, feab is a shift on S,
feab|W ({a,b}) is a shift on W ({a, b}), and feab[W ({a})] = {e}. Finally, faeb and faab are
shifts on S, faeb|W ({a,b}) = faee|W ({a,b}) ∈ F2, and faab|W ({a,b}) = faae|W ({a,b}) ∈ F2.

It is easily checked that G1, G2 and G3 defined in Definition 3.9 satisfy F\{feee} =
G1 ∪ G2 ∪ G3. Thus the conclusion follows by Theorem 3.13 and the fact that for any
w ∈ S, feee(w) = e.

Notice that by Lemma 3.5, Theorem 1.3 is a corollary to Theorem 3.13, and by
Lemma 3.6, Theorem 1.4 is a corollary to Theorem 3.13. The reader is invited to amuse
herself by seeing what sorts of configurations can be guaranteed to be monochromatic
in the free semigroup on k letters. As an illustration of the process, we derive the
Hales–Jewett Theorem [7].

Recall that, given an alphabet Σ, a variable word over Σ is a word over the alphabet
Σ ∪ {v} in which v actually occurs, where v is a “variable” which is not a member of
Σ. Given a variable word w and a ∈ Σ, w(a) is the result of substituting a for each
occurrence of v.

3.15 Corollary (Hales–Jewett). Let Σ be a finite nonempty alphabet, let R be the
free semigroup over Σ, let r ∈ N, and let R =

⋃r
i=1 Ci. Then there exist i ∈ {1, 2, . . . , r}

and a variable word u over Σ such that {u(a) : a ∈ Σ} ⊆ Ci.

Proof. We may presume that we have k ∈ N\{1} such that Σ = {a1, a2, . . . , ak−1}. Let
S be the free semigroup with identity e over {a1, a2, . . . , ak}. Let S0 = {e}, let S1 = R,
and let S2 = {w ∈ S : ak occurs in w}. Let T2 = S = S0 ∪S1 ∪S2 and let T1 = S0 ∪S1.
For i ∈ {1, 2, . . . , k − 1} define a homomorphism fi : T2 → T1 by

fi(at) =
{

ai if t = k
at if t < k .

Let F2 =
{
fi : i ∈ {1, 2, . . . , k − 1}

}
.

Then S is a layered semigroup with two layers. Let C0 = S0 and let Cr+1 = S2

(or divide S2 up any way you please). Choose γ : {1, 2} → {0, 1, . . . , r + 1} and a
sequence 〈wn〉∞n=1 in S2 as guaranteed by Theorem 3.13. Define a variable word u

22



over Σ by replacing all occurrences of ak in w1 by v. Then
{
u(at) : t ∈ {1, 2, . . . ,

k − 1}
}

= {f(w1) : f ∈ F2} ⊆ Cγ(1).

In fact, we also get a significant strengthening of the Hales–Jewett Theorem as
a corollary to Theorem 3.13. (This result has probably not been previously stated,
although it is derivable as a consequence of the noncommutative Central Sets Theorem
[2, Theorem 2.8].)

3.16 Corollary. Let Σ be a finite nonempty alphabet, let R be the free semigroup over
Σ, let r ∈ N, and let R =

⋃r
i=1 Ci. Then there exist i ∈ {1, 2, . . . , r} and a sequence of

variable words 〈un〉∞n=1 over Σ such that for every F ∈ Pf (N) and every h : F → Σ,∏
n∈F un

(
h(n)

)
∈ Ci.

Proof. Let k, S, S0, S1, S2, T1, T2, f1, f2, . . . , fk−1, F2, C0, Cr+1, γ, and 〈wn〉∞n=1 be
as in the proof of Corollary 3.15. For each n ∈ N, define a variable word un by replacing
each occurrence of ak in wn by the variable v.

Now let F ∈ Pf (N) and let h : F → Σ. For n ∈ F , let gn = fj , where h(n) = aj .
Then

∏
n∈F un

(
h(n)

)
=

∏
n∈F gn(wn) ∈ Cγ(1).

4. Restrictions on Shifts

Requirement (3) of Definition 3.2 is of a more esoteric character than the other require-
ments in Definitions 3.1 and 3.2, and it would be nice if it could be eliminated. We see
now that it cannot, given that we want the conclusion of Theorem 3.13 to hold, or even
the weakened version which does not require that the chosen cells be central.

4.1 Theorem. There exist a layered semigroup S with 2 layers, and a set F2 such
that 〈Fn〉2n=2 would be a layered action on S if requirement (3) of Defintition 3.2 were
eliminated, for which the conclusion of Theorem 3.13 fails.

Proof. Let S = W ({1, 2, 3}), S0 = {e}, S1 = W ({1, 2})\{e}, and S2 = S\W ({1, 2})
Define homomorphisms σ and f on S by σ(1) = σ(2) = e, σ(3) = 1, f(1) = 1, and
f(2) = f(3) = 2. Let F2 = {f, σ}. It is routine to verify that S is a layered partial
semigroup with 2 layers and that 〈Fn〉2n=2 would be a layered action on S if requirement
(3) of Definition 3.2 were eliminated.

Every word in f [S2] has at least one letter equal to 2, while all words in σ[S2]
consist only of 1’s. Thus the sets f [S2] and σ[S2] are disjoint, and this clearly implies
that the conclusion of Theorem 3.13 fails.
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In our results about layered partial semigroups, it is striking how differently con-
ditions (1)(a) and (1)(b) of Definition 3.3 are treated. It would seem far more natural
to simply require that each f ∈ Fn satisfy either condition (1)(a) or condition (1)(b).
However, given that our goal is Theorem 3.13, this is not possible. In fact not only
cannot one allow two of the functions in Fn to satisfy only condition (1)(b), but indeed
one cannot use the same choice of colors for the semigroup layered via two such choices.
(See also Question 6.6 and the paragraph following it.)

4.2 Theorem. Let k ∈ N\{1}. There exist a layered semigroup (S, +) with k layers,
sets C1 and C2, and functions σ : S → S and σ′ : S → S such that

(1) if for each n ∈ {2, 3, . . . , k}, Fn = {σ|∪n
i=1Si

}, then 〈Fn〉kn=2 is a layered action on
S;

(2) if for each n ∈ {2, 3, . . . , k}, F ′
n = {σ′|∪n

i=1Si
}, then 〈F ′

n〉kn=2 is a layered action on
S;

(3) S = C1 ∪ C2;

(4) if G1,G2, . . . ,Gk are as in Definition 3.9 for the layered action Fn = {σ|∪n
i=1Si

},
G′1,G

′
2, . . . ,G

′
k are as in Definition 3.9 for the layered action F ′

n = {σ|∪n
i=1Si

},
γ : {1, 2, . . . , k} → {1, 2}, γ′ : {1, 2, . . . , k} → {1, 2}, and 〈wn〉∞n=1 is a sequence in
Sk such that

(a) for each l ∈ {1, 2, . . . , k},

{
∑

n∈F gn(wn) : F ∈ Pf (N) , gn ∈
⋃l

i=1 Gi for each n ∈ F ,
and there exists n ∈ F such that gn ∈ Gl} ⊆ Cγ(l) ,

and

(b) for each l ∈ {1, 2, . . . , k},

{
∑

n∈F gn(wn) : F ∈ Pf (N) , gn ∈
⋃l

i=1 G
′
i for each n ∈ F ,

and there exists n ∈ F such that gn ∈ G′l} ⊆ Cγ′(l) ;

then for all t, l ∈ {1, 2, . . . , k − 1}, γ(t) = γ(l) 6= γ′(t) = γ′(l).

Proof. Let S = W ({1, 2, . . . , 2k}). Let S0 = {e}, S1 = W ({1, 2})\{e}, and for n ∈
{2, 3, . . . , k}, let Sn = W ({1, 2, . . . , 2n})\W ({1, 2, . . . , 2n− 2}). Define homomorphisms
σ : S → S and σ′ : S → S by agreeing for i ∈ {1, 2, . . . , 2k} that

σ(i) =
{

i− 2 if i > 2
e if i ∈ {1, 2} and

σ′(i) =


2k − 3 if i = 2k
2k − 2 if i = 2k − 1
i− 2 if 2 < i < 2k − 1

e if i ∈ {1, 2}

.

24



For each w ∈ S\{e}, let µ(w) = n where w ∈ Sn. Let C1 = {w ∈ S : 2µ(w) − 1
occurs in w before any occurrence of 2µ(w)} and let C2 = S\C1.

It is routine to verify that 〈Fn〉kn=2 and 〈F ′
n〉kn=2 are layered actions on S (via in

each case condition (1)(b) of Definition 3.3). Let γ, γ′, and 〈wn〉∞n=1 be as in conclusion
(4). Assume without loss of generality that each wn ∈ C1. Then for any g ∈

⋃k−1
i=1 Gi

one has g(wn) ∈ C1 and thus γ(l) = 1 for each l ∈ {1, 2, . . . , k − 1}. Also for any
g ∈

⋃k−1
i=1 G

′
i one has g(wn) ∈ C2 and thus γ(l) = 2 for each l ∈ {1, 2, . . . , k − 1}.

As we have just seen, Theorem 3.13 cannot be extended by adding another shift
(Theorem 4.2) or by relaxing the requirements on σ (Theorem 4.1). Theorem 4.4 char-
acterizes exactly when F2 may be taken to be a specified set of homomorphisms in
the case when k = 2 and S is countable while Theorem 4.5 provides a simpler descrip-
tion and removes the countability assumption in the event that S is a semigroup. The
proof of the following lemma repeats a portion of the proof of Theorem 3.8 which was
extracted from [5].

4.3 Lemma. Let S be an adequate partial semigroup, and let H be a finite set of
partial semigroup homomorphisms from S into itself such that f [S] is an adequate partial
subsemigroup of S for each f ∈ H. Let p be an idempotent in δS such that f̃(p) · p = p

for every f ∈ H, where f̃ : βS → βS is the continuous extension of f .

(a) If there exists q ∈ δS such that f̃(q) = p for every f ∈ H, then there exists an
idempotent r ∈ δS such that r ≤ p and f̃(r) = p for every f ∈ H.

(b) Assume that X is a compact subsemigroup of δS such that both p ·X and X · p are
included in X. If there exists q ∈ X such that f̃(q) = p for every f ∈ H, then there
exists an idempotent r ∈ X such that r ≤ p and f̃(r) = p for every f ∈ H.

Proof. Notice that for each f ∈ H, f̃|δS is a homomorphism by Lemma 2.14 and the
assumption that f [S] is an adequate partial subsemigroup of S. Since (a) is a special
case of (b), when X = δS, we shall prove only (b). Let M = {q ∈ δS : f̃(q) = p for every
f ∈ H}. By assumption M ∩X 6= ∅. Since f̃|δS is a homomorphism for each f ∈ H, we
have that M is a compact semigroup. Thus M ∩X is also a compact semigroup.

We claim that (M∩X)·p is a subsemigroup of δS. Fix q′ and r′ in (M∩X)·p, and let
q, r ∈ M ∩X be such that q′ = q ·p and r′ = r ·p. We need to prove that q ·p ·r ∈ M ∩X.
Since X ·p ⊆ X and p ·X ⊆ X, we have q ·p ·r = q ·p ·p ·r ∈ X ·X ⊆ X. Thus it remains
to prove q ·p ·r ∈ M . Given f ∈ H, we have that f̃(q ·p ·r) = f̃(q) · f̃(p) · f̃(r) = p · f̃(p) ·p
and f̃(p)·p = p so that f̃(q ·p·r) = p. Thus q ·p·r ∈ M , and (M∩X)·p is a subsemigroup
of δS. Note that it is automatically a subsemigroup of X, since X · p ⊆ X.
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Since (M ∩X) · p is compact, pick an idempotent q ∈ (M ∩X) · p and notice that
q · p = q.

Let r = p · q. Then r ∈ p ·X ⊆ X and r · p = p · r = r. Also, r · r = p · q · p · q =
p · q · q = p · q = r. Thus r is an idempotent in δS and r ≤ p. Finally, let f ∈ H. Then
f̃(r) = f̃(p · q) = f̃(p) · f̃(q) = f̃(p) · p = p.

4.4 Theorem. Let S be a layered partial semigroup with 2 layers and let S0, S1, and
S2 be as in Definition 3.1. Let F be a finite nonempty set of partial semigroup homo-
morphisms from S to S0∪S1 with the property that for each f ∈ F , either f|S1 = ιS1 or
f [S1] = {e}. Let G2 = {ιS}, and let G1 = F . Statements (2) and (3) are equivalent and
are implied by statement (1). If S2 is countable, then all three statements are equivalent.

(1) Whenever r ∈ N, S ⊆
⋃r

i=1 Ci, and J1 ∈ Pf (S1), there exist a function γ : {1, 2} →
{1, 2, . . . , r} and a sequence 〈wn〉∞n=1 in S2 such that

(a)
∏

n∈F gn(wn) is defined for each F ∈ Pf (N) and each choice of gn ∈
⋃2

i=1 Gi;

(b) {
∏

n∈F gn(wn) : F ∈ Pf (N) and for each n ∈ F , gn ∈ G1} ⊆ Cγ(1) ∩⋂
x∈J1

ϕ
S1(x); and

(c) for each J2 ∈ Pf (S2), there exists m ∈ N such that

{
∏

n∈F gn(wn) : F ∈ Pf (N) , minF ≥ m , gn ∈ G1 ∪ G2 for each n ∈ F , and there
exists n ∈ F such that gn ∈ G2} ⊆ Cγ(2) ∩

⋂
x∈J2

ϕ
S2(x) .

(2) Whenever r ∈ N, J1 ∈ Pf (S1), and
⋂

x∈J1
ϕS1(x) ⊆

⋃r
i=1 Ai, there exists i ∈ {1, 2,

. . . , r} such that for every J2 ∈ Pf (S2)⋂
y∈J2

ϕ
S2(y) ∩

⋂
f∈F f−1[Ai] 6= ∅ .

(3) There exist idempotents p1 in δS1 and p2 in δS2 such that p2 ≤ p1 and f̃(p2) = p1

for each f ∈ F .

Proof. To see that (1) implies (2), let r ∈ N and J1 ∈ Pf (S1) be given and assume that⋂
x∈J1

ϕ
S1(x) ⊆

⋃r
i=1 Ai. Let Ar+1 = S\

⋃r
i=1 Ai. Pick a function γ : {1, 2} → {1, 2,

. . . , r+1} and a sequence 〈wn〉∞n=1 as guaranteed by (1) and the fact that S ⊆
⋃r+1

i=1 Ai.
Let i = γ(1) and pick g ∈ F . Since g(w1) ∈ Aγ(1) ∩

⋂
x∈J1

ϕ
S1(x), we have that

i 6= r + 1. Now let J2 ∈ Pf (S2) and pick m ∈ N as guaranteed by (1)(c). Then
wm ∈

⋂
y∈J2

ϕ
S2(y) ∩

⋂
f∈F f−1[Ai].

To see that (2) implies (3), let

R = {A ⊆ S1 : there exists J2 ∈ Pf (S2) with
⋂

y∈J2
ϕS2(y) ∩

⋂
f∈F f−1[A] = ∅}
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and let A = {S1\A : A ∈ R} ∪ {ϕS1(x) : x ∈ S1}. We claim that A has the finite
intersection property. To see this, let {A1, A2, . . . , Ar} ⊆ R and let J1 ∈ Pf (S1). If we
had

⋂r
i=1(S1\Ai) ∩

⋂
x∈J1

ϕS1(x) = ∅ we would have
⋂

x∈J1
ϕS1(x) ⊆

⋃r
i=1 Ai so that,

by (2), there would be some i ∈ {1, 2, . . . , r} with Ai /∈ R.

Since A has the finite intersection property, there is some p ∈ βS1 such that
A ⊆ p. Since {ϕS1(x) : x ∈ S1} ⊆ A, one has that any such p is in δS1. Let
X = {p ∈ δS1 : p ∩ R = ∅}. We have just seen that X 6= ∅. Further X is trivially
compact.

We claim that X is a subsemigroup of δS1. To see this, let p, q ∈ X and let A ∈ p·q.
We need to show that A /∈ R. To this end, let J2 ∈ Pf (S2). We need to show that⋂

y∈J2
ϕ

S2(y)∩
⋂

f∈F f−1[A] 6= ∅. Let B = {x ∈ S1 : x−1A ∈ q}. Then B ∈ p so B /∈ R
so pick a ∈

⋂
y∈J2

ϕS2(y)∩
⋂

f∈F f−1[B]. Let C =
⋂

f∈F f(a)−1A. Then C ∈ q so C /∈
R so pick b ∈

⋂
y∈J2

ϕS2(y ·a)∩
⋂

f∈F f−1[C]. Then a·b ∈
⋂

y∈J2
ϕS2(y)∩

⋂
f∈F f−1[A].

Since X is a compact right topological semigroup, pick an idempotent p1 ∈ X.
Further, given f ∈ F , either f|S1 = ιS1 or f [S1] = S0 so that either f̃(p1) = p1 or
f̃(p1) = e. In either case, f̃(p1) · p1 = p1.

Since Lemma 2.16 implies that δS2 is an ideal of δS, by Lemma 4.3 it suffices to
show that there exists q ∈ δS2 such that f̃(q) = p1 for every f ∈ F . For this, it suffices
to show that

B = {f−1[A] : A ∈ p1 and f ∈ F} ∪ {ϕS2(y) : y ∈ S2}

has the finite intersection property. For this, it in turn suffices to let A ∈ p1, let
J ∈ Pf (S2), and show that

⋂
y∈J

ϕS2(y) ∩
⋂

f∈F f−1[A] 6= ∅. But this is precisely the
assertion that p1 ∩R = ∅.

To see that (3) implies (2), let r ∈ N, J1 ∈ Pf (S1), and
⋂

x∈J1
ϕS1(x) ⊆

⋃r
i=1 Ai.

Pick i ∈ {1, 2, . . . , r} such that Ai ∈ p1 and let J2 ∈ Pf (S2). Then for each f ∈ F ,
f−1[Ai] ∈ p2 and p2 ∈ δS2 so⋂

y∈J2
ϕS2(y) ∩

⋂
f∈F f−1[Ai] ∈ p2 .

Finally, assume that S2 is countable. We show that (3) implies (1). Enumerate
S2 as 〈xn〉∞n=1 (with repetition in the somewhat boring event that S2 is finite) and for
each m ∈ N, let B2,m =

⋂m
i=1

ϕ
S2 (xi). (Since p2 ∈ δS2, we have each B2,m ∈ p2.) Let

J1 ∈ Pf (S1) and for each m ∈ N, let B1,m =
⋂

x∈J1
ϕS1 (x).

Let r ∈ N and let S ⊆
⋃r

i=1 Ci. Pick a sequence 〈wn〉∞n=1 in S2 and γ : {1, 2} →
{1, 2, . . . , r} as guaranteed by Lemma 3.12. To see that conclusion (1)(c) holds, let
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J2 ∈ Pf (S2) be given and pick m ∈ N such that J2 ⊆ {x1, x2, . . . , xm}. Then B2,m ⊆⋂
x∈J2

ϕS2(x).

The requirement in Theorem 4.4 (as well as in Theorem 4.5 below) that all maps
in F are either equal to the identity on S1 or send S1 into {e} may seem unnatural, but
some form of this requirement is necessary in order to have (1) (see Theorem 6.4). By
Theorem 3.13, (1) is true if at most one f ∈ F sends S1 into {e}. It is thus natural to
ask whether we can draw the same conclusion if we have more than one such map? By
Theorem 4.2, not always. See also Question 6.6 and the remarks following it.

While Theorem 4.4 may seem a bit technical, we have a considerably simpler situ-
ation in the event that S is a semigroup. Note that statement (2) resembles the state-
ment of the Hales–Jewett Theorem (Corollary 3.15) and is apparently much weaker than
statement (1).

4.5 Theorem. Let S be a layered semigroup with 2 layers and let S0, S1, and S2 be as
in Definition 3.1. Let F be a finite nonempty set of homomorphisms from S to S0 ∪ S1

with the property that for each f ∈ F , either f|S1 = ιS1 or f [S1] = {e}. Let G2 = {ιS},
and let G1 = F . The following statements are equivalent.

(1) Whenever r ∈ N and S ⊆
⋃r

i=1 Ci there exist a function γ : {1, 2} → {1, 2, . . . , r}
and a sequence 〈wn〉∞n=1 in S2 such that

(a) {
∏

n∈F gn(wn) : F ∈ Pf (N) and for each n ∈ F , gn ∈ G1} ⊆ Cγ(1) and

(b) {
∏

n∈F gn(wn) : F ∈ Pf (N) , gn ∈ G1 ∪ G2 for each n ∈ F , and there exists
n ∈ F such that gn ∈ G2} ⊆ Cγ(2).

(2) Whenever r ∈ N and S1 ⊆
⋃r

i=1 Ai, there exists i ∈ {1, 2, . . . , r} such that⋂
f∈F f−1[Ai] 6= ∅.

(3) There exist idempotents p1 in βS1 and p2 in βS2 such that p2 ≤ p1 and f̃(p2) = p1

for each f ∈ F .

Proof. That (2) and (3) are equivalent and implied by (1) follows from Theorem
4.4. That (3) implies (1) follows from Lemma 3.12, taking each B2,m = S2 and each
B1,m = S1.

The above result can be used to prove Theorem 1.4. Then all f ∈ F are such that
their restriction to S1 is equal to the identity, and the requirement (2) can be proved
by using the Hales–Jewett Theorem.

Let us state a variant of Gowers’ theorem for semigroups in which the layers are
not being fixed in advance. Note that the requirement imposed on S, namely that there
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is an identity and ab = e if and only if a = b = e, is true in many of the cases interesting
from the point of view of Ramsey theory.

4.6 Theorem. Assume S is a semigroup with identity e, and that ab = e implies
a = b = e for all a, b ∈ S. Assume further that σ:S → S is a homomorphism such
that for some k ∈ N we have σk(x) = e for all x ∈ S, yet σk−1(a) 6= e for some
a ∈ S. Then for every partition S =

⋃r
j=1 Cj there exist a sequence 〈yn〉∞n=1 and

γ: {1, 2, . . . , k} → {1, 2, . . . , r} such that

(i) σk−1(yn) 6= e, for all n, and

(ii) for every F ∈ Pf (N) and every g:F → {0, 1, . . . , k − 1} we have∏
i∈F

σg(i)(yi) ∈ Cγ(k−m),

where m = min{g(i) : i ∈ F}.

Proof. For i ∈ {0, 1, . . . , k}, let Ti = {a ∈ S : σi(a) = e}, let S0 = T0, and for i ∈ {1, 2,

. . . , k}, let Si = Ti\Ti−1. Each Tn is clearly a subsemigroup of S, and by the assumption
Tk = S and Sk 6= ∅. Since Sk 6= ∅ and σ[Sn] = Sn−1 for each n ∈ {1, 2, . . . , k}, we
have that each Sn 6= ∅. We claim that Sn is an ideal of Tn for all n. Let a ∈ Sn and
b ∈ Tn, and pick m such that ab ∈ Sm. Note that since Tn is a semigroup, m ≤ n. Then
σm(a)σm(b) = e, and by the assumption on S we have σm(a) = e. Therefore m = n

and ab ∈ Sn. The proof that ba ∈ Sn is analogous.

For each n ∈ {2, e, . . . , k}, let Fn = {σ|Tn
}. For each n ∈ {1, 2, . . . , k}, if Gn is as

in Lemma 3.12, then Gn = {σ̃k−n}.
Let Xk = βSk and Xn−1 = σ̃[Xn] for n ∈ {2, 3, . . . , k}, where σ̃ : βS → βS is the

continuous extension of σ. Since σ is a homomorphism, so is σ̃ by [9, Corollary 4.22],
and thus each Xn is a compact semigroup. Note that for every l ∈ {1, 2, . . . , k}, since
σl−1(a) 6= e for all a ∈ Sl and σl[Sl] = {e}, we have

βSl = {p ∈ βS : σ̃l(p) = e and σ̃l−1(p) 6= e},

Xl = {σ̃k−l(p) : p ∈ βS and σ̃k−1(p) 6= e}.

Notice in particular that each Xl ⊆ βSl. We shall find idempotents p1, p2, . . . , pk in
X1, X2, . . . , Xk respectively such that

(1) if i, j ∈ {1, 2, . . . , k} and i ≤ j, then pj ≤ pi and

(2) if i ∈ {2, 3, . . . , k}, then σ̃(pi) = pi−1.

Pick an arbitrary idempotent p1 in X1. Let l ∈ {1, 2, . . . , k − 1} and assume that
p1 ∈ X1, p2 ∈ X2, . . . , pl ∈ Xl have been found satisfying statements (1) and (2).
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We need to check the assumptions of Lemma 4.3 are satisfied, with p = pl, X =
Xl+1 and H = {σ|Tl+1}. First note that σ̃(p1) = e and, if l > 1, σ̃(pl) = pl−1 and
pl ≤ pl−1 so that, in any event, σ̃(pl) · pl = pl.

We now check that Xl+1 · pl ⊆ Xl+1 and pl · Xl+1 ⊆ Xl+1, by proving that if
q ∈ Xl+1 and r ∈ Xl, then q · r and r · q are in Xl+1. Let us prove this for l = k− 1. By
the characterization of βSl above we have σ̃k−1(q ·r) = σ̃k−1(q) · σ̃k−1(r) = σ̃k−1(q) ·e =
σ̃k−1(q) 6= e, while σ̃k(q · r) = e. Thus q · r ∈ βSk = Xk. Similarly, r · q ∈ Xk. Now
consider the case when l < k− 1, and pick q ∈ Xl+1 and r ∈ Xl. Such a q is of the form
σ̃k−(l+1)(q0) for some q0 ∈ Xk = βSk, while r is of the form σ̃k−l(r0), for r0 ∈ βSk. Let
r1 = σ̃(r0); then r1 ∈ Xk−1, and q0 · r1 ∈ βSk. Since σ̃k−(l−1)(q0 · r1) = q · r, we have
q · r ∈ Xl+1. This proves that Xl+1 · Xl ⊆ Xl+1. The proof that Xl · Xl+1 ⊆ Xl+1 is
identical.

Since pl ∈ Xl and σ̃[Xl+1] = Xl, there is q ∈ Xl+1 such that σ̃(q) = pl. Thus
Lemma 4.3 implies that there is an idempotent pl+1 ∈ Xl+1 such that pl+1 ≤ pl and
σ̃(pl+1) = pl.

This describes the construction of p1, p2, . . . , pk. An application of Lemma 3.12 to
this k-tuple of idempotents concludes the proof.

5. Central Sets in Layered Partial Semigroups

In this section we derive a common generalization of the noncommutative Central Sets
Theorem ([2, Theorem 2.8], or see [9, Theorem 14.15]) and Theorem 3.13. We also
present as an application an extension of the Hales–Jewett Theorem.

5.1 Definition. Let S be an adequate partial semigroup and let 〈yn〉∞n=1 be a sequence
in S. Then 〈yn〉∞n=1 is adequate if and only if

∏
n∈F yn is defined for each F ∈ Pf (N)

and for every K ∈ Pf (S), there exists m ∈ N such that FP (〈yn〉∞n=m) ⊆
⋂

x∈K
ϕ(x).

The noncommutative Central Sets Theorem, which we shall be generalizing, is
itself a generalization of the commutative Central Sets Theorem (Theorem 1.6). The
extension to arbitrary semigroups requires the introduction of additional notation.

5.2 Definition. Let m ∈ N. Then
Im = {(H1,H2, . . . ,Hm) ∈ Pf (N)m : if m > 1 and

t ∈ {1, 2, . . . ,m− 1}, then maxHt < minHt+1} .

The basic idea behind the proof of Theorem 5.4 (which was also the basic idea
behind the proof of the noncommutative Central Sets Theorem) is an elaboration of
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an idea of H. Furstenberg and Y. Katznelson [4] which they developed in the context
of enveloping semigroups. The following lemma supplies the technical details that are
required.

5.3 Lemma. Let S be an adequate partial semigroup and for each l ∈ N, let 〈yl,n〉∞n=1

be an adequate sequence in S. For m ∈ N, ~a ∈ Sm+1, ~H ∈ Im, and t ∈ N, let
w(~a, ~H, t) =

( ∏m
i=1(ai ·

∏
n∈Hi

yt,n)
)
· am+1. For K ∈ Pf (S) and i, α ∈ N, let

IK,i,α = {~x ∈×∞
t=1S : there exist m ∈ N , ~a ∈ Sm+1, and ~H ∈ Im such that

minH1 ≥ i and for all t ∈ {1, 2, . . . , α} , xt = w(~a, ~H, t)
and xt ∈

⋂
y∈K

ϕ(y)} and let

EK,i,α = IK,i,α ∪ {~x ∈×∞
t=1S : there exists a ∈

⋂
y∈K

ϕ(y) such that
for all t ∈ {1, 2, . . . , α} , xt = a} .

Let Y =×∞
t=1δS, let Z =×∞

t=1βS, let

E =
⋂

K∈Pf (S)

⋂∞
i=1

⋂∞
α=1 c`Z(EK,i,α) and let

I =
⋂

K∈Pf (S)

⋂∞
i=1

⋂∞
α=1 c`Z(IK,i,α) .

Then E is a subsemigroup of Y and I is an ideal of E. Further, for any p ∈ K(δS),
p = (p, p, p, . . .) ∈ E ∩K(Y ) = K(E) ⊆ I.

Proof. We show first that E ⊆ Y . To this end, let ~p ∈ E. We need to show that
for each t ∈ N, pt ∈ δS. So let t ∈ N and y ∈ S be given. We need to show that
ϕ(y) ∈ pt. So suppose instead that S\ϕ(y) ∈ pt. Then B = {~q ∈ Z : qt ∈ S\ϕ(y)} is a
neighborhood of ~p so pick ~x ∈ B ∩ E{y},1,t. Then xt ∈ ϕ(y), a contradiction.

Next we show that I 6= ∅ for which it suffices to show that each IK,i,α 6= ∅ (because
if K ⊆ F , i ≤ j, and α ≤ δ, then IF,j,δ ⊆ IK,i,α). So let K ∈ Pf (S) and i, α ∈ N
be given. Pick a1 ∈

⋂
y∈K

ϕ(y). For each t ∈ {1, 2, . . . , α}, pick mt ∈ N such that
FP (〈yt,n〉∞n=mt

) ⊆
⋂

y∈K
ϕ(y · a1). Let r = max{i} ∪

{
mt : t ∈ {1, 2, . . . , α}

}
and let

H1 = {r}. Pick a2 ∈
⋂α

t=1

⋂
y∈K

ϕ(y · a1 · yt,r). Let ~a = 〈a1, a2〉 and let ~H = 〈H1〉. Let
xt = a1 · yt,r · a2 if t ∈ {1, 2, . . . , α} and xt = a1 if t > α. Then ~x ∈ IK,i,α.

Now we show that E is a subsemigroup of Y and I is an ideal of E. To this end,
let ~p, ~q ∈ E. We show that ~p · ~q ∈ E and, if either ~p ∈ I or ~q ∈ I, then ~p · ~q ∈ I.

Let K ∈ Pf (S) and i, α ∈ N be given. We show that that ~p · ~q ∈ c`ZEK,i,α and, if
either ~p ∈ I or ~q ∈ I, then ~p · ~q ∈ c`ZIK,i,α. To this end, let a neighborhood U of ~p · ~q
in Z be given. Pick γ ≥ α in N and for each t ∈ {1, 2, . . . , γ} pick At ⊆ S such that

~p · ~q ∈
⋂γ

t=1 πt
−1[At ] ⊆ U .
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Then for each t ∈ {1, 2, . . . , γ}, pt · qt ∈ At so Bt = {x ∈ S : x−1At ∈ qt} ∈ pt. Thus⋂γ
t=1 πt

−1[Bt ] is a neighborhood of ~p in Z so pick

~x ∈ EK,i,α ∩
⋂γ

t=1 πt
−1[Bt ]

with ~x ∈ IK,i,α if ~p ∈ I. Then we have that for each t ∈ {1, 2, . . . , α}, xt ∈
⋂

y∈K
ϕ(y).

If ~x ∈ IK,i,α, pick m ∈ N, ~a ∈ Sm+1, and ~H ∈ Im such that minH ≥ i and for
each t ∈ {1, 2, . . . , α}, xt = w(~a, ~H, t). If ~x ∈ IK,i,α, let j = maxHm + 1. Otherwise let
j = i. In either case let F =

{
y · xt : y ∈ K and t ∈ {1, 2, . . . , α}

}
.

Now, for each t ∈ {1, 2, . . . , α}, we have xt ∈ Bt, so

xt
−1At = {z ∈ ϕ(xt) : xt · z ∈ At} ∈ qt .

Thus
⋂γ

t=1 πt
−1[xt

−1At ] is a neighborhood of ~q in Z so pick

~z ∈ EF,j,α ∩
⋂γ

t=1 πt
−1[xt

−1At ]

with ~z ∈ IF,j,α if ~q ∈ I. Then we have that for each t ∈ {1, 2, . . . , α}, zt ∈
⋂

y∈F
ϕ(y).

If ~z ∈ IF,j,α, pick n ∈ N, ~b ∈ Sn+1, and ~G ∈ In such that minG ≥ j and for each
t ∈ {1, 2, . . . , α}, zt = w(~b, ~G, t). Then directly we have that ~x · ~z ∈

⋂γ
t=1 πt

−1[At ] ⊆ U

so we need only show that ~x · ~z ∈ EK,i,α with ~x · ~z ∈ IK,i,α if ~p ∈ I or ~q ∈ I. First let
t ∈ {1, 2, . . . , α} and let y ∈ K. Then xt ∈ ϕ(y) and y · xt ∈ F so zt ∈ ϕ(y · xt) and
hence xt · zt ∈ ϕ(y). We now consider four possibilities:

(1) ~x /∈ IK,i,α and ~z /∈ IF,j,α.

Then pick a ∈
⋂

y∈K
ϕ(y) such that for all t ∈ {1, 2, . . . , α}, xt = a and pick b ∈⋂

y∈F
ϕ(y) such that for all t ∈ {1, 2, . . . , α}, zt = b. Then for all t ∈ {1, 2, . . . , α},

xt · zt = a · b so ~x · ~z ∈ EK,i,α.

(2) ~x ∈ IK,i,α and ~z /∈ IF,j,α.

Then pick b ∈
⋂

y∈F
ϕ(y) such that for all t ∈ {1, 2, . . . , α}, zt = b and let ~c =

〈a1, a2, . . . , am, am+1 · b〉. Then for t ∈ {1, 2, . . . , α}, xt · zt = w(~c, ~H, t) so that
~x · ~z ∈ IK,i,α.

(3) ~x /∈ IK,i,α and ~z ∈ IF,j,α.

Then pick a ∈
⋂

y∈K
ϕ(y) such that for all t ∈ {1, 2, . . . , α}, xt = a and let ~c =

〈a · b1, b2, . . . , bn+1〉. Then for t ∈ {1, 2, . . . , α}, xt · zt = w(~c, ~G, t) so that ~x · ~z ∈ IK,i,α.

(4) ~x ∈ IK,i,α and ~z ∈ IF,j,α.

Then let ~c = 〈a1, a2, . . . , am, am+1 · b1, b2, . . . , bn+1〉 and let ~J = 〈H1,H2, . . . ,Hm, G1,

G2, . . . , Gn〉. Then ~J ∈ Im+n and for all t ∈ {1, 2, . . . , α}, xt · zt = w(~c, ~J, t) so that
~x · ~z ∈ IK,i,α.
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To complete the proof of the lemma, we need to show that E ∩K(Y ) = K(E) ⊆ I

and for any p ∈ K(δS), p ∈ E ∩K(Y ). For this, it suffices to let p ∈ K(δS) and show
that p ∈ E. For then p ∈ E ∩×∞

t=1K(δS) and ×∞
t=1K(δS) = K(Y ) by [9, Theorem

2.23] so that p ∈ E ∩ K(Y ). Since E ∩ K(Y ) 6= ∅ we have by [9, Theorem 1.65] that
K(E) = E ∩K(Y ) and since I is an ideal of E, K(E) ⊆ I.

So let U be a neighborhood of p in Z and let K ∈ Pf (S) and i, α ∈ N. We need to
show that U ∩ EK,i,α 6= ∅. Pick γ ≥ α in N and for each t ∈ {1, 2, . . . , γ} pick At ⊆ S

such that p ∈
⋂γ

t=1 πt
−1[At ] ⊆ U . Let A =

⋂γ
t=1 At. Then A ∈ p and

⋂
y∈K

ϕ(y) ∈ p

so pick a ∈ A ∩
⋂

y∈K
ϕ(y). Then a ∈ EK,i,α ∩

⋂γ
t=1 πt

−1[At ].

5.4 Theorem. Let S be a layered partial semigroup with k layers and let 〈Fn〉kn=2 be
a layered action on S. Let S0, S1, . . . , Sk be as in Definition 3.1 and let G1,G2, . . . ,Gk

be as in Definition 3.9.

For each l ∈ N, let 〈yl,n〉∞n=1 be an adequate sequence in Sk. For m ∈ N, ~a ∈ Sk
m+1,

~H ∈ Im, and l ∈ N, let

w(~a, ~H, l) =
( ∏m

i=1(ai ·
∏

t∈Hi
yl,t)

)
· am+1 .

Let r ∈ N and let S =
⋃r

i=1 Ci. Then there exist γ : {1, 2, . . . , k} → {1, 2, . . . , r} and
sequences 〈m(n)〉∞n=1, 〈 ~an〉∞n=1, and 〈 ~Hn〉∞n=1 such that

(a) for each j ∈ {1, 2, . . . , k}, Cγ(j) ∩ Sj is central in Sj;

(b) for each n ∈ N, m(n) ∈ N, ~an ∈ Sk
m(n)+1, and ~Hn ∈ Im(n);

(c) for each n ∈ N, max Hn,m(n) < minHn+1,1; and

(d) for every f : N → N such that f(n) ≤ n for each n ∈ N and for every j ∈ {1, 2,

. . . , k},

{
∏

n∈F gn

(
w

(
~an, ~Hn, f(n)

))
: F ∈ Pf (N) , gn ∈

⋃j
i=1 Gi for each n ∈ F ,

and there exists n ∈ F such that gn ∈ Gj} ⊆ Cγ(j) .

Further, γ(1) can be any i ∈ {1, 2, . . . , r} such that Ci ∩ S1 is central in S1.

Proof. Choose γ(1) ∈ {1, 2, . . . , r} such that Cγ(1) ∩ S1 is central in S1. Choose a
minimal idempotent p in δS1 such that Cγ(1) ∩ S1 ∈ p and choose p1, p2, . . . , pk with
p1 = p as guaranteed by Theorem 3.8. For each i ∈ {2, 3, . . . , k} choose γ(i) ∈ {1, 2,

. . . , r} such that Cγ(i) ∩ Si ∈ pi.

For each K ∈ Pf (Sk) and each i, α ∈ N, let IK,i,α and EK,i,α be as in Lemma
5.3 applied to the semigroup Sk. Also let Z, Y , E, and I be as in Lemma 5.3. We
inductively construct sequences 〈m(n)〉∞n=1, 〈 ~an〉∞n=1, 〈 ~Hn〉∞n=1, and for each i ∈ {1, 2,

. . . , k} a sequence 〈Ai,n〉∞n=1 in pi, such that
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(1) for each n, m(n) ∈ N, ~an ∈ Sk
m(n)+1, ~Hn ∈ Im(n), and if n > 1, then

minHn,1 > max Hn−1,m(n−1);

(2) for j ∈ {1, 2, . . . , k}, n ∈ N, g ∈ Gj , and l ∈ {1, 2, . . . , n}, g
(
w( ~an, ~Hn, l)

)
∈

Aj,n;

(3) for i, j ∈ {1, 2, . . . , k}, n ∈ N, g ∈ Gj , and l ∈ {1, 2, . . . , n},
g
(
w( ~an, ~Hn, l)

)−1
Amax{i,j},n ∈ pi;

(4) for i ∈ {1, 2, . . . , k} and n ∈ N,

Ai,n+1 = Ai,n ∩
⋂i

j=1

⋂
g∈Gj

⋂n
l=1

(
g
(
w( ~an, ~Hn, l)

)−1
Ai,n

)
∩

⋂k
j=i

⋂
g∈Gj

⋂n
l=1

(
g
(
w( ~an, ~Hn, l)

)−1
Aj,n

)
; and

(5) if n ∈ N, ∅ 6= F ⊆ {1, 2, . . . , n}, b = minF , f : F → N, f(u) ≤ u for
every u ∈ F , g : F →

⋃k
t=1 Gt, and i = max{t : g[F ] ∩ Gt 6= ∅}, then∏

u∈F g(u)
(
w

(
~au, ~Hu, f(u)

))
∈ Ai,b.

For i ∈ {1, 2, . . . , k}, let Ai,1 = Cγ(i) ∩ Si. Let n ∈ N and assume that for each
i ∈ {1, 2, . . . , k}, we have Ai,n ∈ pi. By Lemma 3.11(c), we have for any i, j ∈ {1, 2, . . . ,

k} and any g ∈ Gj , {w ∈ Sk : g(w)−1Amax{i,j},n ∈ pi} ∈ pk. By Lemma 3.11(b), for any
j ∈ {1, 2, . . . , k} and any g ∈ Gj , g−1[Aj,n] ∈ pk. Let

B =
⋂k

i=1

⋂k
j=1

⋂
g∈Gj

{w ∈ Sk : g(w)−1Amax{i,j},n ∈ pi}
∩

⋂k
j=1

⋂
g∈Gj

g−1[Aj,n] .

Then B ∈ pk. If n = 1, let t = 1. Otherwise m(n− 1) and
→

Hn−1 have been chosen and
we let t = max Hn−1,m(n−1) + 1. If n = 1, let K be any member of Pf (Sk). Otherwise
let

K = {
∏

u∈F gu

(
w

(
~au, ~Hu, f(u)

))
: ∅ 6= F ⊆ {1, 2, . . . , n− 1} , f(u) ∈ {1, 2, . . . , u}

for each u ∈ F , gu ∈
⋃k

i=1 Gi for each u ∈ F ,
and there exists u ∈ F such that gu ∈ Gk} .

By hypothesis (5), K ⊆ Sk. Since each Gi is finite by Lemma 3.11(a), we have that K

is finite.

Let p = (pk, pk, pk, . . .). By Lemma 5.3, p ∈ I. Let D =
⋂n

i=1 π−1
i [B ]. Then D is

a neighborhood of p in Z so pick ~x ∈ D ∩ IK,t,n. Pick m(n) ∈ N, ~an ∈ Sk
m(n)+1, and

~Hn ∈ Im(n) such that min Hn,1 ≥ t and for all s ∈ {1, 2, . . . , n}, xs = w( ~an, ~Hn, s) and
xs ∈

⋂
y∈K

ϕSk
(y). Notice in particular that for each s ∈ {1, 2, . . . , n}, w( ~an, ~Hn, s) ∈

B.

Now for each i ∈ {1, 2, . . . , k} let Ai,n+1 be as required by hypothesis (4). Then
hypotheses (1), (2), and (3) hold directly, and Ai,n+1 ∈ pi by hypothesis (3).
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To complete the construction as well as the proof of the theorem, we verify hypoth-
esis (5). (The conclusion of the theorem follows because each Ai,b ⊆ Ai,1 ⊆ Cγ(i).) So
let ∅ 6= F ⊆ {1, 2, . . . , n}, let b = minF , let f : F → N such that f(u) ≤ u for every
u ∈ F , let g : F →

⋃k
t=1 Gt, and let i = max{t : g[F ] ∩ Gt 6= ∅}. We need to show that∏

u∈F g(u)
(
w

(
~au, ~Hu, f(u)

))
∈ Ai,b, which we do by induction on |F |.

If F = {b}, by hypotheses (2) and (4), g(b)
(
w

(
~ab, ~Hb, f(b)

))
∈ Ai,n ⊆ Ai,b. So

assume that |F | > 1, let G = F\{b}, let c = minG, and let s = max{v : g[G]∩Gv 6= ∅}.
We have by induction that∏

u∈G

g(u)
(
w

(
~au, ~Hu, f(u)

))
∈ As,c ⊆ As,b+1 .

Pick j ∈ {1, 2, . . . , k} such that g(b) ∈ Gj and note that i = max{j, s}.
Case 1: i = s (so s ≥ j). Then∏

u∈G

g(u)
(
w

(
~au, ~Hu, f(u)

))
∈ As,b+1 ⊆

(
g(b)

(
w

(
~ab, ~Hb, f(b)

)))−1
As,b

and so
∏

u∈F g(u)
(
w

(
~au, ~Hu, f(u)

))
∈ As,b = Ai,b.

Case 2: i = j (so s ≤ j). Then∏
u∈G

g(u)
(
w

(
~au, ~Hu, f(u)

))
∈ As,b+1 ⊆

(
g(b)

(
w

(
~ab, ~Hb, f(b)

)))−1
Aj,b

and so
∏

u∈F g(u)
(
w

(
~au, ~Hu, f(u)

))
∈ Aj,b = Ai,b.

In the event that the partial semigroup S is commutative (which means that when-
ever either x · y or y ·x are defined, they both are defined and are equal), the statement
of Theorem 5.4 becomes considerably simpler.

5.5 Corollary. Let S be a commutative layered partial semigroup with k layers and
let 〈Fn〉kn=2 be a layered action on S. Let S0, S1, . . . , Sk be as in Definition 3.1 and let
G1,G2, . . . ,Gk be as in Definition 3.9.

For each l ∈ N, let 〈yl,n〉∞n=1 be an adequate sequence in Sk. Let r ∈ N and let
S =

⋃r
i=1 Ci. Then there exist γ : {1, 2, . . . , k} → {1, 2, . . . , r} and sequences 〈bn〉∞n=1

and 〈Gn〉∞n=1 such that

(a) for each j ∈ {1, 2, . . . , k}, Cγ(j) ∩ Sj is central in Sj;

(b) for each n ∈ N, bn ∈ Sk, and Gn ∈ Pf (Sk);

(c) for each n ∈ N, max Gn < minGn+1; and

(d) for every f : N → N such that f(n) ≤ n for each n ∈ N and for every j ∈ {1, 2,

. . . , k},
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{
∏

n∈F gn

(
bn ·

∏
t∈Gn

yf(n),t

)
: F ∈ Pf (N) , gn ∈

⋃j
i=1 Gi for each n ∈ F ,

and there exists n ∈ F such that gn ∈ Gj} ⊆ Cγ(j) .

Further, γ(1) can be any i ∈ {1, 2, . . . , r} such that Ci ∩ S1 is central in S1.

Proof. Choose γ : {1, 2, . . . , k} → {1, 2, . . . , r} and sequences 〈m(n)〉∞n=1, 〈 ~an〉∞n=1, and
〈 ~Hn〉∞n=1 as guaranteed by Theorem 5.4. For each n, let bn =

∏m(n)+1
i=1 an,i and let

Gn =
⋃m(n)

i=1 Hn,i. Then given F ∈ Pf (N), f : F → N with f(n) ≤ n for each n, and
g : F →

⋃k
i=1 Gi, we have∏

n∈F g(n)
(
bn ·

∏
t∈Gn

yf(n),t

)
=

∏
n∈F g(n)

(
w

(
~an, ~Hn, f(n)

))
.

6. Remarks and questions

Let us take a look at results of this paper from a somewhat different angle. If 〈xn〉∞n=1 is
a sequence in a partial semigroup S and H is a set of partial semigroup homomorphisms
from S to itself, let 〈〈〈xn〉∞n=1 〉〉H be the ‘closure’ of 〈xn〉∞n=1 with respect to H and the
semigroup operation. Namely, if cl(H) is the set consisting of all compositions of maps
from H ∪ {ι}, let

〈〈〈xn〉∞n=1 〉〉H =
{∏

i∈F gi(xi) :F ∈ Pf (N), gi ∈ cl(H) for all i ∈ F

and
∏

i∈F gi(xi) is defined
}

.

6.1 Problem. For each k ∈ N, describe the class of triples (S, S′,H) such that S is a
partial semigroup, S′ is an ideal of S, and H is a set of partial semigroup homomor-
phisms from S to itself such that for every r ∈ N and every partition S =

⋃r
j=1 Cj there

is a sequence 〈xn〉∞n=1 included in S′ such that the set

{j ∈ {1, 2, . . . , r} : 〈〈〈xn〉∞n=1 〉〉H ∩ Cj 6= ∅}

has at most k + 1 elements.

The requirement that 〈xn〉∞n=1 is included in S′ is there to assure that all xn’s are
‘large’ in some prescribed sense, as this is usually required in applications. Let us show
that we already have a substantial class of such triples (S, S′,H).

6.2 Theorem. If S is a layered semigroup with k layers, 〈Fn〉kn=2 is a layered action
on S, 〈Gn〉kn=1 is as in Definition 3.9, and H =

⋃k
n=1 Gn, then for all r ∈ N and every

partition S =
⋃r

j=1 Cj there is a sequence 〈xn〉∞n=1 included in the top layer such that
the set {j ∈ {1, 2, . . . , r} : 〈〈〈xn〉∞n=1 〉〉H ∩ Cj 6= ∅} has at most k + 1 elements.
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Proof. This is an immediate consequence of Theorem 3.13 and the fact from Lemma
3.10 that cl(H) ⊆ H ∪ {e}. (The set {j ∈ {1, 2, . . . , r} : 〈〈〈xn〉∞n=1 〉〉H ∩ Cj 6= ∅}
might have k + 1 elements rather than just k because it is possible, indeed likely, that
e ∈ 〈〈〈xn〉∞n=1 〉〉H.)

6.3 Conjecture. If S is a free semigroup with identity e and S′ is an ideal of S, then
for every set H of homomorphisms from S to itself and every l ∈ N \ {1}, the following
are equivalent:

(1) For all r ∈ N and every partition S =
⋃r

j=1 Cj there is a sequence 〈xn〉∞n=1 included
in S′ such that the set {j ∈ {1, 2, . . . , r} : 〈〈〈xn〉∞n=1 〉〉H ∩Cj 6= ∅} has at most l+1
elements.

(2) There exist a partial subsemigroup R of S and k ∈ {2, 3, . . . , l} such that

(a) R is a layered partial semigroup with k layers, S1, S2, . . . , Sk;

(b) Sk ⊆ S′; and

(c) if for each n ∈ {1, 2, . . . , k},

Gn = {f|R : f ∈ H , f [R] ⊆
⋃n

i=0 Si , and f [R]\
⋃n−1

i=0 Si 6= ∅} ,

then the conclusion of Theorem 3.13 is satisfied.

It is trivial that (2) implies (1) for arbitrary semigroups.

The following result is related to Conjecture 6.3.

6.4 Theorem. Let S be a layered semigroup with two layers, let S0, S1, and S2 be
as in Defintion 3.1, and let f be a homomorphism from S to S0 ∪ S1. The following
statements are equivalent.

(1) For every r ∈ N and every partition S =
⋃r

i=1 Ci, there exist a sequence 〈xn〉∞n=1

in S2 and γ(1), γ(2) ∈ {1, 2, . . . , r} such that

〈〈〈xn〉∞n=1 〉〉{f} ∩ S1 ⊆ Cγ(1) and

〈〈〈xn〉∞n=1 〉〉{f} ∩ S2 ⊆ Cγ(2) .

(2) There is a sequence 〈xn〉∞n=1 in S2 such that either

(a) f2(xn) = e for all n or

(b) f2(xn) = f(xn) for all n.

(3) There exist idempotents p1 ∈ βS1∪{e} and p2 ∈ βS2 such that p2 ≤ p1, f̃(p2) = p1,
and either f̃(p1) = p1 or f̃(p1) = e.

(4) Either there exists y ∈ S2 such that f(y) = e or there is a subsemigroup R of S

which is a layered semigroup with two layers (where R0 = {e}, R1 = R ∩ S1, and
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R2 = R ∩ S2 are as given by Definition 3.1) such that, with F2 = {f|R}, 〈Fn〉2n=2

is a layered action on R.

Proof. (1) implies (2). Let g be a function from S to S such that g(x) = f(x) if
f(x) 6= x and g(x) ∈ S\{x} if f(x) = x. Then g has no fixed points so pick by
Katetǒv’s Theorem [9, Lemma 3.33] sets C0, C1, and C2 such that S = C0 ∪ C1 ∪ C2

and Ci ∩ g[Ci] = ∅ for each i ∈ {0, 1, 2}. Pick i ∈ {0, 1, 2} and a sequence 〈xn〉∞n=1

in S2 such that 〈〈〈xn〉∞n=1 〉〉{f} ∩ S1 ⊆ Ci. If for infinitely many n’s, f2(xn) = e

then conclusion 2(a) holds. Thus we may assume that for all n, f2(xn) 6= e (and in
particular, since f is a homomorphism, f(xn) 6= e). Consequently, for all n ∈ N, we have
that f(xn), f2(xn) ∈ Ci. We claim that for all n, f2(xn) = f(xn). So suppose instead
that we have some n with f2(xn) 6= f(xn). Then g

(
f(xn)

)
= f2(xn) ∈ Ci ∩ g[Ci], a

contradiction.

(2) implies (3). For m ∈ N, let

Wm = {
∏

n∈F fαn(xn) : F ∈ Pf (N) , minF ≥ m , {αn : n ∈ F} ⊆ {0, 1} ,
and some αn = 0}

and let Vm = {
∏

n∈F f(xn) : F ∈ Pf (N) and minF ≥ m}.
Let X =

⋂∞
m=1 c`βS(Wm). Since S2 is an ideal of S, we have that W1 ⊆ S2 and so

X ⊆ βS2. We claim first that X is a subsemigroup of βS2. To see this, let p, q ∈ X and
let m ∈ N. To see that Wm ∈ p · q, we show that Wm ⊆ {y ∈ S : y−1Wm ∈ q}. To this
end let y ∈ Wm and pick F ∈ Pf (N) and {αn : n ∈ F} ⊆ {0, 1} such that minF ≥ m,
some αn = 0, and y =

∏
n∈F fαn(xn). Let l = maxF + 1. Then Wl ⊆ y−1Wn.

Thus X is a compact right topological semigroup so pick an idempotent q ∈ X.
Now, by [9, Corollary 4.22], f̃ : βS → βS is a homomorphism. Let p1 = f̃(q). Then p1

is an idempotent. Further p1 ∈ βS1 ∪ {e}. If p1 = e, let p2 = q and we are done. So
assume that p1 ∈ βS1.

We claim that for each m ∈ N, Vm ∈ p1, for which it suffices that f [Wm] ⊆ Vm.
So let m ∈ N and let y ∈ Wm. Pick F ∈ Pf (N) and {αn : n ∈ F} ⊆ {0, 1} such that
minF ≥ m, some αn = 0, and y =

∏
n∈F fαn(xn). If for each n, f2(xn) = e, then

f(y) =
∏

n∈G f(xn), where G = {n ∈ F : αn = 0}. If for each n, f2(xn) = f(xn), then
f(y) =

∏
n∈F f(xn).

If for each n, f2(xn) = e, then f [V1] = {e} so that f̃(p1) = e. If for each n,
f2(xn) = f(xn), then f is the identity on V1 so that f̃(p1) = p1. In either case we have
that f̃(p1) · p1 = p1.

Now we claim that p1 ·X ⊆ X and X ·p1 ⊆ X. To this end, let r ∈ X and let m ∈ N.
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To see that Wm ∈ p1 · r one checks as in the proof that X is a semigroup, that for each
y ∈ Vm there is some l ∈ N such that Wl ⊆ y−1Wm so that Vm ⊆ {y ∈ S : y−1Wm ∈ r}.
To see that Wm ∈ r · p1 one checks that for each y ∈ Wm there is some l ∈ N such that
Vl ⊆ y−1Wm so that Wm ⊆ {y ∈ S : y−1Wm ∈ p1}.

Now by Lemma 4.3(b) (with H = {f}) pick p2 ∈ X with p2 ≤ p1 and f̃(p2) = p1.

(3) implies (1). Assume first that p1 = e. Then since f̃(p2) = e, there is some y ∈ S2

such that f(y) = e. Then for all n ∈ N, f(yn) = e. Pick by the Finite Products Theorem
[9, Corollary 5.9] some sequence 〈xn〉∞n=1 in {yn : n ∈ N} and γ(2) ∈ {1, 2, . . . , r} such
that {

∏
n∈F xn : F ∈ Pf (N)} ⊆ Cγ(2). Then 〈〈〈xn〉∞n=1 〉〉{f} = {e} ∪ {

∏
n∈F xn : F ∈

Pf (N)}.

Now assume that p1 ∈ βS1. If f̃(p1) = p1, then by [9, Theorem 3.35] {x ∈ S1 :
f(x) = x} ∈ p1 so {x ∈ S2 : f2(x) = f(x)} ∈ p2. If f̃(p1) = e, then {x ∈ S1 : f(x) =
e} ∈ p1 so {x ∈ S2 : f2(x) = e} ∈ p2. Thus, in either case, {x ∈ S2 : f2(x) = f(x) or
f2(x) = e} ∈ p2. For each m ∈ N let B2,m = {x ∈ S2 : f2(x) = f(x) or f2(x) = e} and
let B1,m = S1

Let F2 = {f}, G2 = {ιS}, and G1 = {f}. Let r ∈ N, let S =
⋃r

i=1 Ci, and pick
γ(1), γ(2) ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 in S2 as guaranteed by Lemma 3.12.
To complete the proof, we need to show that

〈〈〈xn〉∞n=1 〉〉{f} ∩ S2 ⊆ {
∏

n∈F gn(xn) : F ∈ Pf (N) , {gn : n ∈ F} ⊆ {ιS , f}
and gn = ιS for some n}

and 〈〈〈xn〉∞n=1 〉〉{f} ∩ S1 ⊆ {
∏

n∈F f(xn) : F ∈ Pf (N)}.

For the first of these inclusions, let y ∈ 〈〈〈xn〉∞n=1 〉〉{f} ∩ S2. Pick F ∈ Pf (N)
and {αn : n ∈ F} ⊆ ω such that y =

∏
n∈F fαn(xn). Let G = {n ∈ F : αn = 0 or

fαn(xn) = f(xn)}. Since each xn ∈ B2,1, we have that, if n ∈ F\G, then fαn(xn) = e,
so y =

∏
n∈G fδn(xn) where δn = min{αn, 1}. Further, since y ∈ S2, some δn = 0.

For the second inclusion, let y ∈ 〈〈〈xn〉∞n=1 〉〉{f} ∩ S1. Pick F ∈ Pf (N) and {αn :
n ∈ F} ⊆ ω such that y =

∏
n∈F fαn(xn). Since S2 is an ideal of S we have that

each αn ≥ 1. Let G = {n ∈ F : fαn(xn) = f(xn)}. Since each xn ∈ B2,1, we have if
n ∈ F\G, then fαn(xn) = e. Further, y ∈ S1 so G 6= ∅. Thus y =

∏
n∈G f(xn).

(2) implies (4). If for some n, f(xn) = e, the first alternative of (4) holds, so
assume that for each n, f(xn) 6= e. Let R be the subsemigroup of S generated by
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{e} ∪ {xn : n ∈ N} ∪ {f(xn) : n ∈ N}, let R1 = R ∩ S1, and let R2 = R ∩ S2. Then

R =
{∏m

i=1 fαi(xni
) : m ∈ N, 〈ni〉mi=1 is a sequence in N ,

and 〈αi〉mi=1 is a sequence in {0, 1}
}
∪ {e} ,

R2 = {
∏m

i=1 fαi(xni
) : m ∈ N, 〈ni〉mi=1 is a sequence in N ,

〈αi〉mi=1 is a sequence in {0, 1}, and some αi = 0} , and

R1 = {
∏m

i=1 f(xni) : m ∈ N and 〈ni〉mi=1 is a sequence in N} .

Using these characterizations it is easy to see that if for all n, f2(xn) = e, then f|R is a
shift on R with f [R0 ∪R1] = {e}, and if for all n, f2(xn) = f(xn), then the restriction
of f to R0 ∪R1 is the identity.

(4) implies (1). We showed in the proof that (3) implies (1) that the existence of
some y ∈ S2 such that f(y) = e implies (1). So assume that we have a layered semigroup
as in (4). Let G2 = {ιR} and let G1 = {f|R}. Pick γ(1), γ(2), and a sequence 〈xn〉∞n=1

in R2 as guaranteed by Theorem 3.13. Since 〈Fn〉2n=2 is a layered action on R, we have
that f|R

2 = f|R or f|R
2 = e and thus

〈〈〈xn〉∞n=1 〉〉{f} ∩ S2 = {
∏

n∈F gn(xn) : F ∈ Pf (N) , {gn : n ∈ F} ⊆ {ιR, f|R}
and gn = ιR for some n}

and 〈〈〈xn〉∞n=1 〉〉{f} ∩ S1 = {
∏

n∈F f(xn) : F ∈ Pf (N)}.

Notice that the option in statement (4) that some y ∈ S2 has f(y) = e cannot be
simply omitted. To see this, let S be any layered semigroup with two layers and let
f = e. Let R be any subsemigroup of S which has R2 = R∩S2 6= ∅ and R1 = R∩S1 6= ∅
(as is required if these are to be layers of R). Then f [R2] is not central* in R1 and
f|R0∪R1 is not the identity. The same example shows that the possibility that p1 = e in
statement (3) cannot be eliminated.

Notice also that the requirement in statement (3) that f̃(p1) = p1 or f̃(p1) =
e cannot be simply omitted. To see this, let S2 = W ({a, b, c})\W ({a, b}), S1 =
W ({a, b})\{e}, and S0 = {e}. Let f : S → S be the homomorphism with f(c) = b,
f(b) = a, and f(a) = e. Then, letting C0 = W ({a}), C1 = W ({a, b})\W ({a}), and
C2 = S2, if 〈xn〉∞n=1 is any sequence in S2, then f(x1) ∈ C1 and f2(x2) ∈ C0, while both
are in 〈〈〈xn〉∞n=1 〉〉{f} ∩ S1. On the other hand, taking p1 to be a minimal idempotent
in βC1 one produces p2 ∈ βS2 with p2 ≤ p1 and f̃(p2) = p1 as in the proof of Theorem
3.8.

It would of course be interesting to see whether Theorem 3.13 can be strengthened
by relaxing the definition of action. Theorem 6.4 suggests that the only possible way
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to do so is by allowing more than one shift at each transition between layers (i.e., by
allowing (1)(b) of Definition 3.3 to hold for more than one member of Fn, perhaps with
some other restrictions). To support this claim, let us note that the above proof shows
that (1) implies (2) in a more general case when f is replaced by an arbitrary finite set
of homomorphisms.

6.5 Question. Let S be a layered partial semigroup and let H be a set of partial ho-
momorphisms satisfying the conclusion of Theorem 3.13. Is there necessarily a partial
subsemigroup R of S such that R ∩ S is a layered partial semigroup with layers R ∩ Sn

(n ≤ k) and the restriction of H to R is included in
⋃k

n=1 Gn, where Gn are obtained
from some action on R as in Definition 3.9?

A positive answer to Question 6.5 would suggest that Theorem 3.13 is rather opti-
mal. In Question 6.6 below we state a more modest variant of Question 6.5.

As pointed out earlier, the fact that we are unable to deal with more than one shift
at a time (see Theorem 4.2) is a bit annoying. It is curious that we were unable to find
a nontrivial example of a layered partial semigroup with two layers and two different
shifts to which the conclusion of Theorem 3.13 applies.

6.6 Question. Assume S is a layered semigroup with layers S0, S1 and S2. Are the
following equivalent for every set H of shifts of S into S0 ∪ S1?

(1) The conclusion of Theorem 3.13 holds.

(2) There is a subsemigroup R of S closed under all f ∈ H and a shift g on R such
that R∩S1 and R∩S2 are nonempty and for every f ∈ H we have either f|R = g|R

or f [R] = {e}.

By Theorem 3.13, (2) implies (1). Thus a positive answer to Problem 6.6 would
be a sort of a converse to Theorem 3.13 in case k = 2, suggesting that at least in this
case this theorem is optimal. We were able to give a positive answer to Question 6.6 in
case when S = W (Σ ∪ {a}), S2 = W (Σ ∪ {a}) \W ({a}), S1 = W ({a}) \ {e} for some
finite alphabet Σ. This result suggests that, at least in the case of free semigroups,
Question 6.6 has a positive solution. Its proof will appear elsewhere.

Let us finish with a variation of Problem 6.1.

6.7 Problem. Describe the class of triples (S, S′,H) such that S is a partial semigroup,
S′ is an ideal of S, and H is a set of partial semigroup homomorphisms from S to itself
such that for every r ∈ N and every partition S =

⋃r
j=1 Cj there is a sequence 〈xn〉∞n=1

included in S′ and j ∈ {1, 2, . . . , r} such that 〈〈〈xn〉∞n=1 〉〉H ∩ S′ ⊆ Cj.
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