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Abstract

There are several notions of size for subsets of a semigroup S that
originated in topological dynamics and are of interest because of their
combinatorial applications as well as their relationship to the algebraic
structure of the Stone-Čech compactification βS of S. Among these no-
tions are thick sets, central sets, piecewise syndetic sets, IP sets, and ∆
sets. Two related notions, namely C sets and J sets, arose in the study
of combinatorial applications of the algebra of βS.

If the semigroup is noncommutative, then all of these notions have
both left and right versions. In any semigroup, a left thick set must be a
right J set (and of course a right thick set must be a left J set). We show
here that for free semigroups and groups, this is the only relationship that
must hold. Specifically, we show that for any free semigroup or free group
on more than one generator, there is a set which satisfies all of the left
versions of these notions and none of the right versions except J . We also
show that for the free semigroup on countably many generators, there is
a left J set which is not a right J set.
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1 Introduction

In [4] Furstenberg introduced the notion of central subsets of the set N of pos-
itive integers and proved the original version of the Central Sets Theorem. He
proved there [4, Theorem 8.22], among other things, that any central subset of N
contains solutions to any system of homogeneous linear equations with rational
coefficients that satisfy Rado’s columns condition. Since he also showed [4, The-
orem 8.8] that in any finite partition of N, one cell must contain a central set, he
obtained Rado’s Theorem [9] as a corollary. Many other strong combinatorial
properties are satisfied by any central set. See [6, Chapter 15].

Furstenberg’s definition of central can be generalized naturally to an arbi-
trary semigroup. It was subsequently discovered that there is a very simple
characterization of central sets in terms of the algebraic structure of the Stone-
Čech compactification of the discrete semigroup S. (See the notes to Chapters
14 and 19 of [6] for a detailed history of this discovery.)

We pause now to briefly describe this structure. (For the results presented
in this paper, one does not need to know anything about the structure of βS.
However, it is essential for much of the motivation. The reader who wants to
see the details can find more information than she could possibly want in [6].)

Let (S, ·) be a discrete semigroup. The operation can be extended to the
Stone-Čech compactification βS of S so that (βS, ·) becomes a right topological
semigroup (meaning that for each p ∈ βS the function ρp : βS → βS is continu-
ous, where ρp(q) = q ·p) with S contained in its topological center (meaning that
for each x ∈ S, the function λx : βS → βS is continuous, where λx(q) = x · q).

As does any compact Hausdorff right topological semigroup, βS has a small-
est two sided ideal K(βS) which is the union of all of the minimal right ideals of
βS and is also the union of all of the minimal left ideals of βS. The intersection
of any minimal right ideal with any minimal left ideal is a group. In particu-
lar, there are idempotents in K(βS). We take the algebraic characterization of
central sets as the definition.

Definition 1.1. Let S be a semigroup. A subset A of S is central if and only
if there is an idempotent in K(βS) ∩ c`βSA.

We now present the other notions with which we are concerned that origi-
nated in relation to dynamical systems. Given any set X, we write Pf (X) for the
set of finite nonempty subsets of X. Given a sequence 〈xn〉∞n=1, FP (〈xn〉∞n=1) =
{
∏
t∈F xt : F ∈ Pf (N)}, where the products

∏
t∈F xt are computed in increas-

ing order of indices. Also, given a subset A of a subsemigroup S and t ∈ S,
t−1A = {s ∈ S : ts ∈ A} and At−1 = {s ∈ S : st ∈ A}. (Note that if S is a
group, these agree with the usual meanings.)

Definition 1.2. Let S be a semigroup and let A ⊆ S.

(a) The set A is thick if and only if for each F ∈ Pf (S) there is some x ∈ S
such that Fx ⊆ A.

(b) The set A is an IP set if and only if there exists a sequence 〈xn〉∞n=1 in S
such that FP (〈xn〉∞n=1) ⊆ A.
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(c) The set A is a ∆ set if and only if there exists a sequence 〈xn〉∞n=1 in S
such that whenever n < m in N, one has xm ∈ xn ·A.

(d) The set A is piecewise syndetic if and only(
∃H ∈ Pf (S)

)(
∀F ∈ Pf (S)

)
(∃x ∈ S)(Fx ⊆

⋃
t∈H t

−1A).

Notice that in (N,+), a set A is a ∆ set if and only if there exists a sequence
〈xn〉∞n=1 in N such that {xm − xn : n < m} ⊆ A. (Thus “∆” comes from
“difference”.)

We have mentioned (but not stated) the original Central Sets Theorem.
What is currently the most general version follows. It is due to Johnson in [7].
In this we write for m ∈ N,

Jm =
{(
t(1), t(2), . . . , t(m)

)
∈ Nm : t(1) < t(2) < . . . < t(m)

}
.

We also write NS for the set of sequences in S.

Theorem 1.3 (Central Sets Theorem). Let S be a semigroup and let A be a
central subset of S. Then there exist

m : Pf (NS)→ N, α ∈×
F∈Pf (NS) S

m(F )+1, and τ ∈×
F∈Pf (NS) Jm(F )

such that

(1) if F,G ∈ Pf (NS) and F ( G, then τ(F )
(
m(F )

)
< τ(G)(1) and

(2) whenever n ∈ N, G1, G2, . . . , Gn ∈ Pf (NS), G1 ( G2 ( . . . ( Gn, and for
each i ∈ {1, 2, . . . , n}, fi ∈ Gi, one has∏n

i=1 α(Gi)(1)fi
(
τ(Gi)(1)

)
α(Gi)(2)fi

(
τ(Gi)(2)

)
· · ·

α(Gi)
(
m(Gi)

)
fi
(
τ(Gi)

(
m(Gi)

))
α(Gi)(m(Gi) + 1) ∈ A .

Many of the strong combinatorial properties that are satisfied by any central
set are a consequence of the Central Sets Theorem. This motivates the following
definition.

Definition 1.4. Let S be a semigroup and let A ⊆ S. Then A is a C set if and
only if A satisfies the conclusion of the Central Sets Theorem.

Intimately related to C sets are the much more simply described J sets.

Definition 1.5. Let S be a semigroup and let A ⊆ S. Then A is a J set if and

only if for each F ∈ Pf (NS), there exist m ∈ N, a ∈ Sm+1, and t ∈ Jm such
that for each f ∈ F , a(1)f

(
t(1)

)
a(2)f

(
t(2)

)
· · · a(m)f

(
t(m)

)
a(m+ 1) ∈ A.

Definition 1.6. Let S be a semigroup. Then J(S) = {p ∈ βS : for all A ⊆ S,
if p ∈ c`βSA, then A is a J set}.
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By [6, Theorem 14.15.1] A is a C set if and only if there is an idempotent p ∈
J(S)∩c`βSA and by [6, Theorem 14.14.4] J(S) is a two sided ideal of βS, which
therefore contains K(βS). And by [6, Corollary 4.41] c`βSK(βS) = {p ∈ βS :
for all A ⊆ S, if p ∈ c`βSA, then A is piecewise syndetic}. Thus C sets stand in
a relationship to J sets which is very similar to the relationship between central
sets and piecewise syndetic sets. And one immediately sees that all central sets
are piecewise syndetic. By [6, Theorem 4.40], if A is piecewise syndetic, then
K(βS) ∩ c`βSA 6= ∅ and therefore J(S) ∩ c`βSA 6= ∅ so A is piecewise syndetic.

Trivially all central sets are C sets and since A is an IP set if and only
if there is an idempotent in c`βSA by [6, Theorem 5.12], one has that all C
sets are IP sets. By [6, Theorem 4.48], A is thick if and only if there is a left
ideal of βS contained c`βSA. Since each left ideal in a compact Hausdorff right
topological semigroup contains a minimal left ideal, one has that each thick set
is central. Finally, if FP (〈xn〉∞n=1) ⊆ A and for each n ∈ N, yn =

∏n
t=1 xt, then

whenever n < m one has ym = yn ·
∏m
t=n+1 xt so each IP set is a ∆ set. Thus we

have established that all of the implications in Figure 1 are valid, where “PS”
abbreviates “piecewise syndetic”. See [5] for examples in (N,+) showing that
none of the missing implications holds.

thick

?
central
�

�	
@
@R

PS C

? ?
J IP

?
∆

Figure 1: Implications among the notions

All of the properties listed are partition regular except “thick”. That is if A
has the specified property and it is divided into finitely many pieces, then one
of them has that same property. This is immediate for all of them except ∆
sets from the fact that the property is determined by points of βS which can
be viewed as ultrafilters on S. For ∆ sets, it is an immediate consequence of
Ramsey’s Theorem.

Even sets quite far down the heirarchy satisfy strong combinatorial proper-
ties. See [5, page 6] for the proof that any J set in (N,+) contains arbitrarily
long arithmetic progressions with increment chosen from the finite sums of any
prespecified sequence.

All of the discussion until now has assumed that we constructed the operation
on βS so that (βS, ·) is a right topological semigroup. One could equally well
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do the extension so that (βS, ·) is left topological. (In fact, that used to be the
customary choice of the first author of this paper.) Had we done so, the notions
that we defined would have been different. For the rest of this paper we will
refer to the notions that we have defined as “right thick”, “right central”, etc.
The changes to the definitions necessitated are obvious. For example, A is left
thick if and only if for each F ∈ Pf (S), there is some x ∈ S such that xF ⊆ A.

The definition for left central reads the same as for right central, but the
smallest ideals for the right and left operations can be quite different. In [3], El-
Mabhouh, Pym, and Strauss showed that if S is the free semigroup on countably
many generators, then there is a subsemigroup of βS with respect to the left
operation none of whose members is a product of two elements with respect to
the left operation. In [1], Anthony showed that if S is the free semigroup on
two generators, there is a subset of S which is left piecewise syndetic but not
right piecewise syndetic, and consequently that there are points in K(βS) with
respect to the left operation that are not in the closure of K(βS) with respect to
the right operation. She also showed there that in any semigroup, the closure of
K(βS) with respect to the left operation meets the smallest ideal with respect
to the right operation. On the other hand, in [2], Burns proved that if S is
either the free group or the free semigroup on two generators, then the smallest
ideals with respect to the two operations are disjoint.

In [8] it was shown that if S is the free semigroup on countably many gen-
erators, then there is a left piecewise syndetic set which is not right piecewise
syndetic (and as a consequence there are points in J(S) with respect to the left
operation which are not in J(S) with respect to the right operation). We will
present this result in Section 3.

We began the current investigation trying to construct in the free semigroup
on two generators a left C set which is not a right C set. We also realized that
because of the available algebraic tools, it was probably easier to construct a
left central set which is not a right C set. (If one can construct a right or left
ideal as an intersection of closures of subsets of S, any of these subsets will be
central with respect to the appropriate operation.) We eventually succeeded
with a rather complicated construction and showed that the set was in fact left
thick. Since left thick sets are easy to construct (as will be seen in the next
section) it turns out that our constructions were greatly simplified by asking
the right question, namely whether there are left thick sets that are neither
right piecewise syndetic nor right ∆ sets.

We refer throughout to sets with left properties not having right properties.
Of course the corresponding results with left and right interchanged are valid.

We conclude this introduction by showing that one cannot construct a left
thick set which is not a right J set.

Lemma 1.7. Let S be any semigroup and let A be a left thick subset of S. Then
A is a right J set.

Proof. Let F ∈ Pf (NS), let H = {f(1) : f ∈ F}, and pick z ∈ S. (For us,
semigroups are necessarily nonempty.) Then Hz ∈ Pf (S) so pick x ∈ S such
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that xHz ⊆ A. Let m = 1, let a(1) = x, let a(2) = z, and let t(1) = 1. Then
for each f ∈ F , a(1)f

(
t(1)

)
a(2) ∈ A.

2 Left thick but neither right piecewise syndetic
nor right ∆

We show in this section that for any cardinal κ > 1, if S is either the free
semigroup or free group on κ generators, then there is a subset of S which is
left thick but neither right piecewise syndetic nor a right ∆ set. In fact, we will
show that the set does not satisfy a property even weaker than being a right ∆
set.

Lemma 2.1. Let S be a left cancellative semigroup and let A ⊆ S. Then A is
a right ∆ set if and only if there is a sequence 〈xn〉∞n=1 in S such that whenever
n ≤ m in N,

∏m
t=n xt ∈ A.

Proof. Sufficiency. Pick such a sequence. For each n ∈ N, let yn =
∏n
t=1 xt. If

n < m, then ym = yn ·
∏m
t=n+1 xt ∈ yn ·A.

Necessity. Pick a sequence 〈yn〉∞n=1 such that whenever n < m in N, ym ∈
yn ·A. For each n ∈ N, pick xn ∈ A such that yn+1 = yn · xn. By induction on

k, one sees that if n, k ∈ N, then yn+k = yn ·
∏n+k
t=n xt. Now given n < m in N

pick a ∈ A such that ym = yn · a. Since also ym = yn ·
∏m
t=n xt, one has by left

cancellation that
∏m
t=n xt = a ∈ A.

Definition 2.2. Let S be a left cancellative semigroup and let A ⊆ S. Then
A is a right weak ∆ set if and only if there exists a sequence 〈xn〉∞n=1 in A such
that for each n ∈ N, xn · xn+1 ∈ A.

We will consider separately the free groups and semigroups on infinitely
many generators (which are the easier cases). The reason these cases are easier
is that the number of elements is the same as the number of finite subsets.

If G is a free group and x, y are elements of G we write x_y for the con-
catenation of x and y. The assertion that xy = x_y is the assertion that the
rightmost letter of x and the leftmost letter of y are not inverses of each other.

Theorem 2.3. Let κ be an infinite cardinal and let G be the free group on the
generators 〈aσ〉σ<κ. Enumerate Pf (G) as 〈Fσ〉σ<κ. For σ < κ let

τ(σ) = max{δ < κ : (∃w ∈ Fσ)(aδ or a−1δ occurs in w)}+ 1 .

Let A =
⋃
σ<κ aτ(σ) · Fσ. Then

(a) A is left thick;

(b) A is not right piecewise syndetic; and

(c) A is not a right weak ∆ set.
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Proof. (a) This is trivial.
(b) Suppose we have H ∈ Pf (G) such that for every F ∈ Pf (G), there is

some x ∈ G with Fx ⊆
⋃
t∈H t

−1A. Let

µ = max{δ < κ : (∃w ∈ H)(aδ or a−1δ occurs in w)}+ 1 .

Let F = {aµ, a−1µ } and pick x ∈ G such that Fx ⊆
⋃
t∈H t

−1A. Since x does

not begin with both aµ and a−1µ , pick j ∈ {1,−1} such that ajµx = ajµ
_x. Pick

t ∈ H such that tajµx ∈ A. By the choice of µ, tajµx = t_ajµ
_x. But the first

letter of any member of A has index strictly greater than the index of any other
letter, a contradiction.

(c) Suppose that A is a right weak ∆ set and pick a sequence 〈xn〉∞n=1 in
A such that for each n ∈ N, xn · xn+1 ∈ A. For each n ∈ N, pick µ(n) < κ
such that xn ∈ aτ(µ(n)) · Fµ(n). There are no infinite decreasing sequences in κ

so pick n such that τ
(
µ(n)

)
≤ τ

(
µ(n + 1)

)
. Pick y ∈ Fµ(n) and z ∈ Fµ(n+1)

such that xn = aτ(µ(n)) · y and xn+1 = aτ(µ(n+1)) · z. Now the largest δ such

that aδ or a−1δ occurs in y is less than τ
(
µ(n)

)
≤ τ

(
µ(n + 1)

)
so xn · xn+1 =

aτ(µ(n))
_y_aτ(µ(n+1))

_z. Since τ
(
µ(n)

)
≤ τ

(
µ(n + 1)

)
, xn · xn+1 /∈ A, a

contradiction.

The proof of the following theorem is nearly identical to the proof of Theorem
2.3, so we omit it.

Theorem 2.4. Let κ be an infinite cardinal and let S be the free semigroup on
the generators 〈aσ〉σ<κ. Enumerate Pf (S) as 〈Fσ〉σ<κ. For σ < κ let

τ(σ) = max{δ < κ : (∃w ∈ Fσ)(aδ occurs in w)}+ 1 .

Let A =
⋃
σ<κ aτ(σ) · Fσ. Then

(a) A is left thick;

(b) A is not right piecewise syndetic; and

(c) A is not a right weak ∆ set.

In the following theorem we let l(w) be the length of the word w.

Theorem 2.5. Let k ∈ N \ {1} and let S be the free semigroup on the k
generators 〈an〉k−1n=0. Let A = {av0a1s : v ∈ N , s ∈ S, and l(s) < v}. Then

(a) A is left thick;

(b) A is not right piecewise syndetic; and

(c) A is not a right weak ∆ set.
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Proof. (a) Let H ∈ Pf (S) and let v = max{l(s) : s ∈ H}+1. Then ay0a1H ⊆ A.
(b) Suppose we have H ∈ Pf (S) such that for every F ∈ Pf (S), there is some

x ∈ S with Fx ⊆
⋃
t∈H t

−1A. Let m = max{l(t) : t ∈ H} and let F = {am+1
1 }.

Pick x ∈ S such that Fx ⊆
⋃
t∈H t

−1A. Pick x ∈ S and t ∈ H such that

tam+1
1 x ∈ A. Pick v ∈ N and s ∈ S with l(s) < v such that tam+1

1 x = av0a1s.
Then t begins with av0 so v ≤ l(t). Thus 2l(t) + 2 ≤ l(t) + m + 1 + l(x) =
v + 1 + l(s) < 2v + 1 ≤ 2l(t) + 1, a contradiction.

(c) Suppose that A is a right weak ∆ set and pick a sequence 〈xn〉∞n=1 in
A such that for each n ∈ N, xn · xn+1 ∈ A. For each n ∈ N pick v(n) ∈ N
and s(n) ∈ S such that l

(
s(n)

)
< v(n) and xn = a

v(n)
0 a1s(n). Since there

are no infinite decreasing sequences in N, pick n such that v(n) ≤ v(n + 1).

Then xn · xn+1 = a
v(n)
0 a1s(n)a

v(n+1)
0 a1s(n+ 1) and l

(
s(n)a

v(n+1)
0 a1s(n+ 1)

)
>

v(n+ 1) ≥ v(n) so xn · xn+1 /∈ A, a contradiction.

In the following, ω = N ∪ {0} is the first infinite cardinal.

Theorem 2.6. Let k ∈ N \ {1} and let G be the free group on the k generators
〈an〉k−1n=0. Enumerate Pf (G) as 〈Fn〉∞n=0. For each n < ω, let

τ(n) = max{l(s) : s ∈ Fn}+ 1

and let A =
⋃∞
n=0 a

τ(n)
0 a

τ(n)
1 a

τ(n)
0 Fn. Then

(a) A is left thick;

(b) A is not right piecewise syndetic; and

(c) A is not a right weak ∆ set.

Proof. (a) This is trivial.
(b) Suppose we have H ∈ Pf (G) such that for every F ∈ Pf (G), there

is some x ∈ G with Fx ⊆
⋃
t∈H t

−1A. Let m = max{l(t) : t ∈ H} and let

F = {a−2m0 , a−2m1 }. Pick x ∈ S such that Fx ⊆
⋃
t∈H t

−1A. Pick j ∈ {0, 1}
such that a−2mj x = a−2mj

_x. Pick t ∈ H such that ta−2mj x ∈ A and pick

n < ω and y ∈ Fn such that ta−2mj x = a
τ(n)
0 a

τ(n)
1 a

τ(n)
0 y. Now l(t) ≤ m so

ta−2mj = s_a−rj for some s ∈ G with l(s) ≤ l(t) and some r ≥ m. Also

l(y) < τ(n) so a
τ(n)
0 y = av0

_w for some w ∈ G with l(w) ≤ l(y) and some

v > 0. Thus s_a−rj
_x = a

τ(n)
0

_a
τ(n)
1

_av0
_w.

From the right hand side, the first occurrence of a−1j is in w so s begins as

a
τ(n)
0

_a
τ(n)
1

_av0 and w ends as a−rj
_x. Therefore 2τ(n) + v ≤ l(s) ≤ l(t) ≤ m

and m+ 1 ≤ r + 1 ≤ l(w) ≤ l(y) < τ(n) < m, a contradiction.
(c) Suppose that A is a right weak ∆ set and pick a sequence 〈xn〉∞n=1 in A

such that for each n ∈ N, xn ·xn+1 ∈ A. For each n ∈ N pick µ(n) ∈ ω such that

xn ∈ aτ(µ(n))0 a
τ(µ(n))
1 a

τ(µ(n))
0 Fµ(n) and pick n such that τ

(
µ(n)

)
≤ τ

(
µ(n+ 1)

)
.

Pick y ∈ Fµ(n) and z ∈ Fµ(n+1) such that xn = a
τ(µ(n))
0 a

τ(µ(n))
1 a

τ(µ(n))
0 y and

xn+1 = a
τ(µ(n+1))
0 a

τ(µ(n+1))
1 a

τ(µ(n+1))
0 z.
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Now l(y) < τ
(
µ(n)

)
≤ τ

(
µ(n + 1)

)
and l(z) < τ

(
µ(n + 1)

)
so there exist d

and h in G with l(d) ≤ l(y) and l(h) ≤ l(z) and there exist c, f , and g in N
such that

xn · xn+1 = a
τ(µ(n))
0

_a
τ(µ(n))
1 ac0

_d_af0
_a

τ(µ(n+1))
1

_ag0
_h .

Also for some m < ω and some p ∈ G with l(p) < τ(m), xn · xn+1 =

a
τ(m)
0 a

τ(m)
1 a

τ(m)
0 p. Pick u > 0 and v ∈ G such that l(v) ≤ l(p) and a

τ(m)
0 p =

au0
_v. Then xn · xn+1 = a

τ(m)
0

_a
τ(m)
1

_au0
_v. Then xnxn+1 begins with

a
τ(m)
0

_a1 and xnxn+1 begins with a
τ(µ(n))
0

_a1 so τ(m) = τ
(
µ(n)

)
and thus

ac0
_d_af0

_a
τ(µ(n+1))
1

_ag0
_h = au0

_v. Thus the first occurrence of a1 is in v
so τ

(
µ(n+ 1)

)
+ g + l(h) ≤ l(v) ≤ l(p) < τ(m) = τ

(
µ(n)

)
, a contradiction.

3 Left J but not right J

By virtue of Lemma 1.7, the sets produced in Section 2 are necessarily both
left J sets and right J sets. In this section we present the (considerably more
complicated) construction of left J sets in the free semigroup on countably many
generators that are not right J sets.

Throughout this section we will let S be the free semigroup on the generators
〈an〉∞n=1. (It is convenient for us to index the letters by N rather than ω.)

In attempting to build a left J set which is not a right J set, the basic idea
is the same as in the previous section with left thick sets. That is, one wants
to put only enough things into the set to just make it be a left J set. However,

the issue is complicated by the fact that NS, and thus Pf (NS), has uncountably

many members, so one cannot handle the elements of Pf (NS) one at a time. The
following simple lemma allows us to only worry about countably many things.

Lemma 3.1. Let F ∈ Pf (NS). There is an infinite subset C of N such that for
all f, g ∈ F , either (∀n ∈ C)

(
f(n) = g(n)

)
or (∀n ∈ C)

(
f(n) 6= g(n)

)
.

Proof. Let k = |F |. We may assume k > 1. Let l =

(
k
2

)
, and enumerate

the pairs in F as 〈Pi〉li=1 and let each Pi = {fi, gi}. Pick infinite C1 ⊆ N
such that either (∀n ∈ C1)

(
f1(n) = g1(n)

)
or (∀n ∈ C1)

(
f1(n) 6= g1(n)

)
.

Inductively, given i < l and Ci choose infinite Ci+1 ⊆ Ci such that either
(∀n ∈ Ci+1)

(
fi+1(n) = gi+1(n)

)
or (∀n ∈ Ci+1)

(
fi+1(n) 6= gi+1(n)

)
.

Definition 3.2. (1) M = {f : (∃r ∈ N)(f : {1, 2, . . . , r} → S)}.

(2) Define ψ : Pf (M)→ N by, for H ∈ Pf (M),
ψ(H) = max{n ∈ N : (∃f ∈ H)

(
an occurs in f(1)

)
}.

(3) F =
{
H ∈ Pf (M) : (∀f ∈ H)(dom(f) = {1, 2, . . . , ψ(H)}) and

(∀f, g ∈ H)
(
f 6= g ⇒ (∀t ∈ {1, 2, . . . , ψ(H)})

(
f(t) 6= g(t)

))}
.
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Lemma 3.3. There is an injective function δ : F → 2N such that if H ∈ F ,
f ∈ H, t ∈ {1, 2, . . . , ψ(H)}, n ∈ N, and n occurs in f(t), then n < δ(H).

Proof. Since F is countable, one may enumerate F and construct the function
δ inductively.

Definition 3.4. Let δ be as in Lemma 3.3.

A = {aδ(H)h
(
ψ(H)

)
aδ(H)h(ψ(H)− 1) · · · aδ(H)h(1)aδ(H) : H ∈ F and h ∈ H} .

The set A will remain fixed for the remainder of this section.

Theorem 3.5. A is a left J set.

Proof. We need to show that for each G ∈ Pf (NS) there exist m ∈ N,
α ∈ Sm+1, and t ∈ Jm such that for all f ∈ G,

α(m+ 1)f
(
t(m)

)
α(m)f

(
t(m− 1)

)
· · ·α(2)f

(
t(1)

)
α(1) ∈ A .

So let G ∈ Pf (NS). By Lemma 3.1, pick an infinite subset C of N such that for
all f, g ∈ G, either (∀n ∈ C)

(
f(n) = g(n)

)
or (∀n ∈ C)

(
f(n) 6= g(n)

)
.

Enumerate C in increasing order as 〈ci〉∞i=1. Let

m = max{n ∈ N : (∃f ∈ G)(an occurs in f(c1)} .

For f ∈ G, define hf : {1, 2, . . . ,m} → S by, for i ∈ {1, 2, . . . ,m}, hf (i) = f(ci).
Let H = {hf : f ∈ G} and observe that ψ(H) = m so that H ∈ F . Define

α ∈ Sm+1 by α(1) = α(2) = . . . = α(m + 1) = aδ(H) and define t ∈ Jm by
t(i) = ci for i ∈ {1, 2, . . . ,m}. Let f ∈ G. Then hf ∈ H and

α(m+ 1)f
(
t(m)

)
α(m)f

(
t(m− 1)

)
· · ·α(2)f

(
t(1)

)
α(1) =

aδ(H)hf (m)aδ(H)hf (m− 1) · · · aδ(H)hf (1)aδ(H) ∈ A .

Theorem 3.6. A is not a right J set.

Proof. Define f, g in NS by f(n) = a4na4n+1 and g(n) = a4na4n+1a4n+2a4n+3

and let F = {f, g}. Suppose that A is a right J set and pick m ∈ N, α ∈ Sm+1,
and t ∈ Jm such that

x = α(1)f
(
t(1)

)
α(2) · · ·α(m)f

(
t(m)

)
α(m+ 1) ∈ A and

y = α(1)g
(
t(1)

)
α(2) · · ·α(m)g

(
t(m)

)
α(m+ 1) ∈ A .

Since x and y are in A, pick H,K ∈ Pf (NS), h ∈ H, and k ∈ K such that

x = aδ(H)h
(
ψ(H)

)
aδ(H)h(ψ(H)− 1) · · · aδ(H)h(1)aδ(H) and

y = aδ(K)k
(
ψ(K)

)
aδ(K)k(ψ(K)− 1) · · · aδ(K)k(1)aδ(K) .
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Since x and y both begin with the word α(1), we have that aδ(H) = aδ(K). Since
δ is injective, we then have H = K. Let r = ψ(H). Then we have

x = aδ(H)h(r)aδ(H)h(r − 1) · · · aδ(H)h(1)aδ(H) and
y = aδ(H)k(r)aδ(H)k(r − 1) · · · aδ(H)k(1)aδ(H) .

Note that h 6= k since the lengths of x and y are different and therefore, for
each t ∈ {1, 2, . . . , r}, h(t) 6= k(t).

Now δ(H) is greater than any n such that there is some t ∈ {1, 2, . . . , r}
such that an occurs in k(t). Therefore δ(H) is the largest n such that an
occurs in y. Thus δ(H) is not any of 4n, 4n + 1, or 4n + 2. Also, δ(H)
is even so δ(H) 6= 4n + 3. Thus the only occurrences of aδ(H) in y are in
α(1), α(2), . . . , α(m+ 1). Consequently it is also true that the only occurrences
of aδ(H) in x are in α(1), α(2), . . . , α(m+ 1).

Now we claim that r ≤ m. To see this, define

γ : {1, 2, . . . , r + 1} → {1, 2, . . . ,m+ 1}

by γ(i) = j if and only the ith occurrence of aδ(H) occurs in α(j). We claim that
γ is injective so that r ≤ m. Suppose that γ is not injective. Then there are some
i ∈ {1, 2, . . . , r+1} and some j ∈ {1, 2, . . . ,m+1} such that γ(i) = γ(i+1) = j.
This means that the ith and (i+ 1)th occurrences of aδ(H) occur in α(j). Thus

there exist some u, v ∈ {∅} ∪ S such that α(j) = uaδ(H)h
(
(r + 1)− i

)
aδ(H)v =

uaδ(H)k
(
(r + 1) − i

)
aδ(H)v. We conclude that h

(
(r + 1) − i

)
= k

(
(r + 1) − i

)
.

This is a contradiction.
Now h ∈ H and r = ψ(H) ≥ max{n : an occurs in h(1)}. In x, the last

occurrence of aδ(H) must occur at the end of α(m + 1) and the second to last
occurrence of aδ(H) must occur in α(t) for some t ∈ {1, 2, . . . ,m}. Therefore

there are some u, v ∈ {∅} ∪ S such that h(1) = uf
(
t(m)

)
v = ua4t(m)a4t(m)+1v.

Since a4t(m) occurs in h(1), we then have 4t(m) ≤ r. Since t is increasing,
m ≤ t(m) and thus 4m ≤ r ≤ m, a contradiction.

We conclude our results by showing that A does not satisfy either the right
or left versions of any of the properties in Figure 1 except being a left J set. Of
course we know that A is not right piecewise syndetic since it is not a right J
set.

Theorem 3.7. (a) A is not a right weak δ set.

(b) A is not a left weak δ set.

(c) A is not left piecewise syndetic.

Proof. We will do the proof for (a) and (b) at once by showing that there do
not exist x and y in A such that xy ∈ A. Suppose we have such. Pick H, K,
and R in F , h ∈ H, k ∈ K, and r ∈ R such that

x = aδ(H)h
(
ψ(H)

)
aδ(H)h(ψ(H)− 1) · · · aδ(H)h(1)aδ(H) ,

y = aδ(K)k
(
ψ(K)

)
aδ(K)k(ψ(K)− 1) · · · aδ(K)k(1)aδ(K), and

xy = aδ(R)r
(
ψ(R)

)
aδ(R)r(ψ(R)− 1) · · · aδ(R)r(1)aδ(R) .
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From the first letter of x and the first letter of xy we conclude that δ(H) = δ(R)
so H = R. From the last letter of y and the last letter of xy we conclude that
δ(K) = δ(R) so K = R. But then on the one hand there are 2ψ(H) + 2
occurrences of aδ(H) in xy while on the other hand there are only ψ(H)+1 such
occurrences.

(c) Suppose we have G ∈ Pf (S) such that for all F ∈ Pf (S) there exists
x ∈ S with xF ⊆

⋃
t∈GAt

−1. Let R = {H ∈ F : (∃t ∈ G)(t ends in aδ(H))}.
Let n = max{δ(H) : H ∈ R}+ 1 and let F = {an}. Pick x ∈ S and t ∈ G such
that xant ∈ A. Pick H ∈ F and h ∈ H such that

xant = aδ(H)h
(
ψ(H)

)
aδ(H)h(ψ(H)− 1) · · · aδ(H)h(1)aδ(H) .

Then H ∈ R so n > δ(H) and thus an occurs in h(t) for some t ∈ dom(h).
Therefore δ(H) > n, a contradiction.

Our construction in this section seems heavily dependent on having a count-
able infinity of generators for S.

Question 3.8. Let S be a free semigroup on some number of generators other
than 1 or ω. Is there a left J set in S which is not a right J set?

Recall that we showed in Lemma 1.7 that in any semigroup, any left thick
set must be a right J set.

Question 3.9. Do there exist a semigroup S and a left central subset of S which
is not a right J set?

Question 3.10. Do there exist a semigroup S and a left piecewise syndetic
subset of S which is not a right J set?
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