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LONGER CHAINS OF IDEMPOTENTS IN 3G
NEIL HINDMAN, DONA STRAUSS, AND YEVHEN ZELENY UK

ABSTRACT. Given idempotents e and f in a semigroup, e < f if and
only if e = fe = ef. We show that if G is a countable discrete group, p is
a right cancelable element of G* = G\ G, and )\ is a countable ordinal,
then there is a strictly decreasing chain (¢s)s<x of idempotents in C,
the smallest compact subsemigroup of G* with p as a member. We also
show that if S is any infinite subsemigroup of a countable group, then any
nonminimal idempotent in S* is the largest element of such a strictly
decreasing chain of idempotents. (It had been an open question as to
whether there was a strictly decreasing chain (g )s<w+1 in N*.) As other
corollaries we show that if S is an infinite right cancellative and weakly
left cancellative discrete semigroup, then 8.S contains a decreasing chain
of idempotents of reverse order type A for every countable ordinal A
and that if S is an infinite cancellative semigroup then the set U(S) of
uniform ultrafilters contains such decreasing chains.

1. INTRODUCTION

A semigroup (S, -) with a topology is right topological if and only if for
each x € 9, the function p, : S — S is continuous, where for y € 5,
pz(y) =y -x. In [1, Lemma 1], R. Ellis proved that any compact Hausdorff
right topological semigroup contains an idempotent.

If (S,-) is an infinite discrete semigroup, there is a unique extension of
the operation to S making (8S,-) a right topological semigroup with S
contained in its topological center. (The topological center of a right topo-
logical semigroup is the set of points = such that A, is continuous, where
A:(y) = x - y.) The existence of idempotents in 55, especially idempotents
in certain subsemigroups of 4S5, has provided the easiest, and often the first,
proof of many results in Ramsey Theory. See [4, Part III] for a multitude of
examples of this phenomenon.
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As a compact right topological semigroup, 5.5 has a smallest two sided
ideal, K(BS5), which is the union of all of the minimal left ideals of S and
is also the union of all of the minimal right ideals of 8S. The intersection
of a minimal left ideal and a minimal right ideal of 58S is a group, and
any two such groups are isomorphic. Any left ideal contains a minimal left
ideal, which is compact, and any right ideal contains a minimal right ideal.
Idempotents in K(5S) are exactly the idempotents that are minimal with
respect to the ordering defined in the abstract.

We take the points of S to be the ultrafilters on S, identifying the
principal ultrafilters with the points of S, and thus pretend that S C 3S.
Given A C S, the closure A = {p € 3S : A € p}. We write A* = A\ S.
Given p,q € 35, A € pq if and only if {z € S : 27'A € ¢} € p, where
r'A={yeS:xy e A}. (So, for example, in the semigroup (N, ), if A
is the set of odd positive integers, then 271 A = ().) We let U(S) be the set
of uniform ultrafilters on S. Thus for p € S, p € U(S) if and only if for
every A € p, |A] = |S|. We take N to be the set of positive integers. The
first infinite ordinal w is the set of nonnegative integers. See [4, Part I] for
an elementary introduction to the topology and algebra of .5, and see the
notes at the end of the chapters for the original references.

In [3] it was shown that any nonminimal idempotent in (5N, +) is part
of an infinite decreasing chain of idempotents. That is, if ¢ is a nonminimal
idempotent, then there is a sequence of idempotents (g, )<, such that ¢o = ¢
and for each n € w, ¢,+1 < g,. We shall show in this paper that the sequence
can be extended to (g,),<x for any countable ordinal \.

A fundamental tool in our proofs is an analysis of the structure of the
smallest compact subsemigroup of SN containing a given member of SN.

Definition 1.1. Let S be a compact Hausdorff right topological semigroup
and let p € S. Then

Cp, =({T : T is a compact subsemigroup of S and p € T'} .

Section 2 will consist of preliminary results. In Section 3 we will prove
our main theorem dealing with decreasing chains of idempotents in C, and
derive from that several corollaries, including those mentioned in the ab-
stract.

Most of the results in Section 3 deal with cancellative semigroups. In
Section 4 we extend some of these results to left cancellative semigroups S
which have a right cancelable element in S*.

Besides the ordering < of idempotents in a semigroup, there are tran-

sitive and reflexive relations <; and <pg defined by e <; f if and only if
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ef =eand e <p f if and only if fe = e. We write e <;, f when e < f and
it is not the case that f <y e. Similarly we write e <p f when e <p f and
it is not the case that f <p e. Of course e < f if and only if both e < f
and e <p f. In [6] it was shown that given any ordinal A with |A| < ¢, there
exist chains (g,)s<x of idempotents in SN such that ¢, <; ¢, whenever
T <o < Aand g,41 < g, for all o with ¢ +1 < A. In Section 5 we extend
this result by showing that for each nonminimal idempotent ¢ in SN, there

is such a chain with ¢y = q.

2. PRELIMINARY RESULTS

Given a semigroup (.S, -) with identity we will denote the identity of S
by 1. Unless otherwise specified, we take the operation on N and Z to be
addition.

Some of our proofs depend on the existence of elements in the closure of
the set of idempotents in a given minimal right ideal of SN that are right
cancelable in SN. The following lemma guarantees their existence.

Lemma 2.1. Let R be a minimal right ideal of BN. There is an injective
sequence (q,)52, of idempotents in R such that, if p is an accumulation
point of (qn)°2,, then p & Z* + Z*. In particular any accumulation point of
(Gn)22, is right cancelable in SZ.

Proof. This is [5, Lemma 3.8]. O

Definition 2.2. If S is a semigroup, then E(S) is the set of idempotents
in S.

The following lemma is well known among aficionados. In its proof we
use, for the first of many times in this paper, the fact that if p is an idem-
potent in a semigroup S, then p is a right identity for Sp and a left identity

for pS. (If ¢ = ap, then qp = app = ap = q.)
Lemma 2.3. Let S and T be compact Hausdorff right topological semi-
groups, let h - S — T be a continuous surjective homomorphism.
(1) If q1 is an idempotent in T, then there exists p1 € E(S) such that
h(p1) = qu-
(2) If ¢1 and qz are idempotents in T such that go < q1 and p; € E(S)
such that h(py) = qi, then there exists po € E(S) such that h(py) =

q2 and py < pr.

Proof. (1) We have that h™'[{¢,}] is a compact subsemigroup of S which

therefore has an idempotent.
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(2) Assume that p; € F(S) such that h(p;) = ¢1. If © € h™'[{g2}], then
h(zp1) = qaq1 = q2 50 xp; € h™ {2 }]NSp;1 and consequently A=t [{g2}]NSp;
is a compact subsemigroup of S. Pick an idempotent g € h~1[{g2}]NSp; and
let p2 = p1g. Then gp1 = g S0 pap1 = P2, pap2 = P1gP19g = P199 = P19 = P2,
and p1ps = pip1g = prg = p- [

Lemma 2.4. Let S be a compact Hausdorff right topological semigroup and
let R be a minimal right ideal of S. If x € clE(R), then for all u € C, and
allv € R, uv = v.

Proof. If p € E(R), then R = pS so for all v € R, pv = v. Thus, given
v € R, p, is constantly equal to v on E(R) so xv = v. Thus

{ueS: (YveR)(uw=nuv)}

is a compact subsemigroup of S with x as a member which therefore contains
Cy. O

Of course, in any semigroup S, an element x is right cancelable if and
only if p, is injective.

Definition 2.5. Let S be an infinite semigroup with identity and let p € S*.

(a) p is weakly right cancelable if and only if there is no ¢ € S\ {1}
such that p = ¢p.

(b) p is thin if and only if there is a function M : S — p such that
xM(z) NyM(y) = 0 whenever z and y are distinct members of S.

(c) pis strongly discrete if and only if p is thin, p € U(S), and for each

x € S, the restriction of A\, to M (x) is injective.

Note that if p = gp, then 1p = 1gp, so if p is right cancelable, then it is
weakly right cancelable.

Lemma 2.6. Let S be a countable semigroup with identity and let p € S*. If
p s right cancelable in 5.S, then p is thin. If in addition S 1s left cancellative,
then p 1s strongly discrete.

Proof. By [4, Theorem 8.7] we have that for all A C S, there exists B C S
such that A = {x € S: 27'B € p}. Enumerate S as (x,,)>2 ;. For eachn € N,
pick B, C S such that {z,} = {x € S: 27'B, € p}. Let M(x,) = z;'B.
For n > 1, let M(z,) = x;'B, \ U/, 2" By. If t < n, then x,M(z;) C B
and x, M (x,) N By = 0. g

Lemma 2.7. Let S be an infinite semigroup with identity and let p € S*.
(1) If p is thin, then p is right cancelable in BS.
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(2) If p is weakly right cancelable and S is a countable group, then p is
strongly discrete.

Proof. (1) Let M : S — p be as guaranteed by the definition of thin. Let
g and 7 be distinct members of S and pick @) € ¢ and R € r such that
QNR=10.Let A=,cqrM(z) and let B = J,.pzM(x). Then A € gp,
Berp, and AN B = (.

(2) By [4, Theorem 8.18] we have that p is right cancelable in 85 so
Lemma 2.6 applies. U

Definition 2.8. Let x be an infinite cardinal.
(a) H, = @a@{ Ls.
(b) For v < &, let H,, ={z € H,: (Vo <v)(z(c)) = 0}.
(¢) He =, clom,(Hin \ {0}).

The set H C AN is defined by H = [,cycl(2"N). By [4, Theorem
6.27] H is topologically and algebraically isomorphic to H,. (When we say
that sets in right topological semigroups are “topologically and algebraically
isomorphic” we mean that there is a function taking one to the other which

is both an isomorphism and a homeomorphism.)

Lemma 2.9. Let k be an infinite cardinal and let p € H,. The following
statements are equivalent.

(1) p is right cancelable in BH,.

(2) p is weakly right cancelable.

(3) p is thin.

Proof. That (1) implies (2) is trivial and that (3) implies (1) follows from
Lemma 2.7(1).

To see that (2) implies (3), assume that p is weakly right cancelable. We
note first that H, + p is discrete. Indeed, if a € H, and

a+pect{b+p:be H\{a}} = (BH.\ {a}) +p,

then pick g € 5H, \ {a} such that a +p = ¢+ p. Then p = —a+ g+ p, and
—a+q # 0. (If ¢ € H, this is immediate, and if ¢ € H}, then —a+¢q € H}
by [4, Corollary 4.33].)

The rest of the proof may be taken verbatim from the proof that (5)
implies (6) in [8, Theorem 11.2]. O

Lemma 2.10. Let S be an infinite semigroup with identity and let p € S*
be strongly discrete. There is a compact subsemigroup T, of .S with p € T,
such that
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(1) for allz € BS\ (T, U{1}), (2T,) NT, =0 and
(2) there is a continuous homomorphism m, : T, — BN such that m,(p) =
1.

Proof. Let T[p] be the largest topology on S with respect to which p con-

verges to 1 and ), is continuous for each a € S. Let
T, ={q € S* : g converges to 1 with respect to T[p|}.

By [8, Lemma 7.1], T, is a compact subsemigroup of S*. To verify conclusion
(1) suppose we have x € 55\ (T,U{1}) and ¢ € T, such that xq € T,,. By [8,
Theorem 4.18], 7 [p] is zero-dimensional and Hausdorff. Since = ¢ T,U{1}, x
does not converge to 1 with respect to 7 [p] and thus there is a neighborhood
U of 1 such that U ¢ x. Since T[p] is zero-dimensional, we may assume U
is clopen with respect to T[p]. Let W = S\ U. Then W € z. We claim
that clgs(W)q C clzs(W) for which it suffices that Wq C clgg(W), so let
a € W. Then W is a neighborhood of a = A\,(1) and A, is continuous with
respect to T [p|, so pick a neighborhood V' of 1 such that V' C W. Then
Veqgand V Ca 'W so a 'W € ¢ and thus aq € clgs(W) as claimed. We
thus have that xq € clgs(W) so U ¢ xq and thus zq ¢ T,.

Conclusion (2) holds by [8, Theorem 7.29]. O

Notice that, since T}, is a compact subsemigroup of 85 and p € T, we
have that C),, C T,.

Definition 2.11. Let S be an infinite semigroup with identity and let p €
S* be strongly discrete. Then h,, is the restriction of 7, to C,,.

If n € N and ¢ is the sum of p with itself n times, then h,(p) = n.
Therefore N C h,[C,] and consequently h,[C,] = BN. Observe also that
the function h, is completely determined by the fact that h,(p) = 1. To
see this, let ¢ : C, — SN be a continuous homomorphism with g(p) = 1.
Then {x € C, : g(z) = h,(z)} is a compact subsemigroup of C, with p as a
member and is therefore equal to C,,.

Lemma 2.12. Let S be an infinite semigroup with identity and let p € S*
be strongly discrete. If v € C, and hy(x) is right cancelable in N, then x
1s weakly right cancelable.

Proof. Suppose not and pick u € S\ {1} such that x = uz. Then z €
(uT,) N1, so by Lemma 2.10(1), u € T, U {1} and since u # 1, u € T),.
Thus hy(z) = mp(u) + my(z) = m,(u) + hy(x). By [4, Corollary 8.2] (since
1+hy(z) = 1+m,(u) +hy(z) )we have my(u) € N*. But then, by [4, Theorem
8.18], h,(x) is not right cancelable in SN. d
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Lemma 2.13. Let S be an infinite semigroup with identity, let p € S*
be strongly discrete, and let g be an idempotent in C, such that h,(q) ¢
K(BN). There exists s € Cyq which is weakly right cancelable such that
h,[Cs] N K(BN) = 0.

Proof. By [4, Theorem 6.56], choose y € BN such that y + h,(q) is right
cancelable in SZ. Pick z € C, such that h,(z) = y and let s = xq. Then
hy(s) = y + hy(q) so by Lemma 2.12, s is weakly right cancelable. By
[4, Theorem 8.57], Cy, sy N K(BZ) = 0. By [4, Exercise 4.3.8], K(BZ) =
K(AN) U =K (BN), so Ch,(s) N K(BN) = 0. Since h,*[Ch,(5)] is a compact

subsemigroup containing s, we have h,[Cs] C Cj ). O

Lemma 2.14. Let S be an infinite semigroup with identity, let p € S* be
strongly discrete, and let R be a minimal right ideal of C,. There exists
s € clE(R) which is weakly right cancelable.

Proof. By [4, Exercise 1.7.3] h,[R] is a minimal right ideal of SN so by
Lemma 2.1, there is an injective sequence (g, )52, of idempotents in h,[R]
all of whose limit points are right cancelable in $Z. We claim that for each
n € N there is an idempotent u,, € R such that h,(u,) = g,. To see this,
let n € N. Then SN + g, is a minimal left ideal of SN so h,'[BN + ¢,] is a
left ideal of C}, which contains a minimal left ideal L. Let u,, be the identity
of RN L. Then hy(uy,) is an idempotent in h,[R] N (BN + ¢,,), whose only
idempotent is ¢,. Let s be a limit point of (u,)22 ;. Then hy(s) is a limit
point of (g,)22; so is right cancelable in Z. Thus by Lemma 2.12, s is
weakly right cancelable in 3S. U

Lemma 2.15. Let S be an infinite semigroup with identity, let q be an
idempotent in S*, let s € [Sq be strongly discrete, let X be an ordinal,
and let (uy)s<n be a strictly decreasing sequence of idempotents in Cs. For
each o < A, let v, = quy,. Then (Vy)o<n is a strictly decreasing sequence of

tdempotents with vy < q.

Proof. Note that C's; C 5S¢ so for each 0 < A\, u, = uy,q. Given o < A,
we have v,v, = qU,qQU; = QUsU; = qu, = U,. Now let 0 < 7 < A. Then
VgV = QUo Uiy = QUglly = QU = Uy and V05 = qUrQUs = qUrlly = QUi = U;
so v; < v,. We claim that v, # wv,, so suppose instead v, = v,. Now
CssU{s} is a compact semigroup with s as a member, so Cs C CisU{s} C
Cs so Cy = Css U {s}. Since u, and u, are idempotents, neither is equal
to s so pick z, and x, in C such that u, = z,s and u, = z,s. Since
s € BSq, pick r € BS such that s = rq. Now qx,rq = qr,s = qu, = v, =
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Vg = (TeTq SO Torqr, 1q = Torqryrq. That is usu, = Usly, SO Ur = Uy, a

contradiction. O

3. LONG STRICTLY DECREASING CHAINS

Definition 3.1. Let S be an infinite semigroup with identity and let p € S™*.
Then p is hereditarily strongly discrete if and only if p is strongly discrete
and every s € (), which is weakly right cancelable is also strongly discrete.

Notice that by Lemma 2.7(2), if S is a countable group and p € S* is
strongly discrete, then p is hereditarily strongly discrete.

Lemma 3.2. Let k be an infinite cardinal and let p € H, be strongly dis-
crete. Then C, C U(Hy) and p is hereditarily strongly discrete.

Proof. Trivially H,, is a compact subsemigroup of SH, and by [4, Lemma
6.34.3] U(H,) is a compact subsemigroup (in fact an ideal) of SH,. Since
p € U(H,) by the definition of strongly discrete, we have that H, N U(H,)
is a compact semigroup with p as a member so C, C H,, N U(H,).

To see that p is hereditarily strongly discrete, let s € C, be weakly right
cancelable. By Lemma 2.9, s is thin. But also C,, C H,NU(Hy) so s € U(Hy)
and (since H, is cancellative) s is strongly discrete. O

Definition 3.3. Let S be an infinite semigroup with identity and let A\ be
an ordinal. P()\) is the following statement. Given any hereditarily strongly
discrete p € S* and any idempotent q € C, \ hy'[K(BN)], there is a strictly
decreasing chain of idempotents (qy) o<y in C’p\h;l[K(BN)] such that ¢ = q.

Lemma 3.4. Let S be an infinite semigroup with identity and let X > 0 be
an ordinal. Then P(\) = P(A+1).

Proof. Assume P(\). Let p € S* be hereditarily strongly discrete and let ¢
be an idempotent in C’p\hzjl[K(ﬂN)]. By Lemma 2.13 pick s € C,q which is
weakly right cancelable in 55 such that h,[Cs] N K (BN) = (. Since s € C,,
s is strongly discrete. Let R be a minimal right ideal of Cs. By Lemma 2.14
pick t € ¢/ E(R) which is weakly right cancelable. Note that C; C Cs C 554.
By Lemma 2.4 we have that for all u € C} and all v € R, uv = v. Pick any
idempotent w in C; \ h;'[K(BN)] and choose a strictly decreasing chain
(Ug)g<x of idempotents in C; \ h; ' [K(BN)] with ug = w. (We will not use
the fact that ug = w.)

If o <7 <\ then u, = u,u, € Csu, s0 (Csuy)s<y is a nested sequence
of closed left ideals of Cs so we may pick a minimal left ideal L of C with
L C ﬂa<)\ Csu,. Let uy be the identity of RN L. Let ¢ < A. We have
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uy € Ciu, SO Uy = uUpuy,. Also u, € C; and uy, € R, so uy = u,u, and
so uy < u,. We need to show that u, # uy. (Of course, if A is a limit
ordinal, this is immediate. But our proof does not depend on A\ being a
successor.) We shall show that u, ¢ R. So suppose instead that u, € R.
Then u, € C;NRso () # Ci,NRC C,NK(Cs) and thus by [4, Theorem
1.65], K(Cy) = Cy N K(Cs) so u, € K(Cy). But then hi(u,) € K(SN), a
contradiction. We have thus established that (u,),<, is a strictly decreasing
chain of idempotents in C;. Recall that s € C,q so pick r € C, such that
s=rq.

Now for each o < A, let v, = qu,. By Lemma 2.15 we have that (v,),<x
is a strictly decreasing chain of idempotents in C,.

Suppose there is some o < A such that h,(v,) € K(ON). Then su, € Cj
and su, = rqu, = 1V, S0 hy(rv,) = hy(r) + hy(v,) € K(BN) contradicting
the fact that h,[C5] N K(AN) = 0.

Note that vy < ¢. If v9 = ¢, then we are done, so assume vy < ¢ and
replace vy by gq. Il

The following is the main result of this paper. Recall that h,, is surjective
and therefore there are idempotents in C;, \ h,*[K (SN)].

Theorem 3.5. Let S be an infinite semigroup with identity and let A > 0
be a countable ordinal. Given any hereditarily strongly discrete p € S* and
any idempotent q € C, \ hy ' [K(BN)], there is a strictly decreasing chain of
idempotents (qy)o<x i Cp \ hy ' [K(BN)] such that go = q.

Proof. We prove by induction that P(A) holds. If A = 1, let go = ¢. So
assume that A > 1 and P(«a) holds for all a with 0 < a < A. If A is
a successor, then P(A) holds by Lemma 3.4, so assume that A is a limit
ordinal. Pick a strictly increasing sequence ()<, of ordinals with ag > 0
such that A = sup{«a, : n < w}. Let p € S* be hereditarily strongly discrete
and let ¢ be an idempotent in C,, \ h,'[K(SN)]. By P(ag+ 1) pick a strictly
decreasing chain (¢,)s<qa, in Cp \ b, ' [K(BN)] such that ¢y = ¢.

Now let n < w and assume we have chosen (¢, )s<a,. Let 0 be the ordinal
such that a,, 411 = a,, +6. By P(6+1), pick a strictly decreasing chain (r,),<s
in C, \ h,'[K(BN)] such that 7o = qq,. For 0 <7 <6, let go,4r = 7. O

Corollary 3.6. Let G be a countably infinite group and let A > 0 be a
countable ordinal. Given any p € G* which is right cancelable in G and
any idempotent q € Cp \ h' [K(BN)], there is a strictly decreasing chain of
idempotents (qs)o<x i Cp \ hy ' [K(BN)] such that go = q.
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Proof. Let p € G* which is right cancelable in SG. As we have already
remarked, p is hereditarily strongly discrete. So Theorem 3.5 applies. [

Corollary 3.7. Let k be an infinite cardinal and let X > 0 be a countable
ordinal. Given any strongly discrete p € H,,, and any idempotent ¢ € C, \
h, ' [K(BN)], there is a strictly decreasing chain of idempotents (qz)g<r in
Cp\ h;l[K(ﬁN)] such that qo = q. This chain of idempotents is contained
in U(H,)NH,.

Proof. Let p € H,, be strongly discrete. By Lemma 3.2, p is hereditarily
strongly discrete. So Theorem 3.5 applies. Since C, C U(H,) NH,, the final
conclusion holds. O

Of course minimal idempotents by definition do not have any idempo-
tents below them. We see now that for any subsemigroup of a countably
infinite group, any nonminimal idempotent has long chains of idempotents

below it.

Corollary 3.8. Let G be a countably infinite group, let A > 0 be a count-
able ordinal, and let S be an infinite subsemigroup of G. For every nonmin-
imal idempotent q € S*, there is a strictly decreasing chain of idempotents
(Ug)g<r i S* such that vy = q.

Proof. By [4, Theorem 6.56] pick r € S* such that s = rq is right cancelable
in fG. By Lemma 2.7(2), s is strongly discrete. Since SN has nonminimal
idempotents and hs[C,] = OGN, by Lemma 2.3 there is an idempotent ¢t €
C,\h;[K(BN)]. By Corollary 3.6 pick a strictly decreasing sequence {(ty)y<q
of idempotents in Cy. For each o < A, let v, = qu,. By Lemma 2.15, (v,)5<q
is a strictly decreasing sequence of idempotents with vy < q. If vy # g,
replace vy by gq. Il

Lemma 3.9. There is a strongly discrete p € H.

Proof. For each a < k let a, be the characteristic function of {a} and for
each v < k, let

A, ={ay:7v<a<k}.
By [4, Corollary 3.14] pick p € U(H,;) such that {A, : v < } C p. Since
for each v, A, C H, -, we have p € H,,. For x € H,, \ {0}, let

¢(z) = max{o : z(o) # 0}
and let ¢(0) = —1. Define M : H, — p by M(x) = Agz)+1. Now let z # y
in H.. We claim that (m + M(x)) N (y + M(y)) = (). Suppose one has
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z2=x+a, =Yy + as where a, € M(z) and as € M(y). Then o = ¢(2) = ¢
so x =y, a contradiction. Il

Corollary 3.10. Let S be an infinite cancellative semigroup with identity
and let X be a countable ordinal. There is a strictly decreasing chain of
idempotents (vVy)o<r in U(S).

Proof. Let k = |S|. By [6, Theorem 2.7] S* contains a copy of H,. The proof
of that theorem produces a subset T" of S and a bijective function ¢ : T — H,
with continuous extension 6 : clgsT — BH,. The restriction of 0 to 5*1[H,§]
is a homeomorphism and an isomorphism. And 0[U(T)] = U(H,.).

By Lemma 3.9, pick a strongly discrete member p of Hy. Since SN has
nonminimal idempotents and h,[C,] = SN, by Lemma 2.3 there is an idem-
potent ¢ € Cp \ hy, /K (BN)] so by Corollary 3.7 the copy of H, contains
a strictly decreasing chain of idempotents (v,),<x which is contained in
U(s). O

The following, which answers[6, Question 3.19], is not an immediate
corollary of Corollary 3.6 because there are points p € N* that are right
cancelable in SN but not right cancelable in SZ. (See [4, Example 8.29].)

Corollary 3.11. Giwven any p € N* which s right cancelable in SN and
any countable ordinal A, there is a strictly decreasing chain of idempotents

<QJ>U<)\ in Cp'

Proof. By Theorem 4.10 below (or [4, Exercise 8.5.1(6)]) there is an element
q € cl{2" : n € N} such that C, is isomorphic to C,. By [4, Theorem 8.28],
q is right cancelable in SZ. By Lemma 2.6 ¢ is strongly discrete and so by

Theorem 3.5, there is a strictly decreasing chain of idempotents (¢y),<) in

c,. O

Note that the number of decreasing chains headed by a given nonminimal
q is vast. By [4, Theorem 6.56], there are 2¢ choices of r € SN for which
r + q is right cancelable in 57 and, for any two different choices r; and ry
among these, the left ideals SN + r; + ¢ and SN + ry 4 ¢ are disjoint. So,
in defining decreasing chains (g, )n<, With gy = ¢, one has 2¢ choices for ¢;.
For each of these, there are 2¢ choices for ¢o, and so on. The chains defined
by these choices never intersect, except at q.

We conclude this section by establishing that one can get long chains of
idempotents while weakening the cancellation hypotheses on S. Given a set
X, we write Py(X) for the set of finite nonempty subsets of X.
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Definition 3.12. Let (S, ) be a semigroup and let (x,)>; be a sequence
in S.
(a) Let m € N. Then
FP((zy)72,,) = {ILier 7+ : F € Pr(N) and min F' > m},

where the products are taken in increasing order of indices.
(b) The sequence (x,,)2 | has distinct finite products if and only if when-
ever F' and H are distinct members of Pr(N), [[,cp 2 # [,cn 71-

Lemma 3.13. Let S be a semigroup and let (x,)°, be a sequence in S
with distinct finite products. Then (,o_; FP((x,)3,,) is topologically and

n=m

algebraically isomorphic to H.

Proof. [4, Theorem 6.27]. O

Recall that semigroup S'is weakly left cancellative provided that for each
a,be S, {c €S :ac=b} is finite.

Lemma 3.14. Let S be an infinite right cancellative and weakly left can-
cellative semigroup. There is a sequence (x,)2>, in S which has distinct

finite products.
Proof. This is a consequence of [4, Lemma 6.31]. O

Corollary 3.15. Let S be an infinite right cancellative and weakly left can-
cellative semigroup and let A > 0 be a countable ordinal. Then S contains

a decreasing chain (qy)s<x of idempotents.

Proof. By [4, Lemma 6.8] all of the idempotents in SN are in H. By Lemmas
3.13 and 3.14, S contains a copy of H. By Corollary 3.8, H contains a

decreasing chain (g,),< of idempotents. O

4. COUNTABLE LEFT CANCELLATIVE SEMIGROUPS

In this section we show that some of our earlier results can be extended to
countable semigroups S for which only left cancellation is assumed, provided
there is a right cancelable element of S*. Theorems 4.10 and 4.12 extend [4,
Theorem 8.62] and [4, Theorem 8.57] respectively, wherein the hypothesis
on S was that it is a countable group. We observe that any right cancelable
element of S* is a strongly discrete ultrafilter by Lemma 2.6, so that the
results of [8, §4.3] apply to it. However, the results of this section have
self-contained proofs.

There are left cancellative semigroups S for which there are no right

cancelable elements in S*. For example, if S is a right zero semigroup, 55
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is also a right zero semigroup and it contains no right cancelable elements if
|S| > 1. So we begin by pointing out that it is quite easy to find examples
of countable left cancellative semigroups S for which S* does contain right
cancelable elements. One example of a left cancellative semigroup which is
not right cancellative but in which S* has right cancelable elements is the
ordinal w-w under ordinal addition. But that is not an especially interesting
example, since the only right cancelable elements of S* are in w*. (If {0 <
ww:w<o}ep, thenl+p=2+p.)

Theorem 4.1. There exist a countable left cancellative semigroup S with
identity which is not right cancellative and an infinite subset A of S such
that every p € A* is right cancelable in 5S.

Proof. Let S be the set of all strictly increasing f : N — N with the property
that there exist m € N and k € w such that for all t > m, f(t) = k +
t. Let the operation on S be composition. It is routine to verify that S
is closed under composition. Further, since its members are injective, S
is left cancellative. It is not right cancellative (though it is weakly right
cancellative). For example, let f(¢) = ¢+ 1 for all ¢, let g(1) =1, h(1) = 2,
and g(t) = h(t) =t+ 1forallt > 1. Then go f =ho f.

For each f € S, let k(f) be the number such that f(t) = k(f) +t for
all sufficiently large t and let m(f) = min{t : f(t) = k(f) + t}. For n € N,

define h,, € S by
t ift<n
fint) = { 1+t ift>n.
Let A = {h, :n € N} and let p € A*. To see that p is right cancelable in
B35S, let ¢ and r be distinct members of 45 and suppose that gop = rop. (As
usual, we denote the operation in 4S by the same symbol used to denote
the operation on S.) Pick disjoint subsets B and C of S such that B € ¢
and C' € r. By [4, Theorem 4.15], {f o h, : f € Bandn > m(f)} €
gopand {goh, : g € Candn > m(g)} € qop so the intersection
is nonempty. Pick f € B, g € C, n > m(f), and [ > m(g) such that
fohy, =goh. Now if t > max{n,}, then f(h,(t)) = f(t+1) = k(f)+t+1
and g(hy(t)) = g(t +1) = k(g) + ¢t + 1, so k(f) = k(g). We claim next that
n = [, so suppose instead without loss of generality that n < [. Then
f(ha(n)) = f(n+1) = k(f) +n+ 1 while g(ly(n)) = g(n) < k(g) +n, a
contradiction.
Now, if t < n, then f(t) = f(hn(t)) = g(ha(t)) = g(t). And, if ¢t > n,
then f(t) = f(hn(t —1)) = g(ho(t — 1)) = g(t). Finally, f(n) = k(f) +n =
k(g) +n =g(n), so f = g, a contradiction. d
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For the rest of this section we will fix a countable left cancellative semi-
group S with identity 1 and p € S* which is right cancelable in 35. We begin
a construction in S based on a similar construction for countable groups in
[4, Section 8.5]. We assume that we have enumerated S as (s,)5>, with
s1 =1.For s,t € S we write s < tif and only if s = s;, ¢ = 55, and 7 < j. Of
course, s < t means s < t or s = t. When we write FP({t € S:t < b}) we
mean all products of the form ¢yt - - - ¢, such that t; < t2 < ... <t,, < b}.

Definition 4.2. M is a strongly discrete function for p if and only if
M :S — p 1 ¢ M(z) for any z, and if z and y are distinct members
of S, then zM (z) NyM(y) = 0.

Note that by Lemma 2.6, p is strongly discrete, so there exists a strongly
discrete function for p. We do not fix a particular strongly discrete function

for p because we will use two such functions in the proof of Theorem 4.12.

Definition 4.3. Let M be a strongly discrete function for p, let £k € N, and
let (by,ba,...,bx) € M(1)*. Then x € S is the M-product of (b1, ba, ..., b)
if and only if
(i) © = bybg -+ by;
(ii) if 1 <i<j <k, then b; < b;; and
(iii) if i € {2,3,...,k} and s € FP{t € S : t < b;_1}, then b; € M(s)
and sb; # 1.

We say that x is an M-product provided there is some (by,bs, ..., bx)
such that x is the M-product of (by,bs,...,bx). We note that we require
an M-product to satisfy more stringent conditions than in [8, §4.3] wherein
the only requirement on (by,bs, ..., b;) was that for t € {2,3,... k}, b, €
M (biby - -+ bi—1). We need the stronger requirements for our proofs.

Definition 4.4. Let M be a strongly discrete function for p. Ty, = {x :
is an M-product}.

Lemma 4.5. Let M be a strongly discrete function for p. Assume that
s € S\ {1}, x is the M-product of (by, b, ..., by), y is the M-product of
(c1,¢C9y ... Cn), sby # 1, s < by, by € M(s), and sx = y. Then n > m and,

if k=n—m, then s =cica--- ¢, and fori € {1,2,...,m}, b; = Cpyy.

Proof. Suppose the conclusion fails and pick a counterexample with n + m
as small as possible. If m = n = 1, then sby = ¢; so sM(s) N 1M (1) # ()
and thus s = 1, a contradiction.

Suppose next that m = 2 and n = 1. Let u = sb;. Then

ue FP{teS:t=<bh}
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0 by € M (u) and thus uM (u) N1M (1) # () and so sb; = 1, a contradiction.
Now assume that m > 2 and n = 1. Let w = sb; - - - b,,,—;. Then

uM (u) N 1M (1) # 0

sou=1.Butsby---byo€ FP{t€S:t=<by_2}s0(sby- by_2)bn_1 # 1.
We thus have that n > 1. If m =1, let v = c¢y¢o -+ - ¢,,—1. Then

sM(s)NoM(v) # 0

so s = v and by left cancellation, b; = ¢,,. Thus with & = n—1 the conclusion
of the lemma holds.

Finally assume that m > 1 and n > 1. Let v = sby---b,,_1 and v =
c162 -+ Cp—1. Then uM (u)NoM(v) #Dsou =v.Let k= (n—1)—(m—1) =
n — m. By the minimality of n + m, we have that s = cjco--- ¢, and for

ie€{1,2,...,m— 1}, b; = cx4;. By left cancellation, b,, = ¢;, = Cxm. O

Lemma 4.6. Let M be a strongly discrete function for p. Then M -products

are unique.

Proof. Assume that = is the M-product of (d,ds,...,d,) and z is the
M-product of (ci,ca,...,¢,). We need to show that m = n and for i €
{1,2,...,n}, di = ¢;, We may assume without loss of generality that m <
n. Suppose first that m = 1 and n > 1 and let v = c¢i¢y---¢,_1. Then
dy € IM(1)NvM(v) sov =1.If n =2, then v = ¢; # 1 because ¢; € M(1).
If n > 2, then v # 1 because (cica -+ ¢y2)cn_1 # 1.

Thus we have that m > 1. Let s = d; and for ¢ € {1,2,...,m — 1}, let
b; = di4;. Then by Lemma 4.5, if k =n — (m — 1), we have d; = ci¢+ - - ¢
and for i € {1,2,...,m—1}, b; = cx4;. If k = 1, this is the conclusion we are
after, so suppose k > 1. Let v = ¢jco - - - ¢x—1. Then dy € 1M (1) NvM (v) so
v = 1. But this yields a contradiction just as in the previous paragraph. [J

Definition 4.7. Let M be a strongly discrete function for p. Define hy, :
Tv — Nand ¢y : Thy — N as follows.
(a) If x is the M-product of (b1, b, ..., by,) then hy(x) =m.
(b) If z is the M-product of (by,bs,...,b,) and for j € {1,2,...,m},
b = si(j), then ¥y (x) = 370 2'0).

By Lemma 4.6, hy; and ¥, are well defined. We denote by ffu\v/[ and SOA]\}
the continuous extensions of these functions taking Th; to SN.

Definition 4.8. Let M be a strongly discrete function for p and let n € N.
(a) Tayry = {z @ x is the M-product of (by,bo,...,b,) and for all
s € FP({s;)"), s < by, sby #1, and b; € M(s)}.
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I
(b) Trroo = Mozt Thsn-

Lemma 4.9. Let M be a strongly discrete function for p. Then Ty 15 a
compact subsemigroup of S*, p € Ty o, the restriction of har to Threo s
a homomorphism with hy(p) = 1, and the restriction of ©ar to Thrroo 15 @

homomorphism.

Proof. Since M(1) C Ty, and hy, is constantly equal to 1 on M(1), we
have that ﬁ;\;(p) = 1. To see that p € Ty (and thus that Ty # 0), let
n € N. Then ({M(s) : s € FP((s;);)} € p and for each s € FP((s;)I,),
{t € S:t =< s} is finite and {b € S : sb = 1} has at most one member. The
remainder is a member of p which is contained in Thy,.

To see that Th « is a subsemigroup of S*, the restriction of }/L;/M to Tv,0o
is a homomorphism, and the restriction of @, to T 18 @ homomorphism,
it suffices by [4, Theorems 4.20 and 4.21] to let n € N, let = € Ty, and
show that there is some m € N such that for all y € Ty, 2y € Ty,
ha(xy) = hoy(z) + ha(y), and @ (zy) = () + Car(y).

Let n € N, let € Ths,,, and pick (b, bs, ..., b,) € M(1)* such that z is
the M-product of (by,by,...,b), for all s € FP({s;)¥ ), s < by, sby # 1,
and by € M(s). Pick m € N such that by = s,,. Let y € Ty, and pick
{c1,¢2,...,¢) € M(1)! such that y is the M-product of {ci,cs,...,q), for
all s € FP((s;)!_}), s < ¢1, sc; # 1, and ¢; € M(s). Then zy is the M-
product of (by, ba, ..., bg, c1,Cay ...y cr), 2y € Tapm, har(zy) = hoar(2)+har(y),
and Py (zy) = Pu(x) + Pu(y). O

For the statement of the following theorem, we remind the reader of our
standing hypothesis about S and p.

Theorem 4.10. Let S be a countable left cancellative semigroup with iden-
tity and let p € S* be right cancelable in 5S. There is some q € {2" : n € N}*
such that Cy C BN s topologically isomorphic to C,.

Proof. Since p is strongly discrete, pick a strongly discrete function M for p.
By Lemma 4.6, ¥, is injective on T); so 951\7 is injective on Ty . By Lemma
4.9, Cp € Ty oo and Qs a homomorphism on C,,. Let ¢ = 95\]\//[(])) O

Lemma 4.11. Let M be a strongly discrete function for p. If x € S\
(Throo U{1}), then xTh oo N Thsoo = 0.

Proof. Let x € 8S\ {1} and assume that 2T oo N T 0o 7 0. We shall show
that * € T eo. Pick y € Ty such that xy € Ty . Let n € N. We shall
show that T, € .
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Now {s € S\ {1} : s T, € y} € x so it suffices that
{seS\{1}:s ' Twn €y} C Tarm-

So let s € S\ {1} such that s 'T);,, € y. Pick r € N such that s = s,.
Then Ty, € y so pick z € s Ty, N Ty, Pick I € N and (cy,¢9,...,¢) €
M (1) such that sby - - - by, is the M-product of {(c;, co, ..., ) and for all t €
FP((s;)i_y), t <c1,tc; # 1, and ¢; € M(t). By Lemma 4.5, s = cjco -+ - ¢,
for some k € N so that s € Ty, as required. O

Again, we remind the reader of our standing hypotheses.

Theorem 4.12. Let S be a countable left cancellative semigroup with iden-
tity and let p € S* be right cancelable in 3S. Then C, N K(BS) = 0.

Proof. Suppose instead that we have some ¢ € C, N K(S5). Pick a strongly
discrete function NV : S — p. Now S* N ﬂsesm is a nonempty G5 so by
[4, Theorem 3.36] pick 7 # p in S* N (), N(s) and pick B € r \ p. For
s€ S, let M(s) = N(s)\ B. Then M is a strongly discrete function for p.

Let R be the minimal right ideal of 55 with ¢ € R and pick a minimal
left ideal L of 55 such that L C SSr. Let u be the identity of L N R. By [4,
Corollary 4.33], L C S* so u € S*. Then ug = ¢ and ¢ € T~ by Lemma
4.9. Thus, by Lemma 4.11, u € T . In particular T € u.

Now also w € ST and since r is strongly discrete (via the function N)
and u is an idempotent, r # wu so there is some s € S\ {1} such that
Ty € sr. Pick t € s7'Tyy N BN N(s). Then st € Ty so pick k € N and
(by, by, ... by € M(1)* such that st is the M-product of (by, b, ..., by). If
k =1, then st € sN(s) N1N(1), so s = 1, a contradiction. Thus k& > 1. Let
v = byby -+ bx_1. Then st € sN(s)NvN(v) so s = v and by left cancellation,
t = by. But then t € B and b, € M (1) = N(1) \ B, a contradiction. 0

5. LONG < -CHAINS

Recall that for idempotents e and f in a semigroup, e < f if and only if
ef = e and it is not the case that fe = f. Equivalently, e <, f if and only
if Se is a proper subset of Sf. Using a result from [6] we show here that
one can get chains as long as possible below any nonminimal idempotent in
BN, provided that one weakens the strictly decreasing requirement at limit
ordinals to the requirement that if ¢ < 7, then p, <; p,. We will use the
following extension of Lemma 2.3.

Lemma 5.1. Let S and T be compact Hausdorff right topological semi-

groups, let h : S — T" be a continuous surjective homomorphism, and let A
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be an ordinal. Assume that (u,)s<y is a chain of idempotents in T such that
U, <p Uy whenever o < 7 < A and uyy1 < u, whenever o +1 < \. Then
there is a chain (p,)s<x of idempotents in S such that p, < p, whenever

0 < T <A\, Por1 < Do whenever o +1 < A, and h(p,) = u, for every o < A.

Proof. Pick by Lemma 2.3 an idempotent py € S such that h(py) = wuo.
Assume that 0 <y < A and we have chosen (p, )<~ as required.

Case 1. v = 6 4 1 for some d. Pick by Lemma 2.3 an idempotent p, € S
such that h(p,) = u, and p, < ps.

Case 2. 7 is a limit ordinal. We claim that for each o < 7,

(S +po) N A [{uy }] #0.

To see this, pick ¢ € h™*[{u,}]. Then z +p, € S+ p, and h(x +p,) = u, +
u, = u,. Consequently, we have that A~ [{u,}|N,_,(S+p,) is a compact
right topological semigroup so pick p, € A= [{u,}] N, (S + po). O

Theorem 5.2. Let A > 0 be an ordinal.

(1) If there is a chain (py)s<x of idempotents in SN such that p, <p ps
whenever o < T < A, then |\ <.

(2) If |A| < ¢, then there is a chain (py)e<r of idempotents in BN such
that p, <p, p, whenever o < 17 < X and pyr1 < py, whenever o +1 <
A.

Proof. 6, Corollary 3.18]. O

Theorem 5.3. Let g be a nonminimal idempotent in BN and let A > 0 be
an ordinal such that |\| < c¢. Then there is a chain (q,),<x of idempotents
in BN such that qo = q, ¢ <p ¢, whenever o < 7 < A, and ¢o11 < ¢,
whenever o +1 < .

Proof. Pick by Theorem 5.2 a chain (u,),<) of idempotents in SN such that
u; <1, Uy, whenever o < 7 < A and u,,; < u, whenever 0 +1 < \. By [4,
Theorem 6.56] pick r € SN such that r + ¢ is right cancelable in SN and let
p = r+¢. By Lemma 5.1 pick a chain (v,),<» of idempotents in C), such
that v, <p v, whenever 0 < 7 < A, v,41 < v, whenever 0 + 1 < A, and
hy(vy) = u, for every o < A. For o0 < A, let ¢, = ¢ + v,. Exactly as in the
proof of Lemma 3.4 we see that ¢, <, g, whenever 0 < 7 < A and ¢,4+1 < ¢»

whenever o0 + 1 < A. If ¢y = ¢, then we are done. Otherwise replace ¢y by
q. O

Clearly, Theorem 5.2 implies that SN contains many infinite decreasing

chains of principal left ideals. Whether SN contains any infinite increasing
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chain of semiprincipal left ideals, has been a tantalising open problem for
several decades. (See the notes to Chapter 6 of [4] for a discussion of the
history of this problem.) It was shown in [2, Corollary 1.8] that SZ contains
strictly increasing chains of principal right ideals. (In [2] these were called
left ideals because SZ was taken to be left topological rather than right
topological.) We show here that one can get such increasing chains generated
by idempotents. Recall that the statement that p <z ¢ means that p <g ¢
and it is not true that ¢ <g p or equivalently that p + SN C ¢ + SN.

Theorem 5.4. There is an infinite sequence (p,)n<, of idempotents in SN
such that p, <gr pns1 for everyn € w.

Proof. We choose an infinite sequence (F,, ), of infinite subsets of w such
that for each n, E,,; C E, and E, \ E,.; is infinite. Given x € N, let
supp(z) be the finite subset of w such that z = 7, . 2" For each

n € w we let
H, =iy clsn{z € N :supp(z) C E,, and minsupp(z) > k}.

For each n € N define 1, : w = w by (%) = >, roupp(o) 2! where
> e 28 = 0. Using [4, Theorem 4.20] we see that each H, is a compact
subsemigroup of H and it is routine to verify that H,, \ H,.1 is an ideal of
H,. Using [4, Theorem 4.21] we see that for each n € N, the restriction of
i, to H is a homomorphism. Note also that for all x € w and all m < n,
fim (110 (2)) = () = pin (pn () SO [ © [y = Fly = [ © flom.

Next we claim that if p is a minimal idempotent in Hy and m € N,
then ji,,(p) is a minimal idempotent in H,,. To see this, let A = {z € N :
supp(z) N E,, # 0} and let B = AN Hy. Then B is an ideal of H, and
tm|B] = Hp,. Since B is an ideal of Hy, K(Hy) C B and therefore by [4,
Theorem 1.65], K (B) = K(Hy). Then by [4, Exercise 1.7.3], pum[K(Hy)] =
K(H,,) and so p,(p) € K(H,,) as required.

Now pick a minimal idempotent q of Hy. Let rg = ¢ and inductively for
n €N, let 7, = fin(q) + rn1. Then r,, = 11,(q) + ftn_1(q) + ... + i1(q) + q
so if 1 <m < n, then

Fin(rn) = o (H(0)) + fim (Bn1(@)) + -+ + 1 (1(9)) + fn (@)
= Jin(q) + Hn=1(q) + - + fm(q)
since fi, (£:(q)) = fm(q) if t < m and f,(g) is an idempotent.
Consequently if m < n we have f,(r,) + rm_1 = rn. Now if m < t <

n, then [;(q) € Hy C Hp, 80 pim(rn) € Hy 4+ pom(q) which is a (com-

pact) minimal left ideal of H,,. Let = be a cluster point of the sequence
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(rn)eey. Then for each m € N, u,(z) € Hp + um(q) € K(H,,) and
fom(2) 4+ rm—1 = x. We then have that € (*_, (itm(x) + Hyp) so, being
nonempty, () _; (ftm () + Hp) is a right ideal of Hy so by [4, Theorem 2.7]
we may pick an idempotent py € (~_, (ftm (2) + Hy) which is minimal in Hy.
Then for each m € N, py <g pt;n(x) and 80 i, (po) <gr pm(x). We have seen
that jin (o) € K (Hyn) and jin(2) € K (Hy) 50 jim(p0) + Hon = fim () + Hon
and therefore ,,(x) <gr fm(po) and thus py <gr ftm(po). Thus if & < m,
1ik(p0) <r 1k (ftm(Po)) = i (po). For each n € N, let p, = fin(py). We then
have that for each n € w, p, <gr ppi1.- To complete the proof we need to
show that it is not the case that p,+1 <gr p,. We have noted that H,, \ H,1
is an ideal of H,, so K(H,) N H,.1 = 0. If we had p,11 = pn + Pni1, we
would have p,.1 € K(H,). O

We conclude by listing some open questions. In [9, Corollary 5] it was
shown that if G is a countable discrete group, then Martin’s Axiom implies
that there is an idempotent in p € G* which is minimal and <j-maximal.
(That is, there does not exist ¢ such that p <y, ¢.) In particular, p is minimal
and maximal with respect to <.

Questions 5.5. (1) Is there a strictly decreasing chain (g, )<, of idem-
potents in SN?
(2) Can one show in ZFC that there is a minimal idempotent ¢ in SN
which is also maximal?
(3) Can it be shown in ZFC that maximal idempotents in SN exist?
(4) Are all semigroups of the form C,, where ¢ € {2" : n € N}*, isomor-
phic?
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