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LONGER CHAINS OF IDEMPOTENTS IN βG

NEIL HINDMAN, DONA STRAUSS, AND YEVHEN ZELENYUK

Abstract. Given idempotents e and f in a semigroup, e ≤ f if and
only if e = fe = ef . We show that if G is a countable discrete group, p is
a right cancelable element of G∗ = βG\G, and λ is a countable ordinal,
then there is a strictly decreasing chain 〈qσ〉σ<λ of idempotents in Cp,
the smallest compact subsemigroup of G∗ with p as a member. We also
show that if S is any infinite subsemigroup of a countable group, then any
nonminimal idempotent in S∗ is the largest element of such a strictly
decreasing chain of idempotents. (It had been an open question as to
whether there was a strictly decreasing chain 〈qσ〉σ<ω+1 in N∗.) As other
corollaries we show that if S is an infinite right cancellative and weakly
left cancellative discrete semigroup, then βS contains a decreasing chain
of idempotents of reverse order type λ for every countable ordinal λ
and that if S is an infinite cancellative semigroup then the set U(S) of
uniform ultrafilters contains such decreasing chains.

1. Introduction

A semigroup (S, ·) with a topology is right topological if and only if for

each x ∈ S, the function ρx : S → S is continuous, where for y ∈ S,

ρx(y) = y · x. In [1, Lemma 1], R. Ellis proved that any compact Hausdorff

right topological semigroup contains an idempotent.

If (S, ·) is an infinite discrete semigroup, there is a unique extension of

the operation to βS making (βS, ·) a right topological semigroup with S

contained in its topological center. (The topological center of a right topo-

logical semigroup is the set of points x such that λx is continuous, where

λx(y) = x · y.) The existence of idempotents in βS, especially idempotents

in certain subsemigroups of βS, has provided the easiest, and often the first,

proof of many results in Ramsey Theory. See [4, Part III] for a multitude of

examples of this phenomenon.
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As a compact right topological semigroup, βS has a smallest two sided

ideal, K(βS), which is the union of all of the minimal left ideals of βS and

is also the union of all of the minimal right ideals of βS. The intersection

of a minimal left ideal and a minimal right ideal of βS is a group, and

any two such groups are isomorphic. Any left ideal contains a minimal left

ideal, which is compact, and any right ideal contains a minimal right ideal.

Idempotents in K(βS) are exactly the idempotents that are minimal with

respect to the ordering defined in the abstract.

We take the points of βS to be the ultrafilters on S, identifying the

principal ultrafilters with the points of S, and thus pretend that S ⊆ βS.

Given A ⊆ S, the closure A = {p ∈ βS : A ∈ p}. We write A∗ = A \ S.

Given p, q ∈ βS, A ∈ pq if and only if {x ∈ S : x−1A ∈ q} ∈ p, where

x−1A = {y ∈ S : xy ∈ A}. (So, for example, in the semigroup (N, ·), if A

is the set of odd positive integers, then 2−1A = ∅.) We let U(S) be the set

of uniform ultrafilters on S. Thus for p ∈ βS, p ∈ U(S) if and only if for

every A ∈ p, |A| = |S|. We take N to be the set of positive integers. The

first infinite ordinal ω is the set of nonnegative integers. See [4, Part I] for

an elementary introduction to the topology and algebra of βS, and see the

notes at the end of the chapters for the original references.

In [3] it was shown that any nonminimal idempotent in (βN,+) is part

of an infinite decreasing chain of idempotents. That is, if q is a nonminimal

idempotent, then there is a sequence of idempotents 〈qn〉n<ω such that q0 = q

and for each n ∈ ω, qn+1 < qn. We shall show in this paper that the sequence

can be extended to 〈qσ〉σ<λ for any countable ordinal λ.

A fundamental tool in our proofs is an analysis of the structure of the

smallest compact subsemigroup of βN containing a given member of βN.

Definition 1.1. Let S be a compact Hausdorff right topological semigroup

and let p ∈ S. Then

Cp =
⋂
{T : T is a compact subsemigroup of S and p ∈ T} .

Section 2 will consist of preliminary results. In Section 3 we will prove

our main theorem dealing with decreasing chains of idempotents in Cp and

derive from that several corollaries, including those mentioned in the ab-

stract.

Most of the results in Section 3 deal with cancellative semigroups. In

Section 4 we extend some of these results to left cancellative semigroups S

which have a right cancelable element in S∗.

Besides the ordering ≤ of idempotents in a semigroup, there are tran-

sitive and reflexive relations ≤L and ≤R defined by e ≤L f if and only if
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ef = e and e ≤R f if and only if fe = e. We write e <L f when e ≤L f and

it is not the case that f ≤L e. Similarly we write e <R f when e ≤R f and

it is not the case that f ≤R e. Of course e ≤ f if and only if both e ≤L f
and e ≤R f . In [6] it was shown that given any ordinal λ with |λ| ≤ c, there

exist chains 〈qσ〉σ<λ of idempotents in βN such that qσ <L qτ whenever

τ < σ < λ and qσ+1 < qσ for all σ with σ + 1 < λ. In Section 5 we extend

this result by showing that for each nonminimal idempotent q in βN, there

is such a chain with q0 = q.

2. Preliminary results

Given a semigroup (S, ·) with identity we will denote the identity of S

by 1. Unless otherwise specified, we take the operation on N and Z to be

addition.

Some of our proofs depend on the existence of elements in the closure of

the set of idempotents in a given minimal right ideal of βN that are right

cancelable in βN. The following lemma guarantees their existence.

Lemma 2.1. Let R be a minimal right ideal of βN. There is an injective

sequence 〈qn〉∞n=1 of idempotents in R such that, if p is an accumulation

point of 〈qn〉∞n=1, then p /∈ Z∗ + Z∗. In particular any accumulation point of

〈qn〉∞n=1 is right cancelable in βZ.

Proof. This is [5, Lemma 3.8]. �

Definition 2.2. If S is a semigroup, then E(S) is the set of idempotents

in S.

The following lemma is well known among aficionados. In its proof we

use, for the first of many times in this paper, the fact that if p is an idem-

potent in a semigroup S, then p is a right identity for Sp and a left identity

for pS. (If q = ap, then qp = app = ap = q.)

Lemma 2.3. Let S and T be compact Hausdorff right topological semi-

groups, let h : S → T be a continuous surjective homomorphism.

(1) If q1 is an idempotent in T , then there exists p1 ∈ E(S) such that

h(p1) = q1.

(2) If q1 and q2 are idempotents in T such that q2 < q1 and p1 ∈ E(S)

such that h(p1) = q1, then there exists p2 ∈ E(S) such that h(p2) =

q2 and p2 < p1.

Proof. (1) We have that h−1[{q1}] is a compact subsemigroup of S which

therefore has an idempotent.
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(2) Assume that p1 ∈ E(S) such that h(p1) = q1. If x ∈ h−1[{q2}], then

h(xp1) = q2q1 = q2 so xp1 ∈ h−1[{q2}]∩Sp1 and consequently h−1[{q2}]∩Sp1
is a compact subsemigroup of S. Pick an idempotent g ∈ h−1[{q2}]∩Sp1 and

let p2 = p1g. Then gp1 = g so p2p1 = p2, p2p2 = p1gp1g = p1gg = p1g = p2,

and p1p2 = p1p1g = p1g = p2. �

Lemma 2.4. Let S be a compact Hausdorff right topological semigroup and

let R be a minimal right ideal of S. If x ∈ c`E(R), then for all u ∈ Cx and

all v ∈ R, uv = v.

Proof. If p ∈ E(R), then R = pS so for all v ∈ R, pv = v. Thus, given

v ∈ R, ρv is constantly equal to v on E(R) so xv = v. Thus

{u ∈ S : (∀v ∈ R)(uv = v)}

is a compact subsemigroup of S with x as a member which therefore contains

Cx. �

Of course, in any semigroup S, an element x is right cancelable if and

only if ρx is injective.

Definition 2.5. Let S be an infinite semigroup with identity and let p ∈ S∗.
(a) p is weakly right cancelable if and only if there is no q ∈ βS \ {1}

such that p = qp.

(b) p is thin if and only if there is a function M : S → p such that

xM(x) ∩ yM(y) = ∅ whenever x and y are distinct members of S.

(c) p is strongly discrete if and only if p is thin, p ∈ U(S), and for each

x ∈ S, the restriction of λx to M(x) is injective.

Note that if p = qp, then 1p = 1qp, so if p is right cancelable, then it is

weakly right cancelable.

Lemma 2.6. Let S be a countable semigroup with identity and let p ∈ S∗. If

p is right cancelable in βS, then p is thin. If in addition S is left cancellative,

then p is strongly discrete.

Proof. By [4, Theorem 8.7] we have that for all A ⊆ S, there exists B ⊆ S

such thatA = {x ∈ S : x−1B ∈ p}. Enumerate S as 〈xn〉∞n=1. For each n ∈ N,

pick Bn ⊆ S such that {xn} = {x ∈ S : x−1Bn ∈ p}. Let M(x1) = x−11 B1.

For n > 1, let M(xn) = x−1n Bn \
⋃n−1
t=1 x

−1
n Bt. If t < n, then xtM(xt) ⊆ Bt

and xnM(xn) ∩Bt = ∅. �

Lemma 2.7. Let S be an infinite semigroup with identity and let p ∈ S∗.
(1) If p is thin, then p is right cancelable in βS.
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(2) If p is weakly right cancelable and S is a countable group, then p is

strongly discrete.

Proof. (1) Let M : S → p be as guaranteed by the definition of thin. Let

q and r be distinct members of βS and pick Q ∈ q and R ∈ r such that

Q ∩ R = ∅. Let A =
⋃
x∈Q xM(x) and let B =

⋃
x∈R xM(x). Then A ∈ qp,

B ∈ rp, and A ∩B = ∅.
(2) By [4, Theorem 8.18] we have that p is right cancelable in βS so

Lemma 2.6 applies. �

Definition 2.8. Let κ be an infinite cardinal.

(a) Hκ =
⊕

σ<κ Z2.

(b) For γ < κ, let Hκ,γ = {x ∈ Hκ : (∀σ < γ)
(
x(σ)

)
= 0}.

(c) Hκ =
⋂
γ<κ c`βHκ(Hκ,γ \ {0}).

The set H ⊆ βN is defined by H =
⋂
n∈N c`(2

nN). By [4, Theorem

6.27] H is topologically and algebraically isomorphic to Hω. (When we say

that sets in right topological semigroups are “topologically and algebraically

isomorphic” we mean that there is a function taking one to the other which

is both an isomorphism and a homeomorphism.)

Lemma 2.9. Let κ be an infinite cardinal and let p ∈ Hκ. The following

statements are equivalent.

(1) p is right cancelable in βHκ.

(2) p is weakly right cancelable.

(3) p is thin.

Proof. That (1) implies (2) is trivial and that (3) implies (1) follows from

Lemma 2.7(1).

To see that (2) implies (3), assume that p is weakly right cancelable. We

note first that Hκ + p is discrete. Indeed, if a ∈ Hκ and

a+ p ∈ c`
{
b+ p : b ∈ Hκ \ {a}

}
= (βHκ \ {a}) + p ,

then pick q ∈ βHκ \ {a} such that a+ p = q+ p. Then p = −a+ q+ p, and

−a+ q 6= 0. (If q ∈ Hκ this is immediate, and if q ∈ H∗κ, then −a+ q ∈ H∗κ
by [4, Corollary 4.33].)

The rest of the proof may be taken verbatim from the proof that (5)

implies (6) in [8, Theorem 11.2]. �

Lemma 2.10. Let S be an infinite semigroup with identity and let p ∈ S∗

be strongly discrete. There is a compact subsemigroup Tp of βS with p ∈ Tp
such that
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(1) for all x ∈ βS \ (Tp ∪ {1}), (xTp) ∩ Tp = ∅ and

(2) there is a continuous homomorphism πp : Tp → βN such that πp(p) =

1.

Proof. Let T [p] be the largest topology on S with respect to which p con-

verges to 1 and λa is continuous for each a ∈ S. Let

Tp = {q ∈ S∗ : q converges to 1 with respect to T [p]} .

By [8, Lemma 7.1], Tp is a compact subsemigroup of S∗. To verify conclusion

(1) suppose we have x ∈ βS \(Tp∪{1}) and q ∈ Tp such that xq ∈ Tp. By [8,

Theorem 4.18], T [p] is zero-dimensional and Hausdorff. Since x /∈ Tp∪{1}, x
does not converge to 1 with respect to T [p] and thus there is a neighborhood

U of 1 such that U /∈ x. Since T [p] is zero-dimensional, we may assume U

is clopen with respect to T [p]. Let W = S \ U . Then W ∈ x. We claim

that c`βS(W )q ⊆ c`βS(W ) for which it suffices that Wq ⊆ c`βS(W ), so let

a ∈ W . Then W is a neighborhood of a = λa(1) and λa is continuous with

respect to T [p], so pick a neighborhood V of 1 such that aV ⊆ W . Then

V ∈ q and V ⊆ a−1W so a−1W ∈ q and thus aq ∈ c`βS(W ) as claimed. We

thus have that xq ∈ c`βS(W ) so U /∈ xq and thus xq /∈ Tp.
Conclusion (2) holds by [8, Theorem 7.29]. �

Notice that, since Tp is a compact subsemigroup of βS and p ∈ Tp, we

have that Cp ⊆ Tp.

Definition 2.11. Let S be an infinite semigroup with identity and let p ∈
S∗ be strongly discrete. Then hp is the restriction of πp to Cp.

If n ∈ N and q is the sum of p with itself n times, then hp(p) = n.

Therefore N ⊆ hp[Cp] and consequently hp[Cp] = βN. Observe also that

the function hp is completely determined by the fact that hp(p) = 1. To

see this, let g : Cp → βN be a continuous homomorphism with g(p) = 1.

Then {x ∈ Cp : g(x) = hp(x)} is a compact subsemigroup of Cp with p as a

member and is therefore equal to Cp.

Lemma 2.12. Let S be an infinite semigroup with identity and let p ∈ S∗

be strongly discrete. If x ∈ Cp and hp(x) is right cancelable in βN, then x

is weakly right cancelable.

Proof. Suppose not and pick u ∈ βS \ {1} such that x = ux. Then x ∈
(uTp) ∩ Tp so by Lemma 2.10(1), u ∈ Tp ∪ {1} and since u 6= 1, u ∈ Tp.

Thus hp(x) = πp(u) + πp(x) = πp(u) + hp(x). By [4, Corollary 8.2] (since

1+hp(x) = 1+πp(u)+hp(x) )we have πp(u) ∈ N∗. But then, by [4, Theorem

8.18], hp(x) is not right cancelable in βN. �
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Lemma 2.13. Let S be an infinite semigroup with identity, let p ∈ S∗

be strongly discrete, and let q be an idempotent in Cp such that hp(q) /∈
K(βN). There exists s ∈ Cpq which is weakly right cancelable such that

hp[Cs] ∩K(βN) = ∅.

Proof. By [4, Theorem 6.56], choose y ∈ βN such that y + hp(q) is right

cancelable in βZ. Pick x ∈ Cp such that hp(x) = y and let s = xq. Then

hp(s) = y + hp(q) so by Lemma 2.12, s is weakly right cancelable. By

[4, Theorem 8.57], Chp(s) ∩ K(βZ) = ∅. By [4, Exercise 4.3.8], K(βZ) =

K(βN) ∪ −K(βN), so Chp(s) ∩ K(βN) = ∅. Since h−1p [Chp(s)] is a compact

subsemigroup containing s, we have hp[Cs] ⊆ Chp(s). �

Lemma 2.14. Let S be an infinite semigroup with identity, let p ∈ S∗ be

strongly discrete, and let R be a minimal right ideal of Cp. There exists

s ∈ c`E(R) which is weakly right cancelable.

Proof. By [4, Exercise 1.7.3] hp[R] is a minimal right ideal of βN so by

Lemma 2.1, there is an injective sequence 〈qn〉∞n=1 of idempotents in hp[R]

all of whose limit points are right cancelable in βZ. We claim that for each

n ∈ N there is an idempotent un ∈ R such that hp(un) = qn. To see this,

let n ∈ N. Then βN + qn is a minimal left ideal of βN so h−1p [βN + qn] is a

left ideal of Cp which contains a minimal left ideal L. Let un be the identity

of R ∩ L. Then hp(un) is an idempotent in hp[R] ∩ (βN + qn), whose only

idempotent is qn. Let s be a limit point of 〈un〉∞n=1. Then hp(s) is a limit

point of 〈qn〉∞n=1 so is right cancelable in βZ. Thus by Lemma 2.12, s is

weakly right cancelable in βS. �

Lemma 2.15. Let S be an infinite semigroup with identity, let q be an

idempotent in S∗, let s ∈ βSq be strongly discrete, let λ be an ordinal,

and let 〈uσ〉σ<λ be a strictly decreasing sequence of idempotents in Cs. For

each σ < λ, let vσ = quσ. Then 〈vσ〉σ<λ is a strictly decreasing sequence of

idempotents with v0 ≤ q.

Proof. Note that Cs ⊆ βSq so for each σ < λ, uσ = uσq. Given σ < λ,

we have vσvσ = quσquσ = quσuσ = quσ = vσ. Now let σ < τ < λ. Then

vσvτ = quσquτ = quσuτ = quτ = vτ and vτvσ = quτquσ = quτuσ = quτ = vτ

so vτ ≤ vσ. We claim that vσ 6= vτ , so suppose instead vσ = vτ . Now

Css∪{s} is a compact semigroup with s as a member, so Cs ⊆ Css∪{s} ⊆
Cs so Cs = Css ∪ {s}. Since uσ and uτ are idempotents, neither is equal

to s so pick xσ and xτ in Cs such that uσ = xσs and uτ = xτs. Since

s ∈ βSq, pick r ∈ βS such that s = rq. Now qxτrq = qxτs = quτ = vτ =
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vσ = qxσrq so xσrqxτrq = xσrqxσrq. That is uσuτ = uσuσ, so uτ = uσ, a

contradiction. �

3. Long strictly decreasing chains

Definition 3.1. Let S be an infinite semigroup with identity and let p ∈ S∗.
Then p is hereditarily strongly discrete if and only if p is strongly discrete

and every s ∈ Cp which is weakly right cancelable is also strongly discrete.

Notice that by Lemma 2.7(2), if S is a countable group and p ∈ S∗ is

strongly discrete, then p is hereditarily strongly discrete.

Lemma 3.2. Let κ be an infinite cardinal and let p ∈ Hκ be strongly dis-

crete. Then Cp ⊆ U(Hκ) and p is hereditarily strongly discrete.

Proof. Trivially Hκ is a compact subsemigroup of βHκ and by [4, Lemma

6.34.3] U(Hκ) is a compact subsemigroup (in fact an ideal) of βHκ. Since

p ∈ U(Hκ) by the definition of strongly discrete, we have that Hκ ∩ U(Hκ)

is a compact semigroup with p as a member so Cp ⊆ Hκ ∩ U(Hκ).

To see that p is hereditarily strongly discrete, let s ∈ Cp be weakly right

cancelable. By Lemma 2.9, s is thin. But also Cp ⊆ Hκ∩U(Hκ) so s ∈ U(Hκ)

and (since Hκ is cancellative) s is strongly discrete. �

Definition 3.3. Let S be an infinite semigroup with identity and let λ be

an ordinal. P (λ) is the following statement. Given any hereditarily strongly

discrete p ∈ S∗ and any idempotent q ∈ Cp \ h−1p [K(βN)], there is a strictly

decreasing chain of idempotents 〈qσ〉σ<λ in Cp\h−1p [K(βN)] such that q0 = q.

Lemma 3.4. Let S be an infinite semigroup with identity and let λ > 0 be

an ordinal. Then P (λ)⇒ P (λ+ 1).

Proof. Assume P (λ). Let p ∈ S∗ be hereditarily strongly discrete and let q

be an idempotent in Cp\h−1p [K(βN)]. By Lemma 2.13 pick s ∈ Cpq which is

weakly right cancelable in βS such that hp[Cs] ∩K(βN) = ∅. Since s ∈ Cp,
s is strongly discrete. Let R be a minimal right ideal of Cs. By Lemma 2.14

pick t ∈ c`E(R) which is weakly right cancelable. Note that Ct ⊆ Cs ⊆ βSq.

By Lemma 2.4 we have that for all u ∈ Ct and all v ∈ R, uv = v. Pick any

idempotent w in Ct \ h−1t [K(βN)] and choose a strictly decreasing chain

〈uσ〉σ<λ of idempotents in Ct \ h−1t [K(βN)] with u0 = w. (We will not use

the fact that u0 = w.)

If σ < τ < λ, then uτ = uτuσ ∈ Csuσ so 〈Csuσ〉σ<λ is a nested sequence

of closed left ideals of Cs so we may pick a minimal left ideal L of Cs with

L ⊆
⋂
σ<λCsuσ. Let uλ be the identity of R ∩ L. Let σ < λ. We have
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uλ ∈ Csuσ so uλ = uλuσ. Also uσ ∈ Ct and uλ ∈ R, so uλ = uσuλ and

so uλ ≤ uσ. We need to show that uσ 6= uλ. (Of course, if λ is a limit

ordinal, this is immediate. But our proof does not depend on λ being a

successor.) We shall show that uσ /∈ R. So suppose instead that uσ ∈ R.

Then uσ ∈ Ct ∩ R so ∅ 6= Ct ∩ R ⊆ Ct ∩ K(Cs) and thus by [4, Theorem

1.65], K(Ct) = Ct ∩ K(Cs) so uσ ∈ K(Ct). But then ht(uσ) ∈ K(βN), a

contradiction. We have thus established that 〈uσ〉σ≤λ is a strictly decreasing

chain of idempotents in Cs. Recall that s ∈ Cpq so pick r ∈ Cp such that

s = rq.

Now for each σ ≤ λ, let vσ = quσ. By Lemma 2.15 we have that 〈vσ〉σ≤λ
is a strictly decreasing chain of idempotents in Cp.

Suppose there is some σ ≤ λ such that hp(vσ) ∈ K(βN). Then suσ ∈ Cs
and suσ = rquσ = rvσ so hp(rvσ) = hp(r) + hp(vσ) ∈ K(βN) contradicting

the fact that hp[Cs] ∩K(βN) = ∅.
Note that v0 ≤ q. If v0 = q, then we are done, so assume v0 < q and

replace v0 by q. �

The following is the main result of this paper. Recall that hp is surjective

and therefore there are idempotents in Cp \ h−1p [K(βN)].

Theorem 3.5. Let S be an infinite semigroup with identity and let λ > 0

be a countable ordinal. Given any hereditarily strongly discrete p ∈ S∗ and

any idempotent q ∈ Cp \ h−1p [K(βN)], there is a strictly decreasing chain of

idempotents 〈qσ〉σ<λ in Cp \ h−1p [K(βN)] such that q0 = q.

Proof. We prove by induction that P (λ) holds. If λ = 1, let q0 = q. So

assume that λ > 1 and P (α) holds for all α with 0 < α < λ. If λ is

a successor, then P (λ) holds by Lemma 3.4, so assume that λ is a limit

ordinal. Pick a strictly increasing sequence 〈αn〉n<ω of ordinals with α0 > 0

such that λ = sup{αn : n < ω}. Let p ∈ S∗ be hereditarily strongly discrete

and let q be an idempotent in Cp \h−1p [K(βN)]. By P (α0 + 1) pick a strictly

decreasing chain 〈qσ〉σ≤α0 in Cp \ h−1p [K(βN)] such that q0 = q.

Now let n < ω and assume we have chosen 〈qσ〉σ≤αn . Let δ be the ordinal

such that αn+1 = αn+δ. By P (δ+1), pick a strictly decreasing chain 〈rσ〉σ≤δ
in Cp \ h−1p [K(βN)] such that r0 = qαn . For 0 < τ ≤ δ, let qαn+τ = rτ . �

Corollary 3.6. Let G be a countably infinite group and let λ > 0 be a

countable ordinal. Given any p ∈ G∗ which is right cancelable in βG and

any idempotent q ∈ Cp \ h−1p [K(βN)], there is a strictly decreasing chain of

idempotents 〈qσ〉σ<λ in Cp \ h−1p [K(βN)] such that q0 = q.
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Proof. Let p ∈ G∗ which is right cancelable in βG. As we have already

remarked, p is hereditarily strongly discrete. So Theorem 3.5 applies. �

Corollary 3.7. Let κ be an infinite cardinal and let λ > 0 be a countable

ordinal. Given any strongly discrete p ∈ Hκ, and any idempotent q ∈ Cp \
h−1p [K(βN)], there is a strictly decreasing chain of idempotents 〈qσ〉σ<λ in

Cp \ h−1p [K(βN)] such that q0 = q. This chain of idempotents is contained

in U(Hκ) ∩Hκ.

Proof. Let p ∈ Hκ be strongly discrete. By Lemma 3.2, p is hereditarily

strongly discrete. So Theorem 3.5 applies. Since Cp ⊆ U(Hκ)∩Hκ, the final

conclusion holds. �

Of course minimal idempotents by definition do not have any idempo-

tents below them. We see now that for any subsemigroup of a countably

infinite group, any nonminimal idempotent has long chains of idempotents

below it.

Corollary 3.8. Let G be a countably infinite group, let λ > 0 be a count-

able ordinal, and let S be an infinite subsemigroup of G. For every nonmin-

imal idempotent q ∈ S∗, there is a strictly decreasing chain of idempotents

〈vσ〉σ<λ in S∗ such that v0 = q.

Proof. By [4, Theorem 6.56] pick r ∈ S∗ such that s = rq is right cancelable

in βG. By Lemma 2.7(2), s is strongly discrete. Since βN has nonminimal

idempotents and hs[Cs] = βN, by Lemma 2.3 there is an idempotent t ∈
Cs\h−1s [K(βN)]. By Corollary 3.6 pick a strictly decreasing sequence 〈uσ〉σ<α
of idempotents in Cs. For each σ < λ, let vσ = quσ. By Lemma 2.15, 〈vσ〉σ<α
is a strictly decreasing sequence of idempotents with v0 ≤ q. If v0 6= q,

replace v0 by q. �

Lemma 3.9. There is a strongly discrete p ∈ Hκ.

Proof. For each α < κ let aα be the characteristic function of {α} and for

each γ < κ, let

Aγ = {aα : γ ≤ α < κ} .

By [4, Corollary 3.14] pick p ∈ U(Hκ) such that {Aγ : γ < κ} ⊆ p. Since

for each γ, Aγ ⊆ Hκ,γ, we have p ∈ Hκ. For x ∈ Hκ \ {0}, let

φ(x) = max{σ : x(σ) 6= 0}

and let φ(0) = −1. Define M : Hκ → p by M(x) = Aφ(x)+1. Now let x 6= y

in Hκ. We claim that
(
x + M(x)

)
∩
(
y + M(y)

)
= ∅. Suppose one has
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z = x + aα = y + aδ where aα ∈ M(x) and aδ ∈ M(y). Then α = φ(z) = δ

so x = y, a contradiction. �

Corollary 3.10. Let S be an infinite cancellative semigroup with identity

and let λ be a countable ordinal. There is a strictly decreasing chain of

idempotents 〈vσ〉σ<λ in U(S).

Proof. Let κ = |S|. By [6, Theorem 2.7] S∗ contains a copy of Hκ. The proof

of that theorem produces a subset T of S and a bijective function θ : T → Hκ

with continuous extension θ̃ : c`βST → βHκ. The restriction of θ̃ to θ̃−1[Hκ]

is a homeomorphism and an isomorphism. And θ̃[U(T )] = U(Hκ).

By Lemma 3.9, pick a strongly discrete member p of Hκ. Since βN has

nonminimal idempotents and hp[Cp] = βN, by Lemma 2.3 there is an idem-

potent q ∈ Cp \ h−1p [K(βN)] so by Corollary 3.7 the copy of Hκ contains

a strictly decreasing chain of idempotents 〈vσ〉σ<λ which is contained in

U(S). �

The following, which answers[6, Question 3.19], is not an immediate

corollary of Corollary 3.6 because there are points p ∈ N∗ that are right

cancelable in βN but not right cancelable in βZ. (See [4, Example 8.29].)

Corollary 3.11. Given any p ∈ N∗ which is right cancelable in βN and

any countable ordinal λ, there is a strictly decreasing chain of idempotents

〈qσ〉σ<λ in Cp.

Proof. By Theorem 4.10 below (or [4, Exercise 8.5.1(6)]) there is an element

q ∈ c`{2n : n ∈ N} such that Cq is isomorphic to Cp. By [4, Theorem 8.28],

q is right cancelable in βZ. By Lemma 2.6 q is strongly discrete and so by

Theorem 3.5, there is a strictly decreasing chain of idempotents 〈qσ〉σ<λ in

Cq. �

Note that the number of decreasing chains headed by a given nonminimal

q is vast. By [4, Theorem 6.56], there are 2c choices of r ∈ βN for which

r + q is right cancelable in βZ and, for any two different choices r1 and r2

among these, the left ideals βN + r1 + q and βN + r2 + q are disjoint. So,

in defining decreasing chains 〈qn〉n<ω with q0 = q, one has 2c choices for q1.

For each of these, there are 2c choices for q2, and so on. The chains defined

by these choices never intersect, except at q.

We conclude this section by establishing that one can get long chains of

idempotents while weakening the cancellation hypotheses on S. Given a set

X, we write Pf (X) for the set of finite nonempty subsets of X.
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Definition 3.12. Let (S, ·) be a semigroup and let 〈xn〉∞n=1 be a sequence

in S.

(a) Let m ∈ N. Then

FP (〈xn〉∞n=m) = {
∏

t∈F xt : F ∈ Pf (N) and minF ≥ m} ,

where the products are taken in increasing order of indices.

(b) The sequence 〈xn〉∞n=1 has distinct finite products if and only if when-

ever F and H are distinct members of Pf (N),
∏

t∈F xt 6=
∏

t∈H xt.

Lemma 3.13. Let S be a semigroup and let 〈xn〉∞n=1 be a sequence in S

with distinct finite products. Then
⋂∞
m=1 FP (〈xn〉∞n=m) is topologically and

algebraically isomorphic to H.

Proof. [4, Theorem 6.27]. �

Recall that semigroup S is weakly left cancellative provided that for each

a, b ∈ S, {c ∈ S : ac = b} is finite.

Lemma 3.14. Let S be an infinite right cancellative and weakly left can-

cellative semigroup. There is a sequence 〈xn〉∞n=1 in S which has distinct

finite products.

Proof. This is a consequence of [4, Lemma 6.31]. �

Corollary 3.15. Let S be an infinite right cancellative and weakly left can-

cellative semigroup and let λ > 0 be a countable ordinal. Then βS contains

a decreasing chain 〈qσ〉σ<λ of idempotents.

Proof. By [4, Lemma 6.8] all of the idempotents in βN are in H. By Lemmas

3.13 and 3.14, S contains a copy of H. By Corollary 3.8, H contains a

decreasing chain 〈qσ〉σ<λ of idempotents. �

4. Countable left cancellative semigroups

In this section we show that some of our earlier results can be extended to

countable semigroups S for which only left cancellation is assumed, provided

there is a right cancelable element of S∗. Theorems 4.10 and 4.12 extend [4,

Theorem 8.62] and [4, Theorem 8.57] respectively, wherein the hypothesis

on S was that it is a countable group. We observe that any right cancelable

element of S∗ is a strongly discrete ultrafilter by Lemma 2.6, so that the

results of [8, §4.3] apply to it. However, the results of this section have

self-contained proofs.

There are left cancellative semigroups S for which there are no right

cancelable elements in S∗. For example, if S is a right zero semigroup, βS
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is also a right zero semigroup and it contains no right cancelable elements if

|S| > 1. So we begin by pointing out that it is quite easy to find examples

of countable left cancellative semigroups S for which S∗ does contain right

cancelable elements. One example of a left cancellative semigroup which is

not right cancellative but in which S∗ has right cancelable elements is the

ordinal ω ·ω under ordinal addition. But that is not an especially interesting

example, since the only right cancelable elements of S∗ are in ω∗. (If {σ <
ω · ω : ω ≤ σ} ∈ p, then 1 + p = 2 + p.)

Theorem 4.1. There exist a countable left cancellative semigroup S with

identity which is not right cancellative and an infinite subset A of S such

that every p ∈ A∗ is right cancelable in βS.

Proof. Let S be the set of all strictly increasing f : N→ N with the property

that there exist m ∈ N and k ∈ ω such that for all t ≥ m, f(t) = k +

t. Let the operation on S be composition. It is routine to verify that S

is closed under composition. Further, since its members are injective, S

is left cancellative. It is not right cancellative (though it is weakly right

cancellative). For example, let f(t) = t+ 1 for all t, let g(1) = 1, h(1) = 2,

and g(t) = h(t) = t+ 1 for all t > 1. Then g ◦ f = h ◦ f .

For each f ∈ S, let k(f) be the number such that f(t) = k(f) + t for

all sufficiently large t and let m(f) = min{t : f(t) = k(f) + t}. For n ∈ N,

define hn ∈ S by

hn(t) =

{
t if t < n

1 + t if t ≥ n .

Let A = {hn : n ∈ N} and let p ∈ A∗. To see that p is right cancelable in

βS, let q and r be distinct members of βS and suppose that q◦p = r◦p. (As

usual, we denote the operation in βS by the same symbol used to denote

the operation on S.) Pick disjoint subsets B and C of S such that B ∈ q
and C ∈ r. By [4, Theorem 4.15], {f ◦ hn : f ∈ B and n > m(f)} ∈
q ◦ p and {g ◦ hn : g ∈ C and n > m(g)} ∈ q ◦ p so the intersection

is nonempty. Pick f ∈ B, g ∈ C, n > m(f), and l > m(g) such that

f ◦hn = g◦hl. Now if t ≥ max{n, l}, then f
(
hn(t)

)
= f(t+1) = k(f)+ t+1

and g
(
hl(t)

)
= g(t+ 1) = k(g) + t+ 1, so k(f) = k(g). We claim next that

n = l, so suppose instead without loss of generality that n < l. Then

f
(
hn(n)

)
= f(n + 1) = k(f) + n + 1 while g

(
hl(n)

)
= g(n) ≤ k(g) + n, a

contradiction.

Now, if t < n, then f(t) = f
(
hn(t)

)
= g

(
hn(t)

)
= g(t). And, if t > n,

then f(t) = f
(
hn(t− 1)

)
= g
(
hn(t− 1)

)
= g(t). Finally, f(n) = k(f) + n =

k(g) + n = g(n), so f = g, a contradiction. �
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For the rest of this section we will fix a countable left cancellative semi-

group S with identity 1 and p ∈ S∗ which is right cancelable in βS. We begin

a construction in S based on a similar construction for countable groups in

[4, Section 8.5]. We assume that we have enumerated S as 〈sn〉∞n=1 with

s1 = 1. For s, t ∈ S we write s ≺ t if and only if s = si, t = sj, and i < j. Of

course, s � t means s ≺ t or s = t. When we write FP ({t ∈ S : t � b}) we

mean all products of the form t1t2 · · · tm such that t1 ≺ t2 ≺ . . . ≺ tm � b}.

Definition 4.2. M is a strongly discrete function for p if and only if

M : S → p, 1 /∈ M(x) for any x, and if x and y are distinct members

of S, then xM(x) ∩ yM(y) = ∅.

Note that by Lemma 2.6, p is strongly discrete, so there exists a strongly

discrete function for p. We do not fix a particular strongly discrete function

for p because we will use two such functions in the proof of Theorem 4.12.

Definition 4.3. Let M be a strongly discrete function for p, let k ∈ N, and

let 〈b1, b2, . . . , bk〉 ∈ M(1)k. Then x ∈ S is the M-product of 〈b1, b2, . . . , bk〉
if and only if

(i) x = b1b2 · · · bk;
(ii) if 1 ≤ i < j ≤ k, then bi ≺ bj; and

(iii) if i ∈ {2, 3, . . . , k} and s ∈ FP{t ∈ S : t � bi−1}, then bi ∈ M(s)

and sbi 6= 1.

We say that x is an M-product provided there is some 〈b1, b2, . . . , bk〉
such that x is the M -product of 〈b1, b2, . . . , bk〉. We note that we require

an M -product to satisfy more stringent conditions than in [8, §4.3] wherein

the only requirement on 〈b1, b2, . . . , bk〉 was that for t ∈ {2, 3, . . . , k}, bt ∈
M(b1b2 · · · bt−1). We need the stronger requirements for our proofs.

Definition 4.4. Let M be a strongly discrete function for p. TM = {x : x

is an M -product}.

Lemma 4.5. Let M be a strongly discrete function for p. Assume that

s ∈ S \ {1}, x is the M-product of 〈b1, b2, . . . , bm〉, y is the M-product of

〈c1, c2, . . . , cn〉, sb1 6= 1, s ≺ b1, b1 ∈ M(s), and sx = y. Then n > m and,

if k = n−m, then s = c1c2 · · · ck and for i ∈ {1, 2, . . . ,m}, bi = ck+i.

Proof. Suppose the conclusion fails and pick a counterexample with n+m

as small as possible. If m = n = 1, then sb1 = c1 so sM(s) ∩ 1M(1) 6= ∅
and thus s = 1, a contradiction.

Suppose next that m = 2 and n = 1. Let u = sb1. Then

u ∈ FP{t ∈ S : t � b1}
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so b2 ∈M(u) and thus uM(u)∩ 1M(1) 6= ∅ and so sb1 = 1, a contradiction.

Now assume that m > 2 and n = 1. Let u = sb1 · · · bm−1. Then

uM(u) ∩ 1M(1) 6= ∅

so u = 1. But sb1 · · · bm−2 ∈ FP{t ∈ S : t � bm−2} so (sb1 · · · bm−2)bm−1 6= 1.

We thus have that n > 1. If m = 1, let v = c1c2 · · · cn−1. Then

sM(s) ∩ vM(v) 6= ∅

so s = v and by left cancellation, b1 = cn. Thus with k = n−1 the conclusion

of the lemma holds.

Finally assume that m > 1 and n > 1. Let u = sb1 · · · bm−1 and v =

c1c2 · · · cn−1. Then uM(u)∩vM(v) 6= ∅ so u = v. Let k = (n−1)−(m−1) =

n − m. By the minimality of n + m, we have that s = c1c2 · · · ck and for

i ∈ {1, 2, . . . ,m− 1}, bi = ck+i. By left cancellation, bm = cn = ck+m. �

Lemma 4.6. Let M be a strongly discrete function for p. Then M-products

are unique.

Proof. Assume that x is the M -product of 〈d1, d2, . . . , dm〉 and x is the

M -product of 〈c1, c2, . . . , cn〉. We need to show that m = n and for i ∈
{1, 2, . . . , n}, di = ci. We may assume without loss of generality that m ≤
n. Suppose first that m = 1 and n > 1 and let v = c1c2 · · · cn−1. Then

d1 ∈ 1M(1)∩vM(v) so v = 1. If n = 2, then v = c1 6= 1 because c1 ∈M(1).

If n > 2, then v 6= 1 because (c1c2 · · · cn−2)cn−1 6= 1.

Thus we have that m > 1. Let s = d1 and for i ∈ {1, 2, . . . ,m − 1}, let

bi = d1+i. Then by Lemma 4.5, if k = n− (m− 1), we have d1 = c1c2 · · · ck
and for i ∈ {1, 2, . . . ,m−1}, bi = ck+i. If k = 1, this is the conclusion we are

after, so suppose k > 1. Let v = c1c2 · · · ck−1. Then d1 ∈ 1M(1) ∩ vM(v) so

v = 1. But this yields a contradiction just as in the previous paragraph. �

Definition 4.7. Let M be a strongly discrete function for p. Define hM :

TM → N and ϕM : TM → N as follows.

(a) If x is the M -product of 〈b1, b2, . . . , bm〉 then hM(x) = m.

(b) If x is the M -product of 〈b1, b2, . . . , bm〉 and for j ∈ {1, 2, . . . ,m},
bj = st(j), then ϕM(x) =

∑m
j=1 2t(j).

By Lemma 4.6, hM and ϕM are well defined. We denote by h̃M and ϕ̃M

the continuous extensions of these functions taking TM to βN.

Definition 4.8. Let M be a strongly discrete function for p and let n ∈ N.

(a) TM,n = {x : x is the M -product of 〈b1, b2, . . . , bm〉 and for all

s ∈ FP (〈si〉ni=1), s ≺ b1, sb1 6= 1, and b1 ∈M(s)}.
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(b) TM,∞ =
⋂∞
n=1 TM,n.

Lemma 4.9. Let M be a strongly discrete function for p. Then TM,∞ is a

compact subsemigroup of S∗, p ∈ TM,∞, the restriction of h̃M to TM,∞ is

a homomorphism with h̃M(p) = 1, and the restriction of ϕ̃M to TM,∞ is a

homomorphism.

Proof. Since M(1) ⊆ TM and hM is constantly equal to 1 on M(1), we

have that h̃M(p) = 1. To see that p ∈ TM,∞ (and thus that TM,∞ 6= ∅), let

n ∈ N. Then
⋂
{M(s) : s ∈ FP (〈si〉ni=1)} ∈ p and for each s ∈ FP (〈si〉ni=1),

{t ∈ S : t � s} is finite and {b ∈ S : sb = 1} has at most one member. The

remainder is a member of p which is contained in TM,n.

To see that TM,∞ is a subsemigroup of S∗, the restriction of h̃M to TM,∞

is a homomorphism, and the restriction of ϕ̃M to TM,∞ is a homomorphism,

it suffices by [4, Theorems 4.20 and 4.21] to let n ∈ N, let x ∈ TM,n, and

show that there is some m ∈ N such that for all y ∈ TM,m, xy ∈ TM,n,

hM(xy) = hM(x) + hM(y), and ϕM(xy) = ϕM(x) + ϕM(y).

Let n ∈ N, let x ∈ TM,n, and pick 〈b1, b2, . . . , bk〉 ∈M(1)k such that x is

the M -product of 〈b1, b2, . . . , bk〉, for all s ∈ FP (〈si〉ki=1), s ≺ b1, sb1 6= 1,

and b1 ∈ M(s). Pick m ∈ N such that bk = sm. Let y ∈ TM,m and pick

〈c1, c2, . . . , cl〉 ∈ M(1)l such that y is the M -product of 〈c1, c2, . . . , cl〉, for

all s ∈ FP (〈si〉li=1), s ≺ c1, sc1 6= 1, and c1 ∈ M(s). Then xy is the M -

product of 〈b1, b2, . . . , bk, c1, c2, . . . , cl〉, xy ∈ TM,n, hM(xy) = hM(x)+hM(y),

and ϕM(xy) = ϕM(x) + ϕM(y). �

For the statement of the following theorem, we remind the reader of our

standing hypothesis about S and p.

Theorem 4.10. Let S be a countable left cancellative semigroup with iden-

tity and let p ∈ S∗ be right cancelable in βS. There is some q ∈ {2n : n ∈ N}∗

such that Cq ⊆ βN is topologically isomorphic to Cp.

Proof. Since p is strongly discrete, pick a strongly discrete function M for p.

By Lemma 4.6, ϕM is injective on TM so ϕ̃M is injective on TM,∞. By Lemma

4.9, Cp ⊆ TM,∞ and ϕ̃M is a homomorphism on Cp. Let q = ϕ̃M(p). �

Lemma 4.11. Let M be a strongly discrete function for p. If x ∈ βS \
(TM,∞ ∪ {1}), then xTM,∞ ∩ TM,∞ = ∅.

Proof. Let x ∈ βS \{1} and assume that xTM,∞∩TM,∞ 6= ∅. We shall show

that x ∈ TM,∞. Pick y ∈ TM,∞ such that xy ∈ TM,∞. Let n ∈ N. We shall

show that TM,n ∈ x.



CHAINS OF IDEMPOTENTS 17

Now {s ∈ S \ {1} : s−1TM,n ∈ y} ∈ x so it suffices that

{s ∈ S \ {1} : s−1TM,n ∈ y} ⊆ TM,n .

So let s ∈ S \ {1} such that s−1TM,n ∈ y. Pick r ∈ N such that s = sr.

Then TM,r ∈ y so pick z ∈ s−1TM,n ∩ TM,r. Pick l ∈ N and 〈c1, c2, . . . , cl〉 ∈
M(1)l such that sb1 · · · bm is the M -product of 〈c1, c2, . . . , cl〉 and for all t ∈
FP (〈si〉ri=1), t ≺ c1, tc1 6= 1, and c1 ∈ M(t). By Lemma 4.5, s = c1c2 · · · ck
for some k ∈ N so that s ∈ TM,n as required. �

Again, we remind the reader of our standing hypotheses.

Theorem 4.12. Let S be a countable left cancellative semigroup with iden-

tity and let p ∈ S∗ be right cancelable in βS. Then Cp ∩K(βS) = ∅.

Proof. Suppose instead that we have some q ∈ Cp ∩K(βS). Pick a strongly

discrete function N : S → p. Now S∗ ∩
⋂
s∈S N(s) is a nonempty Gδ so by

[4, Theorem 3.36] pick r 6= p in S∗ ∩
⋂
s∈S N(s) and pick B ∈ r \ p. For

s ∈ S, let M(s) = N(s) \B. Then M is a strongly discrete function for p.

Let R be the minimal right ideal of βS with q ∈ R and pick a minimal

left ideal L of βS such that L ⊆ βSr. Let u be the identity of L∩R. By [4,

Corollary 4.33], L ⊆ S∗ so u ∈ S∗. Then uq = q and q ∈ TM,∞ by Lemma

4.9. Thus, by Lemma 4.11, u ∈ TM,∞. In particular TM ∈ u.

Now also u ∈ βSr and since r is strongly discrete (via the function N)

and u is an idempotent, r 6= u so there is some s ∈ S \ {1} such that

TM ∈ sr. Pick t ∈ s−1TM ∩ B ∩ N(s). Then st ∈ TM so pick k ∈ N and

〈b1, b2, . . . , bk〉 ∈ M(1)k such that st is the M -product of 〈b1, b2, . . . , bk〉. If

k = 1, then st ∈ sN(s) ∩ 1N(1), so s = 1, a contradiction. Thus k > 1. Let

v = b1b2 · · · bk−1. Then st ∈ sN(s)∩vN(v) so s = v and by left cancellation,

t = bk. But then t ∈ B and bk ∈M(1) = N(1) \B, a contradiction. �

5. Long <L-chains

Recall that for idempotents e and f in a semigroup, e <L f if and only if

ef = e and it is not the case that fe = f . Equivalently, e <L f if and only

if Se is a proper subset of Sf . Using a result from [6] we show here that

one can get chains as long as possible below any nonminimal idempotent in

βN, provided that one weakens the strictly decreasing requirement at limit

ordinals to the requirement that if σ < τ , then pτ <L pσ. We will use the

following extension of Lemma 2.3.

Lemma 5.1. Let S and T be compact Hausdorff right topological semi-

groups, let h : S → T be a continuous surjective homomorphism, and let λ



18 N. HINDMAN, D. STRAUSS, AND Y. ZELENYUK

be an ordinal. Assume that 〈uσ〉σ<λ is a chain of idempotents in T such that

uτ <L uσ whenever σ < τ < λ and uσ+1 < uσ whenever σ + 1 < λ. Then

there is a chain 〈pσ〉σ<λ of idempotents in S such that pτ <L pσ whenever

σ < τ < λ, pσ+1 < pσ whenever σ+ 1 < λ, and h(pσ) = uσ for every σ < λ.

Proof. Pick by Lemma 2.3 an idempotent p0 ∈ S such that h(p0) = u0.

Assume that 0 < γ < λ and we have chosen 〈pσ〉σ<γ as required.

Case 1. γ = δ + 1 for some δ. Pick by Lemma 2.3 an idempotent pγ ∈ S
such that h(pγ) = uγ and pγ < pδ.

Case 2. γ is a limit ordinal. We claim that for each σ < γ,

(S + pσ) ∩ h−1[{uγ}] 6= ∅ .

To see this, pick x ∈ h−1[{uγ}]. Then x+ pσ ∈ S+ pσ and h(x+ pσ) = uγ +

uσ = uγ. Consequently, we have that h−1[{uγ}]∩
⋂
σ<γ(S+pσ) is a compact

right topological semigroup so pick pγ ∈ h−1[{uγ}] ∩
⋂
σ<γ(S + pσ). �

Theorem 5.2. Let λ > 0 be an ordinal.

(1) If there is a chain 〈pσ〉σ<λ of idempotents in βN such that pτ <L pσ

whenever σ < τ < λ, then |λ| ≤ c.

(2) If |λ| ≤ c, then there is a chain 〈pσ〉σ<λ of idempotents in βN such

that pτ <L pσ whenever σ < τ < λ and pσ+1 < pσ whenever σ + 1 <

λ.

Proof. [6, Corollary 3.18]. �

Theorem 5.3. Let q be a nonminimal idempotent in βN and let λ > 0 be

an ordinal such that |λ| ≤ c. Then there is a chain 〈qσ〉σ<λ of idempotents

in βN such that q0 = q, qτ <L qσ whenever σ < τ < λ, and qσ+1 < qσ

whenever σ + 1 < λ.

Proof. Pick by Theorem 5.2 a chain 〈uσ〉σ<λ of idempotents in βN such that

uτ <L uσ whenever σ < τ < λ and uσ+1 < uσ whenever σ + 1 < λ. By [4,

Theorem 6.56] pick r ∈ βN such that r+ q is right cancelable in βN and let

p = r + q. By Lemma 5.1 pick a chain 〈vσ〉σ<λ of idempotents in Cp such

that vτ <L vσ whenever σ < τ < λ, vσ+1 < vσ whenever σ + 1 < λ, and

hp(vσ) = uσ for every σ < λ. For σ < λ, let qσ = q + vσ. Exactly as in the

proof of Lemma 3.4 we see that qτ <L qσ whenever σ < τ < λ and qσ+1 < qσ

whenever σ + 1 < λ. If q0 = q, then we are done. Otherwise replace q0 by

q. �

Clearly, Theorem 5.2 implies that βN contains many infinite decreasing

chains of principal left ideals. Whether βN contains any infinite increasing
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chain of semiprincipal left ideals, has been a tantalising open problem for

several decades. (See the notes to Chapter 6 of [4] for a discussion of the

history of this problem.) It was shown in [2, Corollary 1.8] that βZ contains

strictly increasing chains of principal right ideals. (In [2] these were called

left ideals because βZ was taken to be left topological rather than right

topological.) We show here that one can get such increasing chains generated

by idempotents. Recall that the statement that p <R q means that p ≤R q
and it is not true that q ≤R p or equivalently that p+ βN ( q + βN.

Theorem 5.4. There is an infinite sequence 〈pn〉n<ω of idempotents in βN
such that pn <R pn+1 for every n ∈ ω.

Proof. We choose an infinite sequence 〈En〉n<ω of infinite subsets of ω such

that for each n, En+1 ⊆ En and En \ En+1 is infinite. Given x ∈ N, let

supp(x) be the finite subset of ω such that x =
∑

t∈supp(x) 2t. For each

n ∈ ω we let

Hn =
⋂∞
k=0 c`βN{x ∈ N : supp(x) ⊆ En and min supp(x) > k} .

For each n ∈ N define µn : ω → ω by µn(x) =
∑

t∈En∩supp(x) 2t, where∑
t∈∅ 2t = 0. Using [4, Theorem 4.20] we see that each Hn is a compact

subsemigroup of H and it is routine to verify that Hn \Hn+1 is an ideal of

Hn. Using [4, Theorem 4.21] we see that for each n ∈ N, the restriction of

µn to H is a homomorphism. Note also that for all x ∈ ω and all m ≤ n,

µm
(
µn(x)

)
= µn(x) = µn

(
µm(x)

)
so µ̃m ◦ µ̃n = µ̃n = µ̃n ◦ µ̃m.

Next we claim that if p is a minimal idempotent in H0 and m ∈ N,

then µ̃m(p) is a minimal idempotent in Hm. To see this, let A = {x ∈ N :

supp(x) ∩ Em 6= ∅} and let B = A ∩ H0. Then B is an ideal of H0 and

µ̃m[B] = Hm. Since B is an ideal of H0, K(H0) ⊆ B and therefore by [4,

Theorem 1.65], K(B) = K(H0). Then by [4, Exercise 1.7.3], µ̃m[K(H0)] =

K(Hm) and so µ̃m(p) ∈ K(Hm) as required.

Now pick a minimal idempotent q of H0. Let r0 = q and inductively for

n ∈ N, let rn = µ̃n(q) + rn−1. Then rn = µ̃n(q) + µ̃n−1(q) + . . . + µ̃1(q) + q

so if 1 ≤ m < n, then

µ̃m(rn) = µ̃m
(
µ̃n(q)

)
+ µ̃m

(
µ̃n−1(q)

)
+ . . .+ µ̃m

(
µ̃1(q)

)
+ µ̃m(q)

= µ̃n(q) + µ̃n−1(q) + . . .+ µ̃m(q)

since µ̃m
(
µ̃t(q)

)
= µ̃m(q) if t ≤ m and µ̃m(q) is an idempotent.

Consequently if m < n we have µ̃m(rn) + rm−1 = rn. Now if m < t ≤
n, then µ̃t(q) ∈ Ht ⊆ Hm so µ̃m(rn) ∈ Hm + µ̃m(q) which is a (com-

pact) minimal left ideal of Hm. Let x be a cluster point of the sequence
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〈rn〉∞n=1. Then for each m ∈ N, µ̃m(x) ∈ Hm + µ̃m(q) ⊆ K(Hm) and

µ̃m(x) + rm−1 = x. We then have that x ∈
⋂∞
m=1(µ̃m(x) + H0) so, being

nonempty,
⋂∞
m=1(µ̃m(x) +H0) is a right ideal of H0 so by [4, Theorem 2.7]

we may pick an idempotent p0 ∈
⋂∞
m=1(µ̃m(x)+H0) which is minimal in H0.

Then for each m ∈ N, p0 ≤R µ̃m(x) and so µ̃m(p0) ≤R µ̃m(x). We have seen

that µ̃m(p0) ∈ K(Hm) and µ̃m(x) ∈ K(Hm) so µ̃m(p0) +Hm = µ̃m(x) +Hm

and therefore µ̃m(x) ≤R µ̃m(p0) and thus p0 ≤R µ̃m(p0). Thus if k < m,

µ̃k(p0) ≤R µ̃k
(
µ̃m(p0)

)
= µ̃m(p0). For each n ∈ N, let pn = µ̃n(p0). We then

have that for each n ∈ ω, pn ≤R pn+1. To complete the proof we need to

show that it is not the case that pn+1 ≤R pn. We have noted that Hn \Hn+1

is an ideal of Hn so K(Hn) ∩ Hn+1 = ∅. If we had pn+1 = pn + pn+1, we

would have pn+1 ∈ K(Hn). �

We conclude by listing some open questions. In [9, Corollary 5] it was

shown that if G is a countable discrete group, then Martin’s Axiom implies

that there is an idempotent in p ∈ G∗ which is minimal and ≤L-maximal.

(That is, there does not exist q such that p <L q.) In particular, p is minimal

and maximal with respect to <.

Questions 5.5. (1) Is there a strictly decreasing chain 〈qσ〉σ<ω1 of idem-

potents in βN?

(2) Can one show in ZFC that there is a minimal idempotent q in βN
which is also maximal?

(3) Can it be shown in ZFC that maximal idempotents in βN exist?

(4) Are all semigroups of the form Cq, where q ∈ {2n : n ∈ N}∗, isomor-

phic?
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