
1

This paper was published in Scientiae Mathematicae Japonicae 76 (2013), 195-207. To the
best of my knowledge this is the final version as it was submitted to the publisher. –NH

On the Size of Minimal Hales-Jewett Sets

Neil HINDMAN1 and Henry JORDAN2

August 26, 2013

Abstract. A Hales-Jewett set is a set of words of a given length on a specified alpha-
bet with the property that whenever it is 2-colored, there must be a monochromatic
combinatorial line. We show that any Hales-Jewett set consisting of length 4 words
on the alphabet {1, 2, 3} must have at least 25 members and produce an example of a
minimal Hales-Jewett set with 37 members.

1 Introduction. The Hales-Jewett Theorem is one of the fundamental results of Ramsey
Theory. In order to describe it, we introduce some terminology. An alphabet is simply a
set, and a word over the alphabet A is a finite sequence of members of A. A member of A
is said to occur in the word w provided it is one of the terms of the sequence. A variable
word over A is a word over the alphabet A ∪ {v} in which v occurs, where v is a variable
which is not an element of A. Given a variable word w = w(v) and a ∈ A, w(a) is the
word obtained by replacing each occurrence of v by a. For example, if A = {1, 2, 3, 4}
and w(v) = 〈2, 3, v, 1, 4, v, v, 2〉, then w(2) = 〈2, 3, 2, 1, 4, 2, 2, 2〉. We write N for the set of
positive integers.

Theorem 1.1 (Hales-Jewett). Let A be a finite alphabet, let W be the set of words over
A, let r ∈ N, and let ψ : W → {0, 1, . . . , r − 1}. There exist a variable word w over A and
i ∈ {0, 1, . . . , r − 1} such that for all a ∈ A, ψ

(
w(a)

)
= i.

Proof. Hales and Jewett [4, Theorem 1]. Or see [3, Section 2.2, Theorem 3] or [5, Corollary
14.8].

The function ψ is commonly referred to as an r-coloring of W and the set {w(a) : a ∈ A}
on which ψ is constant is said to be monochromatic. Given k, t ∈ N, we let Ckt be the set of
length k words over the alphabet {1, 2, . . . , t}. A set L ⊆ Ckt is a combinatorial line if and
only if there is some variable word w over {1, 2, . . . , t} such that

L =
{
w(a) : a ∈ {1, 2, . . . , t}

}
.

Corollary 1.2. Let t, r ∈ N. There exists n ∈ N such that if Cnt is r-colored, then there is
a monochromatic combinatorial line.

2010 Mathematics Subject Classification. 05D10.
Key words and phrases. Hales-Jewett Theorem, Hales-Jewett set, minimal.

1This author acknowledges support received from the National Science Foundation (USA) via grant
DMS-0852512.

2Some of the results in this paper are from this author’s Ph.D. dissertation.



2 N. HINDMAN and H. JORDAN

Proof. If no such n exists, one may choose for each n, ψn : Cnt → {0, 1, . . . , r− 1} for which
there is no monochromatic combinatorial line. Let ψ =

⋃∞
n=1 ψn and pick by Theorem 1.1 a

variable word w over {1, 2, . . . , t} such that ψ is constant on L =
{
w(a) : a ∈ {1, 2, . . . , t}

}
.

Let n be the length of w. Then L is a monochromatic combinatorial line with respect to
the coloring ψn.

Many other results of Ramsey Theory assert the existence of some n ∈ N which guaran-
tees monochromatic structures for a given r-coloring. There has been widespread interest in
determining the smallest n which does the job. Several such numbers have been found for
results related to van der Waerden’s Theorem and Ramsey’s Theorem. (See [3].) Further,
Shelah’s proof [7] that the number n guaranteed by Corollary 1.2 is a primitive recursive
function of |A| and r created substantial interest. It is therefore perhaps surprising that it
was only recently shown by Hindman and Tressler in [6] that for |A| = 3 and r = 2, n = 4
is as guaranteed by Corollary 1.2.

The main result of [6] established that if the set C4
3 is 2-colored, there is a monochromatic

combinatorial line contained in C4
3 . We investigate in this paper how small a set can be

and have this property. While the notion in the following definition can be made more
general, we restrict it to subsets of C4

3 as well as to 2-colorings here because that is what
we are mainly concerned with in this paper. (We shall briefly discuss extensions to higher
dimensions at the end of the paper.) And, since we are concerned with words over the
alphabet {1, 2, 3}, we write the members of C4

3 in the form 1323 rather than 〈1, 3, 2, 3〉.

Definition 1.3. A subset A of C4
3 is a Hales-Jewett set if and only if whenever A is 2-

colored, there must exist a combinatorial line. It is a minimal Hales-Jewett set if and only
if it does not properly contain another Hales-Jewett set.

An analogous situation holds with respect to van der Waerden’s Theorem. Chvátal [1]
showed that if the set {1, 2, ..., 35} is 2-colored, there must be a monochromatic length four
arithmetic progression, and that this is not true for the set {1, 2, ..., 34}. In [2], Graham
showed that the set

{1, 4, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 34, 37}

(which has 27 members) is 2-colored, it must contain a monochromatic length 4 arithmetic
progression. We are grateful to the referee for pointing out that the corresponding situation
does not apply to Ramsey’s Theorem itself as shown by the following.

Theorem 1.4. Let k, r ∈ N and let n be the least positive integer with the property that
whenever Kn, the complete graph on {1, 2, . . . , n}, is r-colored, there must be a monochro-
matic copy of Kk. If one edge is removed from Kn, the resulting graph can be r-colored with
no monochromatic copy of Kk.

Proof. Let G be the graph consisting of Kn with the edge {n − 1, n} removed. Let ψ :
Kn−1 → {1, 2, . . . , r} be an r-coloring with no monochromatic copy of Kk. Define ϕ : G→
{1, 2, . . . , r} as follows for the edge {a, b} of G, where a < b. If b < n, ϕ({a, b}) = ψ({a, b}).
If b = n, ϕ({a, b}) = ψ({a, n− 1}).

In Section 2 of this paper we produce a minimal Hales-Jewett set with 37 members. In
Section 3 we analyze the structure of the set of words which lie on a combinatorial line with
one of 1111, 2222, or 3333. In Section 4, we show that any minimal Hales-Jewett set must
have at least 25 members.
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2 A minimal Hales-Jewett set. To find minimal Hales-Jewett sets, we utilized a com-
puter program, which would take as input a list of length 4 words over the alphabet {1, 2, 3}
and find a line free 2-coloring, if one exists. It would assign the first word on the list to color
0. When no new assignments were forced (as was always true after the first assignment) it
would find the first unassigned word and assign it to color 0. After each new assignment,
it would then see first whether any monochromatic combinatorial lines had been formed.
If so, it would find the last free assignment, erase all assignments that resulted from that
free assignment, and assign that word to color 1. After checking for monochromatic lines,
it then checked whether any two words from a combinatorial line were the same color, and
if the third word from the line was in the set, would assign it to the opposite color. If all
words were colored with no monochromatic line, the program announced that it had found
a coloring and printed it. If a monochromatic line was found where the first word was the
last free assignment, it announced that no line free colorings exist.

The cases listed in the proof of the following theorem were produced by the algorithm
described above. The reader need not trust our computer, however, as it is routine to verify
that one of these cases must hold. And the fact that any given case forces a monochromatic
line can be routinely established by hand in about fifteen minutes.

It should be noted that the algorithm is very sensitive to the order of the elements. For
example, if the word 3333 is moved to the end of the list, the number of cases needed to
establish that there are no line free colorings goes from 58 to 137. After we have proved the
following theorem, we will discuss how the particular minimal Hales-Jewett set was found.

Theorem 2.1. There is a minimal Hales-Jewett set with 37 members.

Proof. Let A = {1111, 2222, 3333, 1222, 1121, 1122, 2111, 1333, 1113, 1313, 2122, 1133,
1131, 1223, 1323, 2223, 2212, 2232, 3313, 3323, 3133, 2121, 2323, 2211, 2233, 3131, 3322,
2131, 2133, 3122, 1123, 2213, 2333, 3111, 3222, 2123 , 2132}.

Suppose we have ϕ : A → {0, 1} with respect to which there are no monochromatic
combinatorial lines. We may assume without loss of generality that ϕ(1111) = 0. Then one
of the 58 cases listed in Table 1 must hold, where, for example, case 3 is the event that 1111,
2222, 1222, and 1113 are assigned to color 0, while 1121 and 1122 are assigned to color 1.

As we mentioned before, it is routine to verify that each case results in a monochromatic
line. We illustrate the process by verifying that case 49 yields a monochromatic line.
We have that ϕ(1111) = ϕ(1222) = ϕ(1122) = ϕ(1113) = 0 and ϕ(2222) = ϕ(3333) =
ϕ(1121) = 1.

ϕ(1222) = ϕ(1111) = 0 so ϕ(1333) = 1;
ϕ(3333) = ϕ(1333) = 1 so ϕ(2333) = 0;
ϕ(1122) = ϕ(1111) = 0 so ϕ(1133) = 1;
ϕ(1133) = ϕ(3333) = 1 so ϕ(2233) = 0;
ϕ(2233) = ϕ(2333) = 0 so ϕ(2133) = 1;
ϕ(2133) = ϕ(1133) = 1 so ϕ(3133) = 0;
ϕ(3133) = ϕ(1111) = 0 so ϕ(2122) = 1;
ϕ(2122) = ϕ(2133) = 1 so ϕ(2111) = 0;
ϕ(1113) = ϕ(3133) = 0 so ϕ(2123) = 1;
ϕ(2123) = ϕ(2122) = 1 so ϕ(2121) = 0;
ϕ(2121) = ϕ(1111) = 0 so ϕ(3131) = 1;
ϕ(2121) = ϕ(2111) = 0 so ϕ(2131) = 1;
ϕ(2131) = ϕ(2133) = 1 so ϕ(2132) = 0;
ϕ(2131) = ϕ(3131) = 1 so ϕ(1131) = 0.

But then ϕ(3133) = ϕ(2132) = ϕ(1131) = 0, a contradiction.
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Case
No. 1111 2222 3333 1222 1121 1122 2111 1333 1113 1313 2122
1 0 0 0 0
2 0 0 0 1 0
3 0 0 0 1 1 0
4 0 0 0 1 1 1
5 0 0 1 0 0
6 0 0 1 0 1 0 0
7 0 0 1 0 1 0 1 0
8 0 0 1 0 1 0 1 1
9 0 0 1 0 1 1 0 0
10 0 0 1 0 1 1 0 1 0
11 0 0 1 0 1 1 0 1 1
12 0 0 1 0 1 1 1
13 0 0 1 1 0 0
14 0 0 1 1 0 1 0
15 0 0 1 1 0 1 1
16 0 0 1 1 1 0 0
17 0 0 1 1 1 0 1
18 0 0 1 1 1 1 0 0
19 0 0 1 1 1 1 0 1
20 0 0 1 1 1 1 1
21 0 1 0 0 0 0
22 0 1 0 0 0 1 0
23 0 1 0 0 0 1 1
24 0 1 0 0 1 0 0 0 0
25 0 1 0 0 1 0 0 0 1
26 0 1 0 0 1 0 0 1
27 0 1 0 0 1 0 1 0 0
28 0 1 0 0 1 0 1 0 1
29 0 1 0 0 1 0 1 1
30 0 1 0 0 1 1 0 0 0
31 0 1 0 0 1 1 0 0 1
32 0 1 0 0 1 1 0 1
33 0 1 0 0 1 1 1 0 0
34 0 1 0 0 1 1 1 0 1
35 0 1 0 0 1 1 1 1
36 0 1 0 1 0 0 0 0
37 0 1 0 1 0 0 0 1 0
38 0 1 0 1 0 0 0 1 1
39 0 1 0 1 0 0 1 0
40 0 1 0 1 0 0 1 1

Table 1
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Case
No. 1111 2222 3333 1222 1121 1122 2111 1333 1113 1313 2122
41 0 1 0 1 0 1
42 0 1 0 1 1 0 0 0
43 0 1 0 1 1 0 0 1
44 0 1 0 1 1 0 1 0
45 0 1 0 1 1 0 1 1
46 0 1 0 1 1 1
47 0 1 1 0 0 0
48 0 1 1 0 0 1
49 0 1 1 0 1 0 0
50 0 1 1 0 1 0 1
51 0 1 1 0 1 1
52 0 1 1 1 0 0 0 0 0
53 0 1 1 1 0 0 0 0 1
54 0 1 1 1 0 0 0 1
55 0 1 1 1 0 0 1
56 0 1 1 1 0 1
57 0 1 1 1 1 0
58 0 1 1 1 1 1

Table 1 – Continued

Finding a minimal Hales-Jewett set (when armed with the program described at the start
of this section) is routine. We knew by [6] that C4

3 is a Hales-Jewett set. One may delete
one element. If the result is still a Hales-Jewett set one may take that new Hales-Jewett set
and delete one element. If the result is not a Hales-Jewett set, restore the deleted element
and delete another element. Eventually, one arrives at a Hales-Jewett set with the property
that when any of its elements is deleted, there is a line free coloring, so the resulting set
is a minimal Hales-Jewett set. Using this process we arrived at the following 44 element
minimal Hales-Jewett set. B = {1111, 2222, 3333, 1222, 1112, 1121, 1122, 2111, 1211, 1333,
1113, 1313, 1133, 1131, 1223, 1233, 1323, 2223, 2212, 2232, 2122, 3332, 3313, 3323, 3133,
3233, 2112, 2121, 2323, 2211, 2233, 3113, 3223, 3131, 3322, 2131, 2133, 3112, 3122, 1123,
2213, 2333, 3111, 3222}.

Call two subsets C and D of C4
3 neighbors provided |C \D| = |D \C| = 1. We checked

all 1,628 neighbors of B. Of these, 7 were also Hales-Jewett sets. One of these neighbors,
namely (B \ {3223}) ∪ {2123} had itself several neighbors (all of which added 2132) that
could then be reduced to the set A used in the proof of Theorem 2.1. None of the neighbors
of A is a Hales-Jewett set.

3 The diagonal set. In this section, we analyze the structure of a subset of C4
3 which will

help us quickly determine whether specified 2-colorings have monochromatic combinatorial
lines.

Definition 3.1. The diagonal of C4
3 is {1111, 2222, 3333}. The diagonal set , D4

3, is the set
of words in C4

3 which lie on a combinatorial line with a member of the diagonal.

Notice that a word w is in the diagonal set if and only if at most two letters occur in w.
Our analysis of lines involving members of the diagonal set is based on Table 2, in which
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the members of the diagonal appear in each 3 × 3 matrix, and each other member of D4
3

occurs once. Given ∅ 6= X ⊆ {2, 3, 4}, row i of τX is the combinatorial line generated by
the variable word w(v) = a1a2a3a4 and column i is the combinatorial line generated by the
variable word u(v) = b1b2b3b4 where

aj =

{
v if j ∈ X
i if j /∈ X and bj =

{
i if j ∈ X
v if j /∈ X .

We denote by τX(i, j) the entry in row i and column j of array τX .

τ{2}
1111 1211 1311
2122 2222 2322
3133 3233 3333

τ{3}
1111 1121 1131
2212 2222 2232
3313 3323 3333

τ{4}
1111 1112 1113
2221 2222 2223
3331 3332 3333

τ{2,3}
1111 1221 1331
2112 2222 2332
3113 3223 3333

τ{2,4}
1111 1212 1313
2121 2222 2323
3131 3232 3333

τ{3,4}
1111 1122 1133
2211 2222 2233
3311 3322 3333

τ{2,3,4}
1111 1222 1333
2111 2222 2333
3111 3222 3333

Table 2

Lemma 3.2. If L is a combinatorial line contained in D4
3, then one of the following state-

ments holds.

(a) L = {1111, 2222, 3333}.

(b) There exists nonempty X ⊆ {2, 3, 4} such that the elements of L form a row of τX .

(c) There exists nonempty X ⊆ {2, 3, 4} such that the elements of L form a column of
τX .

Proof. Pick a variable word w(v) such that L = {w(1), w(2), w(3)} and pick a1, a2, a3, a4 ∈
{1, 2, 3, v} such that w(v) = a1a2a3a4. Since L ⊆ D4

3, at most one of 1, 2, and 3 occur
in w(v). If w(v) = vvvv, then conclusion (a) holds, so assume that we have a unique
k ∈ {1, 2, 3} which occurs in w(v).

Assume first that a1 = k and let X = {i ∈ {2, 3, 4} : ai = v}. Then L is row k of τX .
Now assume that a1 = v and let X = {i ∈ {2, 3, 4} : ai = k}. Then L is column k of

τX .

Lemma 3.3. If L is a combinatorial line in C4
3 , L ∩D4

3 6= ∅, and L \D4
3 6= ∅, then either

(a) there exist ∅ 6= X ( Y ⊆ {2, 3, 4} and i 6= j in {1, 2, 3} such that L ∩ D4
3 =

{τX(i, j), τY (i, j)} or

(b) there exist disjoint nonempty subsets X and Y of {2, 3, 4} and i 6= j in {1, 2, 3} such
that L ∩D4

3 = {τX(i, j), τY (j, i)}.
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Proof. Pick a variable word w(v) such that L = {w(1), w(2), w(3)} and pick a1, a2, a3, a4 ∈
{1, 2, 3, v} such that w(v) = a1a2a3a4. Since L∩D4

3 6= ∅, at most two of 1, 2, and 3 occur in
w(v). Since L \D4

3 6= ∅, at least two of 1, 2, and 3 occur in w(v). Let Z = {t ∈ {1, 2, 3, 4} :
at = v}.

Assume first that 1 /∈ Z. Let i = a1 and let j be the other member of {1, 2, 3} occurring
in w(v). Let X = {t ∈ {2, 3, 4} : at = j} and let Y = X ∪ Z. Then w(i) = τX(i, j) and
w(j) = τY (i, j).

Now assume that 1 ∈ Z. Let i and j be the members of {1, 2, 3} that occur in w(v).
Let Y = {t ∈ {2, 3, 4} : at = i} and let X = {t ∈ {2, 3, 4} : at = j}. Then w(i) = τX(i, j)
and w(j) = τY (j, i).

The converses of Lemmas 3.2 and 3.3 hold as well. That is, given any nonempty X ⊆
{2, 3, 4} any row or column of τX forms a line contained in D4

3; given ∅ 6= X ( Y ⊆ {2, 3, 4}
and i 6= j in {1, 2, 3}, τX(i, j) and τY (i, j) lie on a line L with L\D4

3 6= ∅; and given disjoint
nonempty subsets X and Y of {2, 3, 4} and i 6= j in {1, 2, 3}, τX(i, j) and τY (j, i), lie on a
line L with L \D4

3 6= ∅. We shall not need these assertions so we will not prove them.

4 A lower bound. We show in this section that any Hales-Jewett set (contained in C4
3 )

must have at least 25 members. We do this by introducing a partition of C4
3 with the

property that any Hales-Jewett set must contain a specified number from each cell of the
partition. The first result in this direction is quite simple. (We did, however, find it quite
surprising that one could get a non-Hales-Jewett set by deleting one member from C4

3 .)

Lemma 4.1. Any Hales-Jewett set must contain {1111, 2222, 3333}.

Proof. Let A = C4
3 \ {1111}, let B = {1112, 1113, 1121, 1123, 1131, 1132, 1211, 1213, 1222,

1231, 1311, 1312, 1321, 1333, 2111, 2113, 2122, 2131, 2212, 2221, 2222, 2233, 2311, 2323,
2332, 3111, 3112, 3121, 3133, 3211, 3223, 3232, 3313, 3322, 3331, 3333}, and let C = A \B.

Table 3 shows the members of B underlined. A glance at the table together with
Lemma 3.2 establishes that there are no monochromatic lines contained in D4

3. One can
also routinely verify that there are no monochromatic lines meeting D4

3. Using Lemma 3.3
one quickly sees, for example, that one needs to verify that the line {1211, 2212 , 3213} is
not contained in B and one does not need to worry about the line {1211, 1212 , 1213}.

τ{2}
1211 1311

2122 2222 2322
3133 3233 3333

τ{3}
1121 1131

2212 2222 2232
3313 3323 3333

τ{4}
1112 1113

2221 2222 2223
3331 3332 3333

τ{2,3}
1221 1331

2112 2222 2332
3113 3223 3333

τ{2,4}
1212 1313

2121 2222 2323
3131 3232 3333

τ{3,4}
1122 1133

2211 2222 2233
3311 3322 3333

τ{2,3,4}
1222 1333

2111 2222 2333
3111 3222 3333

Table 3

That leaves the lines contained in C4
3 \ D4

3. We do not see a particulary quick way to
check these. They are generated by the variable words which have exactly one occurrence
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each of 1, 2, 3, and v. There are 24 of these, and as far as we can see, one simply has to
check them all. One then has verified that neither B nor C contains a combinatorial line, so
A is not a Hales-Jewett set. This shows that 1111 must be a member of any Hales-Jewett
set. By permuting 1, 2, and 3, we also have that 2222 and 3333 must be members of any
Hales-Jewett set.

In the proof above, we have used the following obvious fact.

Remark 4.2. Let σ be a permutation of {1, 2, 3} and let τ be a permutation of {1, 2, 3, 4}.
Define σ∗ : C4

3 → C4
3 and τ� : C4

3 → C4
3 as follows. Given w = 〈a1, a2, a3, a4〉 ∈ C4

3 ,
σ∗(w) = 〈σ(a1), σ(a2), σ(a3), σ(a4)〉 and τ�(w) = 〈aτ(1), aτ(2), aτ(3), aτ(4)〉. Then σ∗ and
τ� are permutations of C4

3 that take combinatorial lines to combinatorial lines. Thus if
A ⊆ C4

3 , the following statements are equivalent.

(1) A is a Hales-Jewett set.

(2) σ∗[A] is a Hales-Jewett set.

(3) τ�[A] is a Hales-Jewett set.

Lemma 4.3. Let A = {1123, 1132, 1213, 1312, 1231, 1321}, let B = {2213, 2231, 2123,
2321, 2132, 2312}, and let C = {3312, 3321, 3132, 3231, 3123, 3213}. Any Hales-Jewett
set must include two members of A ∪B ∪ C.

Proof. We show that any Hales-Jewett set must include one member of A ∪ B. If σ is the
permutation of {1, 2, 3} which interchanges 1 and 3, then σ∗[A] = C and σ∗[B] = B so
by Remark 4.2 it will follow that also any Hales-Jewett set must include one member of
B ∪C. If ν is the permutation of {1, 2, 3} which interchanges 2 and 3, then ν∗[A] = A and
ν∗[B] = C so by Remark 4.2 it will follow that also any Hales-Jewett set must include one
member of A ∪ C and consequently, that any Hales-Jewett set must include two members
of A ∪B ∪ C.

Let D = {1111, 1112, 1121, 1122, 1211, 1212, 1221, 1233, 1323, 1332, 1333, 2111, 2113,
2131, 2133, 2223, 2232, 2233, 2311, 2313, 2322, 2323, 2331, 2332, 3112, 3121, 3123, 3132,
3133, 3211, 3213, 3222, 3223, 3231, 3232, 3312, 3313, 3321, 3322, 3331, 3333} and let
E = C4

3 \ (A ∪B ∪D). Then C4
3 \ (A ∪B) = D ∪ E. We need to show that neither D nor

E contains a combinatorial line.

Table 4 shows the members of D underlined. A glance at the table together with Lemma
3.2 establishes that there are no monochromatic lines contained in D4

3.

Further, this table along with Lemma 3.3 helps one easily establish that there are no
monochromatic lines with two members of D4

3. For example τ{2}(3, 2) = 3233 ∈ E and
τ{2,3}(3, 2) = 3223 ∈ D, so one need not worry about 3213. And τ{2}(1, 2) = 1211 ∈ E and
τ{2,3}(1, 2) = 1221 ∈ D so one checks 1231 and notes that it is a member of A so is not
colored at all.

One observes easily that there are no lines contained in E \ D4
3 = {1223, 1232, 1322,

3122, 3212, 3221}, and with somewhat more effort that there are no lines contained in
D \ D4

3 = {3312, 3321, 3132, 3231, 3123, 3213, 2113, 2131, 2311, 3112, 3121, 3211, 1233,
1323, 1332, 2133, 2313, 2331}.

Lemma 4.4. Let A = {2113, 2131, 2311, 3112, 3121, 3211}, let B = {1223, 1232, 1322,
3122, 3212, 3221}, and let C = {1233, 1323, 1332, 2133, 2313, 2331}. Any Hales-Jewett
set must include two members of A ∪B ∪ C.
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τ{2}
1111 1211 1311
2122 2222 2322
3133 3233 3333

τ{3}
1111 1121 1131
2212 2222 2232
3313 3323 3333

τ{4}
1111 1112 1113
2221 2222 2223
3331 3332 3333

τ{2,3}
1111 1221 1331
2112 2222 2332
3113 3223 3333

τ{2,4}
1111 1212 1313
2121 2222 2323
3131 3232 3333

τ{3,4}
1111 1122 1133
2211 2222 2233
3311 3322 3333

τ{2,3,4}
1111 1222 1333
2111 2222 2333
3111 3222 3333

Table 4

Proof. We show that any Hales-Jewett set must include one member of B ∪ C. If σ is
the permutation of {1, 2, 3} which sends 1 to 3, 3 to 2, and 2 to 1, then σ∗[B] = A and
σ∗[C] = B so by Remark 4.2 it will follow that also any Hales-Jewett set must include one
member of A∪B. Applying σ∗ one more time it will follow that any Hales-Jewett set must
include one member of A ∪ C, and consequently, that any Hales-Jewett set must include
two members of A ∪B ∪ C.

Let D = {1111, 1112, 1121, 1123, 1132, 1133, 1211, 1213, 1231, 1312, 1313, 1321, 1331,
1333, 2111, 2113, 2123, 2131, 2132, 2213, 2222, 2223, 2231, 2232, 2311, 2312, 2321, 2322,
3112, 3113, 3121, 3131, 3133, 3211, 3222, 3223, 3232, 3311, 3313, 3322, 3331} and let
E = C4

3 \ (B ∪ C ∪D). Then C4
3 \ (B ∪ C) = D ∪ E. We need to show that neither D nor

E contains a combinatorial line.
Table 5 shows the members of D underlined. A glance at the table together with Lemma

3.2 establishes that there are no monochromatic lines contained in D4
3.

τ{2}
1111 1211 1311
2122 2222 2322
3133 3233 3333

τ{3}
1111 1121 1131
2212 2222 2232
3313 3323 3333

τ{4}
1111 1112 1113
2221 2222 2223
3331 3332 3333

τ{2,3}
1111 1221 1331
2112 2222 2332
3113 3223 3333

τ{2,4}
1111 1212 1313
2121 2222 2323
3131 3232 3333

τ{3,4}
1111 1122 1133
2211 2222 2233
3311 3322 3333

τ{2,3,4}
1111 1222 1333
2111 2222 2333
3111 3222 3333

Table 5

As in the proof of Lemma 4.3, one can use Lemma 3.3 to show that there are no
monochromatic lines intersecting D4

3, and check individually that there are no monochro-
matic lines missing D4

3.
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Lemma 4.5. Let A = {1122, 1212, 1221, 2112, 2121, 2211}, let B = {1133, 1313, 1331,
3113, 3131, 3311}, and let C = {2233, 2323, 2332, 3223, 3232, 3322}. Any Hales-Jewett
set must include two members of A, two members of B, and two members of C.

Proof. We shall show that for each w ∈ A, there is a 2-coloring of C4
3 \ (A \ {w}) =

(C4
3 \ A) ∪ {w} with no monochromatic lines. If σ is the permutation of {1, 2, 3} which

interchanges 2 and 3 and u ∈ B, then σ∗[A \ {σ(u)}] = B \ {u}. If ν is the permutation
of {1, 2, 3} which interchanges 1 and 3 and u ∈ C, then σ∗[A \ {ν(u)}] = C \ {u}. So the
conclusion will follow from Remark 4.2.

We now claim that it suffices to show that there is a 2-coloring of C4
3 \ {1212, 1221,

2112, 2121, 2211} with no monochromatic line. (That is, it suffices to establish the claim
above with w = 1122.) To see this suppose we have done so, and let u be another member
of A. Then there is a permutation τ of {1, 2, 3, 4} such that τ�[A \ {1122}] = A \ {u}. (For
example, if u = 2112, let τ be the permutation of {1, 2, 3, 4} which interchanges 1 and 3.)

Let D = {1111, 1113, 1122, 1131, 1211, 1223, 1232, 1233, 1313, 1322, 1323, 1331,
1332, 2111, 2123, 2132, 2133, 2212, 2213, 2221, 2231, 2312, 2321, 2322, 2333, 3113, 3122,
3123, 3131, 3132, 3212, 3221, 3222, 3233, 3311, 3312, 3321, 3323, 3332, 3333} and let
E = (C4

3 \ {1212, 1221, 2112, 2121, 2211}) ∪ D. Then C4
3 \ {1212, 1221, 2112, 2121,

2211} = D∪E. Using Table 6 in which the members of D are underlined, one shows in the
same fashion as in the previous few lemmas that neither D nor E contains a line.

τ{2}
1111 1211 1311
2122 2222 2322
3133 3233 3333

τ{3}
1111 1121 1131
2212 2222 2232
3313 3323 3333

τ{4}
1111 1112 1113
2221 2222 2223
3331 3332 3333

τ{2,3}
1111 1331

2222 2332
3113 3223 3333

τ{2,4}
1111 1313

2222 2323
3131 3232 3333

τ{3,4}
1111 1122 1133

2222 2233
3311 3322 3333

τ{2,3,4}
1111 1222 1333
2111 2222 2333
3111 3222 3333

Table 6

We have saved the messiest lemma for last. (It is also the most powerful, providing the
largest number of words that must be in any Hales-Jewett set.) In this proof we reduce to
finding colorings of three different sets, rather than the one we have been able to get by
with up to this point.

Lemma 4.6. Let A = {1112, 1113, 1121, 1131, 1211, 1311, 2111, 3111}, let B = {2221,
2223, 2212, 2232, 2122, 2322, 1222, 3222}, and let C = {3331, 3332, 3313, 3323, 3133,
3233, 1333, 2333}. Any Hales-Jewett set must include four members of A, four members
of B, and four members of C.

Proof. As before, using permutations of {1, 2, 3} that interchange two members, we see
easily that it suffices to establish that any Hales-Jewett set must include four members of
A. For this it in turn suffices to show that if K is any three element subset of A, then there
is a 2-coloring of (C4

3 \ A) ∪K with no monochromatic lines. Unfortunately, there are 56
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choices for K. We claim that it suffices to consider three possibilities, namely K1 = {1112,
1113, 1121}, K2 = {1112, 1121, 1211}, and K3 = {1112, 1121, 1311}. To this end, let σ
be the permutation of {1, 2, 3} which interchanges 2 and 3. We shall show that if K is any
three element subset of A, then there exist i ∈ {1, 2, 3} and a permutation τ of {1, 2, 3, 4}
such that either K = τ�[Ki] or K = (σ∗ ◦ τ�)[Ki]. By Remark 4.2, this will suffice.

Let K = {a1a2a3a4, b1b2b3b4, c1c2c3c4} be a three element subset of A. We may presume
that the elements of K are listed in lexicographic order, that is, in the same order as they
appear in the listing of the elements of A above. There exist k, l,m ∈ {1, 2, 3, 4} such that
k ≥ l ≥ m, ak 6= 1, bl 6= 1, and cm 6= 1. Further, either k > l or l > m. We consider six
cases.

Case 1. k = l > m. Then ak = 2 and bk = 3. Let τ be a permutation of {1, 2, 3, 4} such
that τ(k) = 4 and τ(m) = 3. If cm = 2, then K = τ�[K1]. If cm = 3, then K = (σ∗◦τ�)[K1].

Case 2. k > l = m. Then bm = 2 and cm = 3. Let τ be a permutation of {1, 2, 3, 4} such
that τ(k) = 3 and τ(m) = 4. If ak = 2, then K = τ�[K1]. If ak = 3, then K = (σ∗◦τ�)[K1].

Case 3. k > l > m and ak = bl = cm. Let τ be a permutation of {1, 2, 3, 4} such
that τ(k) = 4, τ(l) = 3, and τ(m) = 2. If ak = 2, then K = τ�[K2]. If ak = 3, then
K = (σ∗ ◦ τ�)[K2].

Case 4. k > l > m and ak = bl 6= cm. Let τ be a permutation of {1, 2, 3, 4} such
that τ(k) = 4, τ(l) = 3, and τ(m) = 2. If ak = 2, then K = τ�[K3]. If ak = 3, then
K = (σ∗ ◦ τ�)[K3].

Case 5. k > l > m and ak 6= bl = cm. Let τ be a permutation of {1, 2, 3, 4} such
that τ(k) = 2, τ(l) = 4, and τ(m) = 3. If ak = 3, then K = τ�[K3]. If ak = 2, then
K = (σ∗ ◦ τ�)[K3].

Case 6. k > l > m and ak = cm 6= bl. Let τ be a permutation of {1, 2, 3, 4} such
that τ(k) = 4, τ(l) = 2, and τ(m) = 3. If ak = 2, then K = τ�[K3]. If ak = 3, then
K = (σ∗ ◦ τ�)[K3].

Now we describe a 2-coloring of (C4
3 \ A) ∪ K1 with no monochromatic lines. Let

D = {1111, 1113, 1122, 1212, 1221, 1223, 1232, 1233, 1322, 1323, 1332, 2112, 2121, 2123,
2132, 2133, 2211, 2213, 2221, 2232, 2312, 2313, 2322, 2331, 2333, 3122, 3123, 3132, 3212,
3213, 3222, 3231, 3233, 3312, 3321, 3323, 3332, 3333} and let E = C4

3 \
(
(A \ K1) ∪ D

)
.

Using Table 7 which has members of D underlined, one establishes as before that there are
no lines contained in D or E.

τ{2}
1111
2122 2222 2322
3133 3233 3333

τ{3}
1111 1121
2212 2222 2232
3313 3323 3333

τ{4}
1111 1112 1113
2221 2222 2223
3331 3332 3333

τ{2,3}
1111 1221 1331
2112 2222 2332
3113 3223 3333

τ{2,4}
1111 1212 1313
2121 2222 2323
3131 3232 3333

τ{3,4}
1111 1122 1133
2211 2222 2233
3311 3322 3333

τ{2,3,4}
1111 1222 1333

2222 2333
3222 3333

Table 7

Next we describe a 2-coloring of (C4
3 \ A) ∪ K2 with no monochromatic lines. Let



12 N. HINDMAN and H. JORDAN

D = {1111, 1112, 1121, 1123, 1132, 1133, 1211, 1213, 1222, 1223, 1231, 1232, 1312, 1313,
1321, 1322, 1331, 2113, 2123, 2131, 2132, 2213, 2222, 2231, 2233, 2311, 2312, 2321, 2323,
2332, 2333, 3112, 3113, 3121, 3122, 3131, 3133, 3211, 3212, 3221, 3223, 3232, 3311, 3313,
3322, 3331} and let E = C4

3 \
(
(A \ K2) ∪ D

)
. Using Table 8 which has members of D

underlined, one establishes as before that there are no lines contained in D or E.

τ{2}
1111 1211
2122 2222 2322
3133 3233 3333

τ{3}
1111 1121
2212 2222 2232
3313 3323 3333

τ{4}
1111 1112
2221 2222 2223
3331 3332 3333

τ{2,3}
1111 1221 1331
2112 2222 2332
3113 3223 3333

τ{2,4}
1111 1212 1313
2121 2222 2323
3131 3232 3333

τ{3,4}
1111 1122 1133
2211 2222 2233
3311 3322 3333

τ{2,3,4}
1111 1222 1333

2222 2333
3222 3333

Table 8

Finally we describe a 2-coloring of (C4
3 \ A) ∪ K3 with no monochromatic lines. Let

D = {1111, 1122, 1212, 1221, 1223, 1232, 1233, 1311, 1322, 1323, 1332, 2112, 2121, 2122,
2133, 2211, 2213, 2223, 2231, 2232, 2312, 2313, 2321, 2331, 2333, 3123, 3132, 3212, 3213,
3221, 3222, 3231, 3233, 3312, 3321, 3323, 3332, 3333} and let E = C4

3 \
(
(A \ K3) ∪ D

)
.

Using Table 9 which has members of D underlined, one establishes as before that there are
no lines contained in D or E.

τ{2}
1111 1311
2122 2222 2322
3133 3233 3333

τ{3}
1111 1121
2212 2222 2232
3313 3323 3333

τ{4}
1111 1112
2221 2222 2223
3331 3332 3333

τ{2,3}
1111 1221 1331
2112 2222 2332
3113 3223 3333

τ{2,4}
1111 1212 1313
2121 2222 2323
3131 3232 3333

τ{3,4}
1111 1122 1133
2211 2222 2233
3311 3322 3333

τ{2,3,4}
1111 1222 1333

2222 2333
3222 3333

Table 9

Theorem 4.7. Any Hales-Jewett set in C4
3 must contain at least 25 members.

Proof. The sets in the statements of Lemmas 4.1, 4.3, 4.4, 4.5, and 4.6 partition C4
3 and

establish that any Hales-Jewett set must contain at least 3 + 2 + 2 + 6 + 12 members.
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One can extend in the obvious way the definition of a Hales-Jewett set to higher di-
mensions. For k ≥ 4, let MHJ(k) be the smallest size of a Hales-Jewett set in Ck3 . One
has trivially that MHJ(k + 1) ≤ MHJ(k) because, if A ⊆ Ck3 is a Hales-Jewett set, so is
{a1a2 . . . ak1 : a1a2 . . . ak ∈ A}. Unfortunately, our proof of Theorem 4.7 does not extend
to higher dimensions, and we have only very trivial lower bounds for MHJ(k) when k > 4.
For example, the pigeon hole principle says that MHJ(k) ≥ 5. One can do slightly better
when one uses the fact that combinatorial lines are three element sets, any two of which
have only one member in common. But that only allows one to raise the minimum to
MHJ(k) ≥ 7 since, as is well known, if {1, 2, 3, 4, 5, 6, 7} is two colored one of the lines in
the Fano plane (

{
{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 5, 6}, {3, 4, 7}

}
) must be

monochromatic and this is not true for any set of fewer than 7 triples.

Problem 4.8. Find reasonable bounds for MHJ(k) valid for arbitrarily large k.
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