This paper was published in Scientiae Mathematicae Japonicae 76 (2013), 195-207. To the best of my knowledge this is the final version as it was submitted to the publisher. - NH

On the Size of Minimal Hales-Jewett Sets

Neil HINDMAN ${ }^{1}$ and Henry JORDAN ${ }^{2}$

August 26, 2013

Abstract

A Hales-Jewett set is a set of words of a given length on a specified alphabet with the property that whenever it is 2 -colored, there must be a monochromatic combinatorial line. We show that any Hales-Jewett set consisting of length 4 words on the alphabet $\{1,2,3\}$ must have at least 25 members and produce an example of a minimal Hales-Jewett set with 37 members.

1 Introduction. The Hales-Jewett Theorem is one of the fundamental results of Ramsey Theory. In order to describe it, we introduce some terminology. An alphabet is simply a set, and a word over the alphabet A is a finite sequence of members of A. A member of A is said to occur in the word w provided it is one of the terms of the sequence. A variable word over A is a word over the alphabet $A \cup\{v\}$ in which v occurs, where v is a variable which is not an element of A. Given a variable word $w=w(v)$ and $a \in A, w(a)$ is the word obtained by replacing each occurrence of v by a. For example, if $A=\{1,2,3,4\}$ and $w(v)=\langle 2,3, v, 1,4, v, v, 2\rangle$, then $w(2)=\langle 2,3,2,1,4,2,2,2\rangle$. We write \mathbb{N} for the set of positive integers.

Theorem 1.1 (Hales-Jewett). Let A be a finite alphabet, let W be the set of words over A, let $r \in \mathbb{N}$, and let $\psi: W \rightarrow\{0,1, \ldots, r-1\}$. There exist a variable word w over A and $i \in\{0,1, \ldots, r-1\}$ such that for all $a \in A, \psi(w(a))=i$.

Proof. Hales and Jewett [4, Theorem 1]. Or see [3, Section 2.2, Theorem 3] or [5, Corollary 14.8].

The function ψ is commonly referred to as an r-coloring of W and the set $\{w(a): a \in A\}$ on which ψ is constant is said to be monochromatic. Given $k, t \in \mathbb{N}$, we let C_{t}^{k} be the set of length k words over the alphabet $\{1,2, \ldots, t\}$. A set $L \subseteq C_{t}^{k}$ is a combinatorial line if and only if there is some variable word w over $\{1,2, \ldots, t\}$ such that

$$
L=\{w(a): a \in\{1,2, \ldots, t\}\} .
$$

Corollary 1.2. Let $t, r \in \mathbb{N}$. There exists $n \in \mathbb{N}$ such that if C_{t}^{n} is r-colored, then there is a monochromatic combinatorial line.

[^0]Proof. If no such n exists, one may choose for each $n, \psi_{n}: C_{t}^{n} \rightarrow\{0,1, \ldots, r-1\}$ for which there is no monochromatic combinatorial line. Let $\psi=\bigcup_{n=1}^{\infty} \psi_{n}$ and pick by Theorem 1.1 a variable word w over $\{1,2, \ldots, t\}$ such that ψ is constant on $L=\{w(a): a \in\{1,2, \ldots, t\}\}$. Let n be the length of w. Then L is a monochromatic combinatorial line with respect to the coloring ψ_{n}.

Many other results of Ramsey Theory assert the existence of some $n \in \mathbb{N}$ which guarantees monochromatic structures for a given r-coloring. There has been widespread interest in determining the smallest n which does the job. Several such numbers have been found for results related to van der Waerden's Theorem and Ramsey's Theorem. (See [3].) Further, Shelah's proof [7] that the number n guaranteed by Corollary 1.2 is a primitive recursive function of $|A|$ and r created substantial interest. It is therefore perhaps surprising that it was only recently shown by Hindman and Tressler in [6] that for $|A|=3$ and $r=2, n=4$ is as guaranteed by Corollary 1.2.

The main result of [6] established that if the set C_{3}^{4} is 2-colored, there is a monochromatic combinatorial line contained in C_{3}^{4}. We investigate in this paper how small a set can be and have this property. While the notion in the following definition can be made more general, we restrict it to subsets of C_{3}^{4} as well as to 2-colorings here because that is what we are mainly concerned with in this paper. (We shall briefly discuss extensions to higher dimensions at the end of the paper.) And, since we are concerned with words over the alphabet $\{1,2,3\}$, we write the members of C_{3}^{4} in the form 1323 rather than $\langle 1,3,2,3\rangle$.

Definition 1.3. A subset A of C_{3}^{4} is a Hales-Jewett set if and only if whenever A is 2 colored, there must exist a combinatorial line. It is a minimal Hales-Jewett set if and only if it does not properly contain another Hales-Jewett set.

An analogous situation holds with respect to van der Waerden's Theorem. Chvátal [1] showed that if the set $\{1,2, \ldots, 35\}$ is 2 -colored, there must be a monochromatic length four arithmetic progression, and that this is not true for the set $\{1,2, \ldots, 34\}$. In [2], Graham showed that the set

$$
\{1,4,7,8,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,34,37\}
$$

(which has 27 members) is 2-colored, it must contain a monochromatic length 4 arithmetic progression. We are grateful to the referee for pointing out that the corresponding situation does not apply to Ramsey's Theorem itself as shown by the following.

Theorem 1.4. Let $k, r \in \mathbb{N}$ and let n be the least positive integer with the property that whenever K_{n}, the complete graph on $\{1,2, \ldots, n\}$, is r-colored, there must be a monochromatic copy of K_{k}. If one edge is removed from K_{n}, the resulting graph can be r-colored with no monochromatic copy of K_{k}.

Proof. Let G be the graph consisting of K_{n} with the edge $\{n-1, n\}$ removed. Let ψ : $K_{n-1} \rightarrow\{1,2, \ldots, r\}$ be an r-coloring with no monochromatic copy of K_{k}. Define $\varphi: G \rightarrow$ $\{1,2, \ldots, r\}$ as follows for the edge $\{a, b\}$ of G, where $a<b$. If $b<n, \varphi(\{a, b\})=\psi(\{a, b\})$. If $b=n, \varphi(\{a, b\})=\psi(\{a, n-1\})$.

In Section 2 of this paper we produce a minimal Hales-Jewett set with 37 members. In Section 3 we analyze the structure of the set of words which lie on a combinatorial line with one of 1111 , 2222, or 3333 . In Section 4, we show that any minimal Hales-Jewett set must have at least 25 members.

2 A minimal Hales-Jewett set. To find minimal Hales-Jewett sets, we utilized a computer program, which would take as input a list of length 4 words over the alphabet $\{1,2,3\}$ and find a line free 2 -coloring, if one exists. It would assign the first word on the list to color 0 . When no new assignments were forced (as was always true after the first assignment) it would find the first unassigned word and assign it to color 0 . After each new assignment, it would then see first whether any monochromatic combinatorial lines had been formed. If so, it would find the last free assignment, erase all assignments that resulted from that free assignment, and assign that word to color 1. After checking for monochromatic lines, it then checked whether any two words from a combinatorial line were the same color, and if the third word from the line was in the set, would assign it to the opposite color. If all words were colored with no monochromatic line, the program announced that it had found a coloring and printed it. If a monochromatic line was found where the first word was the last free assignment, it announced that no line free colorings exist.

The cases listed in the proof of the following theorem were produced by the algorithm described above. The reader need not trust our computer, however, as it is routine to verify that one of these cases must hold. And the fact that any given case forces a monochromatic line can be routinely established by hand in about fifteen minutes.

It should be noted that the algorithm is very sensitive to the order of the elements. For example, if the word 3333 is moved to the end of the list, the number of cases needed to establish that there are no line free colorings goes from 58 to 137. After we have proved the following theorem, we will discuss how the particular minimal Hales-Jewett set was found.
Theorem 2.1. There is a minimal Hales-Jewett set with 37 members.
Proof. Let $A=\{1111,2222,3333,1222,1121,1122,2111,1333,1113,1313,2122,1133$, 1131, 1223, 1323, 2223, 2212, 2232, 3313, 3323, 3133, 2121, 2323, 2211, 2233, 3131, 3322, 2131, 2133, 3122, 1123, 2213, 2333, 3111, 3222, 2123, 2132\}.

Suppose we have $\varphi: A \rightarrow\{0,1\}$ with respect to which there are no monochromatic combinatorial lines. We may assume without loss of generality that $\varphi(1111)=0$. Then one of the 58 cases listed in Table 1 must hold, where, for example, case 3 is the event that 1111, 2222,1222 , and 1113 are assigned to color 0 , while 1121 and 1122 are assigned to color 1 .

As we mentioned before, it is routine to verify that each case results in a monochromatic line. We illustrate the process by verifying that case 49 yields a monochromatic line. We have that $\varphi(1111)=\varphi(1222)=\varphi(1122)=\varphi(1113)=0$ and $\varphi(2222)=\varphi(3333)=$ $\varphi(1121)=1$.

$$
\begin{aligned}
& \varphi(1222)=\varphi(1111)=0 \quad \text { so } \varphi(1333)=1 \text {; } \\
& \varphi(3333)=\varphi(1333)=1 \quad \text { so } \varphi(2333)=0 \text {; } \\
& \varphi(1122)=\varphi(1111)=0 \quad \text { so } \varphi(1133)=1 \text {; } \\
& \varphi(1133)=\varphi(3333)=1 \quad \text { so } \varphi(2233)=0 \text {; } \\
& \varphi(2233)=\varphi(2333)=0 \quad \text { so } \varphi(2133)=1 ; \\
& \varphi(2133)=\varphi(1133)=1 \quad \text { so } \varphi(3133)=0 ; \\
& \varphi(3133)=\varphi(1111)=0 \quad \text { so } \varphi(2122)=1 ; \\
& \varphi(2122)=\varphi(2133)=1 \quad \text { so } \varphi(2111)=0 ; \\
& \varphi(1113)=\varphi(3133)=0 \quad \text { so } \varphi(2123)=1 ; \\
& \varphi(2123)=\varphi(2122)=1 \quad \text { so } \varphi(2121)=0 ; \\
& \varphi(2121)=\varphi(1111)=0 \quad \text { so } \varphi(3131)=1 \text {; } \\
& \varphi(2121)=\varphi(2111)=0 \quad \text { so } \varphi(2131)=1 ; \\
& \varphi(2131)=\varphi(2133)=1 \quad \text { so } \varphi(2132)=0 \text {; } \\
& \varphi(2131)=\varphi(3131)=1 \quad \text { so } \varphi(1131)=0 .
\end{aligned}
$$

But then $\varphi(3133)=\varphi(2132)=\varphi(1131)=0$, a contradiction.

Case											
No.	1111	2222	3333	1222	1121	1122	2111	1333	1113	1313	2122
1	0	0		0	0						
2	0	0		0	1	0					
3	0	0		0	1	1			0		
4	0	0		0	1	1			1		
5	0	0		1	0	0					
6	0	0		1	0	1	0		0		
7	0	0		1	0	1	0		1	0	
8	0	0		1	0	1	0		1	1	
9	0	0		1	0	1	1	0	0		
10	0	0		1	0	1	1	0	1	0	
11	0	0		1	0	1	1	0	1	1	
12	0	0		1	0	1	1	1			
13	0	0		1	1	0	0				
14	0	0		1	1	0	1	0			
15	0	0		1	1	0	1	1			
16	0	0		1	1	1	0		0		
17	0	0		1	1	1	0		1		
18	0	0		1	1	1	1	0	0		
19	0	0		1	1	1	1	0	1		
20	0	0		1	1	1	1	1			
21	0	1	0	0	0	0					
22	0	1	0	0	0	1			0		
23	0	1	0	0	0	1			1		
24	0	1	0	0	1	0	0		0	0	
25	0	1	0	0	1	0	0		0	1	
26	0	1	0	0	1	0	0		1		
27	0	1	0	0	1	0	1		0	0	
28	0	1	0	0	1	0	1		0	1	
29	0	1	0	0	1	0	1		1		
30	0	1	0	0	1	1	0		0	0	
31	0	1	0	0	1	1	0		0	1	
32	0	1	0	0	1	1	0		1		
33	0	1	0	0	1	1	1		0	0	
34	0	1	0	0	1	1	1		0	1	
35	0	1	0	0	1	1	1		1		
36	0	1	0	1	0	0	0	0			
37	0	1	0	1	0	0	0	1		0	
38	0	1	0	1	0	0	0	1		1	
39	0	1	0	1	0	0	1			0	
40	0	1	0	1	0	0	1			1	

Table 1

Case											
No.	1111	2222	3333	1222	1121	1122	2111	1333	1113	1313	2122
41	0	1	0	1	0	1					
42	0	1	0	1	1	0	0		0		
43	0	1	0	1	1	0	0		1		
44	0	1	0	1	1	0	1		0		
45	0	1	0	1	1	0	1		1		
46	0	1	0	1	1	1					
47	0	1	1	0	0	0					
48	0	1	1	0	0	1					
49	0	1	1	0	1	0			0		
50	0	1	1	0	1	0			1		
51	0	1	1	0	1	1					
52	0	1	1	1	0	0	0	0			
53	0	1	1	1	0	0	0	0			
54	0	1	1	1	0	0	0	1			
55	0	1	1	1	0	0	1				
56	0	1	1	1	0	1					
57	0	1	1	1	1	0					
58	0	1	1	1	1	1					

Table 1 - Continued

Finding a minimal Hales-Jewett set (when armed with the program described at the start of this section) is routine. We knew by [6] that C_{3}^{4} is a Hales-Jewett set. One may delete one element. If the result is still a Hales-Jewett set one may take that new Hales-Jewett set and delete one element. If the result is not a Hales-Jewett set, restore the deleted element and delete another element. Eventually, one arrives at a Hales-Jewett set with the property that when any of its elements is deleted, there is a line free coloring, so the resulting set is a minimal Hales-Jewett set. Using this process we arrived at the following 44 element minimal Hales-Jewett set. $B=\{1111,2222,3333,1222,1112,1121,1122,2111,1211,1333$, $1113,1313,1133,1131,1223,1233,1323,2223,2212,2232,2122,3332,3313,3323,3133$, $3233,2112,2121,2323,2211,2233,3113,3223,3131,3322,2131,2133,3112,3122,1123$, $2213,2333,3111,3222\}$.

Call two subsets C and D of C_{3}^{4} neighbors provided $|C \backslash D|=|D \backslash C|=1$. We checked all 1,628 neighbors of B. Of these, 7 were also Hales-Jewett sets. One of these neighbors, namely $(B \backslash\{3223\}) \cup\{2123\}$ had itself several neighbors (all of which added 2132) that could then be reduced to the set A used in the proof of Theorem 2.1. None of the neighbors of A is a Hales-Jewett set.

3 The diagonal set. In this section, we analyze the structure of a subset of C_{3}^{4} which will help us quickly determine whether specified 2 -colorings have monochromatic combinatorial lines.

Definition 3.1. The diagonal of C_{3}^{4} is $\{1111,2222,3333\}$. The diagonal set, D_{3}^{4}, is the set of words in C_{3}^{4} which lie on a combinatorial line with a member of the diagonal.

Notice that a word w is in the diagonal set if and only if at most two letters occur in w. Our analysis of lines involving members of the diagonal set is based on Table 2, in which
the members of the diagonal appear in each 3×3 matrix, and each other member of D_{3}^{4} occurs once. Given $\emptyset \neq X \subseteq\{2,3,4\}$, row i of τ_{X} is the combinatorial line generated by the variable word $w(v)=a_{1} a_{2} a_{3} a_{4}$ and column i is the combinatorial line generated by the variable word $u(v)=b_{1} b_{2} b_{3} b_{4}$ where

$$
a_{j}=\left\{\begin{array}{ll}
v & \text { if } j \in X \\
i & \text { if } j \notin X
\end{array} \quad \text { and } b_{j}= \begin{cases}i & \text { if } j \in X \\
v & \text { if } j \notin X .\end{cases}\right.
$$

We denote by $\tau_{X}(i, j)$ the entry in row i and column j of array τ_{X}.

	$\tau_{\{2\}}$			$\tau_{\{3\}}$			$\tau_{\{4\}}$	
1111	1211	1311	1111	1121	1131	1111	1112	1113
2122	2222	2322	2212	2222	2232	2221	2222	2223
3133	3233	3333	3313	3323	3333	3331	3332	3333
	$\tau_{\{2,3\}}$			$\tau_{\{2,4\}}$			$\tau_{\{3,4\}}$	
1111	1221	1331	1111	1212	1313	1111	1122	1133
2112	2222	2332	2121	2222	2323	2211	2222	2233
3113	3223	3333	3131	3232	3333	3311	3322	3333
				$\tau_{\{2,3,4\}}$				
			1111	1222	1333			
			2111	2222	2333			
			3111	3222	3333			

Table 2

Lemma 3.2. If L is a combinatorial line contained in D_{3}^{4}, then one of the following statements holds.
(a) $L=\{1111,2222,3333\}$.
(b) There exists nonempty $X \subseteq\{2,3,4\}$ such that the elements of L form a row of τ_{X}.
(c) There exists nonempty $X \subseteq\{2,3,4\}$ such that the elements of L form a column of τ_{X}.

Proof. Pick a variable word $w(v)$ such that $L=\{w(1), w(2), w(3)\}$ and pick $a_{1}, a_{2}, a_{3}, a_{4} \in$ $\{1,2,3, v\}$ such that $w(v)=a_{1} a_{2} a_{3} a_{4}$. Since $L \subseteq D_{3}^{4}$, at most one of 1,2 , and 3 occur in $w(v)$. If $w(v)=v v v v$, then conclusion (a) holds, so assume that we have a unique $k \in\{1,2,3\}$ which occurs in $w(v)$.

Assume first that $a_{1}=k$ and let $X=\left\{i \in\{2,3,4\}: a_{i}=v\right\}$. Then L is row k of τ_{X}.
Now assume that $a_{1}=v$ and let $X=\left\{i \in\{2,3,4\}: a_{i}=k\right\}$. Then L is column k of τ_{X}.

Lemma 3.3. If L is a combinatorial line in $C_{3}^{4}, L \cap D_{3}^{4} \neq \emptyset$, and $L \backslash D_{3}^{4} \neq \emptyset$, then either
(a) there exist $\emptyset \neq X \subsetneq Y \subseteq\{2,3,4\}$ and $i \neq j$ in $\{1,2,3\}$ such that $L \cap D_{3}^{4}=$ $\left\{\tau_{X}(i, j), \tau_{Y}(i, j)\right\}$ or
(b) there exist disjoint nonempty subsets X and Y of $\{2,3,4\}$ and $i \neq j$ in $\{1,2,3\}$ such that $L \cap D_{3}^{4}=\left\{\tau_{X}(i, j), \tau_{Y}(j, i)\right\}$.

Proof. Pick a variable word $w(v)$ such that $L=\{w(1), w(2), w(3)\}$ and pick $a_{1}, a_{2}, a_{3}, a_{4} \in$ $\{1,2,3, v\}$ such that $w(v)=a_{1} a_{2} a_{3} a_{4}$. Since $L \cap D_{3}^{4} \neq \emptyset$, at most two of 1,2 , and 3 occur in $w(v)$. Since $L \backslash D_{3}^{4} \neq \emptyset$, at least two of 1,2 , and 3 occur in $w(v)$. Let $Z=\{t \in\{1,2,3,4\}$: $\left.a_{t}=v\right\}$.

Assume first that $1 \notin Z$. Let $i=a_{1}$ and let j be the other member of $\{1,2,3\}$ occurring in $w(v)$. Let $X=\left\{t \in\{2,3,4\}: a_{t}=j\right\}$ and let $Y=X \cup Z$. Then $w(i)=\tau_{X}(i, j)$ and $w(j)=\tau_{Y}(i, j)$.

Now assume that $1 \in Z$. Let i and j be the members of $\{1,2,3\}$ that occur in $w(v)$. Let $Y=\left\{t \in\{2,3,4\}: a_{t}=i\right\}$ and let $X=\left\{t \in\{2,3,4\}: a_{t}=j\right\}$. Then $w(i)=\tau_{X}(i, j)$ and $w(j)=\tau_{Y}(j, i)$.

The converses of Lemmas 3.2 and 3.3 hold as well. That is, given any nonempty $X \subseteq$ $\{2,3,4\}$ any row or column of τ_{X} forms a line contained in D_{3}^{4}; given $\emptyset \neq X \subsetneq Y \subseteq\{2,3,4\}$ and $i \neq j$ in $\{1,2,3\}, \tau_{X}(i, j)$ and $\tau_{Y}(i, j)$ lie on a line L with $L \backslash D_{3}^{4} \neq \emptyset$; and given disjoint nonempty subsets X and Y of $\{2,3,4\}$ and $i \neq j$ in $\{1,2,3\}, \tau_{X}(i, j)$ and $\tau_{Y}(j, i)$, lie on a line L with $L \backslash D_{3}^{4} \neq \emptyset$. We shall not need these assertions so we will not prove them.

4 A lower bound. We show in this section that any Hales-Jewett set (contained in C_{3}^{4}) must have at least 25 members. We do this by introducing a partition of C_{3}^{4} with the property that any Hales-Jewett set must contain a specified number from each cell of the partition. The first result in this direction is quite simple. (We did, however, find it quite surprising that one could get a non-Hales-Jewett set by deleting one member from C_{3}^{4}.)

Lemma 4.1. Any Hales-Jewett set must contain $\{1111,2222,3333\}$.
Proof. Let $A=C_{3}^{4} \backslash\{1111\}$, let $B=\{1112,1113,1121,1123,1131,1132,1211,1213,1222$, 1231, 1311, 1312, 1321, 1333, 2111, 2113, 2122, 2131, 2212, 2221, 2222, 2233, 2311, 2323, $2332,3111,3112,3121,3133,3211,3223,3232,3313,3322,3331,3333\}$, and let $C=A \backslash B$.

Table 3 shows the members of B underlined. A glance at the table together with Lemma 3.2 establishes that there are no monochromatic lines contained in D_{3}^{4}. One can also routinely verify that there are no monochromatic lines meeting D_{3}^{4}. Using Lemma 3.3 one quickly sees, for example, that one needs to verify that the line $\{1211,2212,3213\}$ is not contained in B and one does not need to worry about the line $\{1211,1212,1213\}$.

	$\tau_{\{2\}}$			$\tau_{\{3\}}$			$\tau_{\{4\}}$	
	1211	1311		1121	1131		1112	1113
$\underline{2122}$	$\underline{2222}$	2322	$\underline{2212}$	2222	2232	$\underline{2221}$	$\underline{2222}$	2223
$\underline{3133}$	3233	$\underline{3333}$	$\underline{3313}$	3323	$\underline{3333}$	3331	3332	$\underline{3333}$
	$\tau_{\{2,3\}}$			$\tau_{\{2,4\}}$			$\tau_{\{3,4\}}$	
	1221	1331		1212	1313		1122	1133
2112	$\underline{2222}$	$\underline{2332}$	2121	2222	$\underline{2323}$	2211	$\underline{2222}$	$\underline{2233}$
3113	$\underline{3223}$	$\underline{3333}$	3131	$\underline{3232}$	$\underline{3333}$	3311	$\underline{3322}$	$\underline{3333}$
				$\begin{gathered} \tau_{\{2,3,4\}} \\ 102 ? \end{gathered}$	133			
			$\underline{2111}$	$\underline{\underline{2222}}$	2333			
			$\underline{3111}$	3222	$\underline{3333}$			

Table 3

That leaves the lines contained in $C_{3}^{4} \backslash D_{3}^{4}$. We do not see a particulary quick way to check these. They are generated by the variable words which have exactly one occurrence
each of $1,2,3$, and v. There are 24 of these, and as far as we can see, one simply has to check them all. One then has verified that neither B nor C contains a combinatorial line, so A is not a Hales-Jewett set. This shows that 1111 must be a member of any Hales-Jewett set. By permuting 1, 2, and 3, we also have that 2222 and 3333 must be members of any Hales-Jewett set.

In the proof above, we have used the following obvious fact.
Remark 4.2. Let σ be a permutation of $\{1,2,3\}$ and let τ be a permutation of $\{1,2,3,4\}$. Define $\sigma^{*}: C_{3}^{4} \rightarrow C_{3}^{4}$ and $\tau^{\diamond}: C_{3}^{4} \rightarrow C_{3}^{4}$ as follows. Given $w=\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle \in C_{3}^{4}$, $\sigma^{*}(w)=\left\langle\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \sigma\left(a_{3}\right), \sigma\left(a_{4}\right)\right\rangle$ and $\tau^{\diamond}(w)=\left\langle a_{\tau(1)}, a_{\tau(2)}, a_{\tau(3)}, a_{\tau(4)}\right\rangle$. Then σ^{*} and τ^{\diamond} are permutations of C_{3}^{4} that take combinatorial lines to combinatorial lines. Thus if $A \subseteq C_{3}^{4}$, the following statements are equivalent.
(1) A is a Hales-Jewett set.
(2) $\sigma^{*}[A]$ is a Hales-Jewett set.
(3) $\tau^{\diamond}[A]$ is a Hales-Jewett set.

Lemma 4.3. Let $A=\{1123,1132,1213,1312,1231,1321\}$, let $B=\{2213,2231,2123$, 2321, 2132, 2312\}, and let $C=\{3312,3321,3132,3231,3123,3213\}$. Any Hales-Jewett set must include two members of $A \cup B \cup C$.

Proof. We show that any Hales-Jewett set must include one member of $A \cup B$. If σ is the permutation of $\{1,2,3\}$ which interchanges 1 and 3 , then $\sigma^{*}[A]=C$ and $\sigma^{*}[B]=B$ so by Remark 4.2 it will follow that also any Hales-Jewett set must include one member of $B \cup C$. If ν is the permutation of $\{1,2,3\}$ which interchanges 2 and 3 , then $\nu^{*}[A]=A$ and $\nu^{*}[B]=C$ so by Remark 4.2 it will follow that also any Hales-Jewett set must include one member of $A \cup C$ and consequently, that any Hales-Jewett set must include two members of $A \cup B \cup C$.

Let $D=\{1111,1112,1121,1122,1211,1212,1221,1233,1323,1332,1333,2111,2113$, 2131, 2133, 2223, 2232, 2233, 2311, 2313, 2322, 2323, 2331, 2332, 3112, 3121, 3123, 3132, $3133,3211,3213,3222,3223,3231,3232,3312,3313,3321,3322,3331,3333\}$ and let $E=C_{3}^{4} \backslash(A \cup B \cup D)$. Then $C_{3}^{4} \backslash(A \cup B)=D \cup E$. We need to show that neither D nor E contains a combinatorial line.

Table 4 shows the members of D underlined. A glance at the table together with Lemma 3.2 establishes that there are no monochromatic lines contained in D_{3}^{4}.

Further, this table along with Lemma 3.3 helps one easily establish that there are no monochromatic lines with two members of D_{3}^{4}. For example $\tau_{\{2\}}(3,2)=3233 \in E$ and $\tau_{\{2,3\}}(3,2)=3223 \in D$, so one need not worry about 3213 . And $\tau_{\{2\}}(1,2)=1211 \in E$ and $\tau_{\{2,3\}}(1,2)=1221 \in D$ so one checks 1231 and notes that it is a member of A so is not colored at all.

One observes easily that there are no lines contained in $E \backslash D_{3}^{4}=\{1223,1232,1322$, $3122,3212,3221\}$, and with somewhat more effort that there are no lines contained in $D \backslash D_{3}^{4}=\{3312,3321,3132,3231,3123,3213,2113,2131,2311,3112,3121,3211,1233$, 1323, 1332, 2133, 2313, 2331\}.

Lemma 4.4. Let $A=\{2113,2131,2311,3112,3121,3211\}$, let $B=\{1223,1232,1322$, 3122, 3212, 3221\}, and let $C=\{1233,1323,1332,2133,2313,2331\}$. Any Hales-Jewett set must include two members of $A \cup B \cup C$.

	$\tau_{\{2\}}$			$\tau_{\{3\}}$			$\tau_{\{4\}}$	
$\underline{1111}$	$\underline{1211}$	1311	$\underline{1111}$	$\underline{1121}$	1131	$\underline{1111}$	$\underline{1112}$	1113
$\underline{2122}$	2222	$\underline{2322}$	$\underline{2212}$	$\underline{2222}$	$\underline{2232}$	$\underline{2221}$	$\underline{2222}$	$\underline{2223}$
$\underline{3133}$	3233	$\underline{3333}$	$\underline{3313}$	3323	$\underline{3333}$	$\underline{3331}$	3332	$\underline{3333}$
	$\tau_{\{2,3\}}$			$\tau_{\{2,4\}}$			$\tau_{\{3,4\}}$	
$\underline{1111}$	$\underline{1221}$	1331	$\underline{1111}$	$\underline{1212}$	1313	$\underline{1111}$	$\underline{1122}$	1133
2112	2222	$\underline{2332}$	$\underline{2121}$	$\underline{2222}$	$\underline{2323}$	2211	2222	$\underline{2233}$
3113	$\underline{3223}$	$\underline{3333}$	3131	$\underline{3232}$	$\underline{3333}$	3311	$\underline{3322}$	$\underline{3333}$
				$\tau_{\{2,3,4\}}$				
			$\underline{1111}$	1222	$\underline{1333}$			
			$\underline{2111}$	2222	$\underline{2333}$			
				$\underline{3222}$	$\underline{3333}$			

Table 4

Proof. We show that any Hales-Jewett set must include one member of $B \cup C$. If σ is the permutation of $\{1,2,3\}$ which sends 1 to 3,3 to 2 , and 2 to 1 , then $\sigma^{*}[B]=A$ and $\sigma^{*}[C]=B$ so by Remark 4.2 it will follow that also any Hales-Jewett set must include one member of $A \cup B$. Applying σ^{*} one more time it will follow that any Hales-Jewett set must include one member of $A \cup C$, and consequently, that any Hales-Jewett set must include two members of $A \cup B \cup C$.

Let $D=\{1111,1112,1121,1123,1132,1133,1211,1213,1231,1312,1313,1321,1331$, 1333, 2111, 2113, 2123, 2131, 2132, 2213, 2222, 2223, 2231, 2232, 2311, 2312, 2321, 2322, 3112, 3113, 3121, 3131, 3133, 3211, 3222, 3223, 3232, 3311, 3313, 3322, 3331\} and let $E=C_{3}^{4} \backslash(B \cup C \cup D)$. Then $C_{3}^{4} \backslash(B \cup C)=D \cup E$. We need to show that neither D nor E contains a combinatorial line.

Table 5 shows the members of D underlined. A glance at the table together with Lemma 3.2 establishes that there are no monochromatic lines contained in D_{3}^{4}.

Table 5

As in the proof of Lemma 4.3, one can use Lemma 3.3 to show that there are no monochromatic lines intersecting D_{3}^{4}, and check individually that there are no monochromatic lines missing D_{3}^{4}.

Lemma 4.5. Let $A=\{1122,1212,1221,2112,2121,2211\}$, let $B=\{1133,1313,1331$, 3113, 3131, 3311\}, and let $C=\{2233,2323,2332,3223,3232,3322\}$. Any Hales-Jewett set must include two members of A, two members of B, and two members of C.

Proof. We shall show that for each $w \in A$, there is a 2-coloring of $C_{3}^{4} \backslash(A \backslash\{w\})=$ $\left(C_{3}^{4} \backslash A\right) \cup\{w\}$ with no monochromatic lines. If σ is the permutation of $\{1,2,3\}$ which interchanges 2 and 3 and $u \in B$, then $\sigma^{*}[A \backslash\{\sigma(u)\}]=B \backslash\{u\}$. If ν is the permutation of $\{1,2,3\}$ which interchanges 1 and 3 and $u \in C$, then $\sigma^{*}[A \backslash\{\nu(u)\}]=C \backslash\{u\}$. So the conclusion will follow from Remark 4.2.

We now claim that it suffices to show that there is a 2-coloring of $C_{3}^{4} \backslash\{1212,1221$, $2112,2121,2211\}$ with no monochromatic line. (That is, it suffices to establish the claim above with $w=1122$.) To see this suppose we have done so, and let u be another member of A. Then there is a permutation τ of $\{1,2,3,4\}$ such that $\tau^{\diamond}[A \backslash\{1122\}]=A \backslash\{u\}$. (For example, if $u=2112$, let τ be the permutation of $\{1,2,3,4\}$ which interchanges 1 and 3.)

Let $D=\{1111,1113,1122,1131,1211,1223,1232,1233,1313,1322,1323,1331$, $1332,2111,2123,2132,2133,2212,2213,2221,2231,2312,2321,2322,2333,3113,3122$, $3123,3131,3132,3212,3221,3222,3233,3311,3312,3321,3323,3332,3333\}$ and let $E=\left(C_{3}^{4} \backslash\{1212,1221,2112,2121,2211\}\right) \cup D$. Then $C_{3}^{4} \backslash\{1212,1221,2112,2121$, $2211\}=D \cup E$. Using Table 6 in which the members of D are underlined, one shows in the same fashion as in the previous few lemmas that neither D nor E contains a line.

	$\tau_{\{2\}}$			$\tau_{\{3\}}$			$\tau_{\{4\}}$	
$\underline{1111}$	$\underline{1211}$	1311	$\underline{1111}$	1121	$\underline{1131}$	$\underline{1111}$	1112	$\underline{1113}$
2122	2222	$\underline{2322}$	$\underline{2212}$	2222	$\underline{2232}$	$\underline{2221}$	2222	$\underline{2223}$
3133	$\underline{3233}$	$\underline{3333}$	3313	$\underline{3323}$	$\underline{3333}$	3331	$\underline{3332}$	$\underline{3333}$
	$\tau_{\{2,3\}}$			$\underline{\tau_{\{2,4\}}}$			$\tau_{\{3,4\}}$	
$\underline{1111}$	2222	$\underline{1331}$	$\underline{1111}$		$\underline{1313}$	$\underline{1111}$	$\underline{1122}$	1133
$\underline{3113}$	3223	$\underline{3333}$	$\underline{3131}$	3222	$\underline{2323}$	$\underline{3332}$	2233	
				$\underline{\tau_{\{2,3,4\}}}$	$\underline{3311}$	3322	$\underline{3333}$	
			$\underline{1111}$	1222	1333			
			$\underline{2111}$	2222	$\underline{2333}$			
			$\underline{3111}$	$\underline{3222}$	$\underline{3333}$			

Table 6

We have saved the messiest lemma for last. (It is also the most powerful, providing the largest number of words that must be in any Hales-Jewett set.) In this proof we reduce to finding colorings of three different sets, rather than the one we have been able to get by with up to this point.

Lemma 4.6. Let $A=\{1112,1113,1121,1131,1211,1311,2111,3111\}$, let $B=\{2221$, 2223, 2212, 2232, 2122, 2322, 1222, 3222\}, and let $C=\{3331,3332,3313,3323,3133$, 3233, 1333, 2333\}. Any Hales-Jewett set must include four members of A, four members of B, and four members of C.

Proof. As before, using permutations of $\{1,2,3\}$ that interchange two members, we see easily that it suffices to establish that any Hales-Jewett set must include four members of A. For this it in turn suffices to show that if K is any three element subset of A, then there is a 2-coloring of $\left(C_{3}^{4} \backslash A\right) \cup K$ with no monochromatic lines. Unfortunately, there are 56
choices for K. We claim that it suffices to consider three possibilities, namely $K_{1}=\{1112$, $1113,1121\}, K_{2}=\{1112,1121,1211\}$, and $K_{3}=\{1112,1121,1311\}$. To this end, let σ be the permutation of $\{1,2,3\}$ which interchanges 2 and 3 . We shall show that if K is any three element subset of A, then there exist $i \in\{1,2,3\}$ and a permutation τ of $\{1,2,3,4\}$ such that either $K=\tau^{\diamond}\left[K_{i}\right]$ or $K=\left(\sigma^{*} \circ \tau^{\diamond}\right)\left[K_{i}\right]$. By Remark 4.2, this will suffice.

Let $K=\left\{a_{1} a_{2} a_{3} a_{4}, b_{1} b_{2} b_{3} b_{4}, c_{1} c_{2} c_{3} c_{4}\right\}$ be a three element subset of A. We may presume that the elements of K are listed in lexicographic order, that is, in the same order as they appear in the listing of the elements of A above. There exist $k, l, m \in\{1,2,3,4\}$ such that $k \geq l \geq m, a_{k} \neq 1, b_{l} \neq 1$, and $c_{m} \neq 1$. Further, either $k>l$ or $l>m$. We consider six cases.

Case 1. $k=l>m$. Then $a_{k}=2$ and $b_{k}=3$. Let τ be a permutation of $\{1,2,3,4\}$ such that $\tau(k)=4$ and $\tau(m)=3$. If $c_{m}=2$, then $K=\tau^{\diamond}\left[K_{1}\right]$. If $c_{m}=3$, then $K=\left(\sigma^{*} \circ \tau^{\diamond}\right)\left[K_{1}\right]$.

Case $2 . k>l=m$. Then $b_{m}=2$ and $c_{m}=3$. Let τ be a permutation of $\{1,2,3,4\}$ such that $\tau(k)=3$ and $\tau(m)=4$. If $a_{k}=2$, then $K=\tau^{\diamond}\left[K_{1}\right]$. If $a_{k}=3$, then $K=\left(\sigma^{*} \circ \tau^{\diamond}\right)\left[K_{1}\right]$.

Case 3. $k>l>m$ and $a_{k}=b_{l}=c_{m}$. Let τ be a permutation of $\{1,2,3,4\}$ such that $\tau(k)=4, \tau(l)=3$, and $\tau(m)=2$. If $a_{k}=2$, then $K=\tau^{\diamond}\left[K_{2}\right]$. If $a_{k}=3$, then $K=\left(\sigma^{*} \circ \tau^{\diamond}\right)\left[K_{2}\right]$.

Case 4. $k>l>m$ and $a_{k}=b_{l} \neq c_{m}$. Let τ be a permutation of $\{1,2,3,4\}$ such that $\tau(k)=4, \tau(l)=3$, and $\tau(m)=2$. If $a_{k}=2$, then $K=\tau^{\diamond}\left[K_{3}\right]$. If $a_{k}=3$, then $K=\left(\sigma^{*} \circ \tau^{\diamond}\right)\left[K_{3}\right]$.

Case 5. $k>l>m$ and $a_{k} \neq b_{l}=c_{m}$. Let τ be a permutation of $\{1,2,3,4\}$ such that $\tau(k)=2, \tau(l)=4$, and $\tau(m)=3$. If $a_{k}=3$, then $K=\tau^{\diamond}\left[K_{3}\right]$. If $a_{k}=2$, then $K=\left(\sigma^{*} \circ \tau^{\diamond}\right)\left[K_{3}\right]$.

Case 6. $k>l>m$ and $a_{k}=c_{m} \neq b_{l}$. Let τ be a permutation of $\{1,2,3,4\}$ such that $\tau(k)=4, \tau(l)=2$, and $\tau(m)=3$. If $a_{k}=2$, then $K=\tau^{\diamond}\left[K_{3}\right]$. If $a_{k}=3$, then $K=\left(\sigma^{*} \circ \tau^{\diamond}\right)\left[K_{3}\right]$.

Now we describe a 2-coloring of $\left(C_{3}^{4} \backslash A\right) \cup K_{1}$ with no monochromatic lines. Let $D=\{1111,1113,1122,1212,1221,1223,1232,1233,1322,1323,1332,2112,2121,2123$, 2132, 2133, 2211, 2213, 2221, 2232, 2312, 2313, 2322, 2331, 2333, 3122, 3123, 3132, 3212, $3213,3222,3231,3233,3312,3321,3323,3332,3333\}$ and let $E=C_{3}^{4} \backslash\left(\left(A \backslash K_{1}\right) \cup D\right)$. Using Table 7 which has members of D underlined, one establishes as before that there are no lines contained in D or E.

	$\tau_{\{2\}}$		$\tau_{\{3\}}$				$\tau_{\{4\}}$	
$\underline{1111}$		$\underline{1111}$	1121		$\underline{1111}$	1112	$\underline{1113}$	
2122	2222	$\underline{2322}$	$\underline{2212}$	2222	$\underline{2232}$	$\underline{2221}$	2222	$\underline{2223}$
3133	$\underline{3233}$	$\underline{3333}$	3313	$\underline{3323}$	$\underline{3333}$	3331	$\underline{3332}$	$\underline{3333}$
	$\tau_{\{2,3\}}$			$\underline{\tau_{\{2,4\}}}$			$\tau_{\{3,4\}}$	
$\underline{1111}$	$\underline{1221}$	1331	$\underline{1111}$	$\underline{1212}$	1313	$\underline{1111}$	$\underline{1122}$	1133
$\underline{2112}$	2222	2332	$\underline{2121}$	2222	2323	$\underline{2211}$	2222	2233
3113	3223	$\underline{3333}$	$\underline{3131}$	3232	$\underline{3333}$	$\underline{3311}$	3322	$\underline{3333}$
				$\tau_{\{2,3,4\}}$				
			$\underline{1111}$	1222	1333			
				2222	$\underline{2333}$			
				$\underline{3222}$	$\underline{3333}$			

Table 7

Next we describe a 2-coloring of $\left(C_{3}^{4} \backslash A\right) \cup K_{2}$ with no monochromatic lines. Let
$D=\{1111,1112,1121,1123,1132,1133,1211,1213,1222,1223,1231,1232,1312,1313$, $1321,1322,1331,2113,2123,2131,2132,2213,2222,2231,2233,2311,2312,2321,2323$, $2332,2333,3112,3113,3121,3122,3131,3133,3211,3212,3221,3223,3232,3311,3313$, $3322,3331\}$ and let $E=C_{3}^{4} \backslash\left(\left(A \backslash K_{2}\right) \cup D\right)$. Using Table 8 which has members of D underlined, one establishes as before that there are no lines contained in D or E.

	$\tau_{\{2\}}$			$\tau_{\{3\}}$			$\tau_{\{4\}}$	
1111	1211		1111	1121		1111	1112	
2122	$\underline{2222}$	2322	2212	$\underline{2222}$	2232	2221	$\underline{2222}$	2223
3133	3233	3333	3313	3323	3333	$\underline{3331}$	3332	3333
	$\tau_{\{2,3\}}$			$\tau_{\{2,4\}}$			$\tau_{\{3,4\}}$	
1111	1221	1331	1111	1212	1313	1111	1122	1133
2112	$\underline{2222}$	$\underline{2332}$	2121	$\underline{2222}$	$\underline{2323}$	2211	$\underline{2222}$	$\underline{2233}$
$\underline{3113}$	$\underline{3223}$	3333	$\underline{3131}$	3232	3333	$\underline{3311}$	$\underline{3322}$	3333
$\tau_{\{2,3,4\}}$								
			$\underline{1111}$	1222	1333			
				$\underline{2222}$	$\underline{2333}$			
				3222	3333			

Table 8

Finally we describe a 2-coloring of $\left(C_{3}^{4} \backslash A\right) \cup K_{3}$ with no monochromatic lines. Let $D=\{1111,1122,1212,1221,1223,1232,1233,1311,1322,1323,1332,2112,2121,2122$, 2133, 2211, 2213, 2223, 2231, 2232, 2312, 2313, 2321, 2331, 2333, 3123, 3132, 3212, 3213, $3221,3222,3231,3233,3312,3321,3323,3332,3333\}$ and let $E=C_{3}^{4} \backslash\left(\left(A \backslash K_{3}\right) \cup D\right)$. Using Table 9 which has members of D underlined, one establishes as before that there are no lines contained in D or E.

	$\tau_{\{2\}}$		$\tau_{\{3\}}$				$\tau_{\{4\}}$			
$\underline{1111}$		$\underline{1311}$	$\underline{1111}$	1121		$\underline{1111}$	1112			
$\underline{2122}$	2222	$\underline{2322}$	$\underline{2212}$	2222	$\underline{2232}$	2221	2222	$\underline{2223}$		
3133	$\underline{3233}$	$\underline{3333}$	3313	$\underline{3323}$	$\underline{3333}$	3331	$\underline{3332}$	$\underline{3333}$		
	$\tau_{\{2,3\}}$			$\underline{\tau_{\{2,4\}}}$			$\tau_{\{3,4\}}$			
$\underline{1111}$	$\underline{1221}$	1331	$\underline{1111}$	$\underline{1212}$	1313	$\underline{1111}$	$\underline{1122}$	1133		
$\underline{2112}$	2222	2332	$\underline{2121}$	2222	2323	$\underline{2211}$	2222	2233		
3113	3223	$\underline{3333}$	$\underline{3131}$	3232	$\underline{3333}$	$\underline{3311}$	3322	$\underline{3333}$		
				$\tau_{\{2,3,4\}}$						
			$\underline{1111}$	1222	1333					
				2222	$\underline{2333}$					
				$\underline{3222}$	$\underline{3333}$					

Table 9

Theorem 4.7. Any Hales-Jewett set in C_{3}^{4} must contain at least 25 members.
Proof. The sets in the statements of Lemmas 4.1, 4.3, 4.4, 4.5, and 4.6 partition C_{3}^{4} and establish that any Hales-Jewett set must contain at least $3+2+2+6+12$ members.

One can extend in the obvious way the definition of a Hales-Jewett set to higher dimensions. For $k \geq 4$, let $\operatorname{MHJ}(k)$ be the smallest size of a Hales-Jewett set in C_{3}^{k}. One has trivially that $M H J(k+1) \leq M H J(k)$ because, if $A \subseteq C_{3}^{k}$ is a Hales-Jewett set, so is $\left\{a_{1} a_{2} \ldots a_{k} 1: a_{1} a_{2} \ldots a_{k} \in A\right\}$. Unfortunately, our proof of Theorem 4.7 does not extend to higher dimensions, and we have only very trivial lower bounds for $M H J(k)$ when $k>4$. For example, the pigeon hole principle says that $M H J(k) \geq 5$. One can do slightly better when one uses the fact that combinatorial lines are three element sets, any two of which have only one member in common. But that only allows one to raise the minimum to $\operatorname{MHJ}(k) \geq 7$ since, as is well known, if $\{1,2,3,4,5,6,7\}$ is two colored one of the lines in the Fano plane ($\{\{1,2,3\},\{1,4,5\},\{1,6,7\},\{2,4,6\},\{2,5,7\},\{3,5,6\},\{3,4,7\}\}$) must be monochromatic and this is not true for any set of fewer than 7 triples.

Problem 4.8. Find reasonable bounds for $M H J(k)$ valid for arbitrarily large k.

References

[1] V. Chvátal, Some unknown van der Waerden numbers, in Combinatorial Structures and Their Applications, 31-33, Gordon and Breach, New York, 1970.
[2] R. Graham, Recent developments in Ramsey theory, in Proceedings of the International Congress of Mathematicians (Warsaw, 1983), 1555-1567, PWN, Warsaw, 1984.
[3] R. Graham, B. Rothschild, and J. Spencer, Ramsey Theory, second edition, Wiley, New York, 1990.
[4] A. Hales and R. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106(1963), 222-229.
[5] N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification: theory and applications, de Gruyter, Berlin, 1998.
[6] N. Hindman and E. Tressler, The first non-trivial Hales-Jewett number is four, Ars Combinatoria, to appear. (Currently available at http://nhindman.us/preprint.html.)
[7] S. Shelah, Primitive recursive bounds for van der Waerden numbers, J. Amer. Math. Soc. 1(1988), 683-697.
N. Hindman, Department of Mathematics, Howard University, Washington, DC 20059, USA nhindman@aol.com
H. Jordan, Department of Mathematics, Howard University, Washington, DC 20059, USA henryjordan59@hotmail.com

[^0]: 2010 Mathematics Subject Classification. 05D10.
 Key words and phrases. Hales-Jewett Theorem, Hales-Jewett set, minimal.
 ${ }^{1}$ This author acknowledges support received from the National Science Foundation (USA) via grant DMS-0852512.
 ${ }^{2}$ Some of the results in this paper are from this author's Ph.D. dissertation.

