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THE NUMBER OF MINIMAL LEFT AND
MINIMAL RIGHT IDEALS IN βS

NEIL HINDMAN, LAKESHIA LEGETTE, AND DONA STRAUSS

Abstract. Given an infinite discrete semigroup S, its Stone-
Čech compactification βS has a natural operation extending
that of S and making βS into a compact right topological
semigroup. As such, βS has a smallest two sided ideal K(βS),
which is the union of all of the minimal left ideals and is the
union of all of the minimal right ideals. It has been known
that some weak cancellation assumptions on S guarantee the
existence of many minimal left ideals and many minimal right
ideals. We present here a couple of new results in that direc-
tion, but we are primarily interested in providing information
about the existence of a large number of minimal right or
minimal left ideals in an arbitrary semigroup (with no can-
cellation assumptions). For example, we show that for any
infinite semigroup S, one of the following three statements
holds: (1) S has a finite ideal, in which case K(βS) ⊆ S and
is finite; (2) βS has at least 2c minimal left ideals; or (3) βS
has at least 2c minimal right ideals.
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1. Introduction

Given a discrete semigroup S, we take the Stone-Čech compact-
ification βS of S to consist of the ultrafilters on S, identifying a
point s ∈ S with the principal ultrafilter e(s) = {A ⊆ S : s ∈ A}.
Given a subset A of S we identify c`βSA with βA.

The operation on S extends to βS (and is usually denoted by
the same symbol, or simply by juxtaposition) making βS a com-
pact right topological semigroup with S contained in its topolog-
ical center. That is, for each p ∈ βS the function ρp : βS → βS
is continuous and for each x ∈ S the function λx : βS → βS is
continuous, where for q ∈ βS, ρp(q) = qp and λx(q) = xq.

As is true of any compact Hausdorff right topological semigroup
or, indeed, of any semigroup which contains a minimal left ideal
with an idempotent, βS has a smallest two sided ideal K(βS) which
is the union of all of the minimal left ideals of βS and is also the
union of all of the minimal right ideals of βS. Any two minimal
left ideals are isomorphic as are any two minimal right ideals. The
intersection of any minimal left ideal with any minimal right ideal
is a group and any two such groups are isomorphic. See [8] for an
elementary introduction to the topological and algebraic structure
of βS.

The structure of the smallest ideal of βS has had substantial
combinatorial applications. (See [8, Part III] for many of these.)
But in this paper we will be interested only in studying the algebraic
structure itself. In particular, we will be interested in determining
how many minimal left ideals and how many minimal right ideals
can be found in βS for a given infinite semigroup S. Note that the
intersection of two left ideals is a left ideal if it is nonempty, so dis-
tinct minimal left ideals are disjoint. The corresponding statement
is true for right ideals.

The first results in this direction were obtained by C. Chou. In
[4], he obtained results about left invariant subsets of βS which
immediately imply that, if S is an infinite cancellative semigroup,
then βS has at least 2c|S| minimal left ideals. This was before the
algebra of βS had been defined! In [1] J. Baker and P. Milnes proved
that (βN,+) has 2c minimal right ideals. Since |βN| = 2c, this
result is best possible. (When we mention βN without specifying
the operation, we will always assume that operation is addition.)
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These results were later generalized to semigroups satisfying cer-
tain cancellation assumptions. Given a set X we write Pf (X) for
the set of finite nonempty subsets of X.

Definition 1.1. Let S be a semigroup.
(1) If a, b ∈ S, then Xa,b = {x ∈ S : ax = b}.
(2) If a, b ∈ S, then Ya,b = {x ∈ S : xa = b}.
(3) A is a left solution set if and only if there exist a, b ∈ S such

that A = Xa,b.
(4) A is a right solution set if and only if there exist a, b ∈ S

such that A = Ya,b.

Notice that S is left cancellative if and only if each left solution
set has at most one member and S is right cancellative if and only
if each right solution set has at most one member.

Definition 1.2. Let S be an infinite semigroup and let κ = |S|.
(1) S is weakly left cancellative if and only if each left solution

set in S is finite.
(2) S is weakly right cancellative if and only if each right solu-

tion set in S is finite.
(3) S is very weakly left cancellative if and only if the union of

fewer than κ left solution sets has cardinality less than κ.
(4) S is very weakly right cancellative if and only if the union

of fewer than κ right solution sets has cardinality less than
κ.

Note that if κ is regular, then S is very weakly left cancellative
if and only if every left solution set is smaller than κ. It is a fact
[8, Theorem 4.36] that S∗ = βS \ S is an ideal of βS if and only if
S is both weakly left cancellative and weakly right cancellative.

Theorem 1.3. If S is an infinite cancellative semigroup, then βS
has at least 2c minimal right ideals.

Proof. [8, Corollary 6.41]. �

Theorem 1.4. If S is a very weakly left cancellative infinite semi-
group with cardinality κ, then βS has 22κ

minimal left ideals.

Proof. [3, Theorem 1.7]. �

It is well-known that, if S is a left amenable semigroup, then
every minimal left ideal in βS is the support of a left invariant
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mean on S. (See, for example, [5, Proposition 9.16].) Hence, if
S is infinite, left amenable and very weakly left cancellative, the
cardinality of the set of left invariant means on βS is 22|S|

.
In [12], Y. Zelenyuk showed that, if G is an infinite abelian group,

then βG contains 22|G|
minimal right ideals. It is an open question

whether this is true for arbitrary infinite groups.
We shall need the following simple and well-known lemma. We

include a proof because we do not have a reference.

Lemma 1.5. Let S be a semigroup which contains a minimal left
ideal with an idempotent. Let T be a subsemigroup of S which also
contains a minimal left ideal with an idempotent and which meets
K(S). Then the following statements hold:

(1) K(T ) = T ∩K(S);
(2) The minimal left ideals of T are precisely the non-empty

sets of the form T ∩L, where L denotes a minimal left ideal
of S;

(3) The minimal right ideals of T are precisely the non-empty
sets of the form T ∩ R, where R denotes a minimal right
ideal of S;

(4) If T is an ideal of S, K(T ) = K(S).

Proof. (1) [8, Theorem 1.65].
(2) We note that, for every idempotent e ∈ T , Se ∩ T = Te. To

see this, let x ∈ Se ∩ T . Then x = xe ∈ Te. So Se ∩ T ⊆ Te, and
the reverse inclusion is obvious.

Suppose that L is a minimal left ideal of S. If T ∩ L 6= ∅, it is
a left ideal in T and therefore contains an idempotent e ∈ K(T )
by [8, Corollary 1.47 and Theorem 1.56]. By (a), e ∈ K(S). So
L ∩ T = Se ∩ T = Te, a minimal left ideal of T .

Now suppose that M is a minimal left ideal of T . Then M con-
tains an idempotent f ∈ K(T ). Since f ∈ K(S), Sf is a minimal
left ideal of S and Sf ∩ T = Tf = M .

(3) This proof is the right-left switch of the proof of (2).
(4) If T is an ideal of S, then K(S) ⊆ T . So K(T ) = T ∩K(S) =

K(S). �

In Section 2 we provide characterizations of semigroups which
have many minimal right or minimal left ideals. Most of these
results do not involve cancellation assumptions. Notice that one
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could not hope to have any cancellation condition as necessary for
the existence of many minimal left or right ideals because of the
following simple observation (in which T can be as badly behaved
as one wishes).

Lemma 1.6. Let T and M be disjoint semigroups and let S =
T ∪ M . For x ∈ T and y ∈ M , define xy = yx = y. Then S is
a semigroup. The minimal left ideals of βS are the minimal left
ideals of βM and the minimal right ideals of βS are the minimal
right ideals of βM .

Proof. Since M is an ideal of S, βM is a ideal of βS by [8, Corollary
4.18]. In particular, every minimal left ideal of βS meets βM and
every minimal right ideal of βS meets βM . So our claim follows
from Lemma 1.5. �

We investigate the condition K(βS) ⊆ S∗ in Section 3.
If κ is a singular cardinal and one defines α ∨ δ = max{α, δ},

then the semigroup (κ,∨) is not very weakly left cancellative. (For
α < κ, Xα,α = {δ < κ : δ ≤ α} and so, if A is cofinal in κ, then⋃

α∈A Xα,α = κ.) In Section 4 of this paper we introduce the notion
of extremely weakly left cancellative semigroups, a property which
is satisfied by (κ,∨), and show that the conclusion of Theorem 1.4
remains valid for such semigroups.

2. Numbers of Minimal Left and Minimal Right Ideals

In contrast with earlier results, most of the results of this section
make no use of cancellation assumptions. An important considera-
tion is whether all or some of K(βS) lies in S∗, an issue addressed
by some of the next few lemmas.

Lemma 2.1. Let S be an infinite semigroup and let ω ≤ κ ≤ |S|.
If (∀F ⊆ S)

(
|F | < κ ⇒ (∃t ∈ S)(Ft ∩ F = ∅)

)
, then

(∀F ⊆ S)(|F | < κ ⇒ |{t ∈ S : Ft ∩ F = ∅}| ≥ κ).

Proof. Let F ⊆ S with |F | < κ, let G = {t ∈ S : Ft ∩ F = ∅}, and
suppose that |G| < κ. Let H = F ∪G∪GG. Then |H| < κ so pick
t ∈ S such that Ht ∩H = ∅. Then Ft ∩ F = ∅ so t ∈ G. But then,
tt ∈ Ht ∩H, a contradiction. �

Lemma 2.2. Let S be an infinite semigroup. The following state-
ments are equivalent.
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(a) There is a left ideal of βS contained in S∗.
(b)

(
∀F ∈ Pf (S)

)
(∃t ∈ S)(Ft ∩ F = ∅).

(c)
(
∀F ∈ Pf (S)

)
({t ∈ S : Ft ∩ F = ∅} is infinite).

Proof. (a) implies (b). Pick a left ideal L of S∗ such that L ⊆ S∗

and pick p ∈ L. Let F ∈ Pf (S). For each x ∈ F , xp ∈ S∗ so
S \ F ∈ xp and thus x−1(S \ F ) ∈ p. Pick t ∈

⋂
x∈F x−1(S \ F ).

That (b) implies (c) follows from Lemma 2.1.
(c) implies (a). Inductively on |F | pick for each F ∈ Pf (S),

some tF ∈ S \ (F ∪ {tH : ∅ 6= H ⊆6 F}) such that FtF ∩ F = ∅.
Let A =

{
{tF : F ∈ Pf (S) and H ⊆ F} : H ∈ Pf (S)

}
. We

claim that A has the infinite finite intersection property. So let
H be a finite nonempty subset of Pf (S), let H =

⋃
H and pick

an injective sequence 〈xn〉∞n=1 in S \ H. For each n, let Fn =
H ∪ {x1, x2, . . . xn}. Then {tFn : n ∈ N} is an infinite subset of⋂

G∈H{tF : F ∈ Pf (S) and G ⊆ F}. Pick by [8, Corollary 3.14]
some p ∈ S∗ such that A ⊆ p.

We claim that βSp ⊆ S∗ for which it suffices that Sp ⊆ S∗. Let
x ∈ S and suppose that xp = y ∈ S. (That is, e(x)p = e(y).) Then
x−1{y} ∈ p. Also, {tF : F ∈ Pf (S) and {x, y} ⊆ F} ∈ p. So pick
F ∈ Pf (S) such that {x, y} ⊆ F and tF ∈ x−1{y}. Then xtF = y.
So FtF ∩ F 6= ∅, a contradiction. �

Lemma 2.3. Let S be a discrete semigroup. If I = K(βS) ∩ S is
nonempty, then K(βI) = K(βS).

Proof. Since I is an ideal of S, it follows from [8, Corollary 4.18]
that βI = c`(I) is an ideal of βS. So our claim follows from Lemma
1.5. �

Conclusion (2) in the following lemma is important because many
of the results about the structure of semigroups have that statement
as hypothesis.

Lemma 2.4. Let S be an infinite semigroup and assume that I =
K(βS) ∩ S 6= ∅.

(1) For all a, b ∈ I, aSb is a finite group and aSb = aβSb.
(2) S has a minimal left ideal with an idempotent.
(3) I = K(S).
(4) If S has µ minimal left ideals, where µ is an infinite cardi-

nal, then βS has at least 22µ
minimal left ideals and K(βS)

meets S∗.



NUMBER OF MINIMAL IDEALS 7

(5) If S has µ minimal right ideals, where µ is an infinite car-
dinal, then βS has at least 22µ

minimal right ideals and
K(βS) meets S∗.

(6) If K(βS) ⊆ S, then K(βS) is finite.
(7) Suppose that I has µ1 minimal left ideals and µ2 mini-

mal right ideals. Let µ = max{µ1, µ2}. If µ is infinite,
|K(βS)| = |K(βI)| = |βI| = 22µ

.

Proof. (1) Let a, b ∈ I. Let R = aβS and L = βSb. Then R
is a minimal right ideal of βS and L is a minimal left ideal of
βS. By [8, Theorem 1.61], RL = R ∩ L and RL is a group. Then
RL = aβSβSb ⊆ aβSb ⊆ R∩L = RL. So aβSb is a group. Further,
aβSb = λa

[
ρb[βS]

]
so aβSb is compact. As a right topological

group aβSb is homogeneous. Also aβSb has an isolated point (for
example aab) so all points of aβSb are isolated. Since aβSb is
compact, we have that aβSb is finite. Since aβSb = c`(aSb) and
aSb is finite, we have aβSb = aSb.

(2) Pick a ∈ I. Then Sa is a left ideal of S and aSa is a group
which thus has an idempotent. So it suffices to show that Sa is a
minimal left ideal of S. Let L be a left ideal of S with L ⊆ Sa. By
[8, Corollary 4.18], c`(L) is a left ideal of βS and c`(L) ⊆ c`(Sa) =
βSa and βSa is a minimal left ideal of βS since a ∈ K(βS). So
c`(L) = βSa. So Sa ⊆ c`(L) ∩ S = L.

(3) By (2) and [8, Theorem 1.65], K(S) = K(βS) ∩ S.
(4) Assume that S has µ minimal left ideals, where µ is an infinite

cardinal. Let L denote the set of minimal left ideals of S. We give
L the discrete topology and define a semigroup operation ∗ on L by
putting L1 ∗ L2 = L2. So (L, ∗) is a discrete right zero semigroup.
Define a homomorphism f : I → L by f(x) = L if x ∈ L.

By Lemma 2.3, K(βS) = K(βI) so it suffices to show that βI has
at least 22µ

minimal left ideals. Now f̃ : βI → βL is surjective by
[8, Exercise 3.4.1] and a homomorphism by [8, Corollary 4.22]. Also
βL is a right zero semigroup by [8, Exercise 4.2.2] and |βL| = 22µ

.
For each p ∈ βL, f̃−1[{p}] is a left ideal of βI. So there are at least
22µ

pairwise disjoint left ideals of βI.
To see that K(βS) meets S∗, choose any p ∈ L∗. Since p ∈

K(βL), there exists x ∈ K(βI) for which f̃(x) = p by [8, Exercise
1.7.3]. This implies that x ∈ I∗ and hence that x ∈ S∗.
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(5) Let R denote the set of minimal right ideals of S and define
an operation ∗ on R making (R, ∗) a left zero semigroup. Then by
[8, Exercise 4.2.1], βR is a left zero semigroup, so the rest of the
proof is a right-left switch of the proof of (4).

(6) Suppose that K(βS) ⊆ S. By Lemma 1.5(2) and (3), the
minimal left ideals of S and βS and the minimal right ideals of S
and βS are the same, so in particular K(βS) = K(S) = I. By (4)
and (5), the number of minimal left ideals of S is finite, and so is
the number of minimal right ideals of S. So there are only a finite
number of groups of the form RL, where R is a minimal right ideal
and L is a minimal left ideal of S. By (1), each of these groups is
finite. So K(βS) = K(S) is finite.

(7) The number of groups of the form RL, where R is a minimal
right ideal of I and L is a minimal left ideal of I, is µ1 · µ2 = µ.
Each of these groups is finite. So |I| = µ and |βI| = 22µ

. Thus
|K(βI)| ≤ 22µ

. However, by (4) and (5), |K(βS)| ≥ 22µ
and by

Lemma 2.3, K(βS) = K(βI). �

The following lemma is the exact left-right switch of Lemma 2.2,
but the proof is more complicated. (This is a common phenomenon
because of the lack of symmetry of the continuity.)

Lemma 2.5. Let S be an infinite semigroup. The following state-
ments are equivalent.

(a) There is a right ideal of βS contained in S∗.
(b)

(
∀F ∈ Pf (S)

)
(∃t ∈ S)(tF ∩ F = ∅).

(c)
(
∀F ∈ Pf (S)

)
({t ∈ S : tF ∩ F = ∅} is infinite).

Proof. (a) implies (b). Pick a right ideal R ⊆ S∗ and pick p ∈ R.
Let F ∈ Pf (S). Suppose that for all t ∈ S, tF ∩ F 6= ∅. Then
S ⊆

⋃
a∈F

⋃
b∈F Ya,b. So pick a, b ∈ F such that Ya,b ∈ p. Then ρa

is constantly equal to b on Ya,b. So ρa(p) = b. Thus b ∈ pβS ⊆ R,
a contradiction.

(b) implies (c). This is the same as the proof that (b) implies
(c) in Lemma 2.2.

(c) implies (a). Assume (c) holds and suppose that every minimal
right ideal of βS meets S. Let I = K(βS) ∩ S. By Lemma 2.4, for
all a, b ∈ I, aβSb = aSb is a finite group. For each F ∈ Pf (I), let
HF =

⋃
a∈F

⋃
b∈F aSb. Then HF is finite so pick tF ∈ S such that
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tF HF ∩ HF = ∅. Direct Pf (I) by inclusion and let p be a cluster
point of the net 〈tF 〉F∈Pf (I). (Note that if I is finite, then p = tI .)

We claim that for any x ∈ K(βS), px ∈ S∗, so let x ∈ K(βS)
be given and suppose instead that px = b ∈ S. Then b ∈ I. Pick
c ∈ bSb. Then pxc = bc. Note also that x is in some minimal right
ideal R of βS. Pick a ∈ R ∩ S. Then aβS = R so x ∈ aβS. So
xc ∈ aβSc = aSc. Since pxc = bc, ρ−1

xc [{bc}] is a neighborhood
of p so one may pick F ∈ Pf (I) such that {a, b, c} ⊆ F and tF ∈
ρ−1

xc [{bc}]. So tF xc = bc. Now xc ∈ aSc so xc ∈ HF . Also bc ∈ bSb
so bc ∈ HF . Thus tF xc ∈ tF HF ∩HF , a contradiction.

Now pick x ∈ K(βS). Given any y ∈ βS, xy ∈ K(βS). So
pxy ∈ S∗. Therefore, pxβS ⊆ S∗, a contradiction. �

We thank the referee for bringing the following result to our
attention. Recall that Uκ(S) is the set of κ-uniform ultrafilters on
S, that is those ultrafilters all of whose members have cardinality
at least κ.

Theorem 2.6. Let S be an infinite semigroup and let κ = |S|.
Statements (a), (b), (c), and (d) are equivalent and imply statement
(e).

(a) (∀F ⊆ S)(|F | < κ ⇒ |{t ∈ S : Ft ∩ F = ∅}| = κ).
(b) (∀F ⊆ S)

(
|F | < κ ⇒ (∃t ∈ S \ F )(Ft ∩ F = ∅)

)
.

(c) (∀F ⊆ S)
(
|F | < κ ⇒ (∃t ∈ S)(Ft ∩ F = ∅)

)
.

(d) S is not the union of fewer than κ left solution sets.
(e) βS has 22κ

minimal left ideals contained in Uκ(S).

Proof. Trivially (a) implies (b) and (b) implies (c). That (c) implies
(a) follows from Lemma 2.1.

To see that (d) implies (c) let F ⊆ S with |F | < κ. Pick t ∈
S \

⋃
a∈F

⋃
b∈F Xa,b. To see that (c) implies (d), let H ⊆ S × S

with |H| < κ. Let F = π1[H] ∪ π2[H] and pick t ∈ S such that
Ft ∩ F = ∅. Then t ∈ S \

⋃
(a,b)∈H Xa,b.

To see that (e) implies (d) enumerate S as 〈sσ〉σ<κ. We induc-
tively choose an injective κ-sequence 〈tσ〉σ<κ so that if σ < δ < κ,
then sσtδ /∈ {sµtη : µ < η < δ}. Let t0 and t1 be any distinct mem-
bers of S. Now let δ < κ and assume that 〈tσ〉σ<δ has been chosen.
Let F = {sσ : σ < δ}∪{sµtη : µ < η < δ}. Pick tδ ∈ S\{tσ : σ < δ}
such that Ftδ ∩ F = ∅.
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Let M = {p ∈ Uκ(S) : {tδ : δ < κ} ∈ p}. By [8, Theorem
3.58], |M | = 22κ

. We shall show that if p, q ∈ M and p 6= q, then
βSp ∩ βSq = ∅. So let p and q be distinct members of M and pick
B ∈ p and C ∈ q such that B ∩ C = ∅. Let

D = {sσtδ : σ < δ < κ and tδ ∈ B} and let
E = {sσtδ : σ < δ < κ and tδ ∈ C} .

Then D∩E = ∅ so it suffices to show that βSp ⊆ D and βSq ⊆ E.
The proofs being identical, we establish the former, for which it
suffices to show that Sp ⊆ D. So let σ < κ be given. Since
p ∈ Uκ(S), {tδ : δ ≤ σ} /∈ p and therefore B ∩ {tδ : δ > σ} ∈ p and
so sσ(B ∩ {tδ : δ > σ}) ∈ sσp and thus D ∈ sσp.

Finally, we show that for all p ∈ M , βSp ⊆ Uκ(S). Let p ∈ M
be given. Since βSp = c`(Sp) and Uκ(S) is closed, it suffices to
show that Sp ⊆ Uκ(S). To this end, let σ < κ and let A ∈ sσp.
We claim that |A| = κ. Pick B ∈ p such that sσB ⊆ A. Then
B ∩ {tδ : σ < δ < κ} ∈ p and λsσ : B ∩ {tδ : σ < δ < κ} 1-1−→A so
|A| = κ. �

Corollary 2.7. Let S be an infinite very weakly left cancellative
semigroup of cardinality κ. Then βS has 22κ

minimal left ideals
contained in Uκ(S).

Proof. S trivially satisfies statement (d) of Theorem 2.6. �

We now characterize completely when there are many minimal
left ideals in a countable semigroup.

Theorem 2.8. Let S be a countably infinite semigroup. The fol-
lowing statements are equivalent.

(a) There is a left ideal of βS contained in S∗.
(b)

(
∀F ∈ Pf (S)

)
(∃t ∈ S)(Ft ∩ F = ∅).

(c)
(
∀F ∈ Pf (S)

)
({t ∈ S : Ft ∩ F = ∅} is infinite).

(d) βS has infinitely many minimal left ideals.
(e) βS has 2c minimal left ideals.
(f) βS has 2c minimal left ideals contained in S∗.

Proof. Statements (a), (b), and (c) are equivalent by Lemma 2.2.
That (c) implies (f) follows from Theorem 2.6. Trivially, (f)

implies (e) and (e) implies (d).
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(d) implies (b). Pick infinite M ⊆ βS such that if p and q are
distinct members of M , then βSp∩ βSq = ∅. Let F ∈ Pf (S). Pick
p ∈ M \ F such that F ∩ βSp = ∅. (We have that

|{q ∈ M : βSq ∩ F 6= ∅}| ≤ |F |.)

Let A = S \ F . Then for each x ∈ F , xp ∈ βSp so A ∈ xp. Pick
t ∈

⋂
x∈F x−1A. Then Ft ∩ F = ∅. �

We are able to characterize the existence of many minimal right
ideals without assuming the countability of S.

Definition 2.9. Let S be a set. Then R = R(S) is the set of finite
partitions of S.

Theorem 2.10. Let S be an infinite semigroup. The following
statements are equivalent.

(a) βS has infinitely many minimal right ideals.
(b) Every left ideal of βS is infinite.
(c) Some minimal left ideal of βS is infinite.
(d) βS has at least 2c minimal right ideals.
(e) (∀F ∈ R)(∃G ∈ R)(∀A ∈ G)(∃B ∈ F)(∃s, t ∈ B)

(sA ∩ tA = ∅).
(f) (∀F ∈ R)(∃G ∈ R)(∀A ∈ G)(∃B ∈ F)

(
∃F ∈ Pf (B)

)
(
⋂

s∈F sA = ∅).

Proof. (a) implies (b). Every left ideal has nonempty intersection
with every right ideal and distinct minimal right ideals are disjoint.

That (b) implies (c) is trivial, as is the fact that (d) implies (a).
(c) implies (d). [8, Theorem 6.39].
(b) implies (e). Let F ∈ R be given and suppose that

(∀G ∈ R)(∃A ∈ G)(∀B ∈ F)(∀s, t ∈ B)(sA ∩ tA 6= ∅) .

Let A = {A ⊆ S : (∃B ∈ F)(∃s, t ∈ B)(s(S \ A) ∩ t(S \ A) = ∅)}.
We claim that A has the finite intersection property. To see this,
let H ∈ Pf (A) and suppose that

⋂
H = ∅. Let G be the partition

of S generated by {S \A : A ∈ H}. Pick D ∈ G such that

(∀B ∈ F)(∀s, t ∈ B)(sD ∩ tD 6= ∅) .

Pick x ∈ D. Since
⋂
H = ∅, pick A ∈ H such that x ∈ S \A. Then

D ⊆ S\A. Pick B ∈ F and s, t ∈ B such that s(S\A)∩t(S\A) = ∅.
Since D ⊆ S \A, this is a contradiction.
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Since A has the finite intersection property, pick p ∈ βS such
that A ⊆ p. For B ∈ F , pick sB ∈ B. Now βSp is infinite so
Sp is infinite. Pick t ∈ S such that tp /∈ {sBp : B ∈ F} and pick
B ∈ F such that t ∈ B. Since tp 6= sBp, pick D ∈ tp \ sBp and let
A = t−1D ∩ s−1

B (S \ D). Then A ∈ p so (S \ A) /∈ A. So for all
x, y ∈ B, xA ∩ yA 6= ∅. In particular, tA ∩ sBA 6= ∅. But tA ⊆ D
and sBA ⊆ (S \D), a contradiction.

That (e) implies (f) is trivial.
(f) implies (b). Let L be a left ideal of βS and suppose L is

finite. Pick p ∈ L. Then Sp is finite. For q ∈ Sp, let

Bq = {s ∈ S : sp = q}

and let F = {Bq : q ∈ Sp}. Then F ∈ R. Pick G ∈ R such that
(∀A ∈ G)(∃B ∈ F)(∃F ∈ Pf (B))(

⋂
s∈F sA = ∅). Pick A ∈ G ∩ p.

Pick q ∈ Sp and F ∈ Pf (Bq) such that
⋂

s∈F sA = ∅. For each
s ∈ F , sp = q so

⋂
s∈F sA ∈ q, a contradiction. �

Lemma 2.11. Let S be an infinite semigroup, let L be a left ideal
of βS, and let p be an idempotent in L. If L is finite, then there
exists B ∈ p such that for all a ∈ B, {s ∈ S : as = s} ∈ p.

Proof. Pick A ∈ p such that A ∩ L = {p}. Since ρp(p) ∈ A, pick
B ∈ p such that ρp[B ] ⊆ A and let a ∈ B. Then ap ∈ A ∩ βSp ⊆
A ∩ L = {p}. So ap = p. Since λa(p) = p, we have by [8, Theorem
3.35] that {s ∈ S : as = s} ∈ p. �

Surprisingly, the following theorem with a strong cancellation
assumption appears to be new. We remark that the theorem does
not hold if right cancellativity is replaced by weak right cancella-
tivity. If S = (N,∨), S is weakly cancellative; but S∗ is the unique
minimal right ideal of βS. (See [8, Exercise 4.1.11].) This contrasts
with theorems about the number of minimal left ideals. We shall
see in Theorem 4.8 that, if an infinite semigroup S is extremely
weakly left cancellative, then βS has 22|S|

minimal left ideals.

Theorem 2.12. Let S be an infinite right cancellative semigroup.
Then βS has at least 2c minimal right ideals.

Proof. By Theorem 2.10, it suffices to let L be a minimal left ideal
of βS and show that L is infinite. Suppose instead that L is finite
and pick an idempotent p ∈ L. By Lemma 2.11, pick B ∈ p such
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that for all a ∈ B, {s ∈ S : as = s} ∈ p. Then for each a ∈ B,
we have by right cancellation that a is a right identity for S. Thus
given t ∈ S, B ⊆ {a ∈ S : ta = t} so tp = t. That is, ρp is the
identity on S, hence on βS. So βS = βSp so L is infinite. �

Lemma 2.13. Let S be an infinite semigroup. Then K(βS)∩S∗ 6=
∅ if and only if S does not contain a finite ideal.

Proof. Necessity. If I is a finite ideal of S, then by [8, Corollary
4.18] c`I is an ideal of βS so K(βS) ⊆ c`I = I.

Sufficiency. If K(βS) ⊆ S, then by Lemma 2.4(6), K(βS) is
finite. �

A sufficient condition for K(βS) meeting S∗ is that S∗ should be
an ideal of βS, so that K(βS) ⊆ S∗. We have seen that this is true
if and only if S weakly cancellative. Of course, weak cancellativity
is not necessary for the condition K(βS) ⊆ S∗, as can be seen by
applying Lemma 1.6.

Theorem 2.14. Let S be an infinite semigroup and assume that
K(βS) meets S∗. If βS contains a finite left ideal, then any finite
minimal left ideal that meets S∗ is contained in S∗ and there are at
least 2c minimal left ideals in βS.

Proof. Let L be a finite minimal left ideal L of βS which meets S∗.
To see that L ⊆ S∗, suppose that there exists x ∈ L ∩ S. Then
L = βSx = c`(Sx). But Sx is finite and so c`(Sx) = Sx ⊆ S.

Pick an idempotent p ∈ L. Let µ = ||p|| and note that µ ≥ ω.
Pick C ∈ p such that |C| = µ. Pick by Lemma 2.11 some B ∈ p such
that for all a ∈ B, {s ∈ S : as = s} ∈ p. We may presume B ⊆ C.
For each a ∈ B, let Pa = {s ∈ C : as = s}. Let A = {Pa : a ∈ B}.
Then A ⊆ p so A has the µ-uniform finite intersection property. So
by [8, Theorem 3.62],

|{q ∈ Uµ(C) : A ⊆ q}| = 22µ
.

If q ∈ Uµ(C) and A ⊆ q, then for all a ∈ B, aq = q and
therefore pq = q. So |pβS| ≥ 22µ

. Since p ∈ K(βS), pβS is
a minimal right ideal. Since each minimal left ideal is finite and
pβS ⊆ K(βS) =

⋃
{M : M is a minimal left ideal}, one has

|{M : M is a minimal left ideal}| ≥ 22µ
. �

The following theorem tells us that except in a trivial situation,
there will be many minimal one sided ideals.
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Theorem 2.15. Let S be an infinite semigroup. At least one of
the following statements holds.

(1) S has a finite ideal, in which case K(βS) ⊆ S and is finite.
(2) βS has at least 2c minimal left ideals.
(3) βS has at least 2c minimal right ideals.

Proof. If some minimal left ideal of βS is infinite we have by Theo-
rem 2.10 that statement (3) holds. So we assume that the minimal
left ideals of S are finite.

If K(βS) ⊆ S∗, then by Theorem 2.14, statement (2) holds. So
we may assume I = K(βS) ∩ S 6= ∅. If I is finite, then c`(I) is
an ideal of βS by [8, Corollary 4.18], so K(βS) ⊆ c`(I) = I so
statement (1) holds.

Thus we assume I = K(βS) ∩ S is infinite. By Lemma 2.4(3),
I = K(S) and for any minimal left ideal L of S and any minimal
right ideal R of S, L ∩ R is finite. Thus there are either infinitely
many minimal left ideals of S or infinitely many minimal right ideals
of S. Thus by conclusion (4) or (5) of Lemma 2.4, statement (2) or
(3) holds. �

Corollary 2.16. Let S be an infinite semigroup. Either K(βS) is
a finite subset of S or |K(βS)| ≥ 2c.

Proof. This is an immediate consequence of Theorem 2.15. �

We now show that we can get any finite number of minimal left
ideals or minimal right ideals.

We leave the proof of the following lemma as an exercise.

Lemma 2.17. Let κ be an infinite cardinal and let S = (κ,∨). Let
C = {p ∈ βS : (∀A ∈ p)(A is cofinal in κ)} and let p ∈ C.

(1) For all q ∈ βS, q ∨ p = p.
(2) For all q ∈ βS \ C, p ∨ q = p.
(3) C = K(βS).

Theorem 2.18. Let κ be an infinite cardinal and let n ∈ N. There
is a semigroup S such that |S| = κ, K(βS) ⊆ S∗, and βS has
precisely n minimal right ideals.

Proof. Let L be a left zero semigroup with |L| = n and let R =
(κ,∨). Let S = L×R. Then βS can be viewed as L× βR and by
Lemma 2.17, K(βS) = L× C, where

C = {p ∈ βR : (∀A ∈ p)(A is cofinal in κ)}.
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Then K(βS) ⊆ L×R∗ = S∗.
For a ∈ L, {a} × βR is a right ideal of βS so there exists n

pairwise disjoint right ideals (and thus at least n minimal right
ideals).

Suppose M1,M2, . . . ,Mn+1 are pairwise disjoint right ideals. For
i ∈ {1, 2, . . . , n+1}, pick (ai, pi) ∈ Mi. Pick i 6= j such that ai = aj .
Pick (b, q) ∈ L× C.

Then (ai, q) = (ai, pi)(b, q) ∈ Mi and (ai, q) = (aj , pj)(b, q) ∈ Mj ,
a contradiction. �

The corresponding result for left ideals is not as strong, since
K(βS) is not contained in S∗. We shall see in Theorem 2.21, that
βS has at least 2c minimal left ideals if K(βS) ⊆ S∗.

Theorem 2.19. Let κ be an infinite cardinal and let n ∈ N. There
is a semigroup S such that |S| = κ and βS has precisely n minimal
left ideals.

Proof. Let L be a left zero semigroup with |L| = κ and let R be a
right zero semigroup with |R| = n. Let S = L×R. Then βS can be
identified with βL × R and by [8, Exercise 4.2.2] βL is right zero.
As in the previous proof, one easily shows that βS has precisely n
minimal left ideals. �

Recall that for an ultrafilter p, ||p|| = min{|A| : A ∈ p}. Given
S with |S| ≥ κ, Uκ(S) = {p ∈ βS : ||p|| ≥ κ}. An ultrafilter p on S
is uniform if and only if ||p|| = |S|.

Theorem 2.20. Let S be an infinite semigroup of cardinality κ.
If Uκ(S) contains a left ideal of βS, then βS has 22κ

minimal left
ideals.

Proof. Suppose that Uκ(S) contains a left ideal L of βS and that
p ∈ L. Let 〈Fα〉α<κ be an enumeration of Pf (S). We claim that
we can choose an injective κ-sequence 〈tα〉α<κ in S for which the
sets Fαtα with α < κ are pairwise disjoint.

To see this, choose any t0 ∈ S. Then assume that β < κ and
that we have chosen tα ∈ S for every α < β. Let

X = {tα : α < β} ∪
⋃
{Fαtα : α < β} .

Then |X| < κ. For every s ∈ S, sp ∈ Uκ(S) so X /∈ sp and thus
s−1X /∈ p. Hence S \ s−1X ∈ p. We also have S \X ∈ p. It follows
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that (S \X) ∩
⋂
{(S \ s−1X : s ∈ Fβ} 6= ∅. So we can choose tβ in

this set.
For each H ∈ Pf (S), put AH = {tα : α < κ and H ⊆ Fα}. It is

clear that |AH | = κ. Furthermore, for every finite number of sets
H1,H2, · · · ,Hn in Pf (S), if K =

⋃n
i=1 Hi, then AK =

⋂n
i=1 AHi

and so |
⋂n

i=1 AHi | = 22κ
.It follows from [8, Theorem 3.62] that, if

A = {p ∈ Uκ(S) :
(
∀H ∈ Pf (S)

)
(AH ∈ p)}, we have |A| = 22κ

.
We shall show that, if p and q are distinct elements of A, the left

ideals βSp and βSq of βS are disjoint. To see this, let B and C be
disjoint subsets of {tα : α < κ} for which B ∈ p and C ∈ q. Let
D =

⋃
{Fαtα : tα ∈ B} and E =

⋃
{Fαtα : tα ∈ C}. Then D ∩E =

∅. For every s ∈ S, A{s} ∩ B ∈ p. So {stα : tα ∈ A{s} ∩ B} ∈ sp.
Since this set is contained in D, sp ∈ D. So Sp ⊆ D and hence
βSp ⊆ D. Similarly, βSq ⊆ E. Thus βSp ∩ βSq = ∅. �

Theorem 2.21. Let S be a semigroup for which S∗ contains a
minimal left ideal of βS. Then βS contains at least 2c minimal left
ideals.

Proof. Let L be a minimal left ideal of βS contained in S∗. Let
p ∈ L and let µ = min{‖sp‖ : s ∈ S}. We can choose s ∈ S
for which ‖sp‖ = µ. Put q = sp. We claim that for every t ∈ S,
‖tq‖ = µ. To see this, let t ∈ S. First pick B ∈ q such that |B| = µ.
Then tB ∈ tq and |tB| ≤ |B|, so ||tq|| ≤ µ. On the other hand,
||tq|| = ||tsp|| ≥ µ.

Let Q ∈ q with |Q| = µ. Let T denote the subsemigroup of
S generated by Q. Then |T | = µ. By Lemma 1.5, q ∈ K(βT ).
Since Uµ(T ) is closed and ‖tq‖ = µ for every t ∈ T , it follows that
βTq ⊆ Uµ(T ). So, by Theorem 2.20, βT contains 22µ

minimal left
ideals. By Lemma 1.5, for each minimal left ideal L of βT , there
is a minimal left ideal M of βS for which L = M ∩ βT . So βS
contains at least 22µ

minimal left ideals. �

Corollary 2.22. Let S be an arbitrary semigroup. The number
of minimal left ideals of βS is either finite or at least 2c. The
cardinality of each minimal right ideal of βS is either finite or at
least 2c.

Proof. First consider the case in which the number of minimal left
ideals of βS is less than 2c. Then, by Theorem 2.21, every minimal
ideal of βS meets S. We claim that if L is a minimal left ideal of
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βS, then there is some s ∈ S ∩K(βS) such that L = βSs. Indeed,
pick s ∈ L ∩ S. Since βSs is a left ideal of βS contained in L,
we have L = βSs. Now we claim that, if s, t ∈ S ∩ K(βS), then
βSs = βSt if and only if Ss = St. The sufficiency is immediate
since βSs = c`(Ss). For the necessity, let s, t ∈ S ∩ K(βS) and
assume that βSs = βSt. We shall show that St ⊆ Ss. Let L be
the minimal left ideal of βS with t ∈ L. Then L = βSt = βSs so
t ∈ βSs = c`(Ss). Since t is isolated, this means that t ∈ Ss so
St ⊆ Ss. So βS and S have the same number of minimal left ideals.
By Lemma 2.4(4), this number must be finite. In this case, each
minimal right ideal is finite because each minimal right ideal has a
finite intersection with each minimal left ideal, by Lemma 2.4(1).

In the case in which βS has at least 2c minimal left ideals, each
minimal right ideal has cardinality at least 2c because it intersects
each minimal left ideal. �

Corollary 2.23. Let S be a commutative semigroup. If S does not
contain a finite ideal, the number of minimal left ideals of βS is at
least 2c.

Proof. Suppose that the number of minimal left ideals of βS is less
than 2c. Then, by Theorem 2.21, K(βS) meets S. It follows from
Lemma 2.4(4) that the number of minimal left ideals of S is finite.
Since the left ideals of S are also the right ideals of S, the number
of minimal right ideals of S is finite, and so the number of maximal
groups in K(S) is finite. By Lemma 2.4(1), each of these groups is
finite. Thus K(S) is finite. �

We conclude this section by discussing the cardinalities of mini-
mal left and minimal right ideals of βS.

Definition 2.24. An extremally disconnected is a topological space
in which the closure of every open set is open. A Stonean space is
a compact Hausdorff extremally disconnected space.

Definition 2.25. If X is a topological space, B(X) will denote the
Boolean algebra of clopen subsets of X.

Let S denote an arbitrary discrete semigroup. We know that
no infinite cardinal less than 2c can occur as the cardinality of
a minimal left ideal of βS because infinite closed subsets of βS
contain copies of βN. (See for example [8, Theorem 3.59].) The
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following lemma shows that there are other cardinals which cannot
occur as cardinalities of minimal left ideals of βS since the only
infinite cardinals that can occur have the form 2µ. The lemma is
based on the duality between Boolean algebras and compact totally
disconnected spaces. The reader is referred to [9] for information
about this subject.

Lemma 2.26. Let S be an arbitrary semigroup and let p ∈ E(βS).
Let L = βSp. Then L is Stonean and, if L is infinite, |L| = 2|B(L)|.

Proof. The fact that L is Stonean follows from [7, Lemma 2], us-
ing the well-known fact [6, Exercise 6M(1)] that the Stone-Čech
compactification of an extremally disconnected Hausdorff space is
Stonean. It then follows from [9, 13.7] that |L| = 2|B(L)|. �

Lemma 2.27. Let G be an infinite discrete group of cardinality
κ which can be emebedded in a direct sum of countable groups. If
L is a minimal left ideal and R is a minimal right ideal of βG,
then L ∩ R contains a copy of the free group on 22κ

generators so
|L| = |R| = |L ∩R| = 22κ

.

Proof. [11, Theorem 1.1]. �

The hypotheses of Lemma 2.27 hold for every infinite abelian
group, because every group of this kind can be embedded in a direct
sum of groups which are finite or copies of Q. It is an open question
whether every infinite group G has the property that copies of the
free group on 22|G|

generators exist in the smallest ideal of βG.

Lemma 2.28. Let S be an abelian cancellative semigroup and let
G denote the group of quotients of S. Then βS contains a left ideal
of βG.

Proof. We recall that G is an abelian group in which every element
can be expressed in the form ab−1 for some a, b ∈ S. We can regard
S as a subsemigroup of G and βS as a subsemigroup of βG.

For each F ∈ Pf (S), put xF =
∏

F . We order Pf (S) by inclusion
and choose a limit point p ∈ βS of the net 〈xF 〉F∈Pf (S). We claim
that βGp ⊆ βS, for which it suffices, since βS is closed in βG, to
show that Gp ⊆ βS. To this end, let t ∈ G and pick a, b ∈ S
such that t = ab−1. Then txF ∈ S for every F ∈ Pf (S) for which
{b} ⊆ F . Since {txF : F ∈ Pf (S) and {b} ⊆ F} ∈ tp, tp ∈ βS. �
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Theorem 2.29. Let S be an infinite abelian cancellative semigroup
of cardinality κ. Then βS contains 22κ

minimal right ideals.

Proof. Let G denote the group of quotients of S. It was shown
in [12, Theorem 1] that βG contains 22κ

minimal right ideals. By
Lemma 2.28, there is a minimal left ideal L of βG for which L ⊆
βS. For each minimal right ideal R of βG, there is an idempotent
pR ∈ R ∩ L. The 22κ

right ideals of βG of the form pRβG are
disjoint. A fortiori, the right ideals pRβS of βS are disjoint. �

Theorem 2.30. Let S be an infinite abelian cancellative semigroup
of cardinality κ. Let L be a minimal left ideal and R a minimal right
ideal of βS. Then L ∩ R contains a copy of the free group on 22κ

generators. So |L| = |R| = |L ∩R| = 22|S|
.

Proof. This is immediate from Lemmas 2.27 and 2.28. �

3. The Condition K(βS) ⊆ S∗

We investigate in this section some results involving the state-
ment that K(βS) ⊆ S∗ or its negation.

Theorem 3.1. Let S be an infinite semigroup. Statements (a) and
(b) are equivalent and are implied by statement (c). If K(βS)∩S 6=
∅, then all three statements are equivalent.

(a) βS has fewer than 2c minimal right ideals.
(b) βS has only finitely many minimal right ideals.
(c) S is the union of finitely many right solution sets.

Proof. By Theorem 2.10, statements (a) and (b) are equivalent.
Assume statement (c) holds and pick n ∈ N and

a1, a2, . . . , an, b1, b2, . . . , bn ∈ S

such that S =
⋃n

i=1 Yai,bi
. We claim that βS has at most n minimal

right ideals. Suppose instead that R1, R2, . . . , Rn+1 are pairwise
disjoint right ideals. Pick i such that Ri∩{b1, b2, . . . , bn} = ∅. Pick
p ∈ R. Pick i ∈ {1, 2, . . . , n} such that Yai,bi

∈ p. Then pai = bi.
So bi ∈ R.

Now assume that I = K(βS) ∩ S 6= ∅ and that βS has only
finitely many minimal right ideals. By Lemma 2.4(3), I = K(S).
We claim that if R is a minimal right ideal of βS and R ∩ S 6= ∅,
then R ∩ S contains only one minimal right ideal of S. Suppose
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instead one has x, y ∈ R ∩ S such that xS ∩ yS = ∅. Then M =
M ∩M = xβS ∩ yβS = xS ∩ yS = ∅, a contradiction.

Thus S has only finitely many minimal right ideals. Pick a min-
imal left ideal L of S. By Lemma 2.4(1), if R is an minimal right
ideal of S, then L∩R is finite, and therefore L is finite. Pick a ∈ L.
Then L = Sa so S =

⋃
b∈L Ya,b. �

Notice that if S = (ω,∨), then statement (b) of Theorem 3.1
holds, but statement (c) does not.

Theorem 3.2. Let S be an infinite semigroup. Statement (c) im-
plies statement (b) which implies statement (a). If statement (d)
holds, then statements (a), (b), and (c) are equivalent. If S is
countable, then statements (a), (b), and (c) are equivalent and im-
ply statement (d).

(a) βS has fewer than 2c minimal left ideals.
(b) βS has only finitely many minimal left ideals.
(c) S is the union of finitely many left solution sets.
(d) K(βS) ∩ S 6= ∅.

Proof. Trivially (b) implies (a). That (c) implies (b) is established
in the same way as the corresponding implication in Theorem 3.1.

Now assume that I = K(βS) ∩ S 6= ∅. We shall show that (a)
implies (c), so assume that (a) holds. By Lemma 2.4(4), S has only
finitely many minimal left ideals. Pick a minimal right ideal R of
S. By Lemma 2.4(1), the intersection of R with any minimal left
ideal of S is finite, so R is finite. Pick a ∈ R. Then R = aS so
S =

⋃
b∈R Xa,b.

Finally, assume that S is countable. By Theorem 2.8, statements
(a) and (b) are equivalent and imply statement (d). Thus by what
we have just shown, statement (a) implies statement (c). �

Thick subsets of a semigroup are intimately related to minimal
left ideals.

Definition 3.3. Let S be an infinite semigroup and let A ⊆ S.
Then A is thick if and only if for every F ∈ Pf (S) there is some
x ∈ S such that Fx ⊆ A.

Theorem 3.4. Let S be an infinite semigroup and let A ⊆ S. Then
A is thick if and only if there is some left ideal of βS contained in
c`βSA.
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Proof. [2, Theorem 2.9(c)]. �

Recall that by Lemma 2.2, there is a left ideal of βS contained in
S∗ if and only if for all F ∈ Pf (S), {t ∈ S : Ft∩F = ∅} is infinite.
Recall also that a subset A of S is syndetic if and only if S \ A is
not thick. Equivalently, A is syndetic if and only if there is some
F ∈ Pf (S) such that S =

⋃
t∈F t−1A, where

t−1A = {s ∈ S : ts ∈ A} .

And recall that A is piecewise syndetic if and only if there is some
F ∈ Pf (S) such that

⋃
t∈F t−1A is thick.

Theorem 3.5. Let S be an infinite semigroup. The following state-
ments are equivalent.

(a) K(βS) ⊆ S∗.
(b) For all F ∈ Pf (S), {t ∈ S : Ft ∩ F = ∅} is syndetic.

Proof. To see that (a) implies (b), assume that (a) holds. Let
F ∈ Pf (S), let D = {x ∈ S : Fx ∩ F = ∅}, and suppose that D is
not syndetic. Pick by [2, Theorem 2.9] a minimal left ideal L of βS
such that D∩L = ∅ and pick p ∈ L. Then {x ∈ S : Fx∩F 6= ∅} ∈ p.
That is,

⋃
a∈F

⋃
b∈F Xa,b ∈ p. Pick a, b ∈ F such that Xa,b ∈ p.

Then ap = b so b ∈ L ∩ S ⊆ K(βS) ∩ S, a contradiction.
To see that (b) implies (a), assume that (b) holds and suppose

we have some b ∈ K(βS)∩S. By [8, Theorem 4.40], {b} is piecewise
syndetic. (Recall that we are identifying the points of S with the
principal ultrafilters.) So pick G ∈ Pf (S) such that for all F ∈
Pf (S) there exists y ∈ S such that Fy ⊆

⋃
t∈G t−1{b}. Let

D = {x ∈ S : (G ∪ {b})x ∩ (G ∪ {b}) = ∅} .

Then D is syndetic so pick F ∈ Pf (S) such that S =
⋃

z∈F z−1D.
Pick y ∈ S such that Fy ⊆

⋃
t∈G t−1{b} and pick z ∈ F such that

zy ∈ D. Pick t ∈ G such that tzy = b. Then tzy ∈ Gzy ∩ {b},
contradicting the fact that zy ∈ D. �

There is a significant contrast between Theorems 2.18 and 2.19.
For example, if κ = ω, one produces S with K(βS) ⊆ S∗ such
that βS has only one minimal right ideal by taking S = (ω,∨), in
which case S∗ is a right zero semigroup. We conclude this section
by showing that one cannot do the corresponding thing to obtain
S∗ as a left zero semigroup.
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Notice that the conditions of the following lemma are not left-
right switches of each other. (The first conclusion says that Xs,s ∈ p
while the second says that Xs,t ∈ p.)

Lemma 3.6. Let S be a semigroup.
(1) S∗ is a left zero semigroup if and only if

(∀p ∈ S∗)
(
∃F ∈ Pf (S)

)
(∀s ∈ S \ F )({t ∈ S : st = s} ∈ p).

(2) S∗ is a right zero semigroup if and only if
(∀p ∈ S∗)

(
∃F ∈ Pf (S)

)
(∀s ∈ S \ F )({t ∈ S : st = t} ∈ p).

Proof. (1) Sufficiency. Let p, q ∈ S∗ and pick F as guaranteed for
p. Then for all s ∈ S \ F , λs is constantly equal to s on a member
of p so sp = p. Therefore ρp is equal to the identity on a member
of q and so qp = q.

Necessity. Let p ∈ S∗. By [10, Theorem 2.8], pick F ∈ Pf (S)
such that qp = q for all q ∈ βS \ F . Let s ∈ S \ F . Then {s}
is a neighborhood of λs(p) so there is a member A of p such that
λs[A ] ⊆ {s}.

(2) Sufficiency. Let p, q ∈ S∗ and pick F as guaranteed for p.
Then for all s ∈ S \ F , λs is the identity on a member of p and so
sp = p. Therefore ρp is constantly equal to p on a member of q and
so qp = p.

Necessity. Let p ∈ S∗. By [10, Theorem 2.5] pick F ∈ Pf (S)
such that qp = p for all q ∈ βS \ F . Let s ∈ S \ F . Then λs(p) = p
so by [8, Theorem 3.35], {t ∈ S : st = t} ∈ p. �

Theorem 3.7. Let S be an infinite semigroup for which K(βS)
meets S∗.

(1) If S∗ is a left zero semigroup, then there is a finite subset
F of S such that
(a) for every s ∈ S \ F , {t ∈ S : st 6= s} is finite and
(b) βS \ F is the unique minimal left ideal of βS. (In

particular, there is no left ideal of βS contained in S∗.)
(2) If S∗ is a right zero semigroup, the minimal left ideals of

K(βS) are singletons and βS has precisely one minimal
right ideal.

Proof. (1) Pick p ∈ S∗ ∩K(βS). Let L = βSp, a minimal left ideal
of βS. Observe that S∗ ⊆ L. Let F = βS \ L = S \ L. By Lemma
3.6(1) pick a finite subset G of S such that for every s ∈ S \ G,
{t ∈ S : st = s} ∈ p. We claim that F ⊆ G, so that F is finite. For
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this it suffices to show that S \G ⊆ L, so let s ∈ S \G. Then λs is
constantly equal to s on a member of p, so s = sp ∈ βSp = L.

To establish (a), let s ∈ S\F . Then s ∈ L. Suppose that {t ∈ S :
st 6= s} is infinite and pick q ∈ S∗ such that {t ∈ S : st 6= s} ∈ q.
Since s ∈ L and q is an idempotent in L we have by [8, Lemma 1.30]
that s = sq. Therefore {s} is a neighborhood of sq and therefore
{t ∈ S : st = s} ∈ q, a contradiction.

To establish (b), note that L is the only minimal left ideal of
βS, since any other minimal left ideal of βS would have to be an
infinite subset of βS \ L = F .

(2) Let L be a minimal left ideal of βS which meets S∗ and let
p ∈ L ∩ S∗. By Lemma 3.6, sp = p for all but a finite number of
elements s in S. So Sp is finite and L = c`(Sp) must also be finite.
By Theorem 2.14, L ⊆ S∗. So L = Lp = {p}. Since L intersects
every minimal right ideal of βS, βS can have only one minimal
right ideal. �

4. Extremely Weakly Left Cancellative Semigroups

We introduce here a cancellation condition which is satisfied by
the semigroup (κ,∨) where κ is a singular cardinal and derive some
results about semigroups satisfying this condition, including an ana-
logue of Theorem 1.4.

Definition 4.1. Let S be an infinite semigroup and let κ = |S|.
Then S is extremely weakly left cancellative if and only if

(1) for all a ∈ S, |Xa,a| < κ and
(2) if H ⊆ (S × S) \∆ and |H| < κ, then |

⋃
(a,b)∈H Xa,b| < κ.

Notice that in (κ,∨), if α < δ, then Xα,δ = {δ} and Xδ,α = ∅, so
(κ,∨) is extremely weakly left cancellative.

Definition 4.2. Let X be an infinite set. A set A of subsets of X
said to be almost disjoint if and only if

(1) for each A ∈ A, |A| = |X|; and
(2) for A 6= B in A, |A ∩B| < |X|.

The next theorem is [3, Theorem 2.3].

Theorem 4.3. Let S be an infinite semigroup which is very weakly
cancellative, let κ = |S|, and let A be a thick subset of S.
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(i) If there is a family of µ almost disjoint subsets of κ, then
there is a family of µ almost disjoint thick subsets of A.

(ii) There is a family of κ pairwise disjoint thick subsets of A.

Note that it was assumed that S was very weakly left and right
cancellative. This was used to guarantee that thick subsets have
cardinality κ. (In (κ,∨) any cofinal subset is thick.) We are able to
drop any right cancellation assumption and replace “very weakly
left cancellative” by “extremely weakly left cancellative”, if we drop
the demand that the almost disjoint sets be found inside an arbi-
trary thick set.

Theorem 4.4. Let S be an infinite semigroup which is extremely
weakly left cancellative and let κ = |S|.

(i) If there is a family of µ almost disjoint subsets of κ, then
there is a family of µ almost disjoint thick subsets of S.

(ii) There is a family of κ pairwise disjoint thick subsets of S.

Proof. (i) Pick by [3, Lemma 2.1(i)] a family 〈Bι〉ι<µ of almost
disjoint subsets of Pf (S) such that(

∀F ∈ Pf (S)
)
(∀ι < µ)(∃G ∈ Bι)(F ⊆ G) .

Enumerate Pf (S) as 〈Fσ〉σ<κ. We inductively choose a κ se-
quence 〈xσ〉σ<κ in S such that if δ < σ < κ, then Fσxσ ∩Fδxδ = ∅.
To see that we can do this, let σ < κ and assume 〈xδ〉δ<σ has been
chosen. Let H =

⋃
δ<σ Fδxδ. Then |H| ≤ max{ω, |σ|}.

We claim |
⋃

u∈Fσ

⋃
v∈H Xu,v| < κ. Indeed,⋃

u∈Fσ

⋃
v∈H Xu,v ⊆

⋃
u∈Fσ

Xu,u ∪
⋃

u∈Fσ

⋃
v∈H\{u} Xu,v

and |
⋃

u∈Fσ
Xu,u| < κ because Fσ is finite and

|
⋃

u∈Fσ

⋃
v∈H\{u} Xu,v| < κ .

Pick xσ ∈ (S \
⋃

u∈Fσ

⋃
v∈H Xu,v). If δ < σ, then Fσxσ ∩ Fδxδ = ∅.

For ι < µ, let Dι =
⋃
{Fσxσ : σ < κ and Fσ ∈ Bι}. Then

|Dι| = κ.
If ι < γ < µ, then

Dι ∩Dγ =
⋃
{Fσxσ : σ < κ and Fσ ∈ Bι ∩ Bγ} ,

so |Dι ∩Dγ | < κ. Let ι < µ. Given F ∈ Pf (S), pick Fσ ∈ Bι such
that F ⊆ Fσ. Then Fxσ ⊆ Fσxσ ⊆ Dι.

(ii) This is the same argument using [3, Lemma 2.1(ii)]. �
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We now turn our attention to extending the following theorem
from [3].

We are very interested in members of minimal idempotents be-
cause of the substantial combinatorial properties that they posess.

Theorem 4.5. Let κ be an infinite cardinal and let S be a very
weakly left cancellative semigroup with cardinality κ, let p be a min-
imal idempotent of βS which is uniform, and let C ∈ p.

(i) If there is a family of µ almost disjoint subsets of κ, then C
contains µ almost disjoint sets each of which is a member
of a uniform minimal idempotent in βS.

(ii) C contains κ disjoint sets each of which is a member of a
uniform minimal idempotent in βS.

Proof. [3, Theorem 3.3]. �

To show that our extension of Theorem 4.5 is not vacuous, we
need a preliminary lemma.

Lemma 4.6. Let S be an extremely weakly left cancellative semi-
group with |S| = κ. Then Uκ(S) is a left ideal of βS.

Proof. Let p ∈ Uκ(S). Since βSp = c`(Sp), it suffices to show
that Sp ⊆ Uκ(S). Let s ∈ S and let B ∈ sp. Then s−1B ∈ p so
|s−1B| = κ. Suppose |B| < κ. Then s−1B ⊆ Xs,s ∪

⋃
t∈B\{s} Xs,t.

So |s−1B| < κ, a contradiction. �

Note that Uκ(S) need not be an ideal of βS. If S is a right
zero semigroup, then S is left cancellative and βS is the unique
minimal right ideal. Slightly more esoteric is our canonical example
of an extremely weakly left cancellative semigroup which is not very
weakly left cancellative, namely (κ,∨) where κ is singular.

We note that by Lemma 4.6, if S is extremely weakly left can-
cellative, then there are minimal idempotents in Uκ(S). We see
that the hypothesis of Theorem 4.5 can be weakend.

Theorem 4.7. Let κ be an infinite cardinal and let S be an ex-
tremely weakly left cancellative semigroup with cardinality κ, let p
be a minimal idempotent of βS which is uniform, and let C ∈ p.

(i) If there is a family of µ almost disjoint subsets of κ, then C
contains µ almost disjoint sets each of which is a member
of a uniform minimal idempotent in βS.



26 NEIL HINDMAN, LAKESHIA LEGETTE, AND DONA STRAUSS

(ii) C contains κ disjoint sets each of which is a member of a
uniform minimal idempotent in βS.

Proof. The proof is nearly identical to the proof of [3, Theorem 3.3].
One only needs to note that when the cancellation assumption is
invoked, one is only concerned with finitely many left solution sets
of the form Xa,a. �

We now see that Theorem 1.4 can be extended to extremely
weakly left cancellative semigroups.

Theorem 4.8. If S is an extremely weakly left cancellative semi-
group with cardinality κ, then βS has 22κ

minimal left ideals.

Proof. Theorem 2.20 and Lemma 4.6. �
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