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Abstract

Let A be a finite matrix with rational entries. We say that A is doubly
image partition regular if whenever the set N of positive integers is finitely
coloured, there exists ~x such that the entries of A~x are all the same colour
(or monochromatic) and also, the entries of ~x are monochromatic. Which
matrices are doubly image partition regular?

More generally, we say that a pair of matrices (A,B), where A and B have
the same number of rows, is doubly kernel partition regular if whenever N is
finitely coloured, there exist vectors ~x and ~y, each monochromatic, such that
A~x + B~y = ~0. (So the case above is the case when B is the negative of the
identity matrix.) There is an obvious sufficient condition for the pair (A,B)
to be doubly kernel partition regular, namely that there exists a positive
rational c such that the matrix M = ( A cB ) is kernel partition regular.
(That is, whenever N is finitely coloured, there exists monochromatic ~x such
that M~x = ~0.) Our aim in this paper is to show that this sufficient condition
is also necessary. As a consequence we have that a matrix A is doubly image
partition regular if and only if there is a positive rational c such that the
matrix ( A −cI ) is kernel partition regular, where I is the identity matrix
of the appropriate size.
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We also prove extensions to the case of several matrices.
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1. Introduction

Let u, v ∈ N and let A be a u× v matrix with entries from Q. Then A is
said to be kernel partition regular (abbreviated KPR) if and only if whenever
r ∈ N and ϕ : N → {1, 2, . . . , r}, there exists some ~x ∈ Nv such that ϕ is
constant on the entries of ~x and A~x = ~0. In the standard “chromatic” termi-
nology, ϕ is said to be an r-colouring of N and ~x is said to be monochromatic.
If r is not specified, one may say simply that N is finitely coloured by ϕ. The
question of which matrices are KPR was solved in 1933 by Richard Rado [5].

Definition 1.1. Let u, v ∈ N and let A be a u × v matrix with entries
from Q and let ~c1,~c2, . . . ,~cv be the columns of ~A. Then A satisfies the
columns condition if and only if there exists m ∈ {1, 2, . . . , v} and a partition
{I1, I2, . . . , Im} of {1, 2, . . . , v} such that

(1)
∑

i∈I1 ~ci = ~0 and

(2) for each t ∈ {2, 3, . . . ,m}, if any,
∑

i∈It ~ci is a linear combination of

{~ci : i ∈
⋃t−1
j=1 Ij}.

Theorem 1.2 (Rado’s Theorem). Let u, v ∈ N and let A be a u× v matrix
with entries from Q. Then A is kernel partition regular if and only if A
satisfies the columns condition.

For example, the fact that the matrix ( 1 1 −1 ) satisfies the columns
condition (with I1 = {1, 3} and I2 = {2}) shows that whenever N is finitely
coloured, there exist x1, x2, and x3, all the same colour, with x1 + x2 = x3,
which is Schur’s Theorem [6].

As another example, the length 4 version of van der Waerden’s Theorem
[7] says that whenever N is finitely coloured, there exist a, d ∈ N such that
{a, a + d, a + 2d, a + 3d} is monochromatic. Letting x1 = a, x2 = a + d,
x3 = a+ 2d, x4 = a+ 3d, and x5 = d, the fact that the matrix −1 1 0 0 −1

0 −1 1 0 −1
0 0 −1 1 −1
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satisfies the columns condition (with I1 = {1, 2, 3, 4} and I2 = {5}) shows
that one can get monochromatic ~x with x2 − x1 = x3 − x2 = x4 − x3 = x5.
That is, one gets a four term arithmetic progression with the terms and the
common difference all the same colour.

We remark that the above two examples were already known when Rado’s
Theorem was proved. The importance of Rado’s Theorem is that it reduces
the question of whether or not a given matrix is kernel partition regular to
a finite computation. For example, the fact that the matrix

1 1 0 −1 0 0 0
1 0 1 0 −1 0 0
0 1 1 0 0 −1 0
1 1 1 0 0 0 −1


satisfies the columns condition (with I1 = {1, 4, 5, 7}, I2 = {2, 6}, and
I3 = {3}) established the previously unknown extension of Schur’s Theo-
rem that whenever N is finitely coloured, there must exist x1, x2, and x3
with {x1, x2, x3, x1 + x2, x1 + x3, x2 + x3, x1 + x2 + x3} monochromatic. (It is
easy to similarly establish extensions for any finite number of terms.)

We now turn to the other key notion of partition regularity.

Definition 1.3. Let u, v ∈ N and let A be a u × v matrix with rational
entries. Then A is image partition regular (abbreviated IPR) if and only if
whenever N is finitely coloured, there exists ~x ∈ Nv such that the entries of
A~x are monochromatic.

Notice that the applications of Rado’s Theorem cited above are very
naturally stated in terms of image partition regular matrices. Specifically,
Schur’s Theorem, the length 4 version of van der Waerden’s Theorem, and the
three term extension of Schur’s Theorem are the assertions that the following
three matrices are image partition regular:

 1 0
0 1
1 1

 ,


1 0
1 1
1 2
1 3

 ,



1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1


.
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In view of the fact that many problems are very naturally stated as ques-
tions about image partition regularity, it is surprising that IPR matrices were
not characterized until 1993 [2]. Among the characterizations obtained then
were two that used the columns condition, and were therefore computable.
Several other characterizations have been obtained since then. (See [3, The-
orem 2.10] and [4, Theorem 15.24].)

It is very natural to ask the following question about image partition
regular matrices. When can one insist that not only are the entries of A~x all
the same colour, but also that the entries of ~x are all the same colour, though
not necessarily of the same colour as the entries of A~x? It is this question
which motivates the current paper.

There are some finite matrices over Q which can be seen at a glance to
have this property. These are the matrices which have no zero rows and have
the property that, for some positive natural number c, the first non-zero entry
in each row is equal to c. (Any image of such a matrix consists of some of the
elements of an (m, p, c)-set. By [1, Satz 2.2], given (m, p, c) ∈ N3 and given
any finite colouring of N one can always find a monochromatic (m, p, c)-set.
The elements of such an (m, p, c)-set include {cx1, cx2, . . . , cxm} where the
(m, p, c)-set is generated by {x1, x2, . . . , xm}.)

There are also very simple IPR matrices which do not have this prop-

erty. The diagonal matrix

(
1 0
0 2

)
provides an example, as can be seen by

mapping each positive integer to the starting position (mod 2) of its base 2
expansion.

Definition 1.4. Let u, v ∈ N and let A be a u× v matrix with entries from
Q. Then A is doubly image partition regular (abbreviated doubly IPR) if and
only if whenever N is finitely coloured, there exists monochromatic ~x ∈ Nv

such that A~x is monochromatic.

It is easy to see (or see below) a sufficient condition. Suppose that we
can insist that, for some positive rational c, we actually have that all the
entries of c~x are the same colour as the entries of A~x; then it follows that
A is doubly IPR. One of our main aims in this paper is to show that this
sufficient condition is also necessary.

The following very simple fact relates the notion of doubly IPR to kernel
partition regularity. Given n ∈ N we denote the n×n identity matrix by In.
We have that if A is a u × v matrix with entries from Q then A is doubly
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IPR if and only if whenever N is finitely coloured, there exist monochromatic
~x ∈ Nv and monochromatic ~y ∈ Nu such that A~x− Iu~y = ~0.

This fact in turn motivates the following definition.

Definition 1.5. Let u, v, w ∈ N. Let A be a u× v matrix with entries from
Q and let B be a u × w matrix with entries from Q Then (A,B) is doubly
kernel partition regular (abbreviated doubly KPR) if and only if whenever N
is finitely coloured, there exist monochromatic ~x and ~y such that A~x+B~y = ~0.

So a matrix A is doubly IPR if and only if the pair (A,−I) is doubly
KPR. A key idea in our proof of the characterisation of doubly IPR is to
shift our attention from this ‘asymmetrical’ case of (A,−I) and to consider
instead the more general question of when (A,B) is doubly KPR. Again, it
turns out (see Lemma 2.1 below) that if there is a positive rational c such
that the matrix ( A cB ) is KPR then (A,B) is doubly KPR. We will show
that this sufficient condition is in fact necessary.

More generally, we make the following definition.

Definition 1.6. Let u, k, v1, v2, . . . , vk ∈ N with k ≥ 2. For t ∈ {1, 2, . . . , k},
letAt be a u×vt matrix with entries from Q. Then (A1, A2, . . . , Ak) is multiply
kernel partition regular (abbreviated multiply KPR) if and only if whenever
N is finitely coloured, there exist for each t ∈ {1, 2, . . . , k}, monochromatic
~xt such that A1~x1 + A2~x2 + . . .+ Ak~xk = ~0.

Section 2 of this paper consists of a proof in Theorem 2.2 of the fact that
(A1, A2, . . . , Ak) is multiply KPR if and only if there exist positive rationals
c2, c3, . . . , ck such that the matrix ( A1 c2A2 c3A3 . . . ckAk ) is KPR.
Section 3 consists of derivation of some consequences of this fact, including
the fact that the u × v matrix A is doubly IPR if and only if there is some

positive rational c such that

(
cIv
A

)
is IPR.

We conclude this introduction with the following simple fact which we
will use a couple of times.

Lemma 1.7. Let u, v, n ∈ N and let A be a KPR u× v matrix with rational
entries. Then whenever N is finitely coloured, there exists monochromatic
~x ∈ (nN)v such that A~x = ~0.

Proof. Let ϕ be a finite colouring of N and define a colouring ψ of N by
ψ(x) = ϕ(nx). Pick ~y ∈ Nv which is monochromatic with respect to ψ such
that A~y = ~0. Let ~x = n~y. Then ~x is monochromatic with respect to ϕ and
A~x = ~0.
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2. Characterising multiply kernel partition regular matrices

We begin with the easy half of the main theorem, Theorem 2.2. We write
Q+ for the set of positive rationals.

Lemma 2.1. Let u, k, v1, v2, . . . , vk ∈ N with k ≥ 2. For t ∈ {1, 2, . . . , k}, let
At be a u × vt matrix with entries from Q. If there exist c2, c3, . . . , ck ∈ Q+

such that ( A1 c2A2 c3A3 . . . ckAk ) is KPR, then (A1, A2, . . . , Ak) is
multiply KPR.

Proof. Assume that c2, c3, . . . , ck ∈ Q+ and ( A1 c2A2 c3A3 . . . ckAk )
is KPR. Let ϕ be a finite colouring of N and let ψ be a finite colouring of N
with the property that if ψ(x) = ψ(y) then

(1) ϕ(x) = ϕ(y) and

(2) if t ∈ {2, 3, . . . , k} and ctx and cty are integers, then ϕ(ctx) = ϕ(cty).

For each t ∈ {1, 2, . . . , k}, pick mt, nt ∈ N such that ct = mt

nt
and let n =∏k

t=2 nt. Pick by Lemma 1.7 ~z ∈ (nN)v1+v2+...+vk which is monochromatic

with respect to ψ such that ( A1 c2A2 c3A3 . . . ckAk )~z = ~0. For each
t ∈ {1, 2, . . . , k}, pick ~xt ∈ (nN)vt such that

~z =


~x1
~x2
...
~xk

 .

Then the entries of ~x1 are all the same colour with respect to ϕ and given
t ∈ {2, 3, . . . , k}, since the entries of ~xt are in nN, we have that the entries
of ct~xt are all the same colour with respect to ϕ. And A1~x1 +A2c2~x2 + . . .+
Akck~xk = ~0.

The rest of this section will be devoted to a proof of the converse of
Lemma 2.1. This proof is somewhat complicated, so we will first present an
informal description of the ideas of the proof for the case k = 2 (where we
have a given doubly KPR pair (A,B)).

There are three key ingredients, two of which have appeared in other
papers and one of which is new.

(1) The ‘start base p’ colouring. This is used in [2].

6



(2) Simple facts about linear spans and positive cones being closed sets.
Again, these have been used in [2].

(3) Looking at linear spans for ‘all parts of the partition at once’. This will
be explained below, and it is the ‘new ingredient’.

Let us fix some notation. The columns of A are ~a1,~a2, . . . ,~av and the
columns of B are ~b1,~b2, . . . ,~bw.

For a large positive integer p (not necessarily prime), we colour the nat-
urals by first two digits and start position from the left (mod 2), all in the
base p expansion. So for example if s is 67100200 and t is 3040567 then s
gets colour (67, 1) and t gets colour (30, 0). So we have 2p(p− 1) colours.

For this colouring, there are monochromatic vectors ~x =

 x1
...
xv

 and

~y =

 y1
...
yw

 with A~x + B~y = ~0. Say all the entries of ~x start with the two

digits d, where d is between 1 and p (this is just for convenience of writing
later on) – so for example the above s would have d = 6 + 7

p
and the t would

have d = 3. And say all the entries of ~y start with the two digits e.
We have an ordered partition of the index set of the columns of A union

the index set of the columns of B, according to which of the xi and yi start
furthest to the left, which next furthest, and so on. We want to look at each
set in the partition as its part in A and its part in B. So we have a partition
D∪D′∪D′′∪ . . . of the columns of A, and a partition E∪E ′∪E ′′∪ . . . of the
columns of B, such that (and here note that we are allowed to have one of
D or E empty but not both, and one of D′ or E ′ empty but not both, etc.):

(a) all the xi for i ∈ D and all the yi for i ∈ E start in the same place as
each other;

(b) all the xi for i ∈ D′ and all the yi for i ∈ E ′ start in the same place as
each other, and this place is to the right of the start-place for the D,E
terms by an even number of positions;

(c) and so on.
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For infinitely many p, this ordered partition (strictly speaking, this pair
of ordered partitions) is the same and from now on we will always assume
that our p is chosen from this infinite set.

We write ~s(D) for the sum of the columns of A indexed by D, and also
~s(E) for the sum of the columns of B indexed by E. And similarly for ~s(D′)
etc.

Consider the equation A~x + B~y = ~0. This says that the sum of all xiai
plus the sum of all yibi is zero. If we consider dividing this by a suitable
power of p, and using the fact that anything that starts to the right of
the xi in D actually starts at least two places to the right, we see that
d~s(D) + e~s(E) + ~δ = ~0, where ~δ denotes a certain sum of the columns of
( A B ), each with a coefficient that is at most 1

p
.

Now, normally one would proceed by saying that this equation tells us
that ~s(D) plus a multiple of ~s(E) equals (−1/d)~δ, hence the vector ~s(D) is
arbitrarily close to the positive cone on the vector ~s(E) (namely the set of
all non-negative real multiples of the vector ~s(E)). But positive cones are
closed, hence in fact ~s(D) is a non-positive multiple of ~s(E). This would give
us a first sum of columns of ( A cB ) that is zero.

However, instead of that, we will stick with that equation, for each fixed
p, which is

d~s(D) + e~s(E) + ~δ = ~0 . (1)

Now let us consider
∑
xiai +

∑
yibi = 0 when we divide by a different

power of p, to focus on D′ and E ′. We would get a term d~s(D′) + e~s(E ′),
and a smaller contribution from columns not in D,D′, E, E ′ as well as the
terms from D′ and E ′ below the two most significant digits (with coefficients
at most 1

p
), and also an unknown contribution from the xi and yi that start

to the left of where we are, namely the xi from D and the yi from E.
So we have:
d~s(D′) + e~s(E ′) + ~δ′ = ~v for some ~v in the linear span of the columns of

D and E. Write this span as span(D,E).
In other words:

d~s(D′) + e~s(E ′) + ~δ′ (2)

belongs to span(D,E).
Next time we obtain:

d~s(D′′) + e~s(E ′′) + ~δ′′ (3)
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belongs to span(D,D′, E, E ′). Continue in the same fashion. (We recall that
this is for one fixed p. If we vary p, we will be changing d and e and so on.)

We are now ready for the new ingredient. We do not wish to perform
any limiting in equation (1) or (2). Rather, we want to look inside a product
space. Let’s say that the columns of our matrices live in V (namely Ru).
So as to keep the notation manageable, let us assume that our partitions
are into 3 parts: so we have D,D′, D′′ (but there is no D′′′) and same for
E,E ′, E ′′. We now take the product of these equations. So, still for fixed p,
in the space V × V × V we have, combining (1),(2), and (3):

d(~s(D), ~s(D′), ~s(D′′)) + e(~s(E), ~s(E ′), ~s(E ′′))

is very close to the set {~0} × span(D,E)× span(D,D′, E, E ′).
Note that this latter set, say L, is the linear span of a certain set of

vectors (such as each vector (~0,~ai,~0) for i ∈ D). Which we can, if we wish,
also view as the positive cone on (i.e. the non-negative linear combinations
of) a certain finite set of vectors (namely the vectors we have just mentioned
and their negatives).

Dividing by d, we see that −(~s(D), ~s(D′), ~s(D′′)) is arbitrarily close to
the positive cone on L∪{(~s(E), ~s(E ′), ~s(E ′′))}. But positive cones (on finite
sets of vectors) are closed sets, so, letting p tend to infinity, we conclude that:
−(~s(D), ~s(D′), ~s(D′′)) is in the positive cone on L ∪ {(~s(E), ~s(E ′), ~s(E ′′))}.

In other words, there exists a nonnegative rational c (switching from reals
to rationals, which is fine as all coefficients are rationals in our matrices) such
that:

(~s(D), ~s(D′), ~s(D′′)) + c(~s(E), ~s(E ′), ~s(E ′′)) belongs to L.
Case 1: c is positive. In this case, looking at what L is, we see that

( A cB ) satisfies the columns condition where the first block is D ∪ E,
then D′ ∪ E ′, then D′′ ∪ E ′′.

Case 2: c = 0. This ought to be a trivial case, but in fact we do not
know how to eliminate it directly. Rather, let us return to where we di-
vided by d, and instead divide by e. In other words, we switch the roles
of A and B. We obtain that for some nonnegative rational c′ we have
(~s(E), ~s(E ′), ~s(E ′′)) + c′(~s(D), ~s(D′), ~s(D′′)) belongs to L. Again, if c′ is
nonzero, we are done. So the only case left is when c′ = 0. This tells us
that the point (~s(E), ~s(E ′), ~s(E ′′)) also belongs to L. But now it follows that
for any positive rational c at all (indeed, any nonzero c) the matrix ( A cB )
satisfies the columns condition.

Now we present a more formal version of the proof.
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Theorem 2.2. Let u, k, v1, v2, . . . , vk ∈ N with k ≥ 2. For t ∈ {1, 2, . . . , k},
let At be a u × vt matrix with entries from Q. Then (A1, A2, . . . , Ak) is
multiply KPR if and only if there exist c2, c3, . . . , ck ∈ Q+ such that

( A1 c2A2 c3A3 . . . ckAk )

is KPR.

Proof. The sufficiency is Lemma 2.1. We shall prove the necessity.
For p ∈ N\{1} define gp : N→ ω by gp(x) = max{t ∈ ω : pt ≤ x}. Define

τp : ω × N→ {0, 1, . . . , p− 1} by x =
∑gp(x)

j=0 τp(j, x)pj, letting τp(j, x) = 0 if
j > gp(x). Define a finite colouring γp of N so that for x, y ∈ N, γp(x) = γp(y)
if and only if

(1) gp(x) ≡ gp(y) (mod 2),

(2) τp(gp(x), x) = τp(gp(y), y), and

(3) τp(gp(x)− 1, x) = τp(gp(y)− 1, y).

For p ∈ N \ {1} and t ∈ {1, 2, . . . , k}, pick ~xt,p ∈ Nvt such that ~xt,p is
monochromatic with respect to γp and

A1~x1,p + A2~x2,p + . . .+ Ak~xk,p = ~0 .

Pick mp ∈ N, µp(1) > µp(2) > . . . > µp(mp), and, for each t ∈ {1, 2, . . . , k},
pick pairwise disjoint sets It,p(1), It,p(2), . . . It,p(mp) such that

(1) for each t ∈ {1, 2, . . . , k},
⋃mp

i=1 It,p(i) = {t} × {1, 2, . . . , vt},

(2) for each i ∈ {1, 2, . . . ,mp},
⋃k
t=1 It,p(i) 6= ∅, and

(3) for each i ∈ {1, 2, . . . ,mp} and each (t, j) ∈
⋃k
s=1 Is,p(i), gp(xt,p,j) =

µp(i).

Pick an infinite set P ⊆ N, m ∈ N, and for each t ∈ {1, 2, . . . , k} and
each i ∈ {1, 2, . . . ,m}, It(i), such that for each p ∈ P , mp = m, and for each
t ∈ {1, 2, . . . , k} and each i ∈ {1, 2, . . . ,m}, It,p(i) = It(i).

By reordering the columns of each At, and correspondingly reordering the
entries of each ~xt,p, we may presume that we have for each t ∈ {1, 2, . . . , k},
0 = αt(0) ≤ αt(1) ≤ . . . ≤ αt(m) = vt such that for each i ∈ {1, 2, . . . ,m}
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and each t ∈ {1, 2, . . . , k}, It(i) = {(t, j) : αt(i − 1) < j ≤ αt(i)}. Thus,
if p ∈ P , i ∈ {1, 2, . . . ,m}, t ∈ {1, 2, . . . , k}, and αt(i − 1) < j ≤ αt(i),
then gp(xt,p,j) = µp(i). After the reordering, denote the columns of At by
~at,1,~at,2, . . . ,~at,vt .

For i ∈ {1, 2, . . . ,m}, let J(i) =
⋃k
t=1 It(i) and note that {J(1), J(2), . . . ,

J(k)} is a partition of the indices of the columns of ( A1 A2 A3 . . . Ak ).
For each i ∈ {1, 2, . . . ,m} and each t ∈ {1, 2, . . . , k}, let

~st(i) =

αt(i)∑
j=αt(i−1)+1

~at,j

and let ~St = (~st(1), ~st(2), . . . , ~st(m)). For each p ∈ P and t ∈ {1, 2, . . . , k},
let

dt,p = τp(gp(xt,p,1), xt,p,1) +
1

p
τp(gp(xt,p,1)− 1, xt,p,1) .

Note that for any j ∈ {1, 2, . . . , vt},

dt,p = τp(gp(xt,p,j), xt,p,j) +
1

p
τp(gp(xt,p,j)− 1, xt,p,j) ,

because ~xt,p is monochromatic with respect to γp.
Note that, given i ∈ {1, 2, . . . ,m}, t ∈ {1, 2, . . . , k}, and αt(i− 1) < j ≤

αt(i), we have that xt,p,j = pµp(i)dt,p +
∑µp(i)−2

l=0 τp(l, xt,p,j)p
l. For p ∈ P and

i ∈ {1, 2, . . . ,m}, define

~smp(i) =
k∑
t=1

( αt(i)∑
j=αt(i−1)+1

~at,p

µp(i)−2∑
l=0

τp(l, xt,p,j)p
l−µp(i)+

vt∑
j=αt(i)+1

~at,pxt,p,jp
−µp(i)

) .

Note that if M = max {||~at,j|| : t ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , vt}},
then for each i ∈ {1, 2, . . . ,m}, || ~smp(i)|| ≤ M

p

∑k
t=1 vt because gp(xt,p,j) ≤

µp(i)− 2 if j > αt(i).
For the next three paragraphs, let p ∈ P be fixed. We have that

k∑
t=1

vt∑
j=1

xt,p,j~at,j = ~0 .
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Thus dividing by pµp(1) we have
∑k

t=1 dt,p~st(1) + ~smp(1) = ~0.
Now let i ∈ {1, 2, . . . ,m}. Dividing by µp(i), we have

k∑
t=1

αt(i−1)∑
j=1

~at,jxt,p,jp
−µp(i) +

k∑
t=1

dt,p~st(i) + ~smp(i) = ~0 .

Thus −~s1(1)− 1
d1,p

~smp(1) =
∑k

t=2
dt,p
d1,p

~st(1) and for i ∈ {2, 3, . . . ,m},

−~s1(i)−
1

d1,p
~smp(i) =

k∑
t=1

αt(i−1)∑
j=1

xt,p,j
d1,p

p−µp(i)~at,j +
k∑
t=2

dt,p
d1,p

~st(i) .

For i ∈ {2, 3, . . . ,m}, let

Ci = {~w ∈×m
δ=1Ru : ~wi ∈ {~at,j : t ∈ {1, 2, . . . , k} and

j ∈ {1, 2, . . . , αt(i− 1)}}
and if δ ∈ {1, 2, . . . ,m} \ {i}, then ~wδ = ~0} .

Let K be the positive cone of
⋃m
i=2Ci, that is, all linear combinations

of members of
⋃m
i=2Ci with non-negative real coefficients. Notice that for

(~w1, ~w2, . . . , ~wm) ∈ ×m
δ=1Ru, (~w1, ~w2, . . . , ~wm) ∈ K if and only if ~w1 = ~0

and for each i ∈ {2, 3, . . . ,m}, ~wi is a linear combination with non-negative
coefficients of {~at,j : (t, j) ∈

⋃i−1
l=1 J(l)}.

Let L be the positive cone of {~S2, ~S3, . . . , ~Sk} ∪
⋃m
i=2Ci. We then have

that for each p ∈ P , −~S1 − 1
d1,p

( ~smp(1), ~smp(2), . . . , ~smp(m)) ∈ L. Now L

is closed in×m
δ=1Ru and for each p ∈ P , ||( ~smp(1), ~smp(2), . . . , ~smp(m))|| ≤

mM
p

∑k
t=1 vt. Therefore −~S1 ∈ L. And since all entries of all of the vectors

generating L are rational, in fact −~S1 is a linear combination of members of
{~S2, ~S3, . . . , ~Sk}∪

⋃m
i=2Ci with all coefficients non-negative rational numbers.

(See, for example, [4, Lemma 15.23].) Thus there exist non-negative rational

numbers b1,2, b1,3, . . . , b1,k such that −~S1−
∑k

t=2 b1,t
~St ∈ K. Letting b1,1 = 1,

we have −
∑k

t=1 b1,t
~St ∈ K.

Similarly, for each r ∈ {2, 3, . . . , k} there exist non-negative rationals

br,1, br,2, . . . , br,k with br,r = 1 such that −
∑k

t=1 br,t
~St ∈ K.

Thus we have −
∑k

r=1

∑k
t=1 br,t

~St ∈ K so −
∑k

t=1

∑k
r=1 br,t

~St ∈ K. Since

each br,t ≥ 0 and br,r = 1, we have for each t that
∑k

r=1 br,t ≥ 1. For
t ∈ {2, 3, . . . , k}, let

ct =

∑k
r=1 br,t∑k
r=1 br,1

.
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Then −~S1 −
∑k

t=2 ct
~St ∈ K and in fact is a linear combination with non-

negative rational coefficients of members of
⋃m
i=2Ci. Recalling the description

of what it means to be in K, we see that ( A1 c2A2 c3A3 . . . ckAk )
satisfies the columns condition with column partition {J(1), J(2), . . . , J(m)}.

Notice the amusing fact that the proof of Theorem 2.2 establishes that
the columns condition is satisfied with the sum of each set of columns a linear
combination of the previous columns using no positive coefficients at all.

3. Some corollaries

An immediate corollary of Theorem 2.2 is the following computable char-
acterisation of doubly IPR. (It is computable because on only needs to see
whether there is some b ∈ Q+ such that ( A −bIu ) satisfies the columns
condition.)

Corollary 3.1. Let u, v ∈ N and let A be a u × v matrix with entries from
Q. Then A is doubly IPR if and only if there exists b ∈ Q+ such that the
matrix ( A −bIu ) is KPR.

Proof. We know that A is doubly IPR if and only if the pair (A,−Iu) is
doubly KPR, so Theorem 2.2 applies.

One of the characterisations of image partition regularity is the following.

Theorem 3.2. Let u, v ∈ N and let A be a u × v matrix with entries from
Q. Then A is IPR if and only if there exist b1, b2, . . . , bv ∈ Q+ such that the
matrix 

b1 0 0 . . . 0
0 b2 0 . . . 0
0 0 b3 . . . 0
...

...
...

. . .
...

0 0 0 · · · bv

A


is IPR.

Proof. [3, Theorem 2.10].
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We show now, as a corollary to Theorem 2.2, that A is doubly IPR if and
only if one can choose b1 = b2 = . . . = bv in Theorem 3.2.

Corollary 3.3. Let u, v ∈ N and let A be a u × v matrix with entries from
Q. Then A is doubly IPR if and only if there exists b ∈ Q+ such that the
matrix (

bIv
A

)
is IPR.

Proof. Using Corollary 3.1, we show that for b ∈ Q+, ( A −bIu ) is KPR if

and only if

(
bIv
A

)
is IPR. So let b ∈ Q+ be given.

For sufficiency, let N be finitely coloured and pick ~x ∈ Nv such that

~z =

(
bIv
A

)
~x is monochromatic. Then ~z =

(
b~x
A~x

)
so ( A −bIu )~z =

bA~x− bA~x = ~0.
For necessity, pick m,n ∈ N such that b = m

n
. By Lemma 1.7, pick

monochromatic ~z ∈ (mN)v+u such that ( A −bIu )~z = ~0. Pick ~w ∈ (mN)v

and ~y ∈ (mN)u such that ~z =

(
~w
~y

)
and let ~x = 1

b
~w. Since the entries of ~w

are multiples of m, ~x ∈ Nv. Since A~w − b~y = ~0 we have b~y = A~w = bA~x so
~y = A~x. Therefore (

bIv
A

)
~x =

(
b~x
A~x

)
=

(
~w
~y

)
= ~z .

We briefly consider the following question. If the entries of A are inte-
gers and A is doubly IPR, must there exist a positive integer b such that
( A −bIu ) is KPR? In fact, this need not be the case.

Example 3.4. There is a 2× 3 matrix A which is doubly IPR but such that
there does not exist a positive integer b such that ( A −bIu ) is KPR.

Proof. Let A =

(
4 −4 2
5 −5 3

)
. Then the matrix

(
4 −4 2 −1

2
0

5 −5 3 0 −1
2

)
satisfies the columns condition (with I1 = {1, 2}, I2 = {3, 5} and I3 = {4})
so by Corollary 3.1, A is doubly IPR.
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The only value of b other than b = 1
2

for which

(
4 −4 2 −b 0
5 −5 3 0 −b

)
satisfies the columns condition is b = −2.

However, if we demand that no nonempty set of columns of A sums to ~0,
we do get the desired result.

Corollary 3.5. Let u, v ∈ N and let A be a doubly IPR u × v matrix with
entries from Z. If no nonempty set of columns of A sum to ~0, then there
exists a positive integer b such that ( A −bIu ) is KPR.

Proof. By Corollary 3.1, pick a positive rational b such that ( A −bIu ) is
KPR and pick m and I1, I2,. . . , Im as guaranteed by the columns condition.
Now I1 is not contained in {1, 2, . . . , v} so pick t ∈ {1, 2, . . . , u} such that
v + t ∈ I1. Then b =

∑
{1,...,v}∩I1 at,j and is therefore an integer.

We conclude by relating the property of being multiply KPR to central
subsets of N. If S is any discrete space, its Stone-Čech compactification βS
can be regarded as the set of ultrafilters on S, with the topology defined
by choosing the sets of the form A = {p ∈ βS : A ∈ p}, where A denotes a
subset of S, as a base for the open sets. The semigroup operation of S can be
extended to βS in such a way that βS becomes a compact right topological
semigroup with the property that for every s ∈ S the mapping x 7→ sx from
βS to itself, is continuous. Any compact right topological semigroup has a
smallest ideal which contains an idempotent. An idempotent of this kind is
called minimal , and a subset of S which is a member of a minimal idempotent
is called central . These sets have very rich combinatorial properties. The
reader is referred to [4] for further information.

We regard βN as a semigroup, with the semigroup operation + being the
extension of addition on N. We also regard N as embedded in Q and βN as
embedded in βQd, where Qd is the set Q with the discrete topology. Hence,
if c ∈ Q and p ∈ βN, cp ∈ βQd is defined by the fact that the operation of
multiplication on Q extends to βQd, and the map p 7→ cp is continuous.

Definition 3.6. A finite matrix over Q is said to be a first entries matrix if
no row is identically zero, the first non-zero entry of each row is positive and
the first non-zero entries of two different rows are equal if they occur in the
same column. A first entries matrix is said to be unital if the first non-zero
entry of each row is 1.
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The three matrices presented after Definition 1.3 are all unital first entries
matrices.

Theorem 3.7. Let u, k, v1, v2, . . . , vk ∈ N with k ≥ 2. Let p be a minimal
idempotent in βN. For each t ∈ {1, 2, . . . , k}, let At be a u× vt matrix with
entries from Q. Then (A1, A2, . . . , Ak) is multiply KPR if and only if there
exist minimal idempotents p1, p2, . . . , pk in βN, with p = p1, with the fol-
lowing property: given members C1, C2, . . . , Ck of p1, p2, . . . , pk respectively,
there exists ~xt ∈ Cvt for each t ∈ {1, 2, . . . , k} such that ct~xt ⊆ Cvt

t and∑k
t=1 Atct~xt = ~0.

Proof. The condition stated is obviously sufficient for (A1, A2, . . . , Ak) to be
multiply KPR because, given any finite colouring of N, every element of βN
has a member which is monochrome.

To prove that it is necessary, assume that (A1, A2, . . . , Ak) is multiply
KPR. By Theorem 2.2, there exist c1, c2, c3, . . . , ck ∈ Q+, with c1 = 1, such
that A = ( c1A1 c2A2 c3A3 . . . ckAk ) is KPR. For each t ∈ {1, 2, . . . , k},
let pt = ctp. By [4, Lemma 5.19.2], pt is also a minimal idempotent in βN.
Let Ct ∈ pt for each t ∈ {1, 2, . . . , k}.

Let v = v1 + v2 + . . . + vk. Since A satisfies the columns condition,
there exists m ∈ N and a v × m unital first entries matrix G over Q such

that AG = O. We can write G in block form as G =


G1

G2
...
Gt

, where, for

each t ∈ {1, 2, · · · , k}, Gt is a vt ×m matrix over Q. Let C =
⋂k
t=1 c

−1
t Ct.

Since C ∈ p1, C is a central subset of N. By [3, Lemma 2.8], there exists
~x ∈ Nm such that all the entries of G~x are in C. Put ~xt = Gt~x for each
t ∈ {1, 2, . . . , k}. Then all the entries of ~xt are in C, and so all the entries of
ct~xt are in Ct. Furthermore,

∑k
t=1 Atct~xt =

∑k
t=1 ctAtGt~x = AG~x = ~0.

In a similar vein, the following characterisation of doubly IPR matrices
follows very easily from Corollary 3.3. Let u, v ∈ N and let A be a u × v
matrix over Q. Then A is doubly IPR if and only if, for every minimal
idempotent p ∈ βN, there exists a minimal idempotent q ∈ βN such that,
whenever B ∈ p and C ∈ q, there exists ~x ∈ Bv satisfying A~x ∈ Cu.
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