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Abstract. Furstenberg’s original Central Sets Theorem applied to central subsets of
N and finitely many specified sequences in Z. In this form it was already strong enough
to derive some very strong combinatorial consequences, such as the fact that a central
subset of N contains solutions to all partition regular systems of homogeneous equations.
Subsequently the Central Sets Theorem was extended to apply to arbitrary semigroups
and countably many specified sequences. In this paper we derive a new version of the
Central Sets Theorem for arbitrary semigroups S which applies to all sequences in S
at once. We show that the new version is strictly stronger than the original version
applied to the semigroup (R, +). And we show that the noncommutative versions are
strictly increasing in strength.

1. Introduction

In [3] Furstenberg defined a central subset of the set N of positive integers in terms of
some notions from topological dynamics. He showed that if N is partitioned into finitely
many classes, one of these classes contains a central set. Then he proved the following
theorem. (For any set X, we write Pf (X) for the set of finite nonempty subsets of X.)

1.1 The Original Central Sets Theorem (Furstenberg). Let l ∈ N and for each
i ∈ {1, 2, . . . , l}, let 〈yi,n〉∞n=1 be a sequence in Z. Let C be a central subset of N. Then
there exist sequences 〈an〉∞n=1 in N and 〈Hn〉∞n=1 in Pf (N) such that

(1) for all n, maxHn < minHn+1 and

(2) for all F ∈ Pf (N) and all i ∈ {1, 2, . . . , l},
∑

n∈F (an +
∑

t∈Hn
yi,t) ∈ C.

Proof. [3, Proposition 8.21].

1 This author acknowledges support received from the National Science Foundation via Grant
DMS-0554803.
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He pointed out that an immediate consequence is that whenever N is divided into
finitely many classes, and a sequence 〈xn〉∞n=1 is given, one of the classes must con-
tain arbitrarily long arithmetic progressions with the increment d ∈ FS(〈xn〉∞n=1) =
{
∑

n∈F xn : F ∈ Pf (N)}. (To see this, let l ∈ N and for i ∈ {0, 1, . . . , l} let yi,n = i ·xn.
Pick a cell of the partition which contains a central set C and pick 〈an〉∞n=1 and 〈Hn〉∞n=1

as guaranteed by the Central Sets Theorem. Now throw away all but the first term of
each sequence. Let d =

∑
t∈H1

xt. Then for i ∈ {0, 1, . . . , l}, a1+id = a1+
∑

t∈H1
yi,t ∈

C.) Furstenberg also used central sets to prove Rado’s Theorem [7] by showing that any
central subset of N contains solutions to all partition regular systems of homogeneous
linear equations.

Subsequently, after looking at an early draft of the paper [4] by Furstenberg and
Katznelson which derived Ramsey Theoretic results using idempotents in enveloping
semigroups, Vitaly Bergelson had the idea that one might be able to derive the con-
clusion of the Central Sets Theorem for a set C ⊆ N which had an idempotent in the
smallest ideal of βN in its closure. (Here βN is the Stone-Čech compactification of N.
We shall present a brief introduction to its structure later in this section.) He was right.
This suggested the following definition which makes sense in any semigroup.

1.2 Definition. Let S be a discrete semigroup and let C be a subset of S. Then C

is central if and only if there is an idempotent p in the smallest ideal of βS such that
p ∈ c`C.

In [1] it was shown, with the assistance of B. Weiss, that a subset C of N is central
according to Definition 1.2 if and only if C is central according to Furstenberg’s original
definition. Furstenberg’s original definition extends naturally to an arbitrary semigroup
and in [8] Hong-ting Shi and Hong-wei Yang showed that this extended definition is
equivalent to that of Definition 1.2.

In [2], the Central Sets Theorem was extended to arbitrary semigroups. The ver-
sion for commutative semigroups extended Theorem 1.1 by allowing the choice of the
sequence which was used to vary as n varied. (We shall deal with noncommutative ver-
sions later.) For purposes of comparison with the noncommutative versions we introduce
the following notation.

1.3 Definition. Let (S,+) be a commutative semigroup, let a ∈ S, let H ∈ Pf (N),
and let 〈yt〉∞t=1 be a sequence in S. Then x(a,H, 〈yi〉∞t=1) = a+

∑
t∈H yt.

With this notation conclusion (2) of Theorem 1.1 becomes “for all F ∈ Pf (N) and
all i ∈ {1, 2, . . . , l},

∑
n∈F x(an,Hn, 〈yi,t〉∞t=1) ∈ C.”

2



1.4 Theorem. Let (S,+) be a commutative semigroup. Let l ∈ N and for each i ∈ {1, 2,
. . . , l}, let 〈yi,n〉∞n=1 be a sequence in S. Let C be a central subset of S. Then there exist
sequences 〈an〉∞n=1 in S and 〈Hn〉∞n=1 in Pf (N) such that

(1) for all n, maxHn < minHn+1 and

(2) for all F ∈ Pf (N) and all f : F → {1, 2, . . . , l},
∑

n∈F x(an,Hn, 〈yf(n),t〉∞t=1) ∈ C.

Proof. [2, Corollary 2.10].

The alert reader may have noticed that in Theorem 1.1 C is central in N while
the sequences 〈yi,n〉∞n=1 are allowed to come from Z. It is a fact, which follows from [6,
Exercise 4.3.5 and Theorem 1.65], that any set central in (N,+) is also central in (Z,+),
so Theorem 1.1 does follow from Theorem 1.4.

In [6] we extended the Central Sets Theorem further by dealing with countably
many sequences at a time. The straightforward extension of Theorem 1.4 to count-
ably many sequences (in which conclusion (2) would read “for all F ∈ Pf (N) and all
f : F → N,

∑
n∈F x(an,Hn, 〈yf(n),t〉∞t=1) ∈ C”) is not valid. One can see this because it

would easily imply that any central set in N, and thus one cell of any finite partition of
N, would contain infinite arithmetic progressions. One needs to restrict oneself to deal-
ing with finitely many sequences at one time, so we use the following set of functions.
Given sets X and Y , we write XY for the set of functions from X to Y .

1.5 Definition. Φ = {f ∈ NN : for all n ∈ N, f(n) ≤ n}.

1.6 Theorem. Let (S,+) be a commutative semigroup and for each i ∈ N, let 〈yi,n〉∞n=1

be a sequence in S. Let C be a central subset of S. Then there exist sequences 〈an〉∞n=1

in S and 〈Hn〉∞n=1 in Pf (N) such that

(1) for all n, maxHn < minHn+1 and

(2) for all F ∈ Pf (N) and all f ∈ Φ,
∑

n∈F x(an,Hn, 〈yf(n),t〉∞t=1) ∈ C.

Proof. [6, Theorem 14.11].

In this paper we prove an extension of the Central Sets Theorem for commutative
semigroups which applies to all sequences in S at once and we prove the corresponding
extension for the Central Sets Theorem for noncommutative semigroups.

In Section 2 we shall derive the new commutative version. We shall also show
that there exist commutative semigroups, including (R,+), in which the conclusion
of Theorem 1.4 is strictly stronger than the obvious generalization of Theorem 1.1 to
arbitrary commutative semigroups.
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In Section 3 we shall derive the new noncommutative version and investigate those
members of βS all of whose members satisfy the new Central Sets Theorem.

In Section 4 we shall show that in the free semigroup on ω1 generators the new
Central Sets Theorem is strictly stronger than the noncommutative version of Theorem
1.6. We shall also show in that section that in the free semigroup on c generators, the
noncommutative version of Theorem 1.6 is strictly stronger than the noncommutative
version of Theorem 1.4 which is in turn strictly stronger than the noncommutative
version of Theorem 1.1.

We now present a very brief review of basic facts about (βS, ·). For additional
information see [6].

Given a discrete semigroup (S, ·) we take the points of the Stone-Čech compactifi-
cation βS of S to be the ultrafilters on S, the principal ultrafilters being identified with
the points of S. Given A ⊆ S, A = {p ∈ βS : A ∈ p} and the set {A : A ⊆ S} is a basis
for the open sets (and a basis for the closed sets) of βS. Given p, q ∈ βS and A ⊆ S,
A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p, where x−1A = {y ∈ S : x · y ∈ A}.
In particular, the operation · on βS extends the operation · on S. If the operation is
denoted by +, then A ∈ p + q if and only if {x ∈ S : −x + A ∈ q} ∈ p. The reader
should be warned however, that even if S is commutative, βS seldom is. In particular
the algebraic centers of (βN, ·) and (βN,+) are both equal to N.

With this operation, (βS, ·) is a compact Hausdorff right topological semigroup
with S contained in its topological center. That is, for each p ∈ βS, the function
ρp : βS → βS defined by ρp(q) = q · p is continuous and for each x ∈ S, the function
λx : βS → βS defined by λx(q) = x · q is continuous. A nonempty subset I of a
semigroup T is a left ideal provided T · I ⊆ I, a right ideal provided I · T ⊆ I, and a
two sided ideal (or simply an ideal) provided it is both a left ideal and a right ideal.

Any compact Hausdorff right topological semigroup T has a smallest two sided
ideal K(T ) =

⋃
{L : L is a minimal left ideal of T} =

⋃
{R : R is a minimal right ideal

of T}. Given a minimal left ideal L and a minimal right ideal R, L∩R is a group, and in
particular contains an idempotent. An idempotent in K(T ) is a minimal idempotent. If
p and q are idempotents in T we write p ≤ q if and only if pq = qp = p. An idempotent
is minimal with respect to this relation if and only if it is a member of the smallest
ideal.

Thus a subset C of S is central if and only if it is a member of a minimal idempotent
of βS.
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2. The new commutative Central Sets Theorem

As with the older versions, the new Central Sets Theorem for commutative semigroups
is a consequence of the general result for all semigroups. However, the commutative
version is much simpler to state, and so we present its derivation separately.

We present a nearly self contained proof, relying only on a few basic facts about
compact right topological semigroups. We do this to make clear the simplicity of the
proof of the new Central Sets Theorem. We begin with the following special case of
Theorem 1.4. A subset C of S is piecewise syndetic if and only if C ∩K(βS) 6= ∅. In
particular any central set is piecewise syndetic.

As the referee pointed out, the following theorem is an immediate consequence of
the corresponding result which does not require that minH > m. (One may simply
delete the first m terms of each sequence.) However, we need this version, and it is no
harder to prove than the superficially more restricted version.

2.1 Theorem. Let (S,+) be a commutative semigroup and let l ∈ N. For each
i ∈ {1, 2, . . . , l}, let 〈yi,n〉∞n=1 be a sequence in S. Let C be a piecewise syndetic subset
of S and let m ∈ N. There exist a ∈ S and H ∈ Pf (N) such that minH > m and for
each i ∈ {1, 2, . . . , l}, x(a,H, 〈yi,t〉∞t=1) ∈ C.

Proof. Let Y =×l
t=1βS. Then by [6, Theorem 2.22] Y is a compact right topological

semigroup and if s ∈×l
t=1S, then λs is continuous. For i ∈ N, let

Ii =
{(
x(a,H, 〈y1,t〉∞t=1), . . . , x(a,H, 〈yl,t〉∞t=1)

)
: a ∈ S , H ∈ Pf (N), and minH > i

}
and let Ei = Ii ∪ {(a, a, . . . , a) : a ∈ S}.

Let E =
⋂∞

i=1Ei and let I =
⋂∞

i=1 Ii. We claim that E is a subsemigroup of Y and
I is an ideal of E. To this end, let p, q ∈ E. We show that p+ q ∈ E and if either p ∈ I
or q ∈ I, then p+q ∈ I. Let U be an open neighborhood of p+q and let i ∈ N. Since ρq

is continuous, pick a neighborhood V of p such that V + q ⊆ U . Pick x ∈ Ei ∩ V with
x ∈ Ii if p ∈ I. If x ∈ Ii so that x =

(
x(a,H, 〈y1,t〉∞t=1), . . . , x(a,H, 〈yl,t〉∞t=1)

)
for some

a ∈ S and some H ∈ Pf (N) with minH > i, let j = maxH. Otherwise, let j = i. Since
λx is continuous, pick a neighborhood W of q such that x+W ⊆ U . Pick y ∈ Ej ∩W
with y ∈ Ij if q ∈ I. Then x+y ∈ Ei∩U and if either p ∈ I or q ∈ I, then x+y ∈ Ii∩U .

By [6, Theorem 2.23] K(Y ) = ×l
t=1K(βS). Pick p ∈ K(βS) ∩ C. Then p =

(p, p, . . . , p) ∈ K(Y ). We claim that p ∈ E. To see this, let U be a neighborhood of
p, let i ∈ N, and pick A1, A2, . . . , Al ∈ p such that ×l

t=1At ⊆ U . Pick a ∈
⋂l

t=1At.
Then a = (a, a, . . . , a) ∈ U ∩ Ei. Thus p ∈ K(Y ) ∩ E and consequently K(Y ) ∩ E 6= ∅.

5



Then by [6, Theorem 1.65], we have that K(E) = K(Y ) ∩ E and so p ∈ K(E) ⊆ I.
Then Im ∩×l

t=1C 6= ∅ so pick z ∈ Im ∩×l
t=1C and pick a ∈ S and H ∈ Pf (N) with

minH > m such that z =
(
x(a,H, 〈y1,t〉∞t=1), . . . , x(a,H, 〈yl,t〉∞t=1)

)
.

The following is the new Central Sets Theorem for commutative semigroups.

2.2 Theorem. Let (S,+) be a commutative semigroup and let T = NS, the set of
sequences in S. Let C be a central subset of S. There exist functions α : Pf (T ) → S

and H : Pf (T ) → Pf (N) such that

(1) if F,G ∈ Pf (T ) and F ⊆6 G, then maxH(F ) < minH(G) and

(2) whenever m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm, and for each
i ∈ {1, 2, . . . ,m}, 〈yi,n〉∞n=1 ∈ Gi, one has

∑m
i=1 x(α(Gi),H(Gi), 〈yi,t〉∞t=1) ∈ C.

Proof. Pick a minimal idempotent p of βS such that C ∈ p. Let

C? = {x ∈ C : −x+ C ∈ p} .

Since p+ p = p, C? ∈ p. Also by [6, Lemma 4.14], if x ∈ C?, then −x+ C? ∈ p.
We define α(F ) ∈ S and H(F ) ∈ Pf (N) for F ∈ Pf (T ) by induction on |F |

satisfying the following inductive hypotheses:

(1) if ∅ 6= G ⊆6 F , then maxH(G) < minH(F ) and

(2) if n ∈ N, ∅ 6= G1 ⊆6 G2 ⊆6 . . . ⊆6 Gn = F , and 〈fi〉ni=1 ∈ ×n
i=1Gi, then∑n

i=1 x(α(Gi),H(Gi), fi) ∈ C?.

Assume first that F = {f}. Pick by Theorem 2.1 a ∈ S and L ∈ Pf (N) such that
x(a, L, 〈f(t)〉∞t=1) ∈ C?. Let α({f}) = a and H({f}) = L.

Now assume that |F | > 1 and α(G) and H(G) have been defined for all proper
subsets G of F . Let K =

⋃
{H(G) : ∅ 6= G ⊆6 F} and let m = maxK. Let

M = {
∑n

i=1 x(α(Gi),H(Gi), fi) : n ∈ N , ∅ 6= G1 ⊆6 G2 ⊆6 . . . ⊆6 Gn ⊆6 F ,

and 〈fi〉ni=1 ∈×n
i=1Gi} .

Then M is finite and by hypothesis (2), M ⊆ C?. Let B = C?∩
⋂

x∈M (−x+C?). Then
B ∈ p so pick by Theorem 2.1 a ∈ S and L ∈ Pf (N) such that minL > m and for each
f ∈ F , x(a, L, 〈f(t)〉∞t=1) ∈ B. Let α(F ) = a and H(F ) = L.

Since minL ≥ m we have that hypothesis (1) is satisfied. To verify hypothesis (2),
let n ∈ N, let ∅ 6= G1 ⊆6 G2 ⊆6 . . . ⊆6 Gn = F , and let 〈fi〉ni=1 ∈ ×n

i=1Gi If n = 1,
then

∑n
i=1 x(α(Gi),H(Gi), f1) = x(a, L, f1) ∈ B ⊆ C?. So assume that n > 1 and let

y =
∑n−1

i=1 x(α(Gi),H(Gi), fi). Then y ∈ M so x(a, L, fn) ∈ B ⊆ (−y + C?) and thus∑n
i=1 x(α(Gi),H(Gi), fi) = y + x(a, L, fn) ∈ C? as required.
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As a simple application, we present the following corollary which is not directly
derivable by a single application of Theorem 1.6. The point of the corollary is that an
arithmetic progression A is chosen which “works” for every length k and every sequence
〈yn〉∞n=1.

2.3 Corollary. Let C be a central subset of N, let 〈xn〉∞n=1 be a sequence in N, and let
l ∈ N. There exist a ∈ N and d ∈ FS(〈xn〉∞n=1) such that A = {a+d, a+2d, . . . , a+ld} ⊆
C and whenever 〈yn〉∞n=1 is a sequence in N and k ∈ N there will exist b ∈ N and
c ∈ FS(〈yn〉∞n=1) such that B = {b+ c, b+ 2c, . . . , b+ kc} ⊆ C and A+B ⊆ C.

Proof. Pick functions α and H as guaranteed by the new Central Sets Theorem. Let
F = {〈xn〉∞n=1, 〈2xn〉∞n=1, . . . , 〈lxn〉∞n=1}. Let a = α(F ) and let d =

∑
t∈H(F ) xt. Given

〈yn〉∞n=1 and k, let G = F ∪ {〈yn〉∞n=1, 〈2yn〉∞n=1, . . . , 〈kyn〉∞n=1}. Let b = α(G) and let
c =

∑
t∈H(G) yt.

Honesty compels us to admit that we could have derived Corollary 2.3 by two
applications of Theorem 1.6, or even of Theorem 1.1, by first producing a ∈ N and
d ∈ FS(〈xn〉∞n=1) such that A = {a + d, a + 2d, . . . , a + ld} ⊆ C? and then applying
Theorem 1.1 to the central set

⋂l
t=1(−(a+ d) + C?).

Notice that Theorem 1.6 is an easy consequence of Theorem 2.2. To see this, notice
that one can assume that the sequences in the statement of Theorem 1.6 are distinct.
Then given such sequences, for each n ∈ N, let Fn = {〈y1,t〉∞t=1, 〈y2,t〉∞t=1, . . . , 〈yn,t〉∞t=1}
and let an = α(Fn) and Hn = H(Fn).

We cannot prove that Theorem 2.2 is strictly stronger than Theorem 1.6 or even
Theorem 1.4. (In Section 4 we will show that the corresponding noncommutative ver-
sions are indeed strictly increasing in strength.) We can, however, show that Theorem
1.4 is strictly stronger than the obvious generalization of Theorem 1.1 to arbitrary
commutative semigroups which we state now.

2.4 Theorem. Let (S,+) be a commutative semigroup. Let l ∈ N and for each i ∈ {1, 2,
. . . , l}, let 〈yi,n〉∞n=1 be a sequence in S. Let C be a central subset of S. Then there exist
sequences 〈an〉∞n=1 in S and 〈Hn〉∞n=1 in Pf (N) such that

(1) for all n, maxHn < minHn+1 and

(2) for all F ∈ Pf (N) and all i ∈ {1, 2, . . . , l},
∑

n∈F x(an,Hn, 〈yi,t〉∞t=1) ∈ C.

The following semigroup contains much of the known algebraic structure of βN and
occurs as a subsemigroup of βS for many semigroups S. (See [6, especially Section 6.1].)
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2.5 Definition. H =
⋂∞

n=1 c`βN(2nN).

We shall need the following technical lemma. Recall that ω = N ∪ {0} is the first
infinite ordinal.

2.6 Lemma. Let (S,+) be a commutative semigroup with identity 0 and no other idem-
potents. Let m ∈ N and for each i ∈ {1, 2, . . . ,m}, let 〈yi,n〉∞n=1 be a sequence in S.
Assume that ψ : ω

1-1−→onto S, ψ(0) = 0, and the restriction of ψ̃ to H is an injective homo-
morphism, where ψ̃ : βω → βS is the continuous extension of ψ. Assume further that
all idempotents of βS \ S are in ψ̃[H]. Then for each r ∈ N, there exists H ∈ Pf (N)
such that minH > r and for all i ∈ {1, 2, . . . ,m}, ψ−1(

∑
t∈H yi,t) ∈ 2r · ω.

Proof. Consider the semigroup (Pf (N),∪) and denote the extended operation in
βPf (N) by ∪∗ . (We cannot follow our usual custom of denoting the extended op-
eration by the same symbol as used for the original semigroup since p∪ q already means
something.) For each n ∈ N let Bn = {H ∈ Pf (N) : minH > n}. Then by [6, Theorem
4.20], B =

⋂∞
n=1 c`βPf (N)Bn is a subsemigroup of (βPf (N), ∪∗ ) so pick an idempotent

p ∈ B. For each i ∈ {1, 2, . . . ,m} define θi : Pf (N) → S by θi(H) =
∑

t∈H yi,t.

Now let i ∈ {1, 2, . . . ,m} be given. By [6, Theorem 4.21], if θ̃i : βPf (N) → βS

is the continuous extension of θi, then the restriction of θ̃i to B is a homomorphism.
Consequently, θ̃i(p) is either 0 or an idempotent in ψ̃[H]. Thus ψ̃−1

(
θ̃i(p)

)
is either 0

or is an idempotent in H. In any event, 2r · ω is a neighborhood of ψ̃−1
(
θ̃i(p)

)
in βω so

pick Ai ∈ p such that ψ̃−1
(
θ̃i[Ai ]

)
⊆ 2r · ω.

Pick H ∈ Br ∩
⋂m

i=1Ai. Then minH > r and for each i ∈ {1, 2, . . . ,m},

ψ−1(
∑

t∈H yi,t) = ψ−1
(
θi(H)

)
∈ 2r · ω .

As noted before the proof of [6, Theorem 7.28] the word “metrizable” is not really
needed in the following theorem.

2.7 Theorem. For each ι < c let (Sι,+) be a semigroup containing (ω,+) with |Sι| ≤
c. Assume further that either S0 = ω or S0 is a countably infinite group which can
be mapped into a compact metrizable group by an injective homomorphism. Let S =⊕

ι<c Sι. Then there is a subset A of S which satisfies the conclusion of Theorem 2.4
but does not satisfy the conclusion of Theorem 1.4.

Proof. Given σ < c define e(σ) ∈ S by e(σ)(σ) = 1 and e(σ)(ι) = 0 if ι 6= σ. We shall
use two notions of “support” in this proof. For x ∈ S, supp(x) = {σ < c : x(σ) 6= 0}.
For x ∈ N, supp2(x) ∈ Pf (ω) is defined by x =

∑
t∈supp2(x) 2t and supp2(0) = ∅.
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If S0 = ω, let ψ : ω → ω be the identity. If S0 is a countably infinite group which
can be mapped into a compact metrizable group by an injective homomorphism, then
by [6, Theorem 7.28] we may pick ψ : ω

1-1−→onto S such that ψ(0) = 0, the restriction of ψ̃
to H is an injective homomorphism, and all idempotents of βS \ S are in ψ̃[H]. In any
event the hypotheses of Lemma 2.6 are satisfied.

Notice that |S| = c and so, if T = NS, we have that |Pf (T )| = c. Enumerate Pf (T )
as 〈Fσ〉σ<c and for each σ < c, let m(σ) = |Fσ|. Write

Fσ =
{
〈yσ,i,t〉∞t=1 : i ∈ {1, 2, . . . ,m(σ)}

}
.

Let {En : n ∈ N} be a partition of N into infinite sets and define θ : N → N by
n ∈ Eθ(n). Let D = {σ < c : σ is a limit ordinal} and choose γ : c

1-1−→D such that for all

σ < c, sup
(⋃m(σ)

i=1

⋃∞
t=1 supp(yσ,i,t)

)
< γ(σ).

We choose inductively for σ < c sequences 〈aσ,n〉∞n=1 in S and 〈Hσ,n〉∞n=1 in Pf (N) as
follows. Let σ < c be given and assume that 〈aτ,n〉∞n=1 and 〈Hτ,n〉∞n=1 have been chosen
for all τ < σ. Choose k1 ∈ Em(σ) and choose Hσ,1 ∈ Pf (N) such that for each i ∈ {1, 2,
. . . ,m(σ)}, 2k1+1 divides ψ−1

( ∑
t∈Hσ,1

π0(yσ,i,t)
)

= ψ−1
(
π0(

∑
t∈Hσ,1

yσ,i,t)
)

which one
can do by Lemma 2.6. Choose k2 ∈ Em(σ) such that ψ−1

(
π0(

∑
t∈Hσ,1

yσ,i,t)
)
< 2k2

for each i ∈ {1, 2, . . . ,m(σ)} and k2 > k1. (The last inequality is redundant unless
π0(

∑
t∈Hσ,1

yσ,i,t) = 0 for each i ∈ {1, 2, . . . ,m(σ)}, which is possible.) Let aσ,1 =
ψ(2k1 + 2k2) · e(0) + e(γ(σ) + 1).

Now let n ∈ N and assume that aσ,n and Hσ,n have been chosen. Pick k2n+1 ∈
Em(σ) such that k2n+1 > k2n and pick Hσ,n+1 ∈ Pf (N) such that minHσ,n+1 >

maxHσ,n and 2k2n+1+1 divides ψ−1
(
π0(

∑
t∈Hσ,n+1

yσ,i,t)
)

for each i ∈ {1, 2, . . . ,m(σ)}.
Pick k2n+2 ∈ Em(σ) such that k2n+2 > k2n+1 and ψ−1

(
π0(

∑
t∈Hσ,n+1

yσ,i,t)
)
< 2k2n+2

for each i ∈ {1, 2, . . . ,m(σ)}. Let aσ,n+1 = ψ(2k2n+1 + 2k2n+2) · e(0) + e(γ(σ) + n+ 1).

Now let for each σ < c, Aσ =
⋃m(σ)

i=1 FS
(〈
x(aσ,n,Hσ,n, 〈yσ,i,t〉∞t=1)

〉∞
n=1

)
and let

A =
⋃

σ<c Aσ.

Observe now that if σ < c and x ∈ Aσ, then

(1) θ
(

min supp2ψ
−1

(
π0(x)

))
= θ

(
max supp2ψ

−1
(
π0(x)

))
= m(σ) and

(2) there exist i ∈ {1, 2, . . . ,m(σ)} and G ∈ Pf (N) such that
x =

∑
n∈G x(aσ,n,Hσ,n, 〈yσ,i,t〉∞t=1) where

(a) γ(σ) < max supp(x) < γ(σ) + ω and

(b) supp(x) ∩ (γ(σ), γ(σ) + ω) = {γ(σ) + n : n ∈ G}.
We have directly that A satisfies the conclusion of Theorem 2.4. Suppose that

A satisfies the conclusion of Theorem 1.4. Let f1(n) = e(0) and f2(n) = 2 · e(0) for
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each n ∈ N. Pick sequences 〈an〉∞n=1 in S and 〈Hn〉∞n=1 in Pf (N) such that maxHn <

minHn+1 for each n ∈ N and whenever K ∈ Pf (N) and g : K → {1, 2},∑
n∈K x(an,Hn, fg(n)) ∈ A .

For r ∈ N \ {1} and l ∈ {2, 3, . . . , r}, let

b(l, r) =
∑l

n=2 x(an,
∑

t∈Hn
, f1) +

∑r+1
n=l+1 x(an,Hn, f2)

and note that for each l ∈ {2, 3, . . . , r − 1}, π0

(
b(l, r)

)
> π0

(
b(l + 1, r)

)
.

Now let B =
{

1, 2, . . . ,max supp2ψ
−1

(
π0

(
x(a1,H1, f1)

))}
. We claim that{

θ
(
max supp2ψ

−1
(
π0

(
b(l, r)

)))
: r ∈ N \ {1} and l ∈ {2, 3, . . . , r}

}
⊆ θ[B].

To see this, let r ∈ N \ {1} and l ∈ {2, 3, . . . , r} be given. If

min supp2ψ
−1

(
π0

(
b(l, r)

))
≤ max supp2ψ

−1
(
π0

(
x(a1,H1, f1)

))
,

then min supp2ψ
−1

(
π0

(
b(l, r)

))
∈ B so

θ
(
max supp2ψ

−1
(
π0

(
b(l, r)

)))
= θ

(
min supp2ψ

−1
(
π0

(
b(l, r)

)))
∈ θ[B] .

So assume that min supp2ψ
−1

(
π0

(
b(l, r)

))
> max supp2ψ

−1
(
π0

(
x(a1,H1, f1)

))
and let

x = x(a1,H1, f1) + b(l, r). Then x ∈ Aσ for some σ so

θ
(
max supp2ψ

−1
(
π0

(
b(l, r)

)))
= θ

(
max supp2ψ

−1
(
π0(x)

))
= θ

(
min supp2ψ

−1
(
π0(x)

))
= θ

(
min supp2ψ

−1
(
π0

(
x(a1,H1, f1)

)))
∈ θ[B] .

Now let k = max θ[B] and let r = k + 2. For each l ∈ {2, 3, . . . , r} and any ι with
0 < ι < c, πι

(
b(l, r)

)
= πι(

∑r+1
n=2 an) which is independent of l. Thus by observation

(2) there exist σ < c and G ∈ Pf (N) such that for each l ∈ {2, 3, . . . , r} there is some
i ∈ {1, 2, . . . ,m(σ)} such that b(l, r) =

∑
n∈G x(aσ,n,Hσ,n, 〈yσ,i,t〉∞t=1). Further, since

b(2, r) ∈ Aσ, we have that m(σ) = θ
(
max supp2ψ

−1
(
π0

(
b(2, r)

)))
≤ k. But we have

seen that
π0

(
b(2, r)

)
> π0

(
b(3, r)

)
> . . . > π0

(
b(r, r)

)
so |

{
b(l, r) : l ∈ {2, 3, . . . , r}

}
| = k + 1 while∣∣{ ∑

n∈G x(aσ,n,Hσ,n, 〈yσ,i,t〉∞t=1) : i ∈ {1, 2, . . . ,m(σ)}
}∣∣ ≤ m(σ) ≤ k .

This contradiction completes the proof.

2.8 Corollary. There is a subset of (R,+) which satisfies the conclusion of Theorem
2.4 but does not satisfy the conclusion of Theorem 1.4.
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Proof. (R,+) is isomorphic to
⊕

ι<c Q and (Q,+) can be mapped into the circle group
T by an injective homomorphism.

We ask the following question in the broadest terms, but we do not know the answer
for S = N or S = R.

2.9 Question. Do there exist a commutative semigroup (S,+) and a subset C of S
establishing that the conclusions of Theorems 1.4, 1.6, and 2.2 are not all equivalent.

We shall see in Section 4 that the noncommutative versions of these theorems are
strictly increasing in strength.

3. Rich sets, strongly rich sets, and the

new noncommutative Central Sets Theorem

As is customary, we use multiplicative notation for a not necessarily commutative semi-
group. The versions of the noncommutative Central Sets Theorem are more complicated
because the translates an or α(F ) must be split into several parts. That is the function
of the notion Im which we introduce now.

3.1 Definition. For m ∈ N, Im = {
(
H(1),H(2), . . . ,H(m)

)
: each H(j) ∈ Pf (N) and

for any j ∈ {1, 2, . . . ,m− 1}, maxH(j) < minH(j + 1)}.

The following is the version of the noncommutative Central Sets Theorem given
in [6]. In a noncommutative semigroup, by

∏
t∈F xt we mean the product taken in

increasing order of indices.

3.2 Theorem. Let (S, ·) be a semigroup, let C be a central subset of S, and for each
l ∈ N, let 〈yl,i〉∞i=1 be a sequence in S. There exist sequences 〈m(n)〉∞n=1, 〈a(n)〉∞n=1, and
〈H(n)〉∞n=1 such that

(1) for each n ∈ N, m(n) ∈ N, a(n) ∈ Sm(n)+1, H(n) ∈ Im(n), and maxH(n)
(
m(n)

)
<

minH(n+ 1)(1), and

(2) for each f ∈ Φ, and each F ∈ Pf (N),∏
n∈F

(∏m(n)
j=1

(
a(n)(j) ·

∏
t∈H(n)(j) yf(n),t

))
· a(n)(m(n) + 1) ∈ C .

Proof. [6, Theorem 14.15].

In [5] it was shown that central sets were not the only sets satisfying the conclusion
of the Central Sets Theorem (Theorem 1.4) in commutative semigroups. Sets satisfying
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the conclusion of Theorem 1.4 were called rich and it was shown that any quasi-central
set, i.e., a set which is a member of an idempotent in the closure of the smallest ideal,
is rich. Further it was shown that in (N,+) there are quasi-central sets which are not
central and there are rich sets which are not quasi-central.

In this section, we extend the notion of rich to arbitrary semigroups, and introduce
the notion of strongly rich. The new stronger Central Sets Theorem (Corollary 3.10) is
the assertion that any central set is strongly rich. We show that there is a closed two
sided ideal J of βS such that a set is strongly rich if and only if it is a member of an
idempotent in J .

We introduce some special notation. The notation does not reflect all of the vari-
ables upon which it depends.

3.3 Definition. Let (S, ·) be a semigroup.

(a) T = NS.

(b) Y = NT .

(c) Given m ∈ N, a ∈ Sm+1, H ∈ Im, and f ∈ T ,

x(m,a,H, f) =
(∏m

j=1

(
a(j) ·

∏
t∈H(j) f(t)

))
· a(m+ 1) .

(d) Given Y =
〈
〈yl,t〉∞t=1

〉∞
l=1

∈ Y and A ⊆ S, A is a JY -set if and only if for all n ∈ N
there exist m ∈ N, a ∈ Sm+1, and H ∈ Im such that minH(1) ≥ n and for all
l ∈ {1, 2, . . . , n}, x(m,a,H, 〈yl,t〉∞t=1) ∈ A.

(e) A ⊆ S is a J-set if and only if for each F ∈ Pf (T ) and each n ∈ N, there exist
m ∈ N, a ∈ Sm+1, and H ∈ Im such that minH(1) ≥ n and for each f ∈ F ,
x(m,a,H, f) ∈ A.

(f) Given Y ∈ Y, JY = {p ∈ βS : for all A ∈ p, A is a JY -set}.
(g) J = {p ∈ βS : for all A ∈ p, A is a J-set}.
(h) A ⊆ S is rich iff for each Y =

〈
〈yl,i〉∞i=1

〉∞
l=1

∈ Y, there exist sequences 〈m(n)〉∞n=1,
〈a(n)〉∞n=1, and 〈H(n)〉∞n=1 such that

(1) for each n ∈ N, m(n) ∈ N, a(n) ∈ Sm(n)+1, H(n) ∈ Im(n), and
maxH(n)

(
m(n)

)
< minH(n+ 1)(1), and

(2) for each f ∈ Φ, and each F ∈ Pf (N),∏
n∈F x(m(n), a(n),H(n), 〈yf(n),t〉∞t=1) ∈ A.

(i) A ⊆ S is strongly rich if and only if there exist m : Pf (T ) → N,
α ∈×F∈Pf (T ) S

m(F )+1, and H ∈×F∈Pf (T ) Im(F ) such that

(1) if F,G ∈ Pf (T ) and F ⊆6 G, then maxH(F )
(
m(F )

)
< minH(G)(1) and
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(2) whenever n ∈ N, G1, G2, . . . , Gn ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gn, and for each
i ∈ {1, 2, . . . , n}, 〈yi,t〉∞t=1 ∈ Gi, one has∏n

i=1 x
(
m(Gi), α(Gi),H(Gi), 〈yi,t〉∞t=1

)
∈ A.

We omit the routine proof of the following theorem.

3.4 Theorem. Let S be a semigroup and let A ⊆ S. Then A is a J-set if and only if
for each Y ∈ Y, A is a JY -set. In particular J =

⋂
Y ∈Y JY .

3.5 Theorem. For each Y ∈ Y, JY is a closed two sided ideal of βS. Consequently J
is a closed two sided ideal of βS and so c`K(βS) ⊆ J .

Proof. Let Y ∈ Y. By Theorem 3.2 any idempotent in K(βS) is in JY and thus JY 6= ∅.
If p ∈ βS \ JY , pick A ∈ p such that A is not a JY -set. Then A is a neighborhood of p
missing JY . Thus JY is closed.

Now let p ∈ JY and let q ∈ βS. To see that p · q ∈ JY , let A ∈ p · q and let n ∈ N.
Let B = {z ∈ S : z−1A ∈ q}. Then B ∈ p so pick m ∈ N, a ∈ Sm+1, and H ∈ Im

such that minH(1) ≥ n and for all l ∈ {1, 2, . . . , n}, x(m,a,H, 〈yl,t〉∞t=1) ∈ B. Pick
z ∈

⋂n
l=1 x(m,a,H, 〈yl,t〉∞t=1)

−1A. Define b ∈ Sm+1 by, for t ∈ {1, 2, . . . ,m+ 1},

b(t) =
{

a(t) if t ≤ m
a(m+ 1) · z if t = m+ 1 .

Then for all l ∈ {1, 2, . . . , n}, x(m, b,H, 〈yl,t〉∞t=1) ∈ A.

To see that q ·p ∈ JY , let A ∈ q ·p and let n ∈ N. Let B = {z ∈ S : z−1A ∈ p}. Then
B ∈ q and is therefore nonempty so pick z ∈ B. Pick m ∈ N, a ∈ Sm+1, and H ∈ Im

such that minH(1) ≥ n and for all l ∈ {1, 2, . . . , n}, x(m,a,H, 〈yl,t〉∞t=1) ∈ z−1A. Define
b ∈ Sm+1 by, for t ∈ {1, 2, . . . ,m+ 1},

b(t) =
{
z · a(1) if t = 1
a(t) if t ≥ 2 .

Then for all l ∈ {1, 2, . . . , n}, x(m, b,H, 〈yl,t〉∞t=1) ∈ A.

We note now a strong relationship between rich sets and the ideals JY and between
strongly rich sets and the ideal J .

3.6 Theorem. Let (S, ·) be a semigroup and let A ⊆ S. Then A is rich if and only if
for every Y ∈ Y there is an idempotent p ∈ JY ∩A.

Proof. In the case S is commutative, this is [5, Corollary 2.11]. The adjustments to
the proof needed for the general case can be deduced from the proof of Theorem 3.8,
which we present in full detail.
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We shall need the following lemma from [6].

3.7 Lemma. Let P be a set, let (D,≤) be a directed set, and let (S, ·) be a semigroup.
Let 〈Ti〉i∈D be a decreasing family of nonempty subsets of S such that for each i ∈ D

and each x ∈ Ti there is some j ∈ D such that x · Tj ⊆ Ti. Let Q =
⋂

i∈D c`βSTi. Then
Q is a compact subsemigroup of βS. Let 〈Ei〉i∈D and 〈Ii〉i∈D be decreasing families of
nonempty subsets of ×t∈PS with the following properties:

(a) for each i ∈ D, Ii ⊆ Ei ⊆×t∈PTi,

(b) for each i ∈ D and each x ∈ Ii there exists j ∈ D such that x · Ej ⊆ Ii, and

(c) for each i ∈ D and each x ∈ Ei\Ii there exists j ∈ D such that x · Ej ⊆ Ei

and x · Ij ⊆ Ii.

Let Y = ×t∈P βS, let E =
⋂

i∈D c`Y Ei, and let I =
⋂

i∈D c`Y Ii. Then E is a
subsemigroup of ×t∈P Q and I is an ideal of E. If, in addition, either

(d) for each i ∈ D, Ti = S and {a ∈ S : a /∈ Ei} is not piecewise syndetic, or

(e) for each i ∈ D and each a ∈ Ti, a ∈ Ei,

then given any p ∈ K(Q), one has p ∈ E ∩K(×t∈P Q) = K(E) ⊆ I.

Proof. [6, Lemma 14.9]

As the referee has observed, only the “sufficiency” portion of the following theorem
(which is the part with the easier proof) is needed for the corollaries that follow.

3.8 Theorem. Let (S, ·) be a semigroup and let A ⊆ S. Then A is strongly rich if and
only if there is an idempotent p ∈ J ∩A.

Proof. Sufficiency. Pick p = p · p ∈ J ∩ A. Recall from the proof of Theorem 2.2 that
A? = {x ∈ A : x−1A ∈ p} and if x ∈ A?, then x−1A? ∈ p. We define m(F ), α(F ) and
H(F ) for F ∈ Pf (T ) by induction on |F | so that

(1) if ∅ 6= G ⊆6 F , then maxH(G)
(
m(G)

)
< minH(F )(1) and

(2) whenever n ∈ N, ∅ 6= G1 ⊆6 G2 ⊆6 . . . ⊆6 Gn = F and τ ∈×n
i=1Gi, then∏n

i=1 x
(
m(Gi), α(Gi),H(Gi), τ(i)

)
∈ A?

Assume first that F = {f}. Then A? is a J-set so pick m(F ) ∈ N, α(F ) ∈ Sm(F )+1,
and H(F ) ∈ Im(F ) such that x

(
m(F ), α(F ),H(F ), f

)
∈ A?

Now assume that |F | > 1 and that m(G), α(G), and H(G) have been defined
for all proper subsets G of F . For ∅ 6= G ⊆6 F , let l(G) = maxH(G)

(
m(G)

)
and let
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k = max{l(G) : ∅ 6= G ⊆6 F}+ 1. Let

M =
{∏n

i=1 x
(
m(Gi), α(Gi),H(Gi), τ(i)

)
:

∅ 6= G1 ⊆6 G2 ⊆6 . . . ⊆6 Gn ⊆6 F and τ ∈×n
i=1Gi

}
.

Then M is a finite subset of A? so B = A? ∩
⋂

b∈M b−1A? ∈ p and so B is a J-set. Pick
m(F ) ∈ N, α(F ) ∈ Sm(F )+1, and H(F ) ∈ Im(F ) such that minH(F )(1) ≥ k and for
each f ∈ F , x

(
m(F ), α(F ),H(F ), f

)
∈ B.

Hypothesis (1) is satisfied directly. To verify hypothesis (2), let n ∈ N, let ∅ 6=
G1 ⊆6 G2 ⊆6 . . . ⊆6 Gn = F , and let τ ∈×n

i=1Gi. If n = 1, then

x
(
m(G1), α(G1),H(G1), τ(i)

)
∈ B ⊆ A? ,

so assume that n > 1. Let b =
∏n−1

i=1 x
(
m(Gi), α(Gi),H(Gi), τ(i)

)
. Then b ∈ M so

x
(
m(Gn), α(Gn),H(Gn), τ(i)

)
∈ B ⊆ b−1A? so

∏n
i=1 x

(
m(Gi), α(Gi),H(Gi), τ(i)

)
∈

A? as required.

Necessity. Pick

m : Pf (T ) → N , α ∈×F∈Pf (T ) S
m(F )+1, and H ∈×F∈Pf (T ) Im(F )

as guaranteed by the fact that A is strongly rich. For F ∈ Pf (T ) define

TF =
{ ∏n

i=1 x
(
m(Fi), α(Fi),H(Fi), τ(i)

)
: n ∈ N ,

each Fi ∈ Pf (T ) , F ⊆6 F1 ⊆6 F2 ⊆6 . . . ⊆6 Fn, and τ ∈×n
i=1Fi

}
.

Note that if F,G ∈ Pf (T ), then TF∪G ⊆ TF ∩ TG, so Q =
⋂

F∈Pf (T ) TF 6= ∅. We claim
that Q is a subsemigroup of βS. For this it suffices by [6, Theorem 4.20] to show that
for all F ∈ Pf (T ) and all u ∈ TF , there is some G ∈ Pf (T ) such that u · TG ⊆ TF . So
let F ∈ Pf (T ) and u ∈ TF be given. Pick strictly increasing 〈Fi〉ni=1 in Pf (T ) such that
F ⊆6 F1 and u =

∏n
i=1 x

(
m(Fi), α(Fi),H(Fi), τ(i)

)
. Then u · TFn

⊆ TF .

Now we claim that K(Q) ⊆ A∩ J so that any idempotent in K(Q) establishes the
theorem. We have that each TF ⊆ A so Q ⊆ A. Let p ∈ K(Q). We need to show that
p ∈ J , so let B ∈ p. We shall show that B is a J-set. So let F ∈ Pf (T ) and k ∈ N be
given. We shall produce v ∈ N, c ∈ Sv+1, and M ∈ Iv such that minM(1) ≥ k and for
each f ∈ F , x(v, c,M, f) ∈ B. Note that we can assume that |F | ≥ k so if G ∈ Pf (T )
and F ⊆ G, then minH(G)(1) ≥ k.

We shall apply Lemma 3.7 with P = F and D = {G ∈ Pf (T ) : F ⊆ G}. Note that
Q =

⋂
G∈D TG as in Lemma 3.7. For G ∈ D we shall define a subset IG of ×f∈F S as
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follows. Let w ∈×f∈F S. Then w ∈ IG if and only if there is some n ∈ N \ {1} such
that

(1) there exist disjoint nonempty sets C1 and C2 such that {1, 2, . . . , n} = C1 ∪ C2,

(2) there exist strictly increasing 〈Gi〉ni=1 in Pf (T ) with G ⊆6 G1, and

(3) there exists τ ∈×i∈C1 Gi,

such that for each f ∈ F , if γf ∈×n
i=1Gi is defined by

γ
f (i) =

{
τ(i) if i ∈ C1

f if i ∈ C2

then w(f) =
∏n

i=1 x
(
m(Gi), α(Gi),H(Gi), γf (i)

)
.

For G ∈ D, let EG = IG ∪ {b : b ∈ TG}.
We claim that 〈EG〉G∈D and 〈IG〉G∈D satisfy statements (a), (b), (c), and (e) of

Lemma 3.7. Statements (a) and (e) hold trivially.

To verify (b), let G ∈ D and let w ∈ IG. Pick n, C1, C2, 〈Gi〉ni=1 and τ as
guaranteed by the fact that w ∈ IG. We claim that w · EGn ⊆ IG. So let z ∈ EGn .

Assume first that z = b for some b ∈ TGn
. Pick n′ ∈ N, strictly increasing 〈Fi〉n

′

i=1

in Pf (T ) with Gn ⊆6 F1, and τ ′ ∈×n′

i=1Fi such that

b =
∏n′

i=1 x
(
m(Fi), α(Fi),H(Fi), τ ′(i)

)
.

Let C ′′1 = C1 ∪ {n+ 1, n+ 2, . . . , n+ n′} and for i ∈ {1, 2, . . . , n+ n′}, let

Li =
{

Gi if i ≤ n
Fi−n if i > n .

Define τ ′′ ∈×i∈C′′
1
Li by, for i ∈ C ′′1 ,

τ ′′(i) =
{

τ(i) if i ≤ n
τ ′(i− n) if i > n .

Then n+ n′, C ′′1 , C2, 〈Li〉n+n′

i=1 , and τ ′′ establish that w · z ∈ IG.

Now assume that z ∈ IGn
. Pick n′, C ′1, C

′
2, 〈Fi〉n

′

i=1 and τ ′ as guaranteed by the
fact that z ∈ IGn

. Let C ′′1 = C1 ∪ {n+ i : i ∈ C ′1}, let C ′′2 = C2 ∪ {n+ i : i ∈ C ′2}, and
for i ∈ {1, 2, . . . , n+ n′} let

Li =
{

Gi if i ≤ n
Fi−n if i > n .

Define τ ′′ ∈×i∈C′′
1
Li by, for i ∈ C ′′1 ,

τ ′′(i) =
{

τ(i) if i ≤ n
τ ′(i− n) if i > n .
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Then n+ n′, C ′′1 , C ′′2 , 〈Li〉n+n′

i=1 , and τ ′′ establish that w · z ∈ IG.

To verify (c) let G ∈ D and let w ∈ EG \ IG. Pick b ∈ TG such that w = b. Pick
n ∈ N, strictly increasing 〈Gi〉ni=1 in Pf (T ) with G ⊆6 G1, and τ ∈ ×n

i=1Gi such that
b =

∏n
i=1 x

(
m(Gi), α(Gi),H(Gi), τ(i)

)
. Then as above one has that w ·EGn

⊆ EG and
w · IGn

⊆ IG.

We then have by Lemma 3.7 that p ∈ I =
⋂

G∈D IG. Now ×f∈F B is a neighbor-
hood of p so pick w ∈ IF ∩×f∈F B. Pick n, C1, C2, 〈Gi〉ni=1, and τ ∈ ×i∈C1 Gi as
guaranteed by the fact that w ∈ IF . Let r = |C2| and let h1, h2, . . . , hr be the elements
of C2 listed in increasing order. Let v =

∑r
i=1m(Ghi

). If h1 = 1, let c(1) = α(G1)(1).
If h1 > 1, let

c(1) =
∏h1−1

i=1

(
x
(
m(Gi), α(Gi),H(Gi), τ(i)

))
· α(Gh1)(1) .

For 1 < j ≤ m(Gh1) let c(j) = α(Gh1)(j) and for 1 ≤ j ≤ m(Gh1) let M(j) =
H(Gh1)(j).

Now let s ∈ {1, 2, . . . , r − 1} and let u =
∑s

i=1m(Ghi
). If hs+1 = hs + 1 let

c(u+ 1) = α(Ghs
)(m(Ghs

) + 1) · α(Ghs+1)(1). If hs+1 > hs + 1, let

c(u+1) = α(Ghs)(m(Ghs)+1) ·
(∏hs+1−1

i=hs+1 x
(
m(Gi), α(Gi),H(Gi), τ(i)

))
·α(Ghs+1)(1) .

And for u < j ≤
∑s+1

i=1 m(Ghi
), let M(j) = H(Ghs+1)(j − u).

If hr = n, let c(v + 1) = α(Gn)(m(Gn) + 1). If hr < n, let c(v + 1) =
α(Ghr

)(m(Ghr
)+1) ·

∏n
i=hr+1

(
x
(
m(Gi), α(Gi),H(Gi), τ(i)

))
. Then c ∈ Sv+1, M ∈ Iv

such that minM(1) ≥ k, and for each f ∈ F , x(v, c,M, f) ∈ B as required.

3.9 Corollary. Let (S, ·) be a semigroup. Every quasi-central subset of S is strongly
rich.

Proof. Theorems 3.5 and 3.8.

We isolate the following corollary with a full statement of the conclusion because
it is the new Central Sets Theorem.

3.10 Corollary. Let (S, ·) be a semigroup and let C be a central subset of S. There
exist m : Pf (T ) → N, α ∈×F∈Pf (T ) S

m(F )+1, and H ∈×F∈Pf (T ) Im(F ) such that

(1) if F,G ∈ Pf (T ) and F ⊆6 G, then maxH(F )
(
m(F )

)
< minH(G)(1) and

(2) whenever n ∈ N, G1, G2, . . . , Gn ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gn, and for
each i ∈ {1, 2, . . . , n}, 〈yi,t〉∞t=1 ∈ Gi, one has∏n

i=1 x
(
m(Gi), α(Gi),H(Gi), 〈yi,t〉∞t=1

)
∈ C.
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Proof. A central set is quasi-central.

Theorem 4.4 below gives an example of a rich set in the free semigroup on ω1

generators which is not strongly rich.

By Theorem 3.8, the example of [5, Theorem 5.5] of a subset of N which is rich and
not quasi-central is in fact strongly rich. By Theorems 3.6 and 3.8 the example given
in Theorem 4.4 of a subset of the free semigroup on ω1 generators is a member of an
idempotent in JY for each Y ∈ Y but is not a member of any idempotent in J .

4. Strength of the versions of the Central Sets

Theorem in noncommutative semigroups

Each of Theorems 1.1 and 1.4 have natural noncommutative versions which we now
state. They are, of course, each corollaries of Theorem 3.2.

4.1 Theorem. Let S be a semigroup, let Z ∈ Pf (T ), and let C be a central subset of
S. There exist sequences 〈m(n)〉∞n=1, 〈a(n)〉∞n=1, and 〈H(n)〉∞n=1 such that

(1) for each n ∈ N, m(n) ∈ N, a(n) ∈ Sm(n)+1, H(n) ∈ Im(n), and
maxH(n)

(
m(n)

)
< minH(n+ 1)(1), and

(2) for each f ∈ Z and each F ∈ Pf (N),
∏

n∈F x(m(n), a(n),H(n), f) ∈ A.

4.2 Theorem. Let S be a semigroup, let Z ∈ Pf (T ), and let C be a central subset of
S. There exist sequences 〈m(n)〉∞n=1, 〈a(n)〉∞n=1, and 〈H(n)〉∞n=1 such that

(1) for each n ∈ N, m(n) ∈ N, a(n) ∈ Sm(n)+1, H(n) ∈ Im(n), and
maxH(n)

(
m(n)

)
< minH(n+ 1)(1), and

(2) for each F ∈ Pf (N) and each f : F → Z,∏
n∈F x

(
m(n), a(n),H(n), f(n)

)
∈ A.

We now show that Theorems 4.1, 4.2, 3.2, and Corollary 3.10 are strictly increasing
in strength. For the following, recall that any ordinal is the set of its predecessors. In
particular, the cardinal ω1 is the set of countable ordinals.

4.3 Theorem. Let S be the free semigroup on the alphabet c. There exist subsets A
and B of S such that A satisfies the conclusion of Theorem 4.1 but not that of Theorem
4.2 and B satisfies the conclusion of Theorem 4.2 but not that of Theorem 3.2.

Proof. Enumerate Pf (T ) as 〈Zσ〉σ<c. Choose an injective mapping σ 7→ zσ from c to
c \ ω such that if f ∈ Zσ, n ∈ N, and δ occurs in f(n), then δ < zσ.
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Let Aσ = {
∏

n∈F zσ
2n−1f(n)zσ : F ∈ Pf (N) and f ∈ Zσ} and let A =

⋃
σ<c Aσ.

To see that A satisfies the conclusion of Theorem 4.1, let Z ∈ Pf (T ) be given and pick
σ < c such that Z = Zσ. For each n ∈ N, let m(n) = 1, a(n) = (zσ

2n−1, zσ), and
H(n) = ({n}). Then for n ∈ N and f ∈ Z, x(m(n), a(n),H(n), f) = zσ

2n−1f(n)zσ, so
for each F ∈ Pf (N),

∏
n∈F x(m(n), a(n),H(n), f) ∈ A.

Now suppose that A satisfies the conclusion of Theorem 4.2. Let g1(n) = 1 and
g2(n) = 2 for all n ∈ N and let Z = {g1, g2}. Pick sequences 〈m(n)〉∞n=1, 〈a(n)〉∞n=1,
and 〈H(n)〉∞n=1 as guaranteed for Z. Pick σ < c such that x(m(1), a(1),H(1), g1) ∈ Aσ.
Pick r ∈ N such that 2r−1 > |Zσ|. Words in Aσ begin and end with zσ. Therefore,
given f : {1, 2, . . . , r} → {g1, g2} with f(1) = g1, there exist F ∈ Pf (N) and h ∈ Zσ

such that
∏r

i=1 x
(
m(i), a(i),H(i), f(i)

)
=

∏
n∈F zσ

2n−1h(n)zσ. Let d be the number of
occurrences of zσ in

∏r
i=1

∏m(i)+1
j=1 a(i)(j). Then d =

∑
n∈F 2n so F does not depend on

f . But there are 2r−1 distinct products of the form
∏r

i=1 x
(
m(i), a(i),H(i), f(i)

)
where

f : {1, 2, . . . , r} → {g1, g2} and f(1) = g1 while there are only at most |Zσ| distinct
products of the form

∏
n∈F zσ

2n−1h(n)zσ for h ∈ Zσ, a contradiction.

Now let Bσ = {
∏

n∈F zσ
2n−1f(n)(n)zσ : F ∈ Pf (N) and f : F → Zσ} and let B =⋃

σ<c Bσ. To see that B satisfies the conclusion of Theorem 4.2, let Z ∈ Pf (T ) be given
and pick σ < c such that Z = Zσ. For each n ∈ N, let m(n) = 1, a(n) = (zσ

2n−1, zσ),
and H(n) = ({n}). Then for n ∈ N and f : F → Z, x

(
m(n), a(n),H(n), f(n)

)
=

zσ
2n−1f(n)(n)zσ, so for each F ∈ Pf (N),∏

n∈F x
(
m(n), a(n),H(n), f(n)

)
∈ B .

To see that B does not satisfy the conclusion of Theorem 3.2, for each l, n ∈ N let
gl(n) = l. Suppose we have sequences 〈m(n)〉∞n=1, 〈a(n)〉∞n=1, and 〈H(n)〉∞n=1 such that

(1) for each n ∈ N, m(n) ∈ N, a(n) ∈ Sm(n)+1, H(n) ∈ Im(n), and maxH(n)
(
m(n)

)
<

minH(n+ 1)(1), and

(2) for each f ∈ Φ, and each F ∈ Pf (N),
∏

n∈F x(m(n), a(n),H(n), gf(n)) ∈ B.

Pick σ < c such that b = x(m(1), a(1),H(1), g1) ∈ Bσ. Pick r ∈ N such that
r > |Zσ|. For i ∈ {1, 2, . . . , r} let ci = x(m(r), a(r),H(r), gi). Then for each i ∈ {1, 2,
. . . , r}, ci ∈ B and bci ∈ B. Since b begins with zσ and each element of B begins and
ends with the same letter, one has that ci ends with zσ and therefore ci ∈ Bσ. Assume
thatH(r) = (L1, L2, . . . , Lm(r)) and for j ∈ {1, 2, . . . ,m(r)}, let lj = |Lj |. Then for each
i ∈ {1, 2, . . . , r}, ci = a(r)(1)il1a(r)(2)il2 · · · ilm(r)a(r)(m(r) + 1). Let d be the number
of occurrences of zσ in

∏m(r)+1
j=1 a(r)(j). If d =

∑
n∈F 2n, then for each i ∈ {1, 2, . . . , r},

ci =
∏

n∈F zσ
2n−1hi(n)(n)zσ for some hi : F → Zσ.
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We have that zσ occurs in a(r)(1) and in a(r)(m(r)+1). Let j be the least member
of {2, 3, . . . ,m(r) + 1} such that zσ occurs in a(r)(j). Then a(r)(1) = uzσ

2n−1v and
a(r)(j) = wzσy where n ∈ F , v and w are possibly empty words over the letters less
than zσ, u and y are possibly empty words over the letters less than or equal to zσ, and
u is either empty or ends in a single occurrence of zσ. (Recall that if g ∈ Zσ, n ∈ N,
and δ occurs in g(n), then δ < zσ.)

Thus for each i ∈ {1, 2, . . . , r},

zσ
2n−1hi(n)(n)zσ = zσ

2n−1vil1a(r)(2) · · · a(r)(j − 1)ilj−1wzσ .

Therefore there are r distinct values for hi(n)(n), while each hi(n) ∈ Zσ, a contradiction.

4.4 Theorem. Let S be the free semigroup on the alphabet ω1. There is a subset C of
S such that satisfies the conclusion of Theorem 3.2, but not that of Corollary 3.10.

Proof. For each λ < ω1, let Sλ denote the free semigroup on {ι < ω1 : ι ≤ λ}, regarded
as a subsemigroup of S. Let C =

⋃
λ<ω1

λSλ. So C is the set of words s in S whose
first letter is greater than or equal to any other letter in s. We observe that, for each
λ < ω1, λSλ is central in Sλ, because it is a right ideal of Sλ. If Y =

〈
〈yi,t〉∞t=1

〉∞
i=1

∈ Y,
we can choose λ < ω1 such that {yi,t : i, t ∈ N} ⊆ Sλ. It follows from Theorem 3.2
applied to the semigroup Sλ, that C satisfies the conclusion of Theorem 3.2.

We claim that C does not satisfy the conclusion of Corollary 3.10. To see this,
suppose that, on the contrary, there exist functions m, α and H satisfying the con-
clusion of this theorem. Choose F = {f} ∈ Pf (T ). Then choose λ < ω1 such that
x(m(F ), α(F ),H(F ), f) ∈ λSλ. Choose µ satisfying λ < µ < ω1. Put g = 〈µ, µ, µ, . . .〉
and put G = {f, g} ∈ Pf (T ).

We are assuming that s = x(m(F ), α(F ),H(F ), f)x(m(G), α(G),H(G), g) ∈ νSν

for some ν < ω1. This implies that the first letter of s is ν and hence that ν = λ, because
the first letter of s is equal to the first letter of x(m(F ), α(F ),H(F ), f). However, µ
occurs in s and hence µ ≤ λ, a contradiction.

Notice that none of our examples involve a countable semigroup S.

4.5 Question. Do there exist a countable semigroup S and a subset C of S satisfying
the conclusion of one of Theorems 4.1, 4.2, or 3.2, but not of one or all of the stronger
statements?
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